
 
Abstract.—We describe a method for studying the classical 

experiment of the simple pendulum, consisting of a body of 
magnetic material oscillating through a thin conducting coil 
(magnetic pendulum), which according to Faraday’s law of 
induction generates a fluctuating current in the coil that can be 
transferred into a periodic signal in an oscilloscope. The set up 
described here allows to study the motion of the pendulum 
beyond what is normally considered in more basic settings, 
including a detailed analysis of both small and large oscillations, 
and the determination of the value of the acceleration of gravity. 

Index Terms.—Simple pendulum, Faraday´s law, magnets, 
coil, small and large oscillations 

I. INTRODUCTION

 Every Science or Engineering student must get acquainted 
during their formative years with the description of oscillatory 
phenomena, since these are both important and ubiquitous, 
appearing in almost every relevant area of Science and 
Technology. The propagation of electromagnetic waves in 
vacuum, the transmission of sound in a material medium, AC 
currents in RLC circuits, the small, microscopic vibrations of 
atoms in molecules, clusters, and crystals, or the very large, 
macroscopic vibrations of sizeable mechanical structures, like 
bridges and multi-storey buildings, to name just a few, are 
examples where one must tackle the oscillatory behaviour of 
certain physical variables.  All these phenomena share 
common general features and have some underlying formal 
unity in their description, with obvious variants adapted to 
each specific situation, and it pays to expose the student 
gradually into this subject, beginning with simple but 
illuminating examples and then proceeding towards the 
analysis of more elaborated and specific cases within the 
scope of their chosen branch of expertise. To better familiarize 
the student with the main general concepts used in the study of 
oscillations, the general theoretical formalism is also normally 
supplemented with a more empirical approach in the 
laboratory, by means of experiments which aim to provide a 
practical insight into various oscillatory phenomena. 

 Perhaps the most simple device used in the laboratory to 
introduce students into the field of oscillations is the simple 
pendulum: a small mass or bob (which is often idealized as a 
point mass) that hangs from an inextensible rope (ideally 
massless), and that oscillates frictionless in a vertical plane by 
the concourse of gravity, when separated from its equilibrium 
vertical configuration. When the dynamics of a pendulum is 
studied in the undergraduate Physics laboratory, one normally 
measures the period of its oscillations in the small-amplitude 
regime, changing the value of the length L, mass m, and initial 
displacement, to conclude that the period T (in such a low-
energy regime) is independent of both m and displacement, 
and is given theoretically by , where g is the 
acceleration of gravity. This relation between T, g, and L 
provides then a way to obtain a value of g through the readily 
measured values of T and L, which is a quite satisfactory result 
that can be obtained with just a meter and a chronometer - a 
simple watch, for that matter, if one aims to a modest 
precision. However, the above expression for the period 
remains approximate, relying on the small-amplitude 
approximation. It is obviously interesting to expand the scope 
of the experience, exploring the cases of larger oscillations, or 
complicating the set-up in different ways, but to gain any 
meaningful insight in these cases beyond the simplest set up, 
one must normally achieve a higher precision in the measure 
of the period. 
 Upon reviewing several previously reported laboratory 
experiences dealing with the mechanical oscillations of a 
pendulum, it seems that a natural way of achieving this is by 
means of a magnetic pendulum, consisting of a body of 
magnetic material oscillating through a relatively thin 
conducting coil, which through Faraday’s law of induction 
generates a fluctuating current in the coil that can be 
transferred into an oscillatory signal in an oscilloscope. 
Consider as an example reference [1], where a method to 
calculate the elastic constant of a spring with an attached mass 
(another oscillating system) is implemented along these lines. 
In that case, a coil itself was connected to an oscilloscope and 
suspended from the spring. The induced current passes 
through an external coil. Looking for new arrangements, this 
set up can be modified to avoid the interference of plug and 
wires in the oscillations, replacing the internal coil by a 
magnet. In reference [2] the value of the local gravity is 
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similarly calculated using a sound card and adequate signal-
processing software. 

 As will be described below, the set up and device presented 
here allows a simple and economical way to approach 
properties of the dynamics of the pendulum that are not 
normally considered in elemental descriptions. The 
experiment described in this paper can be easily implemented 
in a Physics undergraduate laboratory. This novel and 
economical method can be used as a complement in the 
formation of students of Sciences or Engineering, yielding 
results with improved precision over the most traditional set 
ups, that can be also easily analysed and profitably discussed 
by the students. 

