
Abstract

In this paper, we extend a simultaneous untangling and smoothing technique previ-
ously developed for triangular and tetrahedral meshes to quadrilateral and hexahedral
ones. Specifically, we present a technique that iteratively untangles and smooths a
given quadrilateral or hexahedral mesh by minimizing an objective function defined
in terms of a modification of an algebraic quality measure. The proposed method
optimizes the mesh quality by a local node relocation process. That is, without mod-
ifying the mesh connectivity. Finally, we present several examples to show that the
proposed technique obtains valid meshes composed by high-quality quadrilaterals and
hexahedra, even when we start from tangled meshes.

Keywords: mesh generation, hexahedral mesh, mesh smoothing, mesh untangling,
mesh optimization.

1 Introduction

The accuracy and performance of a finite element analysis depend on the quality of
the mesh on which the spatial domain has been discretized. Most three-dimensional
meshes are composed of tetrahedral elements as they can be automatically generated
to discretize an arbitrary domain by rapid and mature algorithms. While more chal-
lenging to mesh, hexahedral elements have several advantages over tetrahedral meshes
both in structural and in fluid mechanics. Unfortunately, ready access to these advan-
tages is hampered by the significant challenges regarding the generation of the hexa-
hedral mesh. Several algorithms have been developed to generate hexahedral meshes.
On the one hand, specific algorithms have been developed for specific types of geome-
tries. For instance, the submapping method [1, 2] is devoted to blocky geometries or
the sweep method [3, 4, 5, 6] is designed for extrusion geometries. On the other hand,
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several methods have been developed to mesh any geometry with an unstructured hex-
ahedral mesh. For instance, 1. dual methods such as wisker weaving [7] or the local
dual contributions [8]; 2. primal methods that directly generates the hexahedral mesh
such as grid based methods [9, 10, 11], advancing front methods [12, 13], or the reced-
ing front method [14], and 3. primal methods that transform a tetrahedral mesh into
a hexahedral mesh [15, 16]. However, fully automatic unstructured hexahedral mesh
generation algorithms are still not available, and at this stage, no automated technique
exists which compares to tetrahedral methods such as Delaunay or advancing front
techniques. Moreover, hexahedral meshes generated automatically can include poorly
formed or even inverted elements that can affect the accuracy and invalidate any sub-
sequent analysis. Therefore, it is of the major importance to develop an algorithm that
can improve (untangle and smooth) the quality of a given hexahedral mesh.

Mesh smoothing is the key for keeping mesh shape regularity and avoiding a costly
remeshing process. Several smoothing algorithms have been developed during the last
decades to improve the quality of a given mesh. Most of them are based on geomet-
rical or numerical reasoning [17, 18]. Although they are fast from the computational
point of view, they have some drawbacks. For instance, they can move nodes outside
of a domain near non-convex boundaries. In addition, they are not designed to op-
timize any quality measure. To overcome these drawbacks, Knupp [19, 20, 21, 22]
introduced a family of quality measures placed within an algebraic framework that
have been intensively used during the last decade. These quality measures facilitate
the development of smoothing methods based on its optimization. In fact, this opti-
mization is transformed into a continuous minimization problem [19, 20, 23, 24].

The minimization process can be performed globally [24] or based on a local ap-
proach [25]. In short, these techniques consist on finding the new location that the
mesh nodes must hold, in such a way that they optimize an objective function. This
objective function is based on a measure of the quality of the local submesh formed
by the set of elements connected to the free node. After repeating this process several
times for all the nodes of the current mesh, quite satisfactory results can be achieved.
Usually, objective functions are appropriate to improve the quality of a valid mesh,
but they do not work properly when there are inverted elements. This is because they
present singularities (barriers) when any element of the local submesh changes the
sign of its Jacobian. In general, this procedure involves two steps [24, 25]: the first
is for mesh untangling and the second one for mesh smoothing. Each step leads to a
different objective function.

