

Local ScaleAir Quality Model with Several Pollutant Sources

A. Oliver, A. Perez-Foguet, E. Rodríguez, G. Montero, R. Montenegro

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya -Barcelonatech Instituto Universitario SIANI Ingeniería Computacional Universidad de Las Palmas de Gran Canaria

INSTITUTO UNIVERSITARIO SIANI

Motivation

Regional models

- Eulerian
 - CMAQ
 - Mocage

Local models

- Gaussian plume
- Lagrangian
 - Calpuff
 - Scipuff

Figure 2: Comparison of Guassian and Puff Models Predicted Impacts

 $(rac{3}{6})$ laboratori de càlcul numèric

Algorithm

Adaptive Finite Element Model

- Construction of a tetrahedral mesh
 - Mesh adapted to the terrain
 - Wind field modeling
 - Horizontal and vertical interpolation from data (experimental/forecast)
 - Mass consistent computation
- Pollutant dispersion modeling
 - Wind field plume rise perturbation
 - Transport and reaction pollutant simulation
 - Adaptivity

LABORATORI DE CÀLCUL NUMÈRIC

Motivation

Air Quality modeling over complex terrains

- Range ~ 20km x 20km
- La Palma island (Canary Islands)

Motivation

One of the highest horizontal-vertical ratios in the world Height: 2426m

Mesh construction

- Two dimensional triangular mesh of terrain
 - Stack discretization
 - Local Refinement coarsening process
- Vertical spacing following layers
- Three dimensional tetrahedral mesh creation
- Smoothing and untangling in order to guarantee a minimum quality

~500.000 nodes ~2.700.000 elements

Wind field modeling

- Horizontal interpolation
 - Weighting inverse to the squared distance and inverse height differences

NÉOB.

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

Wind field modeling

Vertical interpolation

Log-linear wind profile

Wind field modeling

Mass-consistent model

$$\vec{\nabla} \cdot \vec{u} = 0 \quad \text{in } \Omega$$
$$\vec{n} \cdot \vec{u} = 0 \quad \text{on } \Gamma_b$$

Lagrange multiplier

Wind field modeling

Experimental data from 4 stations (10 m over terrain)

S1

^{4&}lt;sup>th</sup> Africomp · Marrakech · January 2015 · 12

⁴th Africomp · Marrakech · January 2015 · 13

LABORATORI DE CÀLCUL NUMÈRIC

^{4&}lt;sup>th</sup> Africomp · Marrakech · January 2015 · 14

Plume rise modeling

- Briggs formula
 - Buoyant (wc < 4Vo)
 - Driving-force: gas temperature difference

 y_{i}

Curved trajectory

- Momentum (wc > 4Vo)
 - Driving-force: Gas velocity
 - Vertical straight trajectory

LABORATORI DE CÀLCUL NUMÈRIC

NÉO B

Plume rise modeling

Air quality modeling

$\frac{\partial \mathbf{c}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{c} = \nabla \cdot (\mathbf{K} \nabla \mathbf{c}) + \mathbf{e} + \mathbf{s}(\mathbf{c})$

 $c(x,t) = c^{emi}$

Stack outflow

 $c(x,0) = c^{ini}$

Inlet wind boundaries

 $\mathbf{n} \cdot \mathbf{K}
abla u = 0$ Outlet wind boundaries

Initial condition

NéOs

Air quality modeling

Splitting Direct splitting

$$\begin{cases} \frac{\partial \mathbf{c}^*}{\partial t} = \mathbf{s}(\mathbf{c}^*) & [0, \Delta t], \quad \mathbf{c}^*(\mathbf{x}, 0) = \mathbf{c}^n(\mathbf{x}) \\ \frac{\partial \mathbf{c}^{**}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{c}^{**} = \nabla \cdot (\mathbf{K} \nabla \mathbf{c}^{**}) & [0, \Delta t], \quad \mathbf{c}^{**}(\mathbf{x}, 0) = \mathbf{c}^*(\mathbf{x}, \Delta t) \end{cases}$$

Strang Splitting

$$\begin{cases} \frac{\partial \mathbf{c}^*}{\partial t} = \mathbf{s}(\mathbf{c}^*) & [0, \Delta t/2], \quad \mathbf{c}^*(\mathbf{x}, 0) = \mathbf{c}^n(\mathbf{x}) \\ \frac{\partial \mathbf{c}^{**}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{c}^{**} = \nabla \cdot (\mathbf{K} \nabla \mathbf{c}^{**}) & [0, \Delta t], \quad \mathbf{c}^{**}(\mathbf{x}, 0) = \mathbf{c}^*(\mathbf{x}, \Delta t/2) \\ \frac{\partial \mathbf{c}^{***}}{\partial t} = \mathbf{s}(\mathbf{c}^{***}) & [0, \Delta t/2], \quad \mathbf{c}^{***}(\mathbf{x}, 0) = \mathbf{c}^{**}(\mathbf{x}, \Delta t) \end{cases}$$

- Temporal discretization: Cranck-Nicolson
- Spatial discretization: Least Squares FEM
- System solver: Conjugate gradient preconditioned with an Incomplete Cholesky Factorization
- Matrix storage: sparse MCS

2.5e-06

5.0e-06

Air quality modeling

4th Africomp · Marrakech · January 2015 · 21

7.5e-06

Secondary

1.0e-05

0.0e+00

⁴th Africomp · Marrakech · January 2015 · 22

1.0e-05

4th Africomp · Marrakech · January 2015 · 23

Air quality modeling

CMAQ: forecast model

4th Africomp · Marrakech · January 2015 · 25

Air quality modeling

- Horizontal interpolation each CMAQ layer
- Correction height

Vertical linear interpolation

WAANNAM ANALAS

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

Air quality modeling

Interpolated wind field

MILLING

SO₄ Interpolated concentration

Detail of plume rise

Plume and wind streamlines

Air quality modeling

Air quality modeling

Conclusions

- Suitable approach for modeling air transport and reaction over complex terrains
- The air quality model is transport dominant
- Splitting and FEM resolution is an efficient technique to solve the problem
- Model can assess problems with coupling plumes