
Abstract

In this paper we propose a finite element method approach for modelling the air quality

in a local scale over complex terrain. The area of interest is up to tens of kilometres

and it includes pollutant sources. The proposed methodology involves the genera-

tion of an adaptive tetrahedral mesh, the computation of an ambient wind field, the

inclusion of the plume rise effect in the wind field, and the simulation of transport

and reaction of pollutants. The methodology is used to simulate a fictitious pollution

episode in La Palma island (Canary Island, Spain).

Keywords: air quality modelling, finite element method, adaptive three-dimensional

mesh, local scale, Eulerian description, mass-consistent model, wind field simulation.

1 Introduction

In this paper, we present a new methodology for local scale air quality simulations,

summarized in Algorithm 1, by using a non-steady finite element method with un-

structured and adaptive tetrahedral meshes. The aim of this proposal is to introduce

an alternative to the standard implementation of current models, improving the com-

putational cost of methods that use structured meshes [15].

Three remarkable uses of unstructured meshes in atmospheric pollution problems

are the two-dimensional regional–global examples presented in [19, 1], the three-

dimensional regional examples, including local refinement with element sizes of 2km,

presented in [39], and the three-dimensional tetrahedral meshes for local wind field

analysis with element sizes ranging from two meters up to two kilometres, see [25, 27].

The ideas of this last approach are considered to include the plume rise effect in the

wind field that is used in the air quality problem.

The wind field is crucial for the pollutant transport, specially in complex terrain
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areas. In order to simulate it, we have used a mass-consistent model. Several two-

dimensional [41] and three-dimensional [26, 28, 10] adaptive finite element solutions

have been developed by the authors.

The convection, diffusion and reaction problem is usually solved using splitting

schemes [22, 6] and specific numerical solvers for time integration of photochemical

reaction terms [36, 35, 1]. In this paper a stabilized finite element formulation with

a Crank-Nicolson temporal integration is proposed to solve the problem [7, 33]. The

chemistry is simulated with the RIVAD chemical model [37]. The transport and chem-

ical terms are treated separately with Strang splitting operators [34], and the non-linear

chemical part is solved with a second order Rosenbrock method [40].

Algorithm 1 Wind and air pollution modeling algorithm

1: Construct an adaptive tetrahedral mesh of the 3D domain

2: Wind field simulation from experimental data

3: Wind field modification including the plume rise effect

3.1: Compute plume rise trajectory

3.2: Mesh refinement along plume rise trajectory

3.3: Apply step 2 on the refined mesh

3.4: Modify the vertical wind field along the plume rise

4: Air pollution simulation from stack emission data

The paper is organised as follows. In Section 2 we describe the main steps of the

proposed methodology. Results are shown in Section 3, and finally the conclusions

and future work are presented in Section 4.

2 Algorithm description

In this section a brief description of the different steps of Algorithm 1 is presented.

2.1 Adaptive tetrahedral mesh

The studied domain is limited at the bottom by the terrain and at the top by a horizon-

tal plane. The lateral walls are formed by four vertical planes. A uniform distribution

of nodes is defined on the upper boundary. A refinement/derefinement algorithm [11]

is applied on this uniform mesh to construct a node distribution adapted to the terrain

surface and stacks. Once the node distribution is defined both on the terrain and the up-

per boundary, we distribute the nodes located between both layers by using a vertical

spacing function. Next, a three-dimensional mesh generator based on Delaunay trian-

gulation [8] is applied. Finally, the untangling and smoothing procedure described in

[9] is used to get a valid mesh and to improve its quality. A detailed description of the

mesh generation procedure can be seen in [24].
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2.2 Wind field simulation

A mass-consistent model [26, 28, 10] is used to compute a wind field u in the three-

dimensional domain Ω, with a boundary Γ = Γa ∪ Γb, that satisfies the continuity

equation and the impermeability condition on the terrain Γa,

∇ · u = 0 in Ω

n · u = 0 on Γa

(1)

where n is the outward-pointing normal unit vector.