II. THEORETICAL BACKGROUND

In this section we summarily review the main theoretical 
physical concepts at the core of the experimental set up, both 
regarding the mechanical oscillations of a pendulum and 
Faraday’s law of magnetism. Furthermore, it is necessary to 
distinguish between harmonic and anharmonic oscillations, 
since both can be observed in the movement of the pendulum. 
Concluding this section there is a description of the local 
gravity formula which has been used in order to determine the 
value of g which will be considered as a statistically true 
value. 

A. Oscillations of a pendulum, Simple Harmonic Movement
(SHM) and anharmonicity

A scalar physical variable x (for example, the elongation 
angle in a simple pendulum, see Fig.1) is said to undergo 
harmonic oscillations if its time-evolution is described by 
means of the well-known differential equation: 

             (1) 

whose general solution is 

            (2) 

where A (amplitude of the motion) and α (initial phase) are 
constants determined from the initial conditions in x and its 
first derivative. In the above expressions, ω is the angular 
frequency of the movement, which through (2) is shown to be 
periodic with period . On the other hand, the 
frequency f of the movement is given by . 

 For a SHM, in the laboratory one normally measures the 
time elapsed in a certain number of oscillations and from here 
one obtains the period and frequency of the movement, which 
can be compared with the theoretical values given by the 
above expressions in terms of the different parameters of the 
system. 

 A particular case of SHM is the motion of a pendulum when 
it is released from rest with a certain initial elongation that 
corresponds to a very small angle θ. In a simple pendulum, 

consisting of a point mass suspended from one end of a 
massless, frictionless thread with constant length L that is 
fixed at the other end (see Fig. 1), the forces that act on the 
mass are the tension transmitted by the thread  and the 
gravitational force of the mass  (its weight), and the 
resulting trajectory is an arc of circumference of radius L. 

Fig. 1.  Scheme of a simple pendulum 

 The tangential component of the weight is a restoring force 
that opposes the displacement of the mass from its equilibrium 
position at Applying Newton’s laws of Mechanics, one 
gets: 

                (3) 

that is,             (4)   
 The motion described by this equation is in general 
oscillatory (periodic), but will be of the simple harmonic type 
only in the case of small oscillations for which one can 
approximate  : In this case,  and          

, or: 

             (5) 

 Thus, in an experiment with pendulums of different lengths, 
each moving within the small oscillation regime, one must 
obtain that, within the experimental precision, their periods do 
not depend on mass or on the (small) starting displacement, 
and if L is represented against T2, one gets a linear dependence 
from which the value of g can be directly obtained from the 
slope of a linear fitting. 

 However, in the case of large oscillations, this harmonic 
approximation is insufficient and one enters the so-called 
anharmonic regime. This begins to be noticeable (using 
traditional set ups) when the initial angle exceeds around 
approximately 20-25º [3, 4]. In this case the period of the 
oscillations can be expressed as the period in the small 
oscillations regime corrected by a power expansion that 
depends on the initial angle : 
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            (6) 

and from this: 

→  (7) 
→   (8) 

                                                       It is possible to check experimentally this expression for 
the dependence of the period on the elongation. 
B. Local gravity

In all the above, one wants to consider the local value of the
acceleration of gravity g as exactly as possible, to be able to 
compare with the experimental results. We remind here that 
the formula for g recommended by the International 
Organization of Legal Metrology (IOLM) (see [5, 6]) depends 
on the latitude and height over sea level, and is given, to an 
alleged 0.01 % precision, by: 

         (9) where  m/s2 is the value of local gravity in 
the equator;  is the flat gravimetric 
effect  is related with the centrifugal effect, 
the geometrical flat effect and the value of g in the equator;  
is the latitude in degrees;  is the height above sea level (in 
m). Our experiments have been performed in San Cristobal de 
La Laguna (Tenerife, Spain), and with  and  for this 
location taken from Ref  [7], one gets  =  9,7903 m/s2. 