In this paper, we apply to quadrilateral and hexahedral meshes the shape distortion
measure introduced by Knupp [22, 24]. The quality of the quadrilateral and hexahe-
dral elements is defined in terms of their decomposition in triangular and tetrahedral
subelements, respectively, Thus, the optimization methods for quadrilateral and hex-
ahedral meshes inherit the properties of the methods for triangular and tetrahedral
meshes. To avoid the need of defining two objectives functions for the untangling and
smoothing process, we use the improvement proposed by Escobar et al. [26, 27, 28]
for tetrahedral mesh optimization, where a simultaneous untangling and smoothing
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guided by the same objective function is introduced. This technique has been con-
sidered in different finite element applications. For example, it has been the key of
the meccano method [29] and its recent application for isogeometric solid modeling
[30]. Specifically, we present a technique that iteratively untangle and smooth a given
quadrilateral or hexahedral mesh by minimizing an objective function defined in terms
of an algebraic quality measure. It is important to point out that the proposed method
optimizes the quality of quadrilateral and hexahedral meshes by a local node reloca-
tion process. That is, without modifying the mesh connectivity.

The paper is organized as follows. In the next section we review the concept of
an algebraic shape quality metric for triangular and tetrahedral elements, based on the
consideration of a target element. Section 3 summarizes the simultaneous untangling
and smoothing of tetrahedral meshes. Then, in Section 4 we extend to quadrilateral
and hexahedral elements the distortion and quality measures previously reviewed. The
simultaneous untangling and smoothing technique for quadrilateral and hexahedral
meshes is detailed in Section 5. We present several examples in Section 6 illustrating
that the proposed technique can be used to obtain valid meshes (untangled) composed
by high-quality (smoothed) quadrilaterals and hexahedra. Finally, several conclusions
and future works are summarized in Section 7.

2 Algebraic quality measures for triangles and tetra-
hedra

Knupp [21], introduced a family of distortion and quality measures placed within an
algebraic framework. In this framework, the distortion measure of a simplex (triangle
or tetrahedron) is measured in terms of the deviation from an ideal simplex, the ele-
ment that represents the desired shape to achieve. In this Section, we first summarize
the formulation of the algebraic framework for triangles. Second, we generalize it for
tetrahedral elements.

Let t denote a triangle in the physical space, and tI denote the ideal triangle. Ac-
cording to [21], to measure the deviation of the physical triangle from the ideal one,
we want to determine the affine mapping (see Figure 1):

fS : tI −→ t

x̃ 7−→ x = Sx̃ + v, (1)

where x̃ are the coordinates of the ideal element.
To this end, we consider a reference triangle, tR, delimited by vertices u0 = (0, 0),

u1(1, 0) and u2 = (0, 1) in the parametric space. If the ideal element, tI , is delimited
by the vertices: x̃0 = (x̃0, ỹ0), x̃1 = (x̃1, ỹ1), and x̃2 = (x̃2, ỹ2), the affine mapping
that maps the reference element to the ideal one can be written as (see Figure 1):

fW : tR −→ tI

u 7−→ x̃ = Wu + x̃0, (2)

3



where

W =

(
x̃1 − x̃0 x̃2 − x̃0

ỹ1 − ỹ0 ỹ2 − ỹ0

)
. (3)

Similarly, if the triangle in the physical space is delimited by nodes x0 = (x0, y0),
x1 = (x1, y1) and x2 = (x2, y2), the affine mapping that maps the reference element,
tR, into the physical triangle, t, can be written as (see Figure 1):

fA : tR −→ t

u 7−→ x = Au + x0, (4)

where

A =

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)
. (5)

The desired affine mapping, Equation (1), that maps the ideal triangle to the physi-
cal triangle can be determined by composing the inverse of fW, Equation (3), with
function fA, Equation (5):

fS = fA ◦ f−1
W : tI

f−1
W−→ tR

fA−→ t
x̃ 7−→ u = f−1

W (x̃) 7−→ x = fA(u).
(6)

Therefore, the analytical expression of affine mapping fS is

x = fS(x̃) = fA(f−1
W (x̃)) = Af−1

W (x̃) + x0 = A(W−1x̃ + ṽ) + x0

= AW−1x̃ + Aṽ + x0, (7)

being ṽ = −W−1x̃0. Comparing this expression with Equation (1) we realize that:

S = AW−1, (8)
v = Aṽ + x0. (9)

Note that if we consider x̃0 = (0, 0), then ṽ = (0, 0) and consequently, from Equation
(9), v = x0. The Jacobian matrix of the affine mapping (1), S, is called weighted
Jacobian matrix in reference [21].

