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 Parameterization
 Refinement
 Untangling/Smoothing

Volume parameterization based on SUS of tetrahedral meshes
Meccano Method for Complex Solids 



Volume parameterization based on SUS of tetrahedral meshes
Meccano Method for Complex Solids 

Target Element Tt Physical Element T (to get less distortion in the parameterization)
Optimization

T

Tt

Parameter space 
(meccano mesh)

Physical space
(tangled mesh)

Optimization

Physical space
(optimized mesh)



Meccano construction

Parameterization of the        
solid surface

Solid 
boundary 
partition

Floater’s 
parameterization

Coarse tetrahedral mesh         
of the meccano

Partition into 
hexahedra

Hexahedron 
subdivision into 
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Solid boundary approximation Kossaczky’s 
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Simultaneous             
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Algorithm steps
Meccano Method for Complex Solids 



 Octree subdivision

Volume parameterization based on SUS of tetrahedral meshes
Meccano Method for Complex Solids 



16th IMR (2007)



16th IMR (2007)



http://www.cyberware.com/

INPUT DATA: Surface Triangulation





Application in Igea: Poisson problem with a central source
Adaptive Isogeometric Refinement (EWC 2012)

Exact solution:

T-mesh T-spline



Igea: T-spline of Numerical Solution
Adaptive Isogeometric Refinement (EWC 2012)

Initial T-mesh
5692 cells, 9304 DOF



Adaptive Isogeometric Refinement (EWC 2012)
Igea: T-spline of Numerical Solution

2nd local refinement
6021 cells, 9807 DOF

dError indicator :



Adaptive Isogeometric Refinement (EWC 2012)
Igea: T-spline of Numerical Solution

5th local refinement
6756 cells, 10838 DOF

dError indicator :



Volume parameterization based on SUS of T-meshes
Meccano Method on T-meshes for Complex Solids 

1. The key of the meccano method is the simultaneous untangling and smoothing
(SUS) procedure. 

2. The quality of the  T-spline mapping  (i.e., positive Jacobian, good uniformity 
and orthogonality of the isoparametric curves)  depends on  the  quality of the 
T-mesh in the physical space. We have to fix a quality metric for this mapping.

3. In order to  simplify  the  procedure  and  to  get  less  distortion  in  the volume
parameterization,  it  should  be  interesting  to  directly  apply  the  meccano
method on T-meshes instead of tetrahedral meshes.

4. We have started analysing the problem in 2-D.



The Meccano Method on T-meshes in 2-D

Parameter space

T-mesh

Physical space

T-spline mesh

Input data: Boundary representation of the object
Objective: Construction of a high quality T-spline parameterization



Step 1: Input boundary (image, polyline, curve, etc.) and boundary mapping

 Select four points (A, B, C, D) of the input boundary
 Boundary parameterization via chord-length  

A

C
D

B

The Meccano Method on T-meshes in 2-D

A’

C’ D’

B’



Step 2: Coarse quadrilateral mesh of the meccano (parameter space)
The Meccano Method on T-meshes in 2-D



Step 3: Refine mesh with quadtree subdivisions to approach the boundary
The Meccano Method on T-meshes in 2-D



The Meccano Method on T-meshes in 2-D
Step 4: Move the meccano boundary nodes to the object boundary 



The Meccano Method on T-meshes in 2-D
Step 5: Inner node relocation with Coons patch to facilitate the optimization

Mesh folder



Step 6: Simultaneous Untangling and Smoothing (SUS) of the T-mesh
The Meccano Method on T-meshes in 2-D



The Meccano Method on T-meshes in 2-D
Step 7: T-spline representation of the spot



Boundary Approach in 2-D
Input data: Boundary polyline approximation (red color line)

Bo
un

da
ry

 a
pp

ro
xi

m
at

io
n 

in
 p

hy
si

ca
l s

pa
ce

T-
m

es
h 

ad
ap

ta
tio

n 
in

 p
ar

am
et

er
 s

pa
ce

Boundary edge refinement criterion: 
A’ B’

A

B



Local mesh Optimized local mesh

Case of plane T-meshes (EWC 2013)
Simultaneous Untangling and Smoothing

Local optimization Objective: Improve the quality of the local mesh 
by minimizing an objective function

New position for 
the free node

Free node

?



Free node

Local optimization

New position for 
the free node

Objective: Improve the quality of the local mesh 
by minimizing an objective function

Case of plane triangulations (CMAME 2003)
Simultaneous Untangling and Smoothing

Local mesh Optimized local mesh



Weighted Jacobian Matrix on a Plane
Simultaneous Untangling and Smoothing (CMAME 2003)
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Local objective function for plane triangulations
SUS Code: Freely-available in http://www.dca.iusiani.ulpgc.es/proyecto2012-2014

Simultaneous Untangling and Smoothing (CMAME 2003)

Original function:

Modified function:

Modified function (blue) is regular in all R2 and it
approximates the same minimum that the original
function (red). Moreover, it allows a simultaneous
untangling and smoothing of triangular meshes



