

Tetrahedral Mesh Optimization Combining Boundary and Inner Node Relocation and Adaptive Local Refinement

Socorro G.V.⁽¹⁾, Ruiz-Gironés E.⁽²⁾, Oliver A.⁽¹⁾, Cascón J.M.⁽³⁾, Escobar J.M.⁽¹⁾, Sarrate J.⁽²⁾ and Montenegro R.⁽¹⁾

⁽¹⁾ University Institute SIANI, University of Las Palmas de Gran Canaria, Spain

⁽²⁾ Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya - BarcelonaTech, Spain

⁽³⁾ Department of Economics and Economic History, University of Salamanca, Spain

http://www.dca.iusiani.ulpgc.es/proyecto2012-2014

Mesh genus-zero solids and get a valid volumetric parameterization

- Improve the quality of meshes generated ussing the Meccano method
- Main drawback: boundary nodes attached at their location Smooth of bondary nodes

The Meccano Method

Surface Parameterization

1. Map physical boundary surface to meccano boundary

The Meccano Method Surface Capture

2. Mesh and refine the meccano to capture solid surfaces

Inner Nodes Location

3. Apply Coons patches to get a reasonable location for inner nodes

(a) solid mesh before Coons patches

(b) solid mesh after Coons patches

Untangle and Smoothing

4. Simultaneous untangle and smoothing to get a valid mesh

The Meccano Method

Resulting Volume Parameterization

 Volumetric parameterization from uniform structure Kossascky mesh to solid in physical domain

(a) uniform Kossascky meccano mesh

(b) solid mesh in physical domain

Inner Node Smoothing

Unconstrained optimization problem in 3D physical domain

- Physical coordinates as optimization variables
- Quality measurement in physical domain

Parametric counterpart as ideal

Boundary Node Smoothing. Parameterizations

Exploit mesh parametrization to simplify the optimization problem

Boundary Node Smoothing. Optimization

Optimization

- Parametric coordinates as optimization variables
- Quality measurement in physical domain

Boundary Node Smoothing. Parametric Domains

Creating an additional parametric domain for smoothing porpouse only

Validity of Boundary Mesh

Geometry preservation

(a) parametric domain

(b) physical domain

Imposing validity for boundary faces of the meccano

$$\left|K_{\eta}\right|_{p}^{*}(\mathbf{u},\mathbf{v}) = \left[\sum_{m=1}^{M} \eta_{m}^{*p}\left(\mathbf{x}(\mathbf{u},\mathbf{v})\right)\right]^{1/p}$$

Extra term in the objective function that penalties tetrahedral collapse in the parametric domain.

$$V(u, v) = \sum_{m=1}^{M} \frac{1}{h(m(n\{a_m, \tau\}))}$$

 a_m : area ratio over star area

 τ : thickness of forbidden region

Boundary Node Smoothing

Analogous procedure for edge (1D) optimization

Boundary nodes smoothing could cause loose of both volume and geometry

Iterative Refinement, untangle and smoothing stages

- Mesh must be smoothed after refinement
- Buffering algorithm focus smoothing in areas where refinement toke place
 - **1**. Initialize with new nodes a buffer of pending nodes to smooth
 - 2. Smooth first pending node
 - **3.** If displacement \geq prescribed threshold \Rightarrow enqueue neighbor nodes
 - **4.** If any pending node \Rightarrow return to **2**

Drastic reduction in the number of star to smooth

Tetrahedral quality

Aplicatio Troposphere Meshing for Wind Forec

11th World Congress on Computational Mechanics (WCCM XI). 20 - 26 Ju

Conclusions

- An innovative method has been developed for bot boundary smoothing and volumetric parametrization genus-zero solid
- This work upgrades The Meccano Method by addir boundary nodes relocation
- The procedure obtains good quality meshes
- The idea can be applied to any mesh generation method that uses surface parameterization
- The procedure requires minimum user intervention
- The algorithm has a low computational cost and admi paralellization

Thanks for your attention!

11th World Congress on Computational Mechanics (WCCM XI). 20 - 26 Ju