
Abstract

In this paper we review the novel meccano method. We summarize the main stages
(subdivision, mapping, optimization) of this automatic tetrahedral mesh generation
technique and we concentrate the study to complex genus-zero solids. In this case, our
procedure only requires a surface triangulation of the solid. A crucial consequence of
our method is the volume parametrization of the solid to a cube. We construct volume
T-meshes for isogeometric analysis by using this result. The efficiency of the pro-
posed technique is shown with several examples. A comparison between the meccano
method and standard mesh generation techniques is introduced.

Keywords: Tetrahedral mesh generation, adaptive refinement/derefinement, nested
meshes, mesh smoothing, mesh untangling, surface and volume parametrization.

1 Introduction

Many authors have devoted great effort to solving the automatic mesh generation prob-
lem in different ways [4, 9, 21, 22, 37, 38, 39, 41], but the 3-D problem is still open
[2, 3]. In the past, the main objective has been to achieve high quality adaptive meshes
of complex solids with minimal user intervention and low computational cost. At
present, it is well known that most mesh generators are based on Delaunay triangula-
tion and advancing front technique. However, problems related to mesh quality, mesh
adaptation and mesh conformity with the solid boundary, still remain.

We have recently introduced the meccano technique in [6, 7, 33, 34] for construct-
ing adaptive tetrahedral meshes of solids. The method requires a surface triangulation
of the solid, a meccano and a tolerance that fixes the desired approximation of the
solid surface. The name of the method stems from the fact that the process starts from
an outline of the solid, i.e. a meccano composed by connected polyhedral pieces.



The method builds a 3-D triangulation of the solid as a deformation of an appropriate
tetrahedral mesh of the meccano. The meccano can be made up of different types
of pieces (cuboids, pyramids, prisms, etc). A particular case is a meccano consisting
only of connected cubes, i.e. a polycube [28, 40, 44].

The main idea of the new mesh generator is to combine an automatic parame-
trization of surface triangulations [14], a local refinement algorithm for 3-D nested
triangulations [26] and a simultaneous untangling and smoothing procedure [10].
Those previous procedures (mapping, refinement, untangling and smoothing) are not
in themselves new, but the overall integration is an original contribution.

In this paper, we present significant advances in the method. We define an auto-
matic parametrization of a solid surface triangulation to the meccano boundary. For
this purpose, we first divide the surface triangulation into patches with the same topo-
logical connection as the meccano faces. Then, a discrete mapping from each surface
patch to the corresponding meccano face is constructed by using the parameteriza-
tion of surface triangulations proposed in [14, 15, 16, 17]. The shape-preserving
parametrizations, which are planar triangulations on the meccano faces, are the so-
lutions of linear systems based on convex combinations. Specifically, we describe the
procedure for a solid whose boundary is a surface of genus 0; i.e. a surface that is
homeomorphic to the surface of a sphere. In this case, the meccano is a single cube,
and the global mapping is the combination of six patch-mapping. The solution to
several compatibility problems on the cube edges will be discussed.

The extension to more general solids is possible if the construction of an appro-
priate meccano is assumed. In the near future, more effort should be made in an
automatic construction of the meccano when the genus of the solid surface is greater
than zero. Currently, several authors are working on this aspect in the context of
polycube-maps, see for example [28, 40, 44]. They are analyzing how to construct a
polycube for a generic solid and, simultaneously, how to define a conformal mapping
between the polycube boundary and the solid surface. Although surface parametriza-
tion has been extensively studied in the literature, only a few works deal with volume
parametrization and this problem is still open. A meshless procedure is presented in
[27] as one of the first tentative approaches to solve the problem. In addition, [18]
gives a simple counterexample to show that convex combination mappings over tetra-
hedral meshes are not necessarily one-to-one. Our method automatically obtains a
volume parametrization of the solid. In this paper we introduce this result for isogeo-
metric analysis [3, 8].

In the following section we present a brief description of the main stages of the
method for a generic meccano composed of polyhedral pieces. In Section 3 we ana-
lyze the algorithm in the case that the meccano is formed by a simple cube. In Section
4 we show test problems and practical applications that illustrate the efficiency of this
strategy. Finally, the conclusions and future research are presented in Section 5.



2 The Algorithm of the Meccano Method

The main steps of the meccano tetrahedral mesh generation algorithm are summarized
in this section. A first approach of this method can be found in [33, 6, 7, 34]. The input
data of the algorithm are the definition of the solid boundary (for example a surface
triangulation) and a given precision (corresponding to the approximation of the solid
boundary). The following algorithm describes the mesh generation approach.

Meccano tetrahedral mesh generation algorithm

1. Construct a meccano approximation of the 3-D solid formed by poly-
hedral pieces.

2. Define an admissible mapping between the meccano boundary faces
and the solid boundary.

3. Construct a coarse tetrahedral mesh of the meccano.

4. Generate a local refined tetrahedral mesh of the meccano, such that
the mapping (according step 2) of the meccano boundary triangula-
tion approximates the solid boundary for a given precision.

5. Move the boundary nodes of the meccano to the solid surface ac-
cording to the mapping defined in 2.

6. Relocate the inner nodes of the meccano.

7. Optimize the tetrahedral mesh by applying the simultaneous untan-
gling and smoothing procedure.

The first step of the procedure is to construct a meccano approximation by connect-
ing different polyhedral pieces. The meccano and the solid must be equivalent from
a topological point of view, i.e., their surfaces must have the same genus. Once the
meccano is assembled, we have to define an admissible one-to-one mapping between
the boundary faces of the meccano and the boundary of the solid. In step 3, the mec-
cano is decomposed into a coarse tetrahedral mesh by an appropriate subdivision of its
initial polyhedral pieces. This mesh is locally refined and its boundary nodes are vir-
tually mapped to the solid surface until it is approximated to within a given precision.
Then, we construct a mesh of the domain by mapping the boundary nodes from the
meccano faces to the true surface and by relocating the inner nodes at a reasonable
position. After those two steps, the resulting mesh is generally tangled. Therefore,
a simultaneous untangling and smoothing procedure is applied and a valid adaptive
tetrahedral mesh of the solid is obtained.

