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ABSTRACT
There is a continuous research effort devoted to overcome
the memory wall problem. Prefetching is one of the most
frequently used techniques. A prefetch mechanism antici-
pates the processor requests by moving data into the lower
levels of the memory hierarchy. Runahead mechanism is
another form of prefetching based on speculative execution.
This mechanism executes speculative instructions under an
L2 miss, preventing the processor from being stalled when
the reorder buffer completely fills, and thus allowing the
generation of useful prefetches. Another technique to al-
leviate the memory wall problem provides processors with
large instruction windows, avoiding window stalls due to
in-order commit and long latency loads. This approach,
known as “Kilo-instruction processors”, relies on exploiting
more instruction level parallelism allowing thousands of in-
flight instructions while long latency loads are outstanding
in memory.

In this work, we present a comparative study of the three
above-mentioned approaches, showing their key issues and
performance tradeoffs. We show that Runahead execution
achieves better performance speedups (30% on average) than
traditional prefetch techniques (21% on average). Never-
theless, the Kilo-instruction processor performs best (68%
on average). Kilo-instruction processors are not only faster
but also generate a lower number of speculative instructions
than Runahead. When combining the prefetching mecha-
nism evaluated with Runahead and Kilo-instruction proces-
sor, the performance is improved even more in each case
(49,5% and 88,9% respectively), although Kilo-instruction
with prefetch achieves better performance and executes less
speculative instructions than Runahead.

Categories and Subject Descriptors
B.8 [Hardware]: Performance and Reliability—General,
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1. INTRODUCTION
The difference between the processor and the memory

speed becomes higher and higher every year. This gap be-
tween memory and processor speed is well-known in the
computer architecture area as the memory wall problem
[35]. A plethora of techniques have been proposed to al-
leviate this problem, such as cache memories [25, 34] and
out-of-order execution [2, 30]. However, as processor fre-
quency continues increasing and DRAM latencies do not
keep up with this improvement, these traditional techniques
are not enough to hide the main memory latency, severely
limiting the potential performance achievable by the proces-
sor. As a consequence, new and different approaches have
been appeared to narrow this gap.

The objective of our work is to analyze state-of-the-art
mechanisms aiming to overcome the memory wall problem.
Because of the large number of proposals, it is not possi-
ble to analyse each particular technique in a single paper.
Therefore, we have chosen to focus on three well-known tech-
niques: prefetching, Runahead, and Kilo-instruction proces-
sors. Aggressive hardware prefetchers are commonly imple-
mented in current processors [12, 29]. Prefetching does an
attempt to anticipate the needs of the program being exe-
cuted, bringing data near the processor before the program
requires them, and thus reducing the latency of cache acce-
sses. The efficiency of prefetch depends on data predictabil-
ity, that is, on the regularity of program access patterns. If
future data accesses are correctly predicted, data prefetches
will improve the processor performance. On the contrary,
wrong prefetches could cause bus contention and pollution
in the cache hierarchy.

Runahead execution [11, 20] is an advanced mechanism
that relies on improving prefetch efficiency. Runahead pre-
vents the reorder buffer from stalling on long-latency mem-
ory operations by executing speculative instructions. To do
this, when a memory operation that misses in the L2 cache
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gets to the ROB head, it takes a checkpoint of the archi-
tectural state. After taking the checkpoint, the processor
assigns an invalid value to the destination register of the
memory instruction that caused the L2 miss and enters in
runahead mode. During runahead mode, the processor spec-
ulatively executes instructions relying on the invalid value.
All the instructions that operate over the invalid value will
also produce invalid results. However, the instructions that
do not depend on the invalid value will be pre-executed.
When the memory operation that started runahead mode
is resolved, the processor rolls back to the initial checkpoint
and resumes normal execution. As a consequence, all the
speculative work done by the processor is discarded. Nev-
ertheless, this previous execution is not completely useless.
The main advantage of Runahead is that the speculative ex-
ecution would have generated useful data and instructions
prefetches, improving the behaviour of the memory hierar-
chy during the real execution. The drawback of this tech-
nique is that it generates a great number of speculative in-
structions, increasing the overall energy consumption, and
leading to the need for research effort focused on reducing
this problem [19].

