
http://www.dca.iusiani.ulpgc.es/proyecto2012-2014

Some advances in open problems  of isogeometric analysis

MINECO y FEDER Project: CGL2011-29396-C03-00
CONACYT-SENER Project, Fondo Sectorial, contract: 163723

M. Brovka(1)*, J.I. López(1), J.M. Escobar(1), J.M. Cascón(2) and R. Montenegro(1)

(1)  University Institute SIANI, University of Las Palmas de Gran Canaria, Spain
(2)  Department of Economics and History of Economics, University of Salamanca, Spain

XXIV Congreso de Ecuaciones Diferenciales y Aplicaciones (XXIV CEDYA / XIV CMA)
Junio 8–12, 2015, Cadiz, Spain

http://www.dca.iusiani.ulpgc.es/proyecto2012-2014


Isogeometric analysis: integrating  FEA  and  CAD

Isogeometric analysis (IGA) has arisen as an attempt
to unify the field of CAD and classical finite element method

The main idea: using for analysis the same functions that are
used in CAD representation of the computational domain,
preserving thus  the “exact” geometry
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Global parameterization of the physical domain

Higher smoothness: 
C2 instead of  C0 of  FEM

Basis functions: cubic splines



Cubic B-spline
with knot vector  

Langrange basis function of order 3

Isogeometric analysis: integrating  FEA  and  CAD

B-spline basis functions



Isogeometric analysis: integrating  FEA  and  CAD
Isoparametric approach in IGA
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 Volumetric parameterization of computational domain from its surface
representation.

CAD provides only surface representation of the geometry. For application of IGA  it is necessary to
have robust and effective method to obtain analysis-suitable volume parameterization

Isogeometric analysis: integrating  FEA  and  CAD

Open problems

spline volume parameterizationInput surface



 Local refinement.  

Tensor product structure does not allow local enrichment of approximation space:  knot
insertion propagates thru the domain. A strategy for defining spline spaces over meshes
with T-juntions (T-meshes) is needed.

global refinement local  refinement

Isogeometric analysis: integrating  FEA  and  CAD
Open problems



Our results

 A method for spline parameterization of 2D and 3D  
geometries

 A new strategy for constructing cubic spline spaces over   
quadtree (2D) and octree (3D) T-meshes



Goal: construct a global transformation from
parametric to physical domain from boundary
representation of the geometry

Good quality parameterization:

• Strictly positive Jacobian
• Good orthogonality and uniformity of isoparametric curves

S

Our results: 
spline parameterization of 2D  geometries



Parametric T-mesh is deformed
isomorphically into
the physical T-mesh

Local optimization: determine a new 
position of the free node to improve mesh
quality

Minimize the objective function K(x) 
to find the optimal position x0 of the free 
node

free 
node

local mesh optimized local mesh

Spline parameterization of 2D geometries
The key: untangling and smoothing procedure for T-mesh 



Simultaneous Untangling and Smoothing of T-meshes
Triangle decomposition of the T-mesh cells

Case 1: Free node is a regular node Case 2: Free node is a hanging node

Barriers and feasible 
region for a regular node

Barriers and feasible 
region for a hanging node



Local submesh is decomposed in triangles.

Shape quality measure for a triangle: mean ratio 

S

ideal triangle physical triangle

Objective function:

M: number of elements of the local submesh

Quality  measure. Objective function

Simultaneous Untangling and Smoothing of T-meshes



Simultaneous Untangling and Smoothing of T-meshes
T-mesh transformation along the SUS process: Video



Mean Ratio Jacobian Jr(ξ) of Parametric Transformation
A quality metric of the  mapping at any point P0

-1 ≤ ≤ 1
where J is the jacobian matrix of the 

spline mapping S



Puzzle piece (Mean Ratio Jacobian)

Spline parameterization of 2D geometries



Good quality parameterization for application of IGA
Mean ratio Jacobian as a quality metric



Low quality zone is refined and optimized again

inicial T-spline improved T-spline

Mean ratio Jacobian Mean ratio Jacobian
Isla de Gran Canaria

Adaptive refinement to improve parameterization quality

Spline parameterization of 2D geometries



 What can we parameterize with a square?  Something similar to a square and a little bit  more. 

We need more complex polycube-type parametric domain that fits better the geometry
[ Li (2007), Liu (2014)]

Limitations and future research

Spline parameterization of 2D geometries



Limitations and future research

Spline parameterization of 2D and 3D geometries

All the above mentioned problems for 2D domain are aggravated considerably for 3D object:

 An appropiate selection of the edges may not exist
 More complex untangling and optimization procedure, the number of options increases a lot

(O. Ushakova: Nondegeneracy tests for hexahedral cells, CMAME 2011)
 Jacobian close do cero along the edges of the object

Tensor product structure is too rigid.



