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Abstract

In this work Local Binary Patterns based focus measures
are presented. Local Binary Patterns (LBP) have been in-
troduced in Computer Vision tasks like texture classification
or face recognition. In applications where recognition is
based on LBP, a computational saving can be achieved with
the use of LBP in the focus measures. The behavior of the
proposed measures is studied to test if they fulfill the prop-
erties of the focus measures and then a comparison with
some well know focus measures is carried out in different
scenarios.

1. Introduction

In many applications of Computer Vision, contours play
an important role because they are used as features. For ex-
ample in face recognition, contours define facial features as
lips or iris that are involved in lip tracking or gaze detection
[2, 10]. Thus, high contrast images are needed to get the
best results with those methods because contours disappear
as the image blurs. High contrast images are obtained when
the image is focused and many methods have been proposed
to implement autofocus. Most digital still cameras include
autofocus, but the development of new lens technology [6]
will allow to add the autofocus capability in low cost cam-
eras such us included in laptops or cellular phones.

Automatic focusing methods fall into two main cate-
gories: active and passive systems. Active methods are
based on emitting a wave in order to estimate the distance
to the object of interest and consequently adjust the lens
position. Passive methods estimate the position of the lens
by means of finding the position where image sharpness is
maximum.

Defocus images (g(x, y)) can be modeled with a low-
pass filtering process [13].

g(x, y) = I(x, y) ∗ h(x, y) (1)

where I(x, y) denotes the focus image, h(x, y) denotes the
Point Spread Function (PSF) of the system modeled as low-
pass filter and ∗ is the convolution operator. Therefore it
is necessary to compute the amount of high frequencies in
the image because the focus image is the one with high-
est amount of high frequencies. The amount of high fre-
quencies can be measured both in the spatial domain or in
a transformed (frequency, wavelet, ...) domain. The for-
mer are more used because they can be computed very fast,
however with the improvement of DSP performance the lat-
ter are being taken into account.

As mentioned above, passive autofocusing methods ad-
just the focus lens to maximize the high frequency com-
ponents in the image. Therefore a focus value is needed
to measure the amount of high frequencies in the image.
As autofocusing is a long-standing topic, in the literature a
wide variety of focus algorithms have been proposed each
one with an associated focus measure [5, 13, 7, 18, 8, 12, 3,
17, 16, 4].

Since its introduction by Ojala [14], Local Binary Pat-
terns (LBP) have received the attention of the Computer Vi-
sion community because they can be computed very fast
and good results are obtained in problems like texture clas-
sification [14, 15], face recognition [1, 9] and iris detection
[19].

In this work a novel application of Local Binary Patterns
(LBP) is presented that has not been studied until now. It
will be shown that LBP fulfills the properties of a focus
measure. To test the goodness of LBP as a focus mea-
sure, a comparison will be carried out in different scenar-
ios. The main goal of this work is to study if LBP based
focus measures have a similar performance to other mea-
sures so an computational saving can be achieved in some
applications, because with the results of the LBP computa-
tion can be solved two problems: autofocus and recognition
as shown in Figure 1

This paper is organized as follows. Section 2 introduces
the use of LBP as a focus measure. Section 3 explains other
focus measures to be compared with LBP. Section 4 de-

CIMCA 2008,  IAWTIC 2008,  and ISE 2008

978-0-7695-3514-2/08 $25.00 © 2008 IEEE
DOI 10.1109/CIMCA.2008.123

855



...

Focus
Measure

Face
Recognition

Texture
Classification

Local Binary
Pattern

Iris
Detection

Gesture
Recognition

Figure 1. Local Binary Patterns as focus mea-
sure and feature for identification tasks
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Figure 2. Local Binary Patterns

scribes the experiments and finally in Section 5 the results
achieved are commented.

2 Local Binary Patterns as a focus measure

Ojala et al. [14] introduced the Local Binary Pattern tex-
ture operator shown in Figure 2. To compute the LBP oper-
ator, in each 3x3 window the neighborhood is thresholded
by the value of the center pixel (Fig. 2 b). Then the value
of the pixels in the thresholded neighborhood are weighted
and summed to obtain the LBP value LBP (x, y) (Fig. 2 c).
Thus

LBP (x, y) =
7∑

k=0

s(ik − ic)
2 (2)

where ic is the intensity value of the center pixel (x,y), ik is
the intensity value of the 8 surrounding pixels, and function
s(x) is defined as:

s(x) =
{

1 si x ≥ 0
0 si x < 0 (3)

The original formulation of the LBP was extended by
Ojala [15] to consider a circular neighborhood instead of
the 3x3 window. This circular neighborhood is defined by
its radius R and the number of equally spaced pixels on
that circle to compute the value of the LBP operator. The
notation for this operator is LBPP,R being R the radius and
P the number of pixels. LBP8,1 and LBP8,2 are shown in
Figure 3.