A different approach to overcome the memory wall prob-
lem is not relying just on data prefetching, but also on in-
creasing the instruction level parallelism. Several new de-
signs have been recently proposed to increase the amount of
instructions available for execution by enlarging the instruc-
tion window. When having a larger instruction window, it
is possible to execute more independent instructions while
long latency loads are outstanding in memory. Thus, while
the memory access is being resolved, the processor is able
to overlap it with the execution of useful work. Moreover,
this useful work includes memory accesses that would not
be executed using smaller instruction windows, effectively
prefetching data from memory.

Since increasing the size of the instruction window would
involve an important increase of the processor complexity, it
is necessary to do a smart design of the main processor struc-
tures. This trend has lead to the design of Kilo-instruction
processors [7, 8, 9, 10], a complexity-effective architecture
that virtually enlarges the instruction window, by using an
efficient checkpoint mechanism, leading to an affordable de-
sign that is able to maintain thousands of in-flight instruc-
tions.

This paper presents an overall comparison of a stride-
based prefetching mechanism, Runahead execution and Kilo-
instruction processor in a joint framework. We analyze and
evaluate important parameters such as performance, num-
ber of executed instructions and the distribution of memory
access instructions. This analysis shows the ability of each
technique to reduce the memory wall problem, as well as
their main advantages and disadvantages. We show what
are the limitations that prevent each technique from achiev-
ing better performance. Finally, we combine the prefetch
mechanism with Runahead and Kilo-instruction processors
in order to evaluate the benefits of applying two orthogonal
techniques.

The reminder of this paper is organized as follows. We
discuss related work and detail background in Section 2.
In Section 3 we describe our experimental framework. In
Section 4, we present a comprehensive study of the three
techniques, identifying key performance issues and research
trends. Finally, we conclude in Section 5.

2. BACKGROUND AND RELATED WORK
Prefetch is one of the most used techniques to alleviate

the memory wall problem. It is based on predicting future
memory accesses to bring, in advance, data to the faster
levels of the memory hierarchy. Unfortunately, prefetching
has two major problems. Firstly, the extra memory accesses
increase the pressure in the memory hierarchy. Secondly,
wrong prefetches would pollute the caches, causing unnec-
essary misses.

Software prefetching techniques [4, 17, 21] rely on the
compiler to reduce cache misses by inserting prefetch in-
structions into the code. This is not a trivial task, since the
compiler has limited knowledge of the actual memory be-
havior of an application. Software prefetching has as major
drawback the increment in the size of the application code,
as well as the need to devote front-end bandwidth to fetch
these instructions.

Hardware prefetching techniques [3, 13, 14] try to dynam-
ically predict the effective memory address of future mem-
ory instructions in order to anticipate the data that will be
required. These techniques do not enlarge programs by in-
serting prefetch instructions, but they increase the processor
complexity with the tables needed to store the memory ac-
cess patterns and the logic required to use these data and
generate a prediction. There are two important parameters
that should be considered when implementing a hardware
prefetch mechanism. One is the degree of prefetching [33],
which indicates the number of prefetches that will be gene-
rated for a given instruction. The second parameter is the
distance of prefetching [33], which sets when the first prefetch
starts for a given instruction.

There also exist hybrid prefetching techniques that com-
bine both software and hardware schemes [32]. Another pre-
fetch technique is thread-based prefetching [5, 6, 26, 16].
This technique takes benefit from idle thread contexts in
a multithreaded processor to prefetch data for the main
thread. Helping threads and assisted threads are two of
the most important techniques in this point.

Runahead execution is another mechanism to perform spe-
culative prefetch. It was first proposed for in-order proces-
sors [11] and later extended for out-of-order processor as a
simple alternative to large instruction windows [20]. A pro-
cessor with Runahead achieves performance improvement.
However, it considerably increases the number of executed
instructions, and thus the overall energy consumption of the
processor. To reduce this problem, there are some propos-
als [19] oriented to make Runahead a more energy-efficient
technique.