C. Faraday's Law of induction

The set up that will be described in the next sections makes
use of Faraday’s law of induction, which establishes that an 
electromotive force  (and a current) on a closed circuit is 
generated when the magnetic flux enclosed by the circuit 
changes with time, as is the case when a magnetic body 
swings through a fixed coil [8]: 

               (10) 

where  is the flux that crosses the surface S 
enclosed by the circuit C (with B, the magnetic field) and 

   is the electromotive force  induced in the contour 
circuit C. Therefore it is possible to write (10) as: 

          (11) 

 
 The minus sign indicates that the induced current circulates 
in such a sense as to oppose the variation in the magnetic flux. 
In the case of a coil of N loops, the total  induced in the coil 
is the sum of the individual contributions, that is: 

                   (12) 

III. EXPERIMENT 

A. Design of the experimental set up

Our experimental device (Fig. 2) is a “simple” pendulum
that consists of the following parts: a holed and telescopic 
methacrylate rod, in whose bottom end there is an attached 
magnetic mass. The pendulum oscillates in a perpendicular 
plane containing a coil. This movement implies a variation of 
the magnetic flux through the area defined by the coil, that 
according to Faraday’s law generates an electromotive force, 
which is amplified and then sent to an oscilloscope.  

Fig. 2.  Experimental set up. 

 The characteristics of the main elements employed in this 
experimental set up, are the following:  

- A coil of 220 copper whorls with an approximate
diameter of 50 cm, which was constructed over a
methacrylate base.

- Neodymium magnets [9], acting as main oscillating
body. The total mass of the whole set of magnets is
approximately 260 g.

- Telescopic methacrylate rods in which several holes
have been made, with a distance of 0.5 cm between
them. This allows changing the length of the rods.
The total mass of the rod is 20 g.

- A device to hold the system rod-magnets, that allows
its movement contained in a plane perpendicular to
the coil. The mentioned system is located in the
highest point of the coil, where a protractor has also
been disposed, in order to measure the angle from
which the pendulum is separated from its vertical
equilibrium position.

- An amplified filter formed by a High Speed FET-
Input Instrumentation Amplifier, INA111, with a
fixed gain of 1000, followed by a buffer amplifier
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and a 5th Order Lowpass Butterworth filter, with 
Sallen Key topology, overall filter gain of 1, and a 
cut-off frequency (approximately the -3dB 
frequency) of 30 Hz.  

- An oscilloscope to visualize the amplified signal.

B. Procedure

The set up allows the performance of two different
procedures: 

a) Fix an angle from which the pendulum is initially separated
from its vertical position, while varying the length of the
pendulum, by means of pins through holes in the pendulum’s
rod. The length can be modified from a minimum value of 20
cm to a maximum of 45 cm, with a step of 0.5 cm.

b) Fix the length of the pendulum and vary the angle from 5 to
90º, with a step of 1º.

In both cases, the signal in the oscilloscope reaches a stable 
value after a transient period of two or three oscillations of the 
pendulum. 

 Previously to taking measurements properly, the student can 
observe how an electromotive force is generated in the coil, as 
well as the period of the signal shown in the oscilloscope, 
comparing it with a rough estimate of the period of the 
pendulum obtained using a chronometer. For that, a student 
has to release the pendulum through the coil from a certain 
angle, whereas another student stops it at the other side, so that 
a half-period movement is completed. 

 As regards procedure a), the student can see that for small 
angles (below approximately 30º) and using different lengths, 
the signal observed in the oscilloscope is periodic, and its 
period increases with the length of the pendulum. For large 
initial displacements the signal is still periodic, but has a 
peculiar shape rather different from the small-displacement 
case, which latter resembles more an harmonic signal. 

 Following procedure b), the student can observe that, for a 
certain length, and if the angle from which the pendulum is 
released is small, the period of the signal does not change 
significantly, that is, it does not noticeably dependent with the 
initial displacement. However, for angles higher than 30º, the 
period of the signal increases significantly if the angle does.   

IV. RESULTS AND DISCUSSION

A. Representation of the periodic movement

In Figure 3 we show the different behaviour of the signal
shown in the oscilloscope when the pendulum oscillates under 
different conditions. This case corresponds to a pendulum with 
a fixed length of 30 cm. The image on the top corresponds to 
an initial elongation of 50º, that in the middle to 30º and the 
bottom one to 20º. All the images were taken from the same 

experiment. Note that the scale is the same in all three 
pictures. 