The model formulates a Least-Squares problem in the domain Ω to find a wind field

u = (u, v, w), such that it is adjusted as much as possible to an interpolated wind field

u0 = (u0, v0, w0). The adjusting functional for a field v = (ũ, ṽ, w̃) is defined as

E(v) =
1

2

∫

Ω

(v − u0)
t
P (v − u0) dΩ (2)

where P is a 3 × 3 diagonal matrix with P1,1 = P2,2 = 2α2
1 and P3,3 = 2α2

2. The La-

grange multiplier technique is used to minimise the functional (2), with the restrictions

(1). Considering the Lagrange multiplier λ, the Lagrangian is defined as

L (v, λ) = E (v) +

∫

Ω

λ∇ · v dΩ (3)

and the solution u is obtained by finding the saddle point (u, φ) of the Lagrangian (3).

This resulting wind field satisfies the Euler-Lagrange equation,

u = u0 + P
−1∇φ (4)

where φ is the Lagrange multiplier. As α1 and α2 are constant in Ω, the variational

approach results in an elliptic problem in φ, by substituting (4) in (1), that is solved by

using the finite element method.

−∇ ·
(
P

−1∇φ
)

= ∇ · u0 in Ω (5)

−n · P−1∇φ = n · u0 on Γa (6)

φ = 0 on Γb (7)

The interpolated wind field u0 can be constructed from experimental data or me-

teorological forecasting models. In this paper we consider the first case. Therefore,

we consider an horizontal interpolation and a vertical extrapolation of the available

measurements to construct u0 in the whole computational domain.

Horizontal interpolation

The most common technique of interpolation at a given point, placed at a height

zm over the terrain, is formulated as a function of the inverse of the squared distance
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between that point and the measurement stations, and the inverse of their height dif-

ferences [26]

u0(zm) = ξ

N∑
n=1

un

d2
n

N∑
n=1

1

d2
n

+ (1 − ξ)

N∑
n=1

un

|∆hn|

N∑
n=1

1

|∆hn|

(8)

where the value of un is the velocity measured at station n, N is the number of stations

considered in the interpolation, dn is the horizontal distance from station n to the

point of the domain where we are computing the wind velocity, |∆hn| is the height

difference between station n and the studied point, and ξ is a weighting parameter

(0 ≤ ξ ≤ 1), that allows to give more importance to one of these interpolation criteria.

Vertical extrapolation

In this work, a log-linear wind profile is considered [20] in the surface layer, which

takes into account the horizontal interpolation [29] and the effect of roughness on the

wind intensity and the direction. These values also depend on the air stability (neutral,

stable or unstable atmosphere) according to the Pasquill stability class. Above the

surface layer, a linear interpolation is carried out using the geostrophic wind. The

logarithmic profile is given by,

u0(z) =
u
∗

k
(log

z

z0

− Φm) z0 < z ≤ zsl (9)

where u
∗ is the friction velocity, k is von Karman’s constant, z0 is the roughness length

[23] and zsl is the height of the surface layer. The values of Φm depend on the Pasquill

stability class [42], and the friction velocity is obtained from (9) at any point (x, y) by

using the horizontal interpolated velocity u0(zm).

The linear interpolation is given by,

u0(z) = ρ(z)u0(zsl) + [1 − ρ(z)]ug zsl < z ≤ zpbl (10)

where ug is the geostrophic wind, zpbl is the height of the planetary boundary layer,

and ρ(z) is defined as

ρ(z) = 1 −

(
z − zsl

zpbl − zsl

)2 (
3 − 2

z − zsl

zpbl − zsl

)
(11)

Finally, this model assumes u0(z) = ug if z > zpbl and u0(z) = 0 if z ≤ z0.

2.3 Plume rise

The plume rise phenomenon is mainly due to the difference of temperature between

the released substance and the environment air, and the initial momentum. The tra-

jectory of the plume rise has been widely studied in the past [4, 5, 30]. These works
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differentiate between two kinds of cases: predominant buoyancy rise and predominant

momentum rise. The characterization of these types essentially depends on the ratio

between the intensities of the pollutant emission velocity and the wind velocity at the

top of the stack.