Our results:
Polynomial spline spaces over hierarchical T-meshes 

 For a given T-mesh,  it allows to obtain  a set of cubic spline functions  that  span
a space with nice properties: C2 continuous, nested spaces, linear independence

 Simple rules for inferring local knot vectors to define spline blending functions

 Straightforward implementation in 2D and 3D

 A new strategy for constructing cubic spline space over   
arbitrary quadtree (2D) and octree (3D) T-meshes



Spline spaces over T-meshes
T-splines,  Sederberg (2003) 

T-mesh and anchor tα

Bivariate Cubic T-spline Basis Function

support of the T-spline
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Error convergence en  L2 norm 

Adaptive refinement for the approximation of smooth gaussian-type function                                               
via interpolation with rational T-splines

Spline spaces over T-meshes
T-splines,  Sederberg (2003). Approximation capability of rational basis functions.

It is time to drop the ‘‘R’’ from NURBS,  EWC, 2014
Les A. Piegl • Wayne Tiller • Khairan Rajab
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Spline spaces over T-meshes
T-splines,  Sederberg (2003). Aproximation capability?

Spline parameterization with the new strategy
(polynomial blending functions)

T-spline parameterization, Sederberg
(rational blending functions )



Good quality parameterization for application of IGA
Comparison of rational T-spline parameterization with the new strategy 

rational T-spline parameterization  presents more oscillation



Analysis suitable T-spline,  Scott (2011)

 nested spaces
 linear independence
 optimal support overlapping
 topoligical restriction for the T-mesh

difficult to implement =>  Does not exist in 3D yet!

Hierachical refinement for IGA, Vuong (2011), Schillinger (2012), Bornemann(2012)   

 nested spaces
 linear independence
 relatively easy implementation
 excesive support overlapping
 imposibility to define spline

space over an arbitrary mesh

Spline spaces over T-meshes
Available strategies



We work with 0-balanced quadtree and octree T-meshes

Our objective

 simple and easy implementation
 nice properties: linear independence and nested spaces

Spline spaces over T-meshes
Our strategy

unbalanced T-mesh 0-balanced T-mesh



Spline spaces over T-meshes
Construction of spline space. 3 Steps

Steps to define spline basis functions over a given T-mesh:

• Mesh pretreatment: 0-balancing 
• Inferring local knot vectors
• Modification of local knot vectors

Condition 2: The frame of the function support should 
be situated over the mesh skeleton:

Condition 1:  Local knot vectors verify:



Support modification
to fulfill the imposed conditions

Spline spaces over T-meshes

Simple extension rules: 
duplicate some knot intervals

Definition of polynomial spline functions. Extension rules in 2D 



Support modification
to fulfill the imposed conditions

Spline spaces over T-meshes

Simple extension rules in 3D as well ! 

Definition of polynomial spline functions. Extension rules in 3D



Poisson problem with Dirichlet boundary condition

Isogeometric analysis on 2D domain

Analytical solution:

Residual-type error indicator:



Adaptive refinement for 2D Poisson problem

dError indicator :



Adaptive refinement for 2D Poisson problem
Monotonous convergence: L2-norm and  H1-seminorm error



Poisson problem with Dirichlet boundary condition on a puzzle piece

Isogeometric analysis on 2D complex domain

● Analytical solution:  Steep wave front given by 

● Adaptive strategy: Residual-type error indicator:

,
,



Parameterization of computational domain

Isogeometric analysis for 2D Poisson problem



Adaptive refinement for 2D Poisson problem
Adaptive T-mesh after 13 refinement steps

final refinement in the parametric  
domain

final refinement  in the physical  domain



Numerical solution 

Adaptive refinement for 2D Poisson problem

numerical solution in the parametric domain numerical solution  in the physical  domain



Convergence behavior

Adaptive refinement for 2D Poisson problem

Convergence of  L2-norm and  H1-seminorm error

expected order for 2D problem:

L2-norm: 2
H1-seminorm: 3/2 



Computational domain: sphere portion

Isogeometric analysis for 3D Poisson problem

Analytical solution:

oscillation parameter

numerical solution in the parametric domain

numerical solution  in the physical  domain



Adaptive refinement

Adaptive refinement for 3D Poisson problem

final refinement in the physical  domain

final refinement in the parametric domain



A section of the parametric and physical domain

Adaptive refinement for 3D Poisson problem

final refinement in the physical  domain

final refinement in the parametric domain

numerical solution  in the physical  domain
numerical solution in the parametric domain



Convergence behavior

Adaptive refinement for 3D Poisson problem

Convergence of  L2-norm and  H1-seminorm error

expected order for 3D problem:

L2-norm: 3/2
H1-seminorm: 1 



Surface representation

Application in CAD

Spline representation of the surface from its triangulation

input triangulation spline representation parametric T-mesh



 Excesive overlapping of function support in some situations

Possible improvement of  the locallity of function supports

Limitations and future research

Spline spaces over T-meshes

 Rigorous proof of the properties of the spaces defined with our strategy:

• linear independence
• nestedness of the spaces



Future research

Isogeometric analysis

And another interesting question.

Is IGA  always better than FEM ?

C2 is alwais better than C0 ?

It seems to be a lot better for
approximation of very smooth function.

And not so smooth ???  Should be studied.

Spline approximation of a steep function 



GRACIAS !
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