Fig. 3.  Signal obtained in the oscilloscope for harmonic and anharmonic 
oscillations of a pendulum of length 30 cm. These signals are slowly changing 

with time as the amplitude of the movement is damped.  

 A periodic evolution is clearly shown and for small 
amplitudes the signal looks quasi-harmonic, whereas for large 
amplitudes it has a rather peculiar shape. The induced voltage 
increases with the amplitude of the oscillations, which is an 
effect of Faraday´s Law: a larger elongation implies a larger 
pendulum maximum velocity when crossing the coils, thus a 
larger variation of the magnetic flux and therefore the value of 
the induced voltage will be larger. For large oscillations, the 
flat part of the signal corresponds to the greatest perpendicular 
distances between  magnet and coil. These imply low velocity 
and, consequently, low flux variation. When the magnet starts 
its accelerated movement in the direction of the center of the 
coil the induced voltage increases to reach a maximum. When 
the magnet crosses the coil, the voltage decreases to reach the 
opposite maximal amplitude:  now, the induced current goes 
in the opposite direction. 

 Some qualitative features of the movement of the pendulum 
are best seen in Figures 4 and 5, where the length L of the 
pendulum is represented against the square of its period T for 
different initial elongation angles.  This is represented in Fig. 
4 for small displacements and in Fig. 5 for large ones. The 
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period increases with the length of the pendulum, following 
the expected dependence for small displacements. For the sake 
of comparison the elongation angle that corresponds to 30º is 
included in both figures. Figure 5 shows an increase of the 
period with large elongation angles. On the other hand, one 
can readily notice that the period increases with the elongation 
angle, as plotted in Fig. 6, where it can be observed that for 
each chosen length the period approaches the small-
displacement constant value at low angles while it increases 
significantly at large angles, with differences being 
particularly noticeable above 20-30º. A value of  23º is 
considered in [4] as an approximate limit at which the small-
displacements approximations must be abandoned.  
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Fig. 4.  L-T2 relation for small oscillations. 
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Fig. 5.  L-T2 relation for large oscillations. 

B. Estimation of  g

The period T was measured at seven different angles (10-
70º) and eleven different pendulum lengths (20-41.8 cm). 
Every value of T was the average of three different 
measurements.  From a L-T2 representation, g can be obtained 
from linear fitting using (8) for each angle, once the set of 
lengths has been given. This procedure yields the value for g 
from the slope of the fitting. These results are shown in Table 
I of the Appendix. 

 As previously explained, the coefficient  can be 
calculated for each angle. Similar results were observed within 
the standard deviation range and the propagated error range, 
for g calculated respectively by linear fitting and individually 

for each pendulum length. There is no dependence with the 
length of the pendulum, considering that the magnet passes 
through the vertical axis of the coil at a different height (out of 
its center). However, the accuracy in the value of g depends on 
the initial elongation angle, . A larger deviation from the 
theoretical value of g has been obtained for 10º and 70º, 
whereas better values are obtained for the rest of the angles. 
This is probably due to the fact that measurements on the 
movement of the pendulum are more prone to errors for small 
elongation angles, due to a low flux variation, whereas for the 
largest angles a pitch effect in the movement appears, and 
movement is also probably more sensible to friction.  

 An equation has been searched in order to extract a value 
for g value by means of the compilation of all the obtained 
data. For this the student has to perform the following steps: 

Step 1: for each length L there is a set of different measured 
periods T, which correspond to different initial angles θ0. 
Three selected T- θ0 curves (corresponding to three different 
lengths of the pendulum) are represented in Fig. 6. One 
compares then the length with the square of the period defined 
by (7), where T0 (period for small oscillations) is corrected by 
means of an expansion coefficient α(θ0). It is possible to adjust 
the following equation, where  is the independent 
variable and T the dependent one.  