(8,1) (8,2)

Figure 3. LBP operators for circular neighbor-
hood

To test if LBP can be used as a focus measure it is neces-
sary to test if it fulfills the properties that characterized the
focus measures. This properties can be enumerate [20] as:

• Unimodality. A focus measure should be unimodal
with only one maximum which must corresponds to
the focus position where the image is focused.

• Monotonicity. The focus measure should exhibit an
monotonous behavior on both side of the maximum,
so the focus measure will have a different value for
each focus position.

• Defocus and noise sensibility The ideal focus measure
must only be dependent of the defocus and not to the
noise in the image, but this is very difficult because
as was mentioned focus measures are based on the
amount of high frequencies with are also in the noise.

• Effective range It can be considered the range of focus
positions where the focus measure maintains a sensi-
tivity, in other words, the range where the focus mea-
sure fulfills the monotonicity property.

• Computational efficiency As many autofocus methods
are intended to be used in consumer electronics, it
is desirable that the computational requirements were
low.

• Robustness This property implies that focus measures
should yields the same results for the same defocus de-
gree in different environmental conditions like illumi-
nation.

As it was stated in Section 1, defocus image can be mod-
eled as a low-pass filtering process using a two-dimensional
Gaussian PSF,

h(x, y) =
1

2πσ2
exp−x2 + y2

2σ2
(4)

where σ is the standard deviation which corresponds to the
spread of the PSF, so as σ increase the Gaussian filter be-
haves like a mean filter because the filter is more flattened.
Therefore a defocus image will have less number of gray
levels than a focus one. In the limit, a defocus image is a
uniform gray image.
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Figure 4. Test image

According to the definition of the LBP operator, its re-
sponse to a defocus image will be higher than to a focus im-
age because in the neighborhood of a pixel there are more
pixels with the same intensity value and they contribute to
the LBP value. In the LBP operator the contribution of each
pixel in the neighborhood depends on its relative position
to the center which is important to capture textures and so.
However, in a focus measure the geometrical information
is not important and only the existence of intensity differ-
ences between the central pixels and its surroundings must
be taken into account. Thus in our application of the LBP
as a focus measure, the weights are set to 1 and the orig-
inal LBP operator turns into the count of pixels that has a
higher or equal intensity value than the central pixel. Thus,
the overall image focus measure FLBP is defined as:

FLBP =
∑
i,j

LBPconstant(i, j) (5)

where LBPconstant(i, j) is the LBP operator computed on
the 3x3 neighborhood centered at pixel i, j with constant
weights,

LBPconstant(x, y) =
7∑

k=0

s(ik − ic) (6)

To assess the previous assumptions about the behavior
of the LBP operator as a focus measure, a test is carried
out in a test image (Fig. 4), where a set of 448 images
of the PCB were taken at different positions of the cam-
era focus. Four versions of the LPB operator with constant
weights were compared: FLBP , FLBP−8−1, FLBP−16−1

and FLBP−16−1. The normalized focus curves for the pre-
vious measures are shown in Figure 5. It is observed that
the four proposed focus measures exhibit a monotonous be-
havior because they yields the minimum value when the
image is focus and they increase their values when the im-
age defocus. Although the four proposed measures fulfill
the unimodality and monotonocity properties, FLBP is the
measure with the largest difference between its minima and
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Figure 5. Results of the LBP based focus
measures for the PCB images

Figure 6. Microscope image

maxima values. An important remark is that the images cor-
respond to a real PCB so the letters in the chips are closer
to the camera than the traces and this is the reason why the
curves exhibit two minima: one minimum when the letters
are correctly focus and the second minimum when the traces
of the PCB are correctly focus.

In order to test the proposed focus measures in another
scenario, the same comparison was carried out with a set
of images taken with a microscope (Fig. 6). In this case,
the proposed focus measures only exhibit one minimum be-
cause the preparation is flat (glass slide) and the unimodality
and monotonocity properties can be observed more clearly
than with the PCB images (Fig. 7). Unlike PCB images,
the measure with the largest range is FLBP−8−2 and it can
be due to the geometry of the elements that appear in each
image. In the PCB images, the letters and traces have many
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Figure 7. Results of the LBP based focus
measures for the microscope images

square corners but in the microscope images the cells are
rounded so a circular neighborhood is best fit.