3 The Meccano Method for Genus-Zero Solids

In this section, we present the application of the meccano algorithm in the case of
the solid surface being genus-zero and the meccano being formed by one cube. We



assume a triangulation of the solid surface as a datum. We introduce an automatic
parametrization between the surface triangulation of the solid and the cube bound-
ary. To that end, we divide the surface triangulation into six patches, with the same
topological connection that cube faces, so that each patch is mapped to a cube face.

We note that the meccano method constructs a high quality tetrahedral mesh even
when the initial triangulation has poor quality.

3.1 Meccano

A simple cube, C, is defined as meccano. We associate a planar graph, GC , to the
meccano in the following way:

• Each face of the meccano corresponds to a vertex of the graph.

• Two vertices of the graph are connected if their corresponding meccano faces
share an edge.

Figure 1 shows the numbering of cube faces and their connectivities, and Figure 2
represents the corresponding planar graph.

The position of the cube is crucial to define an admissible mapping between the
cube and solid boundary, as we analyze later. However, its size is less important,
because it only affects the efficiency of the mesh optimization step. If the center of
the cube is placed inside the solid, the existence of an admissible mapping is ensured.

(a) (b)

Figure 1: Meccano formed by one cube: (a) notation of nodes and faces of the cube
and (b) connectivities of faces

3.2 Mapping from Cube Faces to Solid Surface Patches

Once the cube is fixed, we have to determine a mapping between the cube faces and
the solid surface triangulation. First, we define the concept of admissible mapping
for a cube. Let ΣC be the boundary of the cube and ΣS the boundary of the solid,



Figure 2: Planar graph GC associated to the cube

given by a surface triangulation TS . We denote by Σi
C the i-th face of the cube, i.e.

ΣC =
⋃5

i=0Σ
i
C . Let Π : ΣC → ΣS be a piecewise function, such that Π|Σi

C
= Πi where

Πi : Σi
C → Πi(Σi

C) ⊂ ΣS . Then, Π is called an admissible mapping if it satisfies:

a) Functions {Πi}5i=0 are compatible on ΣC . That is Πi
|Σi

C∩Σ
j
C
= Πj

|Σj
C∩Σi

C
, ∀i, j =

0, . . . , 5, with i �= j and Σi
C ∩ Σj

C �= ∅.

b) Global mapping Π is continuous and bijective between ΣC and ΣS .

Note that admissible mapping is not unique. We define an automatic admissible
mapping in the following sections. For this purpose, we first construct a partition of
the solid surface triangulation into six patches, maintaining the topology of the graph
of the Figure 2, and then we parametrize each patch to a cube face.

3.2.1 Partition of the Solid Surface Triangulation

In the following, we call connected subtriangulation a set of triangles of TS whose
interior is a connected set. Given a decomposition of the surface triangulation TS in
any set of connected subtriangulations, we can associate a planar graph, GS , to this
partition in the following way:

• Each subtriangulation corresponds to a vertex of the graph.

• Two vertices of the graph are connected if their corresponding subtriangulations
have at least one common edge.

We say that a solid surface partition and the meccano are compatible if their graphs are
isomorphic, GS = GC . In our case, since the solid surface is isomorphic to a sphere, it
is clear that a compatible partition exists.



We now propose an algorithm to obtain a decomposition of the given solid surface
triangulation TS into six subtriangulations {T i

S}5i=0. We distinguish three steps:

a) Subdivision in connected subtriangulations. We construct the Voronoi diagram
associated to the centers of the six cube faces. We consider that a triangle
F ∈ TS belongs to the i-th Voronoi cell if its barycenter is inside this cell.
We generate a partition of TS in maximal connected subtriangulations with this
criterion, i.e. two subtriangulations belonging to the same cell can not be con-
nected. We denote as T ij

S the j-th connected subtriangulation belonging to the
i-th Voronoi cell, and ni is the total number of subtriangulation in the i-th cell.
The number of subtriangulation depends only on the position of the cube cen-
ter. If this point is placed inside the solid and the surface triangulation is fine
enough, there is a subtriangulation in each cell. If any ni = 0 the process is
aborted and the center of the meccano must be modified. For a complex solid
the value of ni is usually greater than 1, therefore, a modification of the partition
is necessary to obtain a compatible decomposition of TS .

b) Construction of the graph. We associate a planar graph, GS to the partition
generated in the previous step. If the center of the cube is inside the solid and
the surface triangulation is fine enough, there is one compatible subtriangulation
for each Voronoi cell, i.e. there is one head subtriangulation T i0

S , vertex of the
graph GS , with the same connection as the vertex associated to the i-th cube face
in GC . In other case, the subtriangulation with the greatest number of elements
is chosen as T i0

S .

c) Reduction of the graph. In order to achieve a decomposition of TS , we propose
an iterative procedure to reduce the current graph GS . In each step all triangles
of T jk

S are included in the head subtriangulation T i0
S if:

– T i0
S is the head subtriangulation with the fewest triangles.

– T jk
S and T i0

S are connected.

– k is higher than zero.

Then, the vertex T jk
S is removed from the graph and its connectivities are inher-

ited by T i0
S . The connectivity of the graph is updated.

After this process, T i0
S could be connected to other subtriangulations T il

S of the
same i-th cell. In this case, the triangles of all T il

S are included in T i0
S , the graph

vertices T il
S are removed from the graph, their connectivities are inherited and

the graph connectivities are updated. Therefore, the connected subtriangulations
are always maximal in all algorithm steps.

This procedure continues iteratively until the graph comprises only six head
vertices.

Although the proposed algorithm obtains a six vertex graph GS , its compatibility
with the cube graph GC can not be ensured. As the computational cost of this algorithm



is low, a movement in the cube center in order to obtain a compatible partition {T i
S}5i=0,

does not affect the efficiency of the meccano technique. In fact, this procedure could
be guided by a genetic algorithm [43].

In what follows Σi
S is the solid surface patch defined by the triangles of T i

S .