A different approach to overcome the memory wall prob-
lem is using complexity-effective strategies to virtually en-
large the instruction window. A simple proposal is the Wait-
ing Instruction Buffer (WIB) [15]. Those instructions that
depend on an L2 miss are stored in this structure and re-
moved from the instruction window to allow the commit
of those instructions that are independent of the L2 miss.
Once the data is brought from memory, the instructions in
the WIB are reinserted into the instruction window.

Kilo-instruction processors [7, 8, 9, 10] are an architec-
tural proposal that prevents the processor from stalling due
to the lack of entries in the ROB under L2 misses. A Kilo-
instruction processor consists in a set of techniques to allow
thousands of in-flight instructions in the processor, such as
multi-checkpointing mechanism, late-allocation and early-
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Table 1: Baseline processor configuration
Processor core

Fetch/issue/commit width 4/4/6
Reorder buffer size 256
INT/FP registers 224 / 224
INT/FP/LS issue queues 128 / 128 / 128
INT/FP/LdSt units 4 / 4 / 2
Branch predictor Perceptron
RAS 64

Memory subsystem
Icache 64 KB, 4-way, 1 cyc latency
Dcache 64 KB, 4-way, 3 cyc latency
L2 Cache 1 MB, 8-way, 16 cyc latency
Caches line size 64 bytes
MSHRs 256
Main memory latency 500 cycles

release of registers, and complexity-effective designs of the
instruction queues. With a similar philosophy, Akkary et
al. [1] proposed the Checkpoint Processing and Recovery
(CPR) mechanism, in which the ROB is completely removed
from the processor. This approach incorporates a set of mi-
croarchitectural schemes to overcome the ROB limitations,
such as selective checkpoint mechanisms, a hierarchical store
queue organization and an algorithm for aggressive physical
register de-allocation. The Continual Flow Pipeline (CFP)
architecture [28] is an evolution of CPR, in which an effi-
cient implementation of a bi-level issue queue is provided.
To further improve this design, it uses a Slice Data Buffer
(SDB), which is a structure with the same philosophy of the
above-mentioned WIB.

3. EXPERIMENTAL FRAMEWORK
Data presented in this paper have been obtained using an

improved version of the SMTSIM simulator [31] that con-
tains an enhanced memory model. This simulator models an
aggressive single-thread superscalar processor that we use as
baseline. The main configuration parameters of our baseline
are shown in Table 1.

Our simulator also models the three techniques evalu-
ated in this paper. We have implemented a two-delta stride
prefetcher as an state-of-the-art prefetching mechanism [22,
23]. The two-delta stride prefetcher includes a 256-entry
table located between the shared L2 cache and main mem-
ory. The predictor is updated in any first level data cache
miss. When an L2 miss is detected, the prefetcher issues
a number of prefetch accesses to main memory depending
on the prefetch degree. We evaluate this mechanism with
distance 1 and prefetch degrees ranging from 1 to 4. Our
simulator also models Runahead execution according to the
implementation described by Mutlu et al. [20], including
some enhancement to reduce the number of extra specula-
tive instructions that are executed [19]. Finally, we model a
Kilo-instruction processor by scaling-up the main processor
structures (the number of entries in the ROB, L/S queue and
instruction queue are 1K, 512 and 512 entries respectively).
This strategy provides a good approach to the performance
results achievable by an actual Kilo-instruction processor
designed to allow resource scalability [10, 8].

Our execution-driven simulator emulates Alpha standard

binaries. All experiments were performed using the SPEC
2000 Integer (SpecInt) and Floating Point (SpecFP) bench-
mark suite [27] with the exception of sixtrack and facerec
benchmarks due to problems with the Fortran compiler. All
benchmarks were compiled with the Compaq C V5.8-015
compiler on Compaq UNIX V4.0 with the -O3 optimization
level. In order to reduce simulation time, we simulate 300
million representative instructions of each benchmark using
the reference input set. To identify the most representative
simulation segments we have analyzed the distribution of ba-
sic blocks as described in [24]. Table 2 provides important
figures about the benchmarks we use in this analysis with
our framework. For every benchmark, we show the IPC of
our baseline (IPC base), the first level cache miss rate (L1
miss rate, percentage of memory instructions that miss the
L1 Dcache) the second level cache miss rate (L2 miss rate,
percentage of L1 misses that miss the L2 cache), the global
miss rate 1 (percentage of memory instructions that access
the main memory), and the branch prediction rate.