Note that using this formulation, we can select different ideal elements to generate
elements with different geometric properties. For isotropic triangular meshes, the ideal
element is selected as the equilateral triangle. Thus, we have

W =

[
1 1/2

0
√

3/2

]
.

Similar reasoning can be developed for tetrahedral elements. In this case, if the
tetrahedron in the physical space is delimited by the vertices: x0 = (x0, y0, z0),
x1 = (x1, y1, z1), x2 = (x2, y2, z2), and x3 = (x3, y3, z3), then we have:

A =

 x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0

 .
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Figure 1: Affine mappings for triangular elements

In addition, for isotropic tetrahedral meshes, the ideal element is defined as an equi-
lateral tetrahedron. Thus, we have

W =

 1 1/2 1/2

0
√

3/2
√

3/6

0 0
√

2/3

 .

The weighted Jacobian matrix S defined in (8) contains information about how much
we have “distorted” the ideal element to become the physical one. Based on this
matrix, Knupp [21] introduced the shape distortion measure

η(S) =
|S|2

nσ(S)2/n
. (10)

where σ(S) = det(S) is the determinant of S, |S| =
√

tr(STS) is its Frobenius norm,
and n is the space dimension (n = 2 for triangles and n = 3 for tetrahedra). If
the physical element is not inverted the image of this function is the interval [1,∞],
achieving ∞ only when the physical element is degenerated, and 1 when it becomes
the ideal triangle.

The shape quality measure is defined as the inverse of the shape distortion measure
(see [21])

q(S) =
1

η(S)
=

nσ(S)2/n

|S|2
. (11)

Note that the shape quality measure reaches a maximum value of 1 for the ideal ele-
ment, and a minimum value 0 for degenerated elements.
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3 Simultaneous untangling and smoothing of triangu-
lar and tetrahedral meshes

Given a triangular or a tetrahedral mesh M, let V be the set of inner nodes, and let
v be a given node v ∈ V . We define the local submesh associated to v, Mv, as
the set of elements that contain node v. The simultaneous untangling and smoothing
algorithm for triangular [27] and tetrahedral [26] meshes is based on the optimization
of an objective function defined in terms of the distortion measure (10) of the elements
in the local submesh .

Let x be the coordinates of the inner node v. Assume that the local submesh,
Mv, is composed by M elements (triangles or tetrahedra in our case). Let Sk be the
weighted Jacobian matrix of the kth element of Mv. Then, according to [24], the
objective function to minimize in the kth element is its shape distortion measure:

ηk(x) =
|Sk(x)|2

nσ(Sk(x))2/n
. (12)

We define the objective function on node v as the p-norm of the objective function of
all the elements of its local submesh:

Kη(x) =

(
M∑

k=1

(ηk)
p (x)

)1/p

. (13)

In this work, we use p = 2. We define the feasible region as the set of points where
the free node, v, can be located to get a valid mesh. Concretely, the feasible region is
the interior of the polygonal set H = ∩k=M

k=1 Hk where Hk are the half-planes defined
by σk(x) ≥ 0. We say that an element of the mesh is tangled if σ(x) < 0, and
degenerated if σ(x) = 0.

Note that the objective function (13) presents several asymptotes (or barriers) at the
boundary of the feasible region, where σ = 0. In addition, the objective function also
presents local minima outside the feasible region. Then, the optimization algorithm,
that is indeed a minimization, can lead to a local minimum that is not the optimal
position. Moreover, this local minimum may correspond to a tangled configuration.

To overcome this drawback, Escobar et al. [26, 27] modified the objective function
(13) in order to obtain a new objective function without asymptotes and with a global
minimum near the optimal position of the original objective function (13). Specifi-
cally, they replace σ in (12) by

h(σ) =
1

2

(
σ +

√
σ2 + 4δ2

)
, (14)

where δ is an arbitrary small parameter that is chosen depending on the problem (see
[27, 26, 31, 32] for further details). Taking into account this modification, see Equation
(14), the new objective function for the local mesh is

K∗
η(x) =

(
M∑

k=1

(ηk
∗)p(x)

)1/p

, (15)
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where

ηk
∗ =

|Sk|2

nh(σk)2/n
. (16)