3.2.2 Parametrization of the Solid Surface Triangulation

Once the given solid surface ΣS is decomposed into six patches Σ0
S , . . . ,Σ

5
S , we map

each surface patch Σi
S to the corresponding cube face Σi

C by using the parametrization
of surface triangulations proposed by M. Floater; in [14] the author gives a method
to compute a planar triangulation on a convex domain that is isomorphic to a simply
connected surface triangulation. In our case the convex domain is a cube face Σi

C , and
the surface triangulation is T i

S . Then, we define(
Πi

)−1
: Σi

S → Σi
C

as the parametrization introduced by Floater, and we denote τ i
F = (Πi)

−1
(T i

S) as the
planar triangulation of Σi

C associated to T i
S . To obtain τ i

F , Floater parametrization fixes
their boundary nodes and the position of their inner nodes is given by the solution of a
linear system based on convex combinations. Let {P i

1, . . . , P
i
n} be the inner nodes and

{P i
n+1, . . . , P

i
N} be the boundary nodes of T i

S , respectively, where N denotes the total
number of nodes of T i

S . Once the boundary nodes {Qn+1, . . . , QN} of τ iF are fixed,
the position of the inner nodes {Qi

1, . . . Q
i
n} is given by the solution of the system:

Qi
k =

N∑
l=1

λklQ
i
l, k = 1, . . . , n.

The values of {λkl}l=1,...,N
k=1,...,n are the weights of the convex combinations, such that

λkl = 0, if Pk and Pl are not connected

λkl > 0, if Pk and Pl are connected
N∑
l=1

λkl = 1, for k = 1, . . . n.

In [14] three alternatives are analyzed: uniform parametrization, weighted least
squares of edge lengths and shape preserving parametrization. Another choice, called
mean value coordinate, is presented in [16]. The goal is to obtain an approximation of
a conformal mapping.

In order to ensure the compatibility of {Πi}5i=0, the boundary nodes of {τ i
F}5i=0

must coincide on their common cube edges. The six transformations {Πi}5i=0 define
an admissible mapping between ΣC and ΣS , i.e. the cube boundary triangulation
τF =

⋃5
i=0 τ

i
F is a global parametrization of the solid surface triangulation TS .

Two important properties of mapping Π are:



(a) the triangulations τF and TS have the same topology,

(b) each triangle of τF is completely contained in one face of the cube.

We note that usual polycube-maps [40, 28] verify property (a), but they do not verify
property (b), i.e., a triangle belonging to TS can be transformed by a polycube-map
into a triangle whose vertices are placed on different faces of the polycube.

The proposed mapping Π is used in a following step of the meccano algorithm to
map a new triangulation τK (obtained on ΣC by application of the refinement algo-
rithm of Kossaczky [26]) to the solid boundary. Several problems can appear in the
application of this transformation and their solutions will be commented on next. Ba-
sically, these problems are due to the fact that a valid triangulation τK �= τF on ΣC can
be transformed by Π into a non-valid one on the solid surface.

3.3 Coarse Tetrahedral Mesh of the Meccano

We build a coarse and high quality tetrahedral mesh by splitting the cube into six
tetrahedra [26]. For this purpose, it is necessary to define a main diagonal on the cube
and corresponding diagonal on its faces, see Figure 3(a). The resulting mesh can be
recursively and globally bisected [26] to fix a uniform element size in the whole mesh.
Three consecutive global bisections for a cube are presented in Figures 3 (b), (c) and
(d). The resulting mesh of Figure 3(d) contains 8 cubes similar to the one shown in
Figure 3(a). Therefore, the recursive refinement of the cube mesh produces similar
tetrahedra to the initial ones.

(a) (b) (c) (d)

Figure 3: Refinement of a cube by using Kossaczky’s algorithm: (a) cube subdivision
into six tetrahedra, (b) bisection of all tetrahedra by inserting a new node in the cube
main diagonal, (c) new nodes in diagonals of cube faces and (d) global refinement
with new nodes in cube edges

3.4 Local Refined Tetrahedral Mesh of the Meccano

The next step in the meccano mesh generator includes a recursive adaptive local re-
finement strategy, by using Kossaczky’s algorithm [26], of those tetrahedra with a face
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Figure 4: Mapping Π from the boundary nodes of the meccano a, b, c, P to the points
a′, b′, c′, P ′ of the solid surface

placed on a boundary face of the initial coarse tetrahedral mesh of the cube. The re-
finement process is done in such a way that the given solid surface triangulation TS
is approximated by a new triangulation within a given precision. That is, we seek an
adaptive triangulation τK on the cube boundary ΣC , so that the resulting triangula-
tion after node mapping Π(τK) is a good approximation of the solid boundary. The
user has to introduce as input data a parameter ε, which is a tolerance to measure the
separation allowed between the linear piecewise approximation Π(τK) and the solid
surface defined by the triangulation TS . At present, we have considered two crite-
ria: the first related to the Euclidean distance between both surfaces and the second
attending to the difference in terms of volume.

To illustrate these criteria, let abc be a triangle of τK placed on the meccano bound-
ary, and a′b′c′ the resulting triangle of Π(τK) after mapping the nodes a, b and c on the
given solid surface ΣS , see Figure 4. We define two different criteria to decide whether
it is necessary to refine the triangle (and consequently the tetrahedron containing it) in
order to improve the approximation.

For any point Q in the triangle abc, we define d1(Q) as the euclidean distance
between the mapping of Q on ΣS , Q′, and the plane defined by a′b′c′. This definition
is an estimate of the distance between the surface of the solid and the current piecewise
approximation Π(τk).

We also introduce a measure in terms of volume and then, for any Q in the triangle
abc, we define d2(Q) as the volume of the virtual tetrahedron a′b′c′Q′. In this case,
d2(Q) is an estimate of the lost volume in the linear approximation by the face a ′b′c′

of the solid surface.