4. EVALUATION OF THE MECHANISMS
In this section, we present a comprehensive analysis and

evaluation of prefetching, Runahead execution and Kilo-
instruction processors. We compare the three approaches,
showing their key issues and performance tradeoffs. In order
to provide an overall view of their behavior, we also examine
other important parameters, such as the number of specu-
lative instructions and the distribution of memory accesses.
All these data would enable processor designers to select the
best approach to overcome the memory wall problem, both
in terms of performance and energy consumption.

4.1 Performance Evaluation
This section provides insight into the performance of the

evaluated techniques. Figures 1 and 2 show IPC results
for the SpecInt and SpecFP benchmarks. Each Figure has
five performance bars: the baseline processor (base), the
baseline processor using stride prefetching with a degree of
1 (PF1) and 4 (PF4), Runahead execution (RA), and the
Kilo-instruction processor model simulated (kilo).

Figure 1: IPC for SpecInt.

In general, all techniques perform better for SpecFP than
for SpecInt. This happens because the instruction-level pa-
rallelism available for SpecInt is limited by hard-to-predict

1The Global miss rate column is computed as
(L2misses/Total processor accesses)
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Table 2: SPEC2000 Benchmarks details
SPEC INT IPC base L1 miss L2 miss Global miss BR prediction

rate (%) rate (%) rate (%) rate (%)

gzip 2,28 2,09 3,93 0,08 93,47
vpr 0,63 3,31 18,68 0,63 90,91
gcc 2,01 4,91 1,46 0,11 99,57
mcf 0,06 24,41 87,61 21,41 95,13
crafty 2,16 0,47 4,50 0,02 93,23
parser 0,68 1,97 27,14 0,55 94,84
eon 2,23 0,05 20,92 0,01 99,72
perl 2,13 0,11 31,01 0,04 99,74
gap 1,27 0,34 96,10 0,33 99,32
vortex 1,30 0,97 11,06 0,24 99,77
bzip2 1,71 0,55 18,35 0,10 96,73
twolf 0,57 4,98 19,12 0,95 94,90

SPEC FP
wupwise 1,46 1,09 84,48 0,93 99,93
swim 0,55 12,05 59,53 7,88 99,92
mgrid 0,77 2,42 61,19 1,51 99,00
applu 0,92 3,56 99,60 3,72 99,96
mesa 2,53 0,30 47,67 0,15 98,20
galgel 1,92 3,85 19,36 0,78 99,50
art 0,43 19,96 73,89 14,90 99,95
equake 0,32 7,57 61,65 4,70 96,00
ammp 0,98 4,41 27,81 1,23 99,38
lucas 0,62 7,04 99,83 7,48 100
fma3d 2,68 0,42 2,31 0,01 98,68
apsi 2,27 1,93 17,61 0,34 99,60

Figure 2: IPC for SpecFP.

branches and chasing pointers [8]. The PF1 prefetcher achie-
ves averaged speedups of 6% for SpecInt and 14% for SpecFP.
The more aggressive PF4 prefetcher improves performance
by 12% for SpecInt and 50% for SpecFP. The lower instruc-
tion level parallelism available in SpecInt is more harmful for
Runahead execution, which just achieves 5% performance
speedup, although it performs better for SpecFp, achiev-
ing 57% speedup. Finally, the Kilo-instruction processor
provides the best performance on average for both SpecInt
(22%) and SpecFP (115%) programs.