4 Distortion and quality measures for quadrilateral and
hexahedral elements

According to Knupp [24], the distortion measure of a quadrilateral element can be
computed by decomposing it into four triangles, see Figure 2. Similarly, the distor-
tion measure of an hexahedral element can be computed by decomposing it into eight
tetrahedra, see Figure 3. Thus, given a quadrilateral (hexahedral) element, if we de-
note the shape distortion measure of the ith triangle (tetrahedron) by η(Si), the shape
distortion measure of a quadrilateral (hexahedral) elements is:

η =
1

N

N∑
i=1

η(Si) =
1

N

N∑
i=1

|Si|2

nσ(Si)2/n
, (17)

where N is the number of nodes of the quadrilateral (hexahedral) element.

n0 n1

n2n3

0-1-2-3

n3

n0

n2

3-0-2

n2n3

n1

2-3-1

n0 n1

n3

0-1-3

n1

n2

n0

1-2-0

1
Figure 2: Decomposition of a quadrilateral into four triangular sub-elements
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1
Figure 3: Decomposition of a hexahedron into eight tetrahedral sub-elements

The ideal quadrilateral element is a square. Thus, if it is subdivided into four trian-
gles, we get that the ideal triangle for this case is rectangle and isosceles. Similarly,
the ideal hexahedral element is a cube. Hence, if it is subdivided into eight tetrahedra,
we get that the ideal tetrahedron is the rectangle and isosceles tetrahedron. Therefore,
for each sub-triangle of a quadrilateral element, and for each sub-tetrahedron of a hex-
ahedral element we get that the mapping between the reference and the ideal element,
see (3), is given by

W =

[
1 0
0 1

]
W =

 1 0 0
0 1 0
0 0 1

 ,

respectively.
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Using Equation (17), and according to Equation (11), the shape quality measure
for quadrilateral (hexahedral) elements is defined as:

q =
1

η
=

1
1
N

∑N
i=1 η(Si)

. (18)

5 Simultaneous untangling and smoothing of quadri-
lateral and hexahedral meshes

According to the notation introduced in the previous two sections, given a quadrilat-
eral (hexahedral) mesh, we consider an inner node v ∈ V and its local submesh, Mv.
Let x be the coordinates of the node v, and M the number of quadrilateral (hexa-
hedral) elements in Mv. Analogously to the triangular (tetrahedral) case, we define
the objective function on a free node v as the p-norm of the objective function of
all the quadrilaterals (hexahedral) elements of its local submesh, see Equation (13).
However, for quadrilateral (hexahedral) elements the distortion measure is computed
according to Equation (17).

For quadrilateral and hexahedral elements, the objective function (13) also presents
asymptotes (or barriers) and local minima that prevent its use in a continuous mini-
mization procedure. Therefore, the modification introduced in Equation (14) is also
used when the distortion measure of each sub-element is computed in Equation (17).
Thus, the modified distortion measures for quadrilateral (hexahedral) elements is:

K∗
η(x) =

(
M∑

k=1

(ηk
∗)p(x)

)1/p

, (19)

where

ηk
∗(x) =

1

N

N∑
i=1

η∗(Si(x)),

being

η∗(Si(x)) =
|Si(x))|2

nh(σi)2/n
. (20)

Similar to the methods proposed by [24, 26] we propose a continuous optimiza-
tion procedure to simultaneously untangle and smooth quadrilateral and hexahedral
meshes. Specifically, for each free node we propose to minimize the shape distortion
measure of its local submesh (19). This way, we are maximizing the shape quality
measure since the quality measure is the inverse of the distortion measure, see Equa-
tion (11) or (18).

To minimize the objective function (19) we perform a local non-linear minimiza-
tion with updates. This approach is similar to the Gauss-Seidel technique for solving
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linear systems. Specifically, we loop on all the nodes that are not located on the bound-
ary of the mesh. Then, in each step we move the position of one node, and we fix the
other ones. To this end, we minimize the local objective function of the node and we
update the node location to the optimum. Then, we repeat the process again for the
next node.

6 Examples

In order to illustrate the behavior of the proposed mesh optimization method, we
present four examples in this section. In all cases, the method is capable to untan-
gle the initial mesh, increasing the values of the minimum quality, min(q), and of the
mean value of the quality, q̄. In addition, the standard deviation of the quality of the
elements, σ(q), is also reduced.