The threshold of whether to refine the triangle or not is given by a tolerance εi fixed
by the user. With the previous definition, d1(Q) < ε1 for all Q in the boundary on the
cube implies that the distance between the surface of the solid and its new piecewise



linear approximation Π(τK) is less than ε1. On the other hand, d2(Q) < ε2 for all Q
in the boundary on the cube would mean that the lost volume per triangle of Π(τK) is
bounded by ε2. Alternatively, ε2 could be defined as the allowed difference of volumes
and we could use an equidistribution strategy as is usual in a-posteriori error estimates.
Nevertheless, we prefer to use here a local version of ε2, so the difference of volumes
is estimated by multiplying ε2 by the number of triangles of the final approximation
Π(τK).

Obviously, other measures could be introduced in line with the desired approxima-
tion type (curvature, point properties, etc.). What is more, the user could consider the
combination of several measures simultaneously.

Once we have defined separation measures di and the corresponding tolerances εi,
we propose the following strategy to achieve our objective.

Starting from the coarse tetrahedral mesh of the cube, we construct a sequence
of tetrahedral nested meshes by recursive bisection of a subset of the tetrahedra that
contain a face located on the cube faces. The refinement criterion decides whether a
tetrahedron should be refined attending to the current node distribution of triangulation
τK on the cube boundary ΣC and their virtual mapping Π(τK) on the solid boundary
ΣS . The separation between triangulations Π(τK) and Π(τF ) = TS is used in the
refinement criterion for tetrahedron T :

Refinement criterion

Tetrahedron T is marked to be refined if it satisfies the following two con-
ditions:

1. T has a face F ∈ τK on the cube boundary.

2. di(Q) ≥ εi for some node Q ∈ τF located on face F of T .

From a numerical point of view, the number of points Q (analyzed in this strategy)
is reduced to the set of nodes of the triangulation τF (defined by the parametrization
of Floater) that are contained in face F . The analysis must be done every time that a
face is subdivided into its two son faces. The subdivision criterion should stop for a
particular face when all the nodes of τF included on this face have been analyzed and
all of them verify the approximation criterion. This aspect has the inconvenience that
each node of τF could be studied many times, but we use the nested mesh genealogy
to implement the refinement criterion efficiently.

Finally, the refinement procedure for constructing a local refined tetrahedral mesh
of the meccano is summarized in the following algorithm:

Refinement procedure

1. Given the coarse tetrahedral mesh of the meccano.

2. Set a tolerance εi.

3. Do



(a) Mark for refinement all tetrahedra that satisfy the refinement
criterion for a distance di and a tolerance εi.

(b) Refine the mesh.

While any tetrahedron T is marked.

We denote by nb the number of levels of the nested tetrahedral mesh sequence and
τK the resulting triangulation of the cube boundary associated to the finest level of the
sequence. We note that the refinement procedure automatically concludes according
to a single parameter, i.e. εi.

We introduced in [34] another method for obtaining τK based on the application of
a derefinement procedure (which is a generalization of the strategy developed in [13])
to a sequence of tetrahedral nested meshes. In this case, the number of bisections nb

was determined by the user as a function of the desired resolution. We have discarded
this strategy because it could lead to problems with memory requirements if any nodes
of τF are very close.

We note that other local refinement algorithms, see for example [23, 29, 35], can
be used in the meccano method. However, the Kossaczky’s algorithm [26] has several
important advantages related with simplicity and mesh quality.

3.5 External Node Mapping on Solid Boundary

Once we have defined the local refined tetrahedral mesh by using the method proposed
in the previous section, the nodes of the triangulation τK are mapped to the solid
surface. Therefore, the triangulation Π(τK) is the new approximation of the solid
surface.

After this process, due to the properties of Floater’s parametrization, Π(τK) is gen-
erally a valid triangulation. However, unacceptable triangulations can appear. We
comment on this problem and its solution in Section 3.8.

In addition, a tangled tetrahedral mesh is generated because the position of the
inner nodes of the cube tetrahedral mesh has not changed.

3.6 Relocation of Inner Nodes

Even if Π(τK) is an acceptable triangulation, an optimization of the solid tetrahedral
mesh is necessary. Since it is better that the optimization algorithm starts from a mesh
with as good a quality as possible, we propose to relocate the inner nodes of the cube
tetrahedral mesh in a reasonable position before the mesh optimization.

Although this node movement does not solve the tangle mesh problem, it normally
reduces it. In other words, the resulting number of inverted elements is lower and the
mean quality of valid elements is greater.

There would be several strategies for defining an appropriate position for each inner
node of the cube mesh. The relocation procedure should modify their relative position



as a function of the solid surface triangulation before and after their mapping Π. How-
ever, an ideal relocation of inner nodes requires a volume mapping from the cube to
the complex solid. Obviously, this information is not known a priori. In fact, we will
reach an approximation of this volume mapping at the end of the mesh generation.
Therefore, an interesting idea is to use an specific discrete volume mapping that is
defined by the transformation between a cube tetrahedral mesh and the corresponding
solid tetrahedral mesh. A point P that belongs to tetrahedron T of the cube is mapped
to point P ′ of the tetrahedron T ′ of the solid with the same barycentric coordinates.

If we construct a volume mapping once, we can use it for meshing the same solid
with different grades of discretization, i.e. different values of tolerance ε. In practice,
a good strategy is to mesh the solid by using a high value of ε (a coarse tetrahedral
mesh of the solid is obtained) and gradually decrease ε. In the first step of this strategy,
no relocation is applied. In this case, the number of nodes of the resulting mesh is low
and the mesh optimization algorithm is fast. In the following steps a relocation of
inner nodes is applied by using the mapping that is defined by the previous iteration.

3.7 Solid Mesh Optimization: Untangling and Smoothing

The proposed relocation procedure, based on volumetric parametrization, is efficient
but does not solve the tangling problem completely. Therefore, it is necessary to
optimize the current mesh. This process must be able to smooth and untangle the
mesh and is crucial in the proposed mesh generator.