Although the Kilo-instruction processor provides the best
performance for both SpecInt and SpecFP programs, it is
not the best approach for all individual programs. The ag-

gressive PF4 stride prefetcher achieves better performance
for the benchmarks parser and bzip2. This is due to the fact
that the stride prefetcher is able to predict some addresses of
the memory operations involved in pointer chains that limit
the ability of Runahead and Kilo-instruction processors of
exploiting instruction-level parallelism.

As shown in Figure 2, the PF4 prefetcher is not able to
outperform Runahead and Kilo-instruction processors for
the SpecFP benchmarks, since there is more instruction-
level parallelism available. Even so, the PF4 prefetcher is
still able to provide performance close to Runahead due to
the high predictability of data access patterns in these pro-
grams. However, the prefetcher alone is still far from the
Kilo-instruction processor.

Like Runahead execution, the Kilo-instruction processor
is able to go ahead executing instructions beyond the point
where a processor with prefetch alone is forced to stall due to
the lack of entries in the ROB. Moreover, the Kilo-instruction
processor has an important advantage over Runahead: it
does not need to discard the work done under an L2 cache
miss. There are also certain long-latency floating-point in-
structions that Kilo-instruction processor can tolerate well
whereas Runahead processor in normal mode cannot do it.

4.2 Executed Instructions
An important parameter to take into account when a spe-

culative mechanism is studied is the amount of extra instruc-
tions executed apart from those belonging to the normal
program execution.

In the case of prefetching, the extra work performed comes
from the additional memory accesses generated by the pre-
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Figure 3: Total executed instructions SpecInt.

Figure 4: Total executed instructions SpecFP.
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fetch mechanism. The Runahead mechanism executes some
instructions in the program stream more than once, since a
large amount of speculative instructions are executed dur-
ing runahead mode. Finally, a Kilo-instruction processor
can execute more extra instructions down the wrong path
due to a larger instruction window.

To compare the evaluated techniques and summarize this
effect, we show in Figures 3 and 4 the total number of ex-
ecuted instructions for every mechanism. We have to note
that we have implemented the Runahead mechanism with
the combination of best dynamic enhancements described
in [19] to avoid short (dynamic threshold), overlapped (half
threshold policy) and useless runahead periods (Runahead
Cause Status Table -RCST).

Figures 3 and 4 show that, in spite of these enhancements,
Runahead produces the largest amount of speculative in-
structions (175 millions of instructions more than the base-
line on average). In certain programs, this number is even
more than twice the baseline count, such as twolf in SpecInt
or art and equake in SpecFP. Mcf is the benchmark that,
by far, executes the largest amount of speculative instruc-
tions (1351 millions) in Runahead mode. Even discarding
mcf, (Avg-mcf), Runahead increases the number of extra
instructions in 104 millions and 58 millions compared to the
baseline processor and the Kilo-instruction processor respec-
tively.

On the other hand, the stride prefetcher is the most con-
servative technique in terms of extra instructions. In this
case, the memory accesses issued by the prefetcher are the
extra operations when compared to the baseline. One im-
portant point to have into account is that, in some cases, the
stride prefetcher reduces the number of instructions in some
benchmarks respect to the baseline configuration (595.829
instructions less for bzip2, 434.414 instructions less for parser
and 200.983 instructions less for crafty). It is due to the ear-
lier resolution of branch instructions that depend on prefet-
ched long-latency loads, thus reducing the number of miss-
fetched instructions down the wrong path. The opposite
effect occurs both in Runahead and Kilo-instruction proces-
sors, where an eager capacity to execute instructions makes
the number of wrong path executed instructions increase (34
millions and 23,5 millions respectively for Runahead and the
Kilo-instruction processor).

Figure 5: IPC study for vpr and parser.

