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Abstract Automatic detection systems do not perform as well as human
observers, even on simple detection tasks. A potential solution to this
problem is training vision systems on appropriate regions of interests
(ROIs), in contrast to training on prede�ned and arbitrarily selected
regions. Here we focus on detecting pedestrians in static scenes. Our aim
is to answer the following question: Can automatic vision systems for
pedestrian detection be improved by training them on perceptually-de�ned
ROIs?

1 Introduction
The present study investigates the detection of pedestrians by humans and by
computer vision systems. This simple task is accomplished easily and quickly by
human observers but still poses a challenge for current vision systems.

In the Computer Vision community, di�erent automatic detection systems
have been designed in the past using simple features for people detection based
on the detection of di�erent body elements: the face [4,17], the head [1,2], the
entire body [15] or just the legs [11], as well as the human skin [6].

These systems make use of some selected regions where representations based
on local features [9,14], sometimes combined with global cues [7], are employed
for detection. Such systems perform fairly well but still have high miss rates.
In order to overcome this problem, more recently a combination of body parts
have been used to improve the performance as the false positive for an individual
detector is higher than for several detectors [10].

However, the criteria to select the di�erent body parts or regions have not
been the focus in these earlier works. Rather, the parts or regions have been cho-
sen ad hoc or arbitrarily. That said, we have observed a small correlation between



the performance of these systems and human observers. This �nding motivated
us to systematically analyze human performance on a pedestrian detection task
that tests whether these regions are the most semantically useful and whether
other regions can also provide useful information. This study therefore allows
us to determine which body parts should be included in an automatic detection
system.

For that purpose, we used a psychophysical "bubbles" technique [3], described
in Section 2, to isolate those regions used by humans for pedestrian detection�
what we call perceptually-de�ned regions of interest (p-ROI). Section 3 describes
the general object detection framework designed by Viola and Jones [14] used to
train a p-ROI detector. Section 4 presents the geometric restrictions employed
to make use of the global con�guration of these parts, with the aim to reduce
false detections. Results are presented in Section 5, and some conclusions are
outlined in Section 6.

2 The Bubbles Technique

To investigate which ROIs are used more by humans, we used a psychophysical
"bubbles" technique [3] to isolate the regions which help human observers deter-
mine the presence of pedestrians in an image. The technique was originally used
in [3] to identify internal facial features that provided diagnostic information
for gender and expression classi�cation. For example, with high-resolution face
images, the gender was correctly determined using just the eyes and mouth.

In the current study, images containing aligned pedestrians were revealed
through a mask of small randomly distributed Gaussian windows ("bubbles").
That is, the presence of a bubble over a region showed that region, as shown in
Figures 1 and 2. Eight subjects were shown stimuli masked by Gaussian bubbles
and had to judge if a human was present. Half the trials contained a human.
Across observers, masks leading to correct responses are summed and normalized
to reveal image regions that were useful for this task. This procedure is illustrated
in Figure 1. The result of the bubbles paradigm is a diagnostic image, which is
presented in Figure 2.

Figure 1. Building the diagnostic image using bubbles.



The diagnostic image (Figure 2) indicates that observers relied predomi-
nantly on head and leg regions, and to a lesser extent on arm regions. These
results con�rm some of the regions already considered by automatic pedestrian
detectors.

Figure 2. The diagnostic image produced from eight human observers for the pedes-
trian detection problem.

3 Viola-Jones general object detection framework

The Viola-Jones [14] general object detection framework achieves fast and robust
performance by means of a cascade of weak classi�ers trained using boosting.
This approach has been used to train the p-ROI detector in order to con�rm if
those regions are particularly discriminable for certain pattern matching prob-
lems, and to what extent an area is important. This framework has already been
successfully applied to di�erent objects categories, and it is well known in the
face detection community because it provides real-time performance.

Recently, an implementation has been made available in OpenCV (Open
Computer Vision Library) [5]. This framework, designed for rapid object detec-
tion, is based on the idea of a boosted cascade of weak classi�ers [13] but extends
the original feature set and provides di�erent boosting variants for learning [8].

The cascade learning algorithm is similar to decision-tree learning. Essen-
tially, a classi�er cascade can be seen as a degenerated decision tree. For each
stage in the cascade a separate subclassi�er is trained to detect almost all target
objects while rejecting a certain fraction of the non-object patterns. The result-
ing true detection rate, D, and the false detection rate, F, of the cascade is given
by the combination of each single stage classi�er rates:
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For example, given a 20-stage cascade of weak classi�ers designed to reject
50% of non-object patterns (false detection rate) while accepting 99.9% of ob-
ject patterns (detection rate) at each stage, the overall detection rate will be
0.99920 ≈ 0.98 with a false detection rate of 0.520 ≈ 0.9 ∗ 10−6. This scheme
allows for a high image processing rate, due to the fact that background regions
of the image are quickly discarded. Consequently, more processing time can be
dedicated to promising object-like regions. Thus, to achieve a desired trade-o�
between accuracy and speed for the resulting classi�er, the designer can choose
the desired number of stages, the target false detection rate and the target true
detection rate per stage.