The most usual techniques to improve the quality of a valid mesh, that is, a mesh
with no inverted elements, are based upon local smoothing. In short, these techniques
consist of finding the new positions that the mesh nodes must hold, in such a way
that they optimize an objective function. Such a function is based on a certain mea-
surement of the quality of the local submesh, N (v), formed by the set of elements
connected to the free node v, whose coordinates are given by x. We have consid-
ered the following objective function derived from an algebraic mesh quality metric
studied in [25],

K (x) =

[
M∑

m=1

(
1

qηm

)p

(x)

] 1
p

where M is the number of elements in N (v), qηm is an algebraic quality measure of
the m-th element of N (v) and p is usually chosen as 1 or 2. Specifically, we have

considered the mean ratio quality measure, which for a tetrahedron is qη = 3σ
2
3

|S|2 and

for a triangle is qη = 2σ
|S|2 , |S| being the Frobenius norm of matrix S associated to the

affine map from the ideal element (usually equilateral tetrahedron or triangle) to the
physical one, and σ = det (S). Other algebraic quality measures can be used as, for
example, the metrics based on the condition number of matrix S, qκ = ρ

|S||S−1| , where
ρ = 2 for triangles and ρ = 3 for tetrahedra. It would also be possible to use other
objective functions that have barriers like those presented in [24].



We have proposed in [10] an alternative to the procedure of [19, 20], so the un-
tangling and smoothing are carried out in the same stage. For this purpose, we use
a suitable modification of the objective function such that it is regular all over R3. It
consists of substituting the term σ in the quality metrics with the positive and increas-
ing function h(σ) = 1

2
(σ +

√
σ2 + 4δ2). When a feasible region (subset of R3 where

v could be placed, N (v) being a valid submesh) exists, the minima of the original
and modified objective functions are very close and, when this region does not ex-
ist, the minimum of the modified objective function is located in such a way that it
tends to untangle N (v). With this approach, we can use any standard unconstrained
optimization method [1] to find the minimum of the modified objective function.

In addition, a smoothing and aligning of the boundary surface triangulation could
be applied before the movement of inner nodes of the domain by using the new proce-
dure presented in [11, 12] and [32]. This surface triangulation smoothing and aligning
techniques are also based on a vertex repositioning defined by the minimization of a
suitable objective function. The original problem on the surface is transformed into a
two-dimensional one on the parametric space.

3.8 Comments and Remarks about the Procedure

We now discuss several problems that can singularly arise in the application of the pro-
posed mesh generation algorithm. Basically, these problems occur due to the mapping
Π : ΣC → ΣS .

3.8.1 Dividing Edges

Floater’s parametrization does not define a one-to-one mapping if there are dividing
edges [15] in a patch triangulation T i

S . A dividing edge is an interior edge of T i
S

whose vertices are on the boundary of T i
S , see Figure 5. A triangulation without

dividing edges is called strongly connected. In order to obtain a strongly connected
triangulation T i

S we introduce a new node in the midpoint of the dividing edge, and
bisect the two triangles sharing it. We note that the boundary nodes of T i

S are not
modified; therefore, this local procedure does not change the patch boundary edges.

3.8.2 Distortion of the Parametrization

As the position of the boundary nodes are fixed in Floater’s parametrization, the shape-
preserving property is missed and, therefore, high distortions of the parametrization
can be produced, especially in regions close to patch boundaries.

In fact, we have to take into account that a valid triangulation τK �= τF on ΣC can be
transformed by Π into a non-valid one on the solid surface. Therefore the new approx-
imation of the solid boundary Π(τK) can be erroneous locally. These unacceptable sit-
uations can produce inverted or poor quality tetrahedra. We have confirmed that most
of these problems are minimal in relation to the number of mesh elements; they are
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Figure 5: The edges [2, 8], [4, 6] and [6, 8] are dividing edges (a). The set of triangles
{Fi}7i=1 of T i

S is mapped into the line segment [2′, 8′] because of dividing edges (c).
The dividing edges are avoided by bisecting triangles {F2, F4, F5, F6, F7, F10} (b)

placed close to the boundaries of T i
S and are accentuated when the patch boundaries

of T i
S have strong zigzag shape. In order to minimize this effect we propose several

alternatives:

• Smoothing zigzag shape of the patch boundaries. Let us consider a simple ex-
ample to explain this problem. In Figure 6 we show a parametrization of a trian-
gulation composed of two triangles A′

FD
′
FB

′
F and B′

FD
′
FC

′
F of the same patch.

The boundary of the patch is given by the zigzag line [A′
F , B

′
F , C

′
F ]. We note

that the mapping of triangulation AKDKBK and BKDKCK produces a tangled
mesh in the physical space. We also note that in Figure 6 the boundary nodes of
triangulation τK coincide with nodes of τF and therefore, the patch boundary is
captured exactly by triangulation Π(τK). In practice, the boundary nodes of the
two triangulations do not match up, which can aggravate the problem.

A simple method to smooth the zigzag shapes is presented in Figure 7. Triangle
F ∈ T i

S , which has two neighboring triangles belonging to T j
S , is moved to the

neighboring patch T j
S .

• Tetrahedral mesh optimization. The situation of Figure 6 can produce tangled
tetrahedra, which requires a movement of the nodes Π(τK) to obtain a valid
mesh. When it occurs, we applied the optimization procedure of section 3.7
considering the boundary nodes of tangled elements as free nodes. Once the
tetrahedral mesh is untangled and smoothed, the nodes of Π(τK) can be pro-
jected on surface TS .
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Figure 6: (a) Triangulations τK (bold lines) and τF on the parametric space and (b)
triangulations Π(τK) (bold lines) and Π(τF ) on the physical space. Boundary zigzag
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Figure 7: To smooth the interface between patches, the triangle F ∈ T i
S is moved to

patch T j
S

• Surface smoothing. Our algorithm can include a smoothing of surface trian-
gulation Π(τk). The zigzag shape can produce poor quality elements close to
interface between solid surface patches, which the surface smoothing improves.

We have checked that all these problems appear only when the mesh size of sur-
face approximation Π(τK) is the same order as the mesh size of TS . Therefore, if a
more precise approximation of the solid surface by the meccano method is required, a
simple solution is to refine the given solid surface triangulation TS .