Finally, it is interesting to note that large instruction win-
dows may be not beneficial for processor performance in a
few particular cases. Figure 5 shows the impact in perfor-

mance when passing from a 256 to a 4096-entry instruction
window for vpr and parser. Furthermore, this Figure shows
the performance benefits of perfect branch prediction (vpr-
pbp and parser-bpb) and a memory latency of 1 cycle (vpr-
mem and parser-mem). An enlargement of the instruction
window in the Kilo-instruction processor from 1K entries to
4K entries impacts negatively in the performance of these
benchmarks, vpr and parser, reducing their IPC from 0,71
to 0,59 (20%) and from 0,73 to 0,69 (6%) respectively. This
is mainly due to the larger number of instructions executed
down the misspredicted path of branch instructions, which
increases the pressure in the execution engine of the pro-
cessor. In the case of vpr and parser, passing from a 1K
entry instruction window to a 4K entry instruction window
means a net increment of 61 and 412 millions of instruc-
tions for those benchmarks respectively. Even reducing the
memory latency, the performance degradation effect is still
present being only alleviated by perfect branch prediction.

4.3 Distribution of Memory Access Instruc-
tions

To complete the study of the previous section, here we
focus on memory access instructions. All the studied tech-
niques create extra memory accesses to reduce the latency
of critical load instructions, improving the performance of
applications. However, an excess of extra memory accesses
could be harmful because it increases the pressure in the
memory hierarchy, delaying non-speculative accesses.

Figures 6 and 7 shows the distribution for SpecInt and
SpecFP of executed loads down the correct (light portion
of bars) and wrong path (dark portions of bars) for each
mechanism. As in the previous section (see Section 4.2),
Runahead execution, in spite of the additional techniques
devoted to increase its efficiency, presents the largest number
of total loads executed (140 millions for SpecInt and 143
millions for SpecFP).

Figures 6 and 7 also show a well-known result: misspredic-
tions are more harmful for SpecInt than for SpecFP, since a
larger amount of memory accesses are performed down the
wrong path of a conditional branch. This effect is caused
by hard-to-predict branches that depend on long latency
memory instruction. Current superscalar processors with a
bounded instruction window hinder a more harmful effect of
this problem, since, sooner or later, the lack of entries in the
ROB stalls the fetch and decode of new instructions down
the wrong path of a misspredicted branch. In larger instruc-
tions windows, since the processor does not stall due to the
lack of entries in the ROB, more instructions are executed
down the wrong path when the branch predictor provides a
wrong prediction.

Vpr, twolf and parser are examples of this effect (see Fig-
ure 6). These benchmarks present a misprediction ratio of
90,9%, 94,9% and 94,8% respectively, which produces 67
millions, 22 millions and 15 millions of extra wrong memory
accesses when a larger instruction window is provided.

On average, RA and Kilo-instruction processors present
an increment in the number of memory accesses down the
wrong path of 7,5 and 11 millions respectively when com-
pared to the baseline superscalar processor for SpecInt. The-
refore, a larger window allows more wrong-path references
to be executed. Nevertheless, these wrong-path references
could have positive effects in the performance due to the
prefetching of control-independent memory instructions. Con-
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Figure 6: Load instructions distribution SpecInt.

Figure 7: Load instructions distribution SpecFP.
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trol independent memory instructions are instructions present
in every possible path of a hard-to-predict branch, since they
do not depend on the data generated down those paths.
Once the processor resolves the misspredicted branch, some
of the memory accesses done on the wrong-path can be
reused in the correct path of a branch.

4.4 Combining Prefetch with Runahead and
Kilo-instructions Processors

Up to this point we have analyzed every technique individ-
ually. Now, we show the performance when both Runahead
execution and the Kilo-instruction processor are enhanced
with a stride-based prefetcher. We choose the 2-delta stride
prefetching with an aggressive degree of 4.

Figure 8: IPC for SpecInt for the mechanisms when
prefetching is provided.

Figure 9: IPC for SpecFP for the mechanisms when
prefetching is provided.

Figures 8 and 9 present the performance obtained for the
baseline processor (base), the Runahead mechanism (RA),
the Runahead mechanism with prefetch (RA+PF), the Kilo-
instruction processor (Kilo) and the Kilo-instruction proces-
sor with prefetch (Kilo+RA) for every benchmark as well as
the harmonic mean for the whole Spec2K. Overall, these
Figures show that combining a prefetch with Runahead and
the Kilo-instruction processor is in most cases beneficial
for both of them. The interaction between prefetch and
Runahead achieves 10,6% speedup for SpecInt and 17,8%
speedup for SpecFp over Runahead alone. Regarding the

Kilo-instruction processor, the interaction with prefetch re-
sults in a performance improvement of 8,4% for SpecInt and
17,3% for SpecFP over the Kilo-instruction processor with-
out prefetch.