Gaussian plume models [31] approximate the effective height of a plume zH and

the horizontal distance df from the stack to the point where the plume height reaches

zH , depending on the emission characteristics, the ambient wind and the atmospheric

stability. The gas elevation mainly depends on the density difference between the

emitted gas and the atmospheric air (buoyancy rise) and the emission velocity (mo-

mentum rise).

Predominant buoyancy rise

In all cases with df different from zero, the driving force is buoyancy, except for sta-

ble conditions and calm wind. In order to know the plume rise trajectory, we propose

to combine an horizontal and a vertical motion, satisfying certain known conditions.

The vertical motion along the mean trajectory of the plume is defined by an accel-

eration a0(t), a velocity w0(t) and z(t), from the initial time t = 0 to the final time

t = tf when the plume reaches the effective height, satisfying the following conditions

z(0) = z′c z(tf ) = zH (12)

w0(0) = wc w0(tf ) = 0 (13)

Since there are four conditions on the vertical motion, we propose a cubic approxima-

tion of z(t), and therefore a quadratic approximation of w0(t), and a linear approxi-

mation of a0(t).

The horizontal motion is defined by a uniformly accelerated motion, with a constant

positive acceleration vector ad = (adx, ady), a velocity ud(t) = (ud(t), vd(t)), and an

horizontal relative position vector d(t) = (x(t) − xc, y(t) − xc) with respect to the

centre of the stack, satisfying the following conditions

|d(tf )| = df (14)

ud(0) = u(xc, yc, zc) (15)

In order to define the mean trajectory of bent curved plumes considering the in-

fluence of complex terrains, we approximate it by a three-dimensional polygonal line

taking into account the ambient wind directions, such that the longitude of its pro-

jection on the horizontal plane approximates the longitude df . In addition, the final

height coincides with the effective height zH . Therefore, this approximation tries to

satisfy the main values of the end of the plume considering Briggs’ equations.

Predominant momentum rise

In all cases where df is equal to zero, that is when the driving force is momentum or

when the driving force is buoyancy with calm wind, the horizontal motion of the plume

until reaching the effective height can be considered negligible. Thus the trajectory of

the gases is nearly vertical.
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In this case, we propose a vertical motion along the trajectory of the plume with

a constant negative acceleration a0, a linear velocity w0(t) and a quadratic trajectory

z(t). Imposing the conditions (12) and (13), this vertical motion is completely defined.

tf =
2 (zH − z′c)

wc

(16)

a0 =
−wc

tf
(17)

w0(z) = wc

√
1 −

2 (z − z′c)

wctf
(18)

In order to modify the ambient vertical wind velocity (w) along the region of the

plume rise, we need to have a sufficient mesh resolution in this area. For this reason,

we propose to refine locally the mesh [13] along the Gaussian plume [14] until all the

tetrahedra inside that region fulfill a size criterion.

Finally, a new ambient wind field u is obtained on the refined mesh with the mass-

consistent model described in Section 2.2. The effect of the gas emission is introduced

in this field by modifying its vertical component along the plume.

2.4 Air pollution simulation

The air pollution simulation consists of solving the unsteady convection–diffusion–

reaction formulation with an stabilized finite element method, specifically Least-Squares

method, with a Crank-Nicolson temporal discretization. The equation system govern-

ing the problem can be expressed with the following vectorial equation:

∂c

∂t
+ u · ∇c = ∇ · (K∇c) + e + s(c) (19)

for the spatial coordinates x and time t, (x, t) ∈ Ω × (0, tend], with initial condition

c(x, 0) = c
ini(x) on x ∈ Ω, and the following boundary conditions:





c(x, t) = c
emi(x) in ΓS: Top of the stack

n · K∇c = −V
d
c in ΓR: Terrain

n · ∇c = 0 in ΓWout
: Outlet wind boundaries

c(x, t) = c
out(x) in ΓWin

: Inlet wind boundaries

(20)

where ∇ is the gradient with respect to x, and c, u, e and s(c) are respectively the

concentration, the perturbed wind velocity, the emission and the chemical vectors

with a dimension nc (the number of pollutant species). K is the diffusion matrix

of dimension 3 × nc, V
d is the deposition diagonal matrix with dimension nc, and n

is the outward-pointing normal unit vector, c
emi is the concentration of the emission

in the top of the stack, and c
out the outside concentration at the inlet wind boundaries.
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Scalar product “·” is applied nc times: the first argument is multiplied by each one of

the nc components of the second argument.