In the first example we apply the developed method to a structured quadrilateral
mesh on a convex domain, see Figure 4. The coordinates of inner nodes are randomly
perturbed and all inner nodes are placed outside of the domain. Thus, the input mesh
is composed by tangled elements, see Figure 4(a). The smoothed mesh is shown in
4(b). As expected, the optimized mesh is only composed by square elements. Table 1
summarizes the quality statistics for this example.

(a) (b)

Figure 4: Smoothing of a quadrilateral mesh: (a) tangled mesh, and (b) optimized
mesh.

The second example illustrates the behavior of the developed method when it is
applied to a non-convex domain. Figure 5(a) shows one fourth of a ring with outer
radius rout = 10 and inner radius rin = 3, meshed with quadrilateral elements. The
interior elements were arranged in a square domain, decreasing the quality of the
elements and in some cases, tangling them. The smoothed mesh is shown in 5(b).
Table 2 summarizes the quality statistics for the presented meshes. Note that after
smoothing, no element appears with shape quality measure lower than 0.69.
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Initial mesh Optimized mesh
min(q) 0.000 1.000
max(q) 0.444 1.000
q̄ 0.065 1.000
σ(q) 0.141 0.000

Table 1: Quality statistics of the meshes corresponding to the square domain.

(a) (b)

Figure 5: Smoothing of a mesh on a ring-shaped domain: (a) tangled mesh, and (b)
optimized mesh.

Initial mesh Optimized mesh
min(q) 0.000 0.690
max(q) 1.000 0.967
q̄ 0.612 0.902
σ(q) 0.445 0.079

Table 2: Quality statistics of the meshes corresponding to the ring-shaped domain.

The third example is devoted to the optimization of a hexahedral mesh. Figure 6(a)
shows a cylinder with radius r = 5 and height z = 5 with non-planar cap surfaces. It
is important to point out that we have created several flat elements (with zero volume)
attached to both cap surfaces. After applying the proposed untangling and smoothing
method, see Figure 6(b) we obtain a mesh composed by valid elements. Table 3
summarizes the statistics of both meshes. Note that high-quality hexahedral elements
are obtained near the cap surfaces.

The fourth example shows an application of the proposed optimization method
to the receding front method [14]. Using this method we generate an hexahedral
mesh around an airplane. To test the capabilities of the optimization method we do
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(a) (b)

Figure 6: Smoothing of a mesh of a cylinder: (a) tangled mesh, and (b) optimized
mesh. The color map represents the element shape quality.

Initial mesh Optimized mesh
min(q) 0.000 0.768
max(q) 0.994 0.971
q̄ 0.749 0.907
σ(q) 0.286 0.057

Table 3: Quality statistics of the meshes corresponding to the cylinder.

not smooth the initial mesh during the generation process. Thus, it contains invalid
elements. Figure 7(a) presents a cross-section of an initial hexahedral mesh around the
airplane. Note that invalid elements appear. Figure 7(b) shows the optimized mesh.
It is important to point out that the final mesh is composed by high-quality elements.
Table 4 summarizes the statistics of both meshes.

Initial mesh Optimized mesh
min(q) 0.094 0.605
max(q) 0.997 0.997
q̄ 0.816 0.913
σ(q) 0.127 0.064

Table 4: Quality statistics of the meshes corresponding to the airplane.

7 Concluding remarks

In this paper, we have presented a new method to simultaneously untangle and smooth
quadrilateral and hexahedral meshes. To this end, we propose to use the standard def-
inition of the shape quality measure for quadrilateral and hexahedral elements, and
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(a)

0.00

0.33

0.67

1.00

(b)

Figure 7: Smoothing of a hexahedral mesh around an airplane: (a) original mesh, and
(b) optimized mesh. The color map represents the element shape quality.
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to minimize it using a continuous minimization procedure. To avoid the singularities
(vertical asymptotes) of the objective we have modified it in such a way that the mod-
ified objective function is smooth all over R3 and has the global minimum near the
global minimum of the original objective function. The regularity shown by the modi-
fied objective functions allows the use of standard optimization algorithms as steepest
descent, conjugate gradient, Newton, etc. In principle, a similar modification could be
also applicable to other objective functions having the same behavior (that are written
in terms of σ−1). Further research is needed to increase the computational efficiency
of the developed optimization method. In particular, special attention will be focused
in its implementation. Note that this technique can be implemented in a parallel algo-
rithm. Thus, the implementation of the method in different parallel architectures will
also be analyzed.
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