4 Geometric restrictions

As stated in recent works, the probability of a false detection for an individual
detector is higher than for several detectors [10]. Using this assumption, the
coocurrence of coherently located detections can provide the system with evi-
dence to reject detections which are inconsistent with the majority of detections.
This fact is evident in Figure 3. The left column re�ects the hits obtained for a
frame using the p-ROI detector, while the right column indicates the resulting
�ltered detection image after applying some heuristic geometric restrictions for
typical standing pedestrians. The basic rules applied to determine if a detection
is coherent in the image are applied only when at least two di�erent detectors
of di�erent nature reported a hit. These rules are summarized as:

� The feet must be below the head, to the right of the left arm and to the left
of the right arm.

� The head must be above the feet, to the right of the left arm and to the left
of the right arm.

� The centroid of the left arm must be to the left of head, feet and right arm.
� The centroid of the right arm must be to the right of head, feet and left arm.

5 Experiments

The detectors used in these experiments were trained using the OpenCV imple-
mentation of the Viola-Jones framework. The training set consisted of the CBCL
pedestrian images [12] augmented with additional positive and negative samples
of upper bodies and faces for the default openCV detectors and (a di�erent set
of) upper bodies for the p-ROI detectors. The test consisted of image sequences
of 41 pedestrians walking through a park [16]. In total there were 1448 images.



Figure 3. Left column shows detection samples using the p-ROIs detector. Right col-
umn shows hits accepted after geometric �ltering. Colors are related to the detector:
red for heads and shoulders, green for feet, blue for right (in the image) arm and cyan
for left (in the image).

Figure 4 illustrates di�erent detection results achieved with the two detectors.
Tables 1 and 2 compared the results achieved using the default detectors included
in the OpenCV release, and the results achieved with the basic p-ROI detector.
As evident in the results tables, the true detection rate is increased with the new
approach, however, the false detection rate is also increased. As raised above, we
also found a small correlation between both detectors' true detection rate with
human detection performance, as shown in Figure 5.

Total Double True False
Detections Detections Detections Detections d'

Face 248 1 170 77 0.42
Upper Body 136 0 134 2 1.66
Lower Body 711 132 505 74 1.23
Full Body 213 3 69 41 0.24

Total 14.5% 3.5% 0.89
Table 1. Default OpenCV detectors results. Double detections refers to overlapping
detections of the same target, true detections consider multiple correct detections of
the same target as a single one.

In order to test possible bene�ts of the geometric restrictions, the hits achieved
by the p-ROI detector have been �ltered using the geometric coherence tests.



Figure 4. Results achieved using the detectors included in the OpenCV release, and
results achieved using the basic p-ROI approach. Colors meaning: left) yellow for faces,
red for heads and shoulders, green for lower body, blue for full body , and right) red
for heads and shoulders, green for feet, blue for right (in the image) arm and cyan for
left (in the image).

Total Double True False
Detections Detections Detections Detections d'

Upper Body 1166 56 984 (66%) 126 (8%) 1.79
Feet 909 89 636 (43%) 184 (12%) 0.97

Left Arm 616 81 407 (27%) 128 (9%) 0.76
Right Arm 601 70 353 (24%) 178 (12%) 0.46

Total 40% 10%
Table 2. p-ROI detection results

The results summarized in Table 3 re�ect an important reduction of false detec-
tion rates together with a slight reduction in true detection rates. Speci�cally,
false detection are reduced by ∼ 50% (averaging across the individual detectors)
whereas true detections are reduced by ∼ 8%.

6 Conclusions

We have described a pedestrian detector which is based on body parts selected
according to their perceptual importance. The results achieved with this set of
features improved hits for automatic detection of pedestrian compared with the
default detectors included in OpenCV. The method provides a means to select
training features to improve automatic vision systems.

Occlusions are not considered explicitly, but the use of a body part approach
allows occlusions up to a certain level due to the fact that the system requires
only the presence of a single part.



Figure 5. For each of the 41 pedestrian test video sequences, we observed a correlation
between how well human observers performed in a pedestrian detection task and how
well the openCV (purple) and p-ROI (cyan) detectors on a detection task. Each dot
represents one of the pedestrians. The human data are from [16].

Total Double True False
Detections Detections Detections Detections d'

Upper Body 1062 38 963 (65%) 61 (4%) 2.12
Feet 675 47 547 (37%) 81 (5%) 1.27

Left Arm 507 60 373 (25%) 74 (5%) 0.98
Right Arm 464 43 315 (21%) 106 (7%) 0.67

Total 37% 5%
Table 3. p-ROI with geometric restrictions detection results

In sum, we believe that this perceptually-based approach combined with
simple rules (i.e., our geometric constraints) can be useful for assigning di�erent
weights to regions and points not only based on their discrimination features but
also on their perceptual signi�cance for the problem considered.

Future work will consider the integration of temporal coherence to improve
the detection rate and reduce the false detections when a sequence is available.
The application to crowded scenes will also be a challenging problem.
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