The complete description of photochemical reaction of atmospheric species is highly

complex [12, 18, 2, 32]. For instance, detailed Volatile Organic Components decom-

position involves hundreds of thousand reactions [3, 38] that needs special methodolo-

gies to reduce the number of the modelled reactions and species. Reference models for

gaseous phase reactions involve some tens of compounds [16, 17]. The most simpli-

fied models just involve about ten reactive species [43]. On the other side, depending

on the application, it can be necessary to take into account aqueous phase reactions,

that involve several other reactions and species. The RIVAD model is one of the most

simplified models that permit to simulate both processes, aqueous and gaseous, in-

volving transport and reaction of four species [37]. In this paper, we have considered

the RIVAD model for the chemical term s(c).

This model is a pseudo first-order chemical scheme for acid rain simulation, spe-

cially calibrated for being used in non-urban areas. The concentration c involves four

species, c1 = [SO2], c2 = [SO4], c3 = [NO2] and c4 = [NO3], and the components of

the reaction vector s(c) are:

s1(c) = −s2(c) = −α1(c)c1 (21)

s3(c) = −s4(c) = −α3(c)c3 (22)

where α1(c) = γ1/(c1 + δ1c3) and α3(c) = γ3/(c3 + δ3c1). Note that for values close

to zero of the concentration of the primary species c1 and c3, both α1(c) and α3(c)
requires a proper numerical treatment in order to avoid excessively high reaction rates.

Next we will treat the linear and the non-linear problem separately. The develop-

ment of the linear chemical problem focuses on the temporal and spatial discretization

of the corresponding linear convection–diffusion–reaction equation (19). The non-

linear case focuses on the development of an splitting method that combines the solu-

tion of (19) in a linear case, considering a null chemical term, and the solution of an

ordinary differential equation system that approximates the evolution of the chemical

reaction separately.

2.4.1 Linear chemical problem

In this case the chemical term is linear, that is, s(c) = Ac where A is constant matrix.

The resulting equation (19) is solved with a Crank-Nicolson time integration scheme,

and an spatial discretization with a stabilized finite element method, Least-Squares.

Concentrations c
n and c

n+1 at times tn and tn+1 = tn + ∆t are related using a Crank-

Nicolson scheme as c
n+1 = c

n+ ∆t
2

[
∂cn+1

∂t
+ ∂cn

∂t

]
. We define the differential operator

L as

L = u · ∇ −∇ · (K∇) − A (23)

and a function F in Ω from the known c
n

F = c
n −

∆t

2
Lc

n +
∆t

2

[
e

n+1 + e
n
]

(24)
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Applying the Crank-Nicolson scheme, we can rewrite equation (19) as

[
I +

∆t

2
L

]
c

n+1 = F (25)

where I is the identity operator.

Using Least-Squares we obtain a symmetric problem such that the weak form of

the equation (25) is

([
I +

∆t

2
L

]
ν,

[
I +

∆t

2
L

]
c

n+1

)
=

([
I +

∆t

2
L

]
ν,F

)
(26)

where ν is the test function, and (µ, ν) =
∫
Ω

µν dΩ is the inner product

We define the next bilinear forms

a(ν, c) =(ν,u · ∇c − Ac) + (∇ν,K∇c)+∫

ΓR

V
d
c ν dΓR

(27)

b(ν, c) =
∑

e

(u · ∇ν − Aν, c)e (28)

g(ν, c) =
∑

e

(u · ∇ν − Aν,u · ∇c − Ac)e (29)

where (µ, ν)e =
∫
Ωe

µν dΩ, and
∑

e represents the sum over all the mesh elements.