In the future, we will focus on improving the quality of global parametrization. One



alternative is to optimize the initial parametrization τF , allowing the node movement
between cube faces, as is usual in polycube maps applications [40, 28, 44].

4 Applications

We have implemented the meccano technique using:

• The parametrization toolbox of the geometry group at SINTEF ICT, Department
of Applied Mathematics.

• The module of 3D refinement of ALBERTA code.

• Our optimization mesh procedure describes in section 3.7.

The parametrization of a surface triangulation patch T i
S to a cube face Σi

C is done
with GoTools core and parametrization modules from SINTEF ICT, available on the
website http://www.sintef.no/math software. This code implements Floater’s parame-
trization in C++. Specifically, in the following applications we have used the mean
value method for the parametrization of the inner nodes of triangulation, and the
boundary nodes are fixed with chord length parametrization [14, 16].

ALBERTA is an adaptive multilevel finite element toolbox [36] developed in C.
This software can be used for solving several types of 1-D, 2-D or 3-D problems.
ALBERTA uses the Kossaczky refinement algorithm [26] and requires an initial mesh
topology [36]. The recursive refinement algorithm could not terminate for general
meshes. The meccano technique constructs meshes that verify the imposed restric-
tions of ALBERTA relative to topology and structure. They can be refined by its
recursive algorithm, because they are loop-free, and the degeneration of the resulting
triangulations after successive refinements is avoided. The minimum quality of refined
meshes is function of the initial mesh quality [30, 42].

The performance of our novel tetrahedral mesh generator is shown in the following
applications. All of them are complex genus-zero solid that are classical test in mesh
generation analysis.

The first example corresponds to a screwdriver and the second to the armadillo.
In addition, we present an application of the meccano method to construct volume T-
meshes for isogeometric analysis. Particularly, we consider the volume parametriza-
tion of the Stanford bunny. We have obtained a surface triangulation of these objects
from internet.

4.1 Screwdriver

The original surface triangulation of the screwdriver has been obtained from CNR
IMATI Shapes Repository, http://shapes.aim-at-shape.net, and it is shown in Figure 8
(a). It has 27150 triangles and 13577 nodes. The bounding box of the solid is defined
by the points (x, y, x)min = (−15,−26,−15) and (x, y, z)max = (15, 44, 15).



(a)

(b)

Figure 8: (a) Compatible partition of the original surface triangulation, (b) Screwdriver
meccano, the Floater’s parametrization is showed on the prism faces

We consider a regular prism as a meccano (see Figure 8(b)). Its dimensions are
4 × 48 × 4 and its center is placed inside the solid at the point (0, 14, 0). Although a
unit cube could be considered as meccano, we have decided to use a narrow meccano
because this choice slightly improves the quality of the final mesh. In any case, both
meccanos (cube or prism) have associated the same planar graph.



We obtain an initial subdivision of screwdriver surface in six connected subtriangu-
lations using Voronoi diagram of prism face centers. It is a compatible decomposition
of the surface triangulation, according 3.2.1. We then remove the dividing edges and
smooth the interfaces between patches by minimizing the zigzag shapes. Figure 8(a)
shows the resulting compatible partition {T i

S}5i=0.

We map each surface patch Σi
S to the prism faces Σi

C by using the Floater parame-
trization [14]. The definition of the one-to-one mapping between the cube and screw-
driver boundaries is straightforward once the parametrization of the screwdriver sur-
face triangulation is built, see Figure 8(b). A detail of the two more significant
parametrizations are shown in Figure 9.

(a) (b)

Figure 9: Detail of Floater’s parametrization of two screwdriver patches to square
meccano faces

The prism is divided into 12 cubes, and then in 72 tetrahedra. We now fix several
tolerances: ε2 = 1, 0.1, 0.01, 0.001 and generate the corresponding tetrahedral mec-
cano meshes. In Table 1 we report the main features of them. For example, for a



tolerance ε2 = 0.001, our method applies 51 Kossaczky recursive bisections to gener-
ate a local refined mesh that contains 168834 tetrahedra and 39617 nodes, with 36968
triangles and 18486 nodes on its boundary.

ε2= 1 ε2=0.1 ε2= 0.01 ε2= 0.001

# nodes 1955 4430 12783 39617
# tetrahedra 8118 18814 54276 168834
# nodes on boundary 941 2047 5979 18486
# triangles on boundary 1878 4090 11954 36968
Kossaczky refinement 42 45 48 51

Table 1: Main features of the screwdriver tetrahedral meshes generated by meccano
method for tolerances ε2 = 1, 0.1, 0.01, 0.001

In order to obtain a tetrahedral mesh of the screwdriver we have to apply the pro-
cedures: external node mapping, relocation on inner nodes and mesh optimization.

The Floater’s parametrizations allow us to map the meccano external nodes to the
screwdriver surface, but the resulting tetrahedral mesh is complety tangled. For exam-
ple, in Figure 10(a) we show the tangled mesh for the tolerance ε2 = 0.001.

No relocation is applied for the coarser tolerance (ε2 = 1), and we use the volume
parametrization (from the screwdriver to the meccano) given by this coarse approxi-
mation to relocate the inner nodes in the other cases. The relocation procedure signi-
ficatively reduces the number of inverted tetrahedra but it does not solve the problem:
in the case ε2 = 0.001 the number of inverted tetrahedra decreases from 20875 to
4961 (see Table 2).

We now use the tetrahedral mesh optimization. Although no relocation is applied
in the coarse mesh, the optimization procedure untangles it in only 13 iterations. The
other meshes are untangled in no more than 6 iterations. All data are reported in Table
2. We could improve the behaviour of this procedure, if we relocate the inner nodes
using the volume parametrization defined by the previous value of the tolerance, i.e
the inner nodes of mesh ε2 = 0.01 relocated with the volume parametrization obtained
for ε2 = 0.1. However, we have decided to use the coarser approximation in order to
show the robustness of the optimization algorithm introduced in [10].