The benchmark parser is an interesting case to remark.
As show in Figure 8, the performance improvement of parser
is higher for the Kilo-instruction processor with prefetch
than without it, about 57%. This is mainly due to the fact
that, as previously commented, prefetch reduces the reso-
lution time of branch instructions that depend on long la-
tency memory operations. Since prefetch effectively reduces
the latency of L2 miss instructions, dependent branches are
resolved quicker, what allows to trigger a misprediction re-
covery sooner, reducing the number of instructions executed
down the wrong path. In the case of parser, the average
branch latency passes from 12,35 cycles to 7,89 cycles when
the mechanism of prefetch is provided, reducing the number
of accesses down the mispredicted path by nearly 16 mil-
lions. On the other hand, Runahead with prefetch is not
able to improve the performance of parser, since stride pre-
diction coverage is low (3,65%) for this benchmark in this
case.

There are two cases where the addition of a prefetch me-
chanism in both Runahead and Kilo results in lower perfor-
mance improvement that the obtained in isolation: vpr and
ammp. This is mainly due to the low accuracy of the stride
predictor for these benchmarks (49% for vpr and 42% for
ammp).

Finally, Runahead execution and the Kilo-instruction pro-
cessor achieve 49,5% and 88,9% average speedups for both
SpecInt and SpecFP with regard to the baseline processors
when the stride-based prefetcher is included. It is remark-
able that the Kilo-instruction processor model obtains a bet-
ter performance improvement than Runahead. Even if both
techniques face the same problems (long-latency loads and
hard-to-predict branches) Runahead has a clear disadvan-
tage: all the instructions executed speculatively in runahead
mode are discarded, only obtaining benefits from prefetches.
This makes us think that any technique focused to alleviate
the memory wall problem would perform better combined
with a Kilo-instruction processor than with Runahead. For
example, whatever technique that tries to resolve the depen-
dent long-latency loads problem in Runahead [18] is com-
pletely orthogonal and can be applied in a Kilo-instruction
processor for the same problem. Moreover, while in Runa-
head this enhancement will affect only the speculative mode,
in the Kilo-instruction processor the enhancement will affect
all correct-path executed instructions.

5. CONCLUSIONS
In this paper we present a detailed analysis of three well-

known techniques to alleviate the memory wall problem:
prefetch, Runahead and Kilo-Instruction processors. We
show that Kilo-instruction processors provide the best per-
formance compared to prefetching and Runahead execu-
tion. The prefetcher mechanism is limited by the data pre-
dictability in the program, which reduces its potential cover-
age. Moreover, an aggressive prefetch is necessary to achieve
good performance, which sometimes could increase the pres-
sure over memory.

We analyze other important factors to consider, such as
the number of executed instructions and wrong-path mem-
ory references. We show that Runahead execution obtains
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an acceptable performance improvement but, unfortunately,
it is the mechanism that executes the largest amount of spe-
culative extra instructions. Then, the Runahead mechanism
creates a large amount of speculative instructions that con-
sume dynamic energy to lately discard them. Besides, both
Runahead and Kilo-instruction processors execute a large
amount of accesses down the mispredicted path, which be-
comes a factor with a high impact on performance for the
latter.

We also show that the combination of stride-based prefetch-
ing with Runahead or Kilo-processor improves the average
performance in both cases. This is basically due to the fact
that prefetches reduce the average branch resolution time,
reducing the number of executed instructions down the mis-
spredicted path of a hard-to-predict branch that depends on
a long-latency memory operation. Finally, we show that ap-
plying a technique focused on alleviating the memory wall
problem to the Kilo-instruction processor is more beneficial
than in the Runahead mechanism since the latter executes
more instructions and is not able to reuse the speculatively
computed data.
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