Applying the operators L and F in the weak form (26), we obtain

(ν, cn+1) +
∆t

2

[
a(ν, cn+1) + b(ν, cn+1) +

∆t

2
g(ν, cn+1)

]
=

(ν, cn) −
∆t

2

[
a(ν, cn) − b(ν, cn) +

∆t

2
g(ν, cn)

]
+

∆t

[
(ν, en+ 1

2 ) +
∆t

2
b(ν, en+ 1

2 )

]
(30)

where e
n+ 1

2 = en+1+en

2
.

Equation (30) can be written as an equation system

Bcccn+1 = f (31)

where cccn+1 is the concentration vector approximation at tn+1 in the degrees of freedom

of the finite element discretization, f = [2F − B]cccn + ∆t
2
F[eeen+1 + eeen], and B and F

are square matrices with dimension (nc × ndof ), being ndof the number of degrees of

freedom.

In order to solve this linear system it is necessary to find an efficient solver, using

a sparse matrix storage. Since B is a symmetric positive definite matrix, we have

considered a solver based on a conjugate gradient method preconditioned with an
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incomplete Cholesky factorisation density type [21]. The left–preconditioning is used

to improve the convergence of the conjugate gradient method. The original linear

system is transformed into T
−1

Bcccn+1 = T
−1

f , where T is the symmetric positive

definite preconditioner obtained with the incomplete Cholesky factorisation. The large

fill-in of the complete (i.e. standard) Cholesky factorisation is completely or partially

avoided by discarding coefficients along the factorisation process. We have considered

an incomplete Cholesky factorisation with no fill-in, such that the incomplete factor L

has the same sparsity pattern as the lower triangle of matrix B. The main advantage of

the Cholesky method is that the incomplete factorisation of matrix B can be amortized

over many time-steps. More details about the implementation of this system equation

solver can be found in [7] and [33].

2.4.2 Non-linear chemical problem

To deal with the non-linearity of the reactive term in the convection–diffusion–reaction

equation (19), we have considered a splitting method that separates this equation into

a convection–diffusion equation and a reaction equation. We will make use of the

second order splitting operator (Strang splitting) proposed by [34]:

dc⋆

dt
= s(c⋆)

for t ∈

[
0,

∆t

2

]
and c

⋆(x, 0) = c
n(x)

(32)

∂c
⋆⋆

∂t
+ u · ∇c

⋆⋆ = ∇ · (K∇c
⋆⋆) + e

for t ∈ [0, ∆t] and c
⋆⋆(x, 0) = c

⋆(x,
∆t

2
)

(33)

dc⋆⋆⋆

dt
= s(c⋆⋆⋆)

for t ∈

[
∆t

2
, ∆t

]
and c

⋆⋆⋆(x,
∆t

2
) = c

⋆⋆(x, ∆t)
(34)

Once we have split the equation (19), we solve three equations in different time

steps; the reaction equation (32), the convection–diffusion equation (33), and the re-

action equation (34), being finally c
n+1(x) = c

⋆⋆⋆(x, ∆t).

The convection–diffusion equation (33) is solved using the same method proposed

in the previous Section, with A = 0. The non-linear chemical equations (32) and (34)

are solved node by node with a second order Rosenbrock method (ROS2) [40]. To

use the ROS2 method, the Jacobian square matrix of s(c) of dimension nc has to be

computed.
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3 Results

The approach has been used to simulate the transport and reaction of pollutants from

a fictitious stack in La Palma island.

The studied domain taken under consideration is a rectangular area with dimen-

sions 15600m x 22803m. The topography of the terrain is highly complex ranging

from the sea level up to a maximum height of 2279m with several deep valleys. The

upper boundary of the domain has been placed at h =9000m. The digital elevation

model of the area is defined over a uniform grid with a spacing step of 200m in di-

rections x and y. We add the stack geometry to the topographical data, a stack with a

height of 150m over the terrain and the diameter at its top of 15m.