Finally, we apply 5 iterations to smooth the meshes. In all cases, the resulting mesh
quality is improved to a minimum value about 0.2 and an average about qκ = 0.7. We
note that the meccano technique generates a high quality tetrahedral mesh, see Figure
10(b). In order to show the efficiency of the mesh optimization technique inside the
screwdriver we display in Figure 11 two sections before (a) and after (b) its application
for ε2 = 0.001. In addition, we show the sequence of screwdriver approximation for
different values of ε2 in Figure 12.

We also note that, due to the high quality surface triangulation obtained with our
method, the mesh improvement is not significant if we previously apply the smoothing
surface triangulation algorithm introduced in [11].

The computations have been done on a Dell precision 690, 2 Dual Core Xeon pro-



cessor and 8 Gb RAM memory. The CPU times for constructing the final meshes of
the screwdriver are also reported in Table 2. The most demanding example requires
approximately 42 second. More precisely, the CPU time in this case of each step of
the meccano algorithm is: 0.5 seconds for the subdivision of the initial surface trian-
gulation into six patches, 0.9 seconds for the Floater parametrization, 18.6 seconds
for the Kossaczky recursive bisections, 2.3 seconds for the external node mapping and
inner node relocation, and 19.7 seconds for the mesh optimization.

(a)

(b)

Figure 10: Screwdriver tetrahedral meshes after (a) external node mapping and after
(c) the application of the mesh optimization procedure for a tolerance ε2 = 0.001

4.2 Armadillo

We now consider the Armadillo. The original surface triangulation has been ob-
tained from http://graphics.stanford.edu/data/3Dscanrep/ , i.e. the Stanford Com-
puter Graphics Laboratory. It has 30000 triangles and 15002 nodes. The bound-
ing box of the solid is defined by the points (x, y, x)min = (−60,−50,−26) and
(x, y, z)max = (68, 66, 90).



ε2 = 1 ε2 = 0.1 ε2 = 0.01 ε2 = 0.001

Inverted elements before/after relocation 1263 2407/11 6358/417 20875/4961
Untangling iterations 13 1 3 6
Smoothing iterations 5 5 5 5
Minimum quality 0.16 0.21 0.21 0.18
Mean quality 0.68 0.69 0.71 0.73
Optimization time (seconds) 2 1 5 19
Total time (seconds) 14 15 21 42

Table 2: Relocation and optimization data for the screwdriver meshes based on the
volume parametrization obtained with ε2 = 1

(a)

(b)

Figure 11: Section of the screwdriver tetrahedral meshes before (a) and after (b) the
application of the mesh optimization procedure for a tolerance ε2 = 0.001



(a) (b) (c) (d)

Figure 12: Screwdriver approximations for tolerances (a) 1, (b) 0.1, (c) 0.01, (d) 0.001

(a) (b)

Figure 13: (a) Original surface triangulation of the Armadillo, (b) resulting valid tetra-
hedral mesh generated by the meccano method

We consider a unit cube as meccano. Its center is placed inside the solid at the
point (7.5, 17.5, 55.5). We obtain an initial subdivision of Armadillo surface in eleven
maximal connected subtriangulations using Voronoi diagram. We reduce the surface
partition to six patches and construct the Floater parametrization from each surface
patch to the corresponding cube face.



(a) (b)

(c)

Figure 14: Cross sections of the Armadillo tetrahedral meshes before (a) and after (b)
mesh optimization, and (c) same section of the meccano mesh

Fixing a tolerance ε2 = 0.1, the meccano method generates a tetrahedral mesh with
144964 tetrahedra and 33889 nodes; see Figure 13(b). This mesh has 31316 triangles
and 15660 nodes on its boundary and it has been reached after 68 Kossaczky refine-
ments from the initial subdivision of the cube into six tetrahedra. The mapping of
the cube external nodes to the Armadillo surface produces a 3-D tangled mesh with
10871 inverted elements. The relocation of inner nodes by using volume parametriza-
tions reduces the number of inverted tetrahedra to 413. We use the tetrahedral mesh
optimization, presented in [10], such that the mesh is untangled in 3 iterations. The
mesh quality is improved to a minimum value of 0.08 and an average qκ = 0.71 after 6
smoothing iterations. In this case, we also note that the meccano technique generates
a high quality tetrahedral mesh, Figure 13(b): only 4 tetrahedron has a quality lower
than 0.1, 150 lower than 0.2 and 1046 lower than 0.3. In Figure 14, we display cross
sections of the cube and Armadillo meshes before and after the mesh optimization.
The location of the cube is shown in Figure 14(a).



The CPU time for constructing the final mesh of the Armadillo is approximately 54
seconds on a Dell precision 690, 2 Dual Core Xeon processor and 8Gb RAM memory.
More precisely, the CPU time of each step of the meccano algorithm is: 5 seconds for
the subdivision of the initial surface triangulation into six patches, 1 seconds for the
Floater parametrization, 31 seconds for the Kossaczky recursive bisections, 2 seconds
for the external node mapping and inner node relocation, and 15 seconds for the mesh
optimization.

Finally, we summarize a comparison between our method and standard tetrahedral
mesh generation techniques [37, 38, 39]. On the one hand, one of the most important
contributions of the meccano method is the resulting volume parametrization of the
solid. It can have interesting applications in solid modeling and numerical simulation.
For example, the application of isogeometric analysis [2, 8, 3] can be easier. On the
other hand, our volume meshes can be utilized in adaptive finite element applications
by using the Kossaczky’s algorithm. The local refinement steps are very fast because
the sequence of solid meshes is defined from the coarse mesh of the meccano, i.e., the
dividing edge for tetrahedron bisection is known straightforward. In addition, we note
that the minimum mesh quality is bounded during all the mesh adaptation process,
because similar elements appear after three consecutive bisections.

For a given solid surface triangulation, we have checked that a constrained Delau-
nay tetrahedralization [39] can be faster than our method, but the resulting meshes
have lower quality. If the admissible minimum quality is increased, many points can
be added and the number of tetrahedra increases to reach the objective. If only a con-
forming Delaunay tetrahedralization is desired, the number of tetrahedra can be much
higher than in our method. A great advantage of our method is that the adaptive node
distribution on the boundary and the inner of the solid is more structured, because the
positions are fixed with a sequence of nested meshes. In the case of advancing front
[37], the resulting mesh depends on the quality of the given surface triangulation. We
have seen that the optimization of this triangulation, changing the mesh topology, can
be too costly.