              (13) 

The period for small oscillations T0, can be estimated by linear 
fitting for every length. Note that the value of T0 can be 
obtained from the slope  and the intercept a = T0c of 
the lineal fitting. The value obtained for the intercept is rather 
good as can be seen in Fig. 7. In the same figure, is also shown 
the T calculated by (13), using the T0c fitted value. As it is 
shown, for large elongation angles the value of T is lower than 
the fitted value which may be partially due to pitch and 
friction effects previously commented.  
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Fig. 6.  Variation of period T versus elongation θ0 for three different 
pendulum lengths L. Squares represent experimental measurements taken in 
the laboratory and circles correspond to calculated periods T for each length 

by linear fitting. 
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Step 2: the two different values of T0c
2 (  and ) versus L 

have been represented in Fig. 7. In all cases,  is larger than 
 and this reports a more regular behavior. It is another test 

of the effect produced by the friction between the rotation axis 
and the rod, because  is affected by the oscillation quality 
(α value decreases because experimental amplitudes are 
smaller than theoretical ones). More dispersed values are due 
to the damping effect and additionally, it is not easy to take 
very good measures of initial elongation angles (an optimistic 
error in the measure of 1º was initially considered). So, if T0c 
is calculated for each length L, this dataset can be used to fit 
with (5), what allows calculating a value for g. On the other 
hand, it can be calculated an individual value for each L, 
directly from (5). It was found that g does not depend on 
length, presenting a magnitude range that goes from 9.71 ± 
0.07 m/s2 to 9.98 ± 0.04 m/s2. Finally, the value of g obtained 
by linear fitting and its deviation (given by the standard 
deviation obtained for the slope b, which is propagated 
because ) are: g = 9.84 ± 0.11 m/s2.  As one could 
expect by arguments already mentioned, this value is 
relatively precise and quite accurate. Considering the exact 
value of g = 9,790 m/s2 [5-7], this result means a difference of 
5,1%. 

V. CLOSING REMARKS

 The experimental set up for the magnetic pendulum 
described in the above sections was done in-house, completely 
handmade and starting from scratch. Although illustrated here 
with results for the most basic and ideal case of a simple 
pendulum, nothing precludes the use of a similar set up with a 
more realistic physical pendulum, with the obvious changes in 
the theoretical formulae that have to be taken into account in 
that case. Essentially the same set up has been also employed 
for studying the oscillations of other systems, like a spring 
with a mass.  Improvements over the existing set up can still 
be made, particularly aiming at the reduction of friction. It 
would also be interesting to allow even larger amplitudes of 
operation. It is in particular of interest the extension of the 

study to include anharmonic oscillations, exploring the limit 
between harmonic and anharmonic behavior. The difficulty to 
keep movement in a vertical plane and the damping of 
oscillations affect the accuracy of the experimental data and 
the values obtained for g from them. A procedure of analysis 
which relates all data together was followed, and an 
approximation for the period dependence on the elongation´s 
angles was used. This last one allows detecting the effect in 
the period of oscillations by means of the angle´s 
measurements dispersion. Although the values obtained for 
the periods are affected by error, the value obtained for g by 
working with the whole dataset has a deviation of 5% 
compared to the exact value, with a relative standard deviation 
of 1%, which can be considered acceptable.  

  The utility of this device as a teaching laboratory 
experiment has been tested with first-year undergraduate 
students in degrees of Physics, Chemistry, and Engineering, 
allowing access to some features which are not usually 
considered at an elementary level. The students have had the 
general impression that the use of this device contributes 
positively to their understanding of different types of 
phenomena, and their analysis in a simultaneous way. This 
represents a positive contribution to methodological resources 
and the development of practical contents in Science degrees. 
As a result, the teaching-learning process has been also 
improved. 
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APPENDIX  

TABLE I  

Values of g obtained by linear fitting using (8) 

Angle α  (deg) a b  (·10-5) R2 g (m/s2) 

10 -0.005 ±0.008 0.254 ±0.007 31.33 0.99294 10.08 ±0.26 

20 -0.003 ±0.005 0.248 ±0.004 14.10 0.99628 9.97 ±0.17 

30 0.005 ±0.003 0.237 ±0.003 6.212 0.99860 9.71 ±0.11 

40 0.003 ±0.003 0.233 ±0.002 5.067 0.99886 9.80 ±0.10 

50 0.000 ±0.003 0.229 ±0.002 4.769 0.99892 9.97 ±0.10 

60 0.002 ±0.003 0.219 ±0.002 6.153 0.99861 9.93 ±0.11 

70 -0.004 ±0.004 0.214 ±0.003 7.859 
0.99823 10.18 ±0.13 
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