The wind field is obtained from four meteorological stations placed in the stud-

ied region. Figure 1 represents the interpolated and resulting wind field at a height

of 400m above the terrain. While the interpolated wind field is almost uniform and

crosses the terrain surface, the resulting wind field has higher velocities in the peaks of

the mountains and follows the terrain and valleys, verifying the wind incompressibility

and terrain impermeability conditions.

Figure 2 shows the plume rise region where a local mesh refinement has been per-

formed. the trajectory of the plume rise follows the trajectory of the wind field we

have obtained previously, it can be noted how the trajectory bends.

The plume rise has been calculated using the following values. The stack exit

velocity is 5m/s and the gas temperature is 573K. The velocity of the wind field at the

top of the stack is Vo=7.13m/s. With these values, it results that the effective height of

the plume is zH =2347.52m and its horizontal distance is df =3700.04m.

Finally the transport and reaction of the pollutants has been simulated. The con-

centration of the primary pollutant at the top of the stack has been fixed to 6g/m3.

We have considered a horizontal diffusion of 8·10−6m2/s, and a vertical diffusion of

4·10−6m2/s. The time-dependent problem has been simulated with a time step of 5s.

Figure 3 shows the immission concentration distributions at times 1000s and 2000s

for SO2 and SO4, respectively, with the wind field at 200m. These Figures are interest-

ing since they give information about the pollutant concentration at the ground-level.

Note that primary pollutant tends to have the highest concentrations near the emission

source, while the highest concentrations of the secondary pollutant are located further.

This is consistent with the chemical reaction effect. Also it can be noted how the

concentration distribution follows the wind field. In the case of the primary pollutant

we can see how the plume has been transportated in the air, avoiding the valley, and

dipositing in the next mountain. In the case of the secondary pollutant it enters into

the valley.

Figure 4 show the evolution of the isosurfaces corresponding to a concentration

value of 50µg/m3 for SO2 and SO4. It can be seen, both in primary and secondary,

how while the plumes develops rising in the air, it also follows a path in the surface.

As expected the secondary pollutant is more prevalent than the primary one in the

front of the plume at the final time step.
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(a)

(b)

Figure 1: Interpolated (a) and resulting (b) wind field (m/s) at 400m over the terrain
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Figure 2: Refined region along the plume rise

A final comment about the computational complexity of the evolution process

should be done. For each time step we have to solve a finite element problem with a

number of degrees of freedom about the number of nodes multiplied by the number

of species, i.e. 455953 × 4 = 1823812. The number of time steps in the simulation

period (about 30min) is 30 × 60/10 = 180. Therefore, in the whole evolution pro-

cess about 180 linear equation systems with 1823812 unknowns must be solved. The

computational cost corresponding to the mesh generation, wind simulation, and the

resolution of the ordinary differential equations in the splitting method are insignifi-

cant with respect to the resolution of the unsteady convection–diffusion equation. In

a computer with 128GB of RAM memory and 2.34GHz, the total computing time is

about 40min. In a future work, the present computational complexity will be signif-

icantly reduced by using a refinement/derefinement strategy that follows the front of

the pollutant plume, minimising the number of degrees of freedom in each time step.

4 Conclusions

The presented methodology promises to be useful to simulate air quality over complex

terrains. The modified wind field has more reasonable trajectories and magnitudes

than a simple interpolation of the wind data. The local mesh refinement along the

Gaussian plume, allows to perturb the ambient wind field to introduce the effect of the

pollutant emissions. The convection–diffusion–reaction equation obtains the values of

concentration for all the pollutants in the whole three-dimensional domain. To really

prove the usefulness of our methodology, it will be validated against measured data.
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(a)

(b)

5.0e-050.0e+00 1.7e-05 3.3e-05

Figure 3: Immission concentration distribution (g/m3) on the terrain of the primary

pollutant SO2 (left) and the secondary pollutant SO4 (right) pollutants after (a) 1000s,

(b) 2000s
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(a)

(b)

Figure 4: Evolution of the isosurface corresponding to a concentration of 50µg/m3

for the primary pollutant SO2 (left) and the secondary pollutant SO4 (right) after (a)

1000s, (b) 2000s
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