4.3 Isogeometric Model of the Bunny

The volume parametrization presented in this paper has applications in other fields
different from tetrahedral mesh generation. For example, it can be used to construct
a volume T-mesh for isogeometric analysis [8]. The key lies in using the mapping,
provided by the volume parametrization, to transform a T-mesh defined on the para-
metric domain (a unit cube in our case) into the physical domain. The T-mesh of the
parametric domain is the parametric space in which the set of T-splines are defined
[3].

The technique to construct a T-mesh starts by dividing the parametric cube in lower
cubes by using an octree in such a way that each leaf of the octree is divided in eight
children (eight cubes). The division continues until each terminal cube of the octree
does not contain a node of the Kossaczky’s mesh in its inner. The octree defines a



T-mesh in the parametric space that it is used to determine the local knot vector and
the anchors of the T-splines following the description of [3]. Thus, the image of a
point (u, v, w) in the parametric domain is given by

S(u, v, w) =
∑
α∈A

PαRα(u, v, w)

where Rα(u, v, w) =
Bα(u,v,w)∑

β∈ABβ(u,v,w)
is the T-spline blending function and Bα the cor-

responding B-spline associated to the sα anchor. The index set A runs over all the
anchors of the T-mesh. The control points Pα are calculated by imposing the condi-
tions S(sβ) =

∑
α∈A PαRα(sβ) for all the anchors of the T-mesh. Here, we have also

used the anchors as interpolation points. The image of each interpolation point sβ in
the physical space, S(sβ), is determined by the volume parametrization.

We have applied our technique to the Stanford bunny. The original surface tri-
angulation has been obtained from http://graphics.stanford.edu/data/3Dscanrep/, i.e.
the Stanford Computer Graphics Laboratory. Figure 15(a) shows the cube tetrahedral
mesh obtained by the meccano method. Figure 15(b) shows the parametric T-mesh.
Figure 16(a) shows the tetrahedral mesh of the bunny constructed by the meccano
method. Figure 16(b) shows the T-mesh of the Standford bunny generated by the
application of the mapping S(u, v, w) to the parametric T-mesh.

(a) (b)

Figure 15: Meccano tetrahedral mesh (a) and corresponding parametric T-mesh (b)



(a)

(b)

Figure 16: Tetrahedral mesh of the Stanford bunny (a) and corresponding physical
T-mesh (b)



5 Conclusions and Future Research

The meccano method is an efficient mesh generator for creating adaptive tetrahedral
meshes of a solid whose boundary is a surface of genus 0. We highlight the fact that
the method requires minimum user intervention and has a low computational cost.
The procedure is fully automatic and it is only defined by a surface triangulation of
the solid, a cube and a tolerance ε that fixes the desired approximation of the solid
surface. We note that the method simultaneously constructs a volume parametrization
of the complex solid. On this direction, we have introduced an application of the
meccano method in isogeometric analysis.

In addition, we have introduced an automatic partition of the given solid surface
triangulation for fixing an admissible mapping between the cube faces and the solid
surface patches, such that each cube face is the parametric space of its corresponding
patch.

The mesh generation technique is based on sub-processes (subdivision, mapping,
optimization) which are not in themselves new, but the overall integration using a
simple shape as starting point is an original contribution of the method and has some
obvious performance advantages. Another interesting property of the new mesh gener-
ation strategy is that it automatically achieves a good mesh adaption to the geometrical
characteristics of the domain. Moreover, the quality of the resulting meshes is high.

The main ideas presented in this paper can be applied for constructing tetrahedral
or hexahedral meshes of complex solids. Different local refinement algorithms can be
considered. In future works, the meccano technique can be extended for meshing a
complex solid whose boundary is a surface of genus greater than zero. In this case, the
meccano can be a polycube or built by polyhedral pieces with compatible connections.
At present, the user has to define the meccano associated to the solid, but we have
implemented a special CAD package for more general input solid.
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[29] R. Löhner and J.D. Baum, “Adaptive H-Refinement on 3-D Unstructured Grids
for Transient Problems”, Int. J. Num. Meth. Fluids, 14, 1407-1419, 1992.

[30] J. Maubach, Local Bisection Refinement for N-Simplicial Grids Generated by
Reflection, SIAM J. Sci. Comput., 16, 210-227, 1995.

[31] W.F. Mitchell, “A Comparison of Adaptive Refinement Techniques for Elliptic
Problems”, ACM Trans. Math. Soft., 15, 326-347, 1989.

[32] R. Montenegro, J.M. Escobar, G. Montero and E. Rodrı́guez, “Quality improve-
ment of surface triangulations”, in: “Proceedings of 14th International Meshing
Roundtable”, Springer, Berlin, 469-484, 2005.

[33] R. Montenegro, J.M. Cascón, J.M. Escobar, E. Rodrı́guez and G. Montero, “Im-
plementation in ALBERTA of an automatic tetrahedral mesh generator”, in:
“Proceedings of 15th International Meshing Roundtable”, Springer, Berlin, 325-
338, 2006.

[34] R. Montenegro, J.M. Cascón, J.M. Escobar, E. Rodrı́guez and G. Montero, “An
Automatic Strategy for Adaptive Tetrahedral Mesh Generation”, Applied Nu-
merical Mathematics, 59, 2203-2217, 2009.

[35] M.C. Rivara and C. Levin, “A 3-D Refinement Algorithm Suitable for Adaptive
Multigrid Techniques”, J. Comm. Appl. Numer. Meth., 8, 281-290, 1992.



[36] A. Schmidt and K.G. Siebert, Design of Adaptive Finite Element Software: The
Finite Element Toolbox ALBERTA, “Lecture Notes in Computer Science and
Engineering”, Vol. 42, Springer, Berlin, 2005.
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