Simultaneous Untangling and Smoothing of T-meshes
Triangle decomposition of the T-mesh cells

Case 1: Free node is a regular node Case 2: Free node is a hanging node

Barriers and feasible 
region for a regular node

Barriers and feasible 
region for a hanging node



Simultaneous Untangling and Smoothing of T-meshes
Optimization is guided by the parametric T-mesh

Parametric T-mesh Optimized physical T-mesh

Physical cell C must be as similar as possible to the counterpart in the parametric space Cp

Cp

C



Problems appears with the non-weighted objective function K*
Simultaneous Untangling and Smoothing of T-meshes

Satisfactory result for a 
conformal submesh using  K*

Not satisfactory result for a
non-conformal submesh using K*

Desirable result: Orthogonal
mesh for a non-conformal case
(weighted objective function      )

(a) (b)

(c)



Simultaneous Untangling and Smoothing of T-meshes
Solution by using weighted objective functions (regular node)

All possible weights for balanced quadtrees:

Conformal meshNon-conformal mesh



Simultaneous Untangling and Smoothing of T-meshes
Solution by using weighted objective functions (hanging node)

All possible weights for balanced quadtrees:

Optimized mesh 
without weights

Optimized mesh 
with weights



Objective Functions Comparison
k* (without weights) versus k*

 (with weights) 

T-mesh optimized with K*

(without weights)
T-mesh optimized with K*


(with weights)

Close to uniform mesh positions

Uniform mesh optimized with K*



Objective Functions Comparison

T-mesh optimized with K*

(without weights)
T-mesh optimized with K*


(with weights)

k* (without weights) versus k*
 (with weights) 



Parameter space

T-mesh

Physical space

T-spline

Simultaneous Untangling and Smoothing of T-meshes
T-mesh transformation along the SUS process: Example



Simultaneous Untangling and Smoothing of T-meshes
T-mesh transformation along the SUS process: Video



T-spline Parameterization
Determination of control points by imposing interpolation conditions



Mean Ratio Jacobian Jr(ξ) of Parametric Transformation
A quality metric of the T-spline mapping at any point P0

-1 ≤ ≤ 1
where J is the jacobian matrix of the 

T-spline mapping S



Objective Functions Comparison

T-mesh optimized with K*

(without weights)

k* (without weights) versus k*
 (with weights)

Mean ratio Jacobian

T-mesh optimized with K*


(with weights)



Applications: Isogeometric Modeling
The Spot (Mean Ratio Jacobian)



Applications: Isogeometric Modeling
The Flower (Mean Ratio Jacobian)



Applications: Isogeometric Modeling
Puzzle Piece (Mean Ratio Jacobian)



Applications: Isogeometric Modeling
Gran Canaria Island (Mean Ratio Jacobian)



Applications: Isogeometric Modeling
Gran Canaria Island (adaptive refinement to improve the mean ratio Jacobian)

Initial T-mesh Refined T-mesh

Initial T-spline & Mean ratio Jacobian Refined T-spline & Mean ratio Jacobian

No negative Jacobian
after refinement!



Geometries with several materials
Applications: Isogeometric Modeling



1. Individual quadtree approximation for each geometry (they can be processed in parallel)

2. Insert a quadtree in a region of another quadtree

3. Balance the resulting quadtree

Strategy for embedded planar geometries: Three steps

Unbalanced quadtree after 
merging

2:1 balanced quadtree

Resulting 
Parametric T-mesh

Applications: Isogeometric Modeling

(1) (2)
(3)



Geometries with holes
Applications: Isogeometric Modeling



T-spline representation with different materials T-spline representation with a hole

Embedded planar geometries (T-spline representation in physical space)
Applications: Isogeometric Modeling



Strategy for embedded planar geometries: Other example

Resulting Physical and Parametric T-mesh

Applications: Isogeometric Modeling



Strategy for embedded planar geometries: Other example
Mean ratio Jacobian

Applications: Isogeometric Modeling



Local Nested Adaptive Refinement
Numerical solution of a Poisson problem
Concentrate source in relation to the initial mesh size

Residual-type error indicator:

Exact solution:



Local Nested Adaptive Refinement
Numerical solution of a Poisson problem

dError indicator :

Numerical solution across a section

Convergence behavior



Local Nested Adaptive Refinement
Influence of isoparametry in the convergence behavior



Poisson Problem for a Domain with Two Materials
Statement of the problem

Ω1

Ω2
>>



Poisson Problem for a Domain with Two Materials
Numerical solution in parametric and physical domain



Poisson Problem for a Domain with Two Materials
Dielectric cylinder in an uniform horizontal electric field E0

Ω1

Ω2

The analytic solution in cylindrical 
coordinates (ρ,ϕ) is given by:

T-spline detail

b



Poisson Problem for a Domain with Two Materials
Dielectric cylinder in an uniform electric field
Numerical solution detail (potential and electric field) in physical domain

Comparing with the analytic solution, we have measured a 
maximum error in the potential of 0.88%.



Automatic Construction of the Meccano
Final Comments and Future Works



Automatic Construction of the Meccano
Final Comments and Future Works
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