3 Focus Measures

In this section, some well known focus measures are
briefly described to compare with the proposed focus mea-
sures based on the LBP operator. The Tenenbaum Gradient
(Tenengrad) [5] was one of the first proposed focus mea-
sures. This measure convolves the image with vertical (Sx)
and horizontal (Sy) Sobel operators. To get a global mea-
sure over the whole image, the square of the gradient vector
components are summed.

FTenengrad =
∑ ∑

Sx(x, y)2 + Sy(x, y)2 (7)

The Sum of Modified Laplace (SML) [13] is based on the
linear differential operator Laplacian which has the same
properties in all directions and is therefore invariant to ro-
tation. Thus, the SML measure sums the absolute values of
the convolution of the image with the Laplacian operators.

FSML =
∑ ∑

|Lx(x, y)| + |Ly(x, y)| (8)

Energy Laplace [18] is based on the same idea of the
SML measure but the image is convolved with the following
mask,

L =

⎡
⎣ −1 −4 −1

−4 20 −4
−1 −4 −1

⎤
⎦

which computes the second derivate D(x, y) of the image.
The value of the focus measure is the sum of the squares of
the convolution results.

FEnergyLaplace =
∑∑

D(x, y)2 (9)

Figure 8. Face image

Nanda and Cutler [11] proposed a focus measure from
the contrast of a image as the absolute difference of a pixel
with its eight neighbors, summed over all the pixels of the
image.

FContrast =
∑ ∑

C(x, y) (10)

where the contrast C(x, y) for each pixel in the gray image
I(x, y) is computed as

C(x, y) =
x+1∑

i=x−1

y+1∑
j=y−1

|(I(x, y) − I(i, j)|

4 Experiments

Three different images will be used in these experiments:
the PCB images, the microscope images and images corre-
sponding to a typical human-computer interaction scenario
(Fig, 8). The latter has as distinctive feature that the face
is not a planar object so the measures will not show a clear
peak that matches with the image completely focus. Of the
proposed measures only FLBP and FLPB−8−2 will be uti-
lized in the comparison because they showed the best per-
formance.

Figure 9 shows the results obtained in the PCB set of im-
ages. The gradient based focus measures give sharper peaks
than the two proposed measures and all of them have sim-
ilar performance. However they only show one peak with-
out taking into account the existence of two different planes
with different distances to the camera where elements of in-
terest appear (letters and traces).

Figure 10 shows the results obtained for the microscope
images. As it was previously stated, FLBP−8−2 exhibits
better results than FLBP . With respect to the other mea-
sures, Tenengrad and Energy Laplace do not show a well
shaped peak so their performance is worse than the LBP
based measures. On the other hand, SML and the measure
proposed by Nanda give similar results with a larger range
than the one proposed in this work.
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Figure 9. Normalized curves for the PCB im-
ages

Finally, the test was carried out in a more challenging
scenario like human-computer interaction where the face is
not flat and other elements appear in the image at different
distances from the camera. Results are show in Figure 11
where it can be observed that this is the worst scenario for
the proposed measures because they do not show any peak
and it is difficult to focus a camera in this situation. For
the rest of the measures in the comparison, the results are
very similar results so they are more suitable for this kind
of scenarios where the objects that appear in the image are
not at the same distance from the camera.

After the previous analysis, the focus positions that give
the peak in the focus curve are computed (Table 1). In the
PCB image, the focus position for FLBP and FLBP−8−2 is
210 whereas for the other measures is 215. However, FLBP

and FLBP−8−2 also have a peak at position 219, so the
other measures yields a peak that is located between the two
peaks of the proposed measures. For the microscope image
all the measures reach its optimum at position of 35 except
for Tenengrad and Energy Laplace that reach the maximum
at position 34 but they do not show a clear peak (Fig. 10).
Finally, the analysis for the HCI image reveal that there is a
disparity in the position of the peak for the compared mea-
sures although all except FLBP and FLBP−8−2 give a good
peak. From this analysis of peak position, it can be con-
cluded that for planar scenarios the measures proposed in
this work gives similar positions to the ones given by the
other measures.

5 Conclusions

In this work the use of LBP operators as a focus mea-
sure has been studied. Four LPB based focus measures
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Figure 10. Normalized curves for the micro-
scope image

have been defined based on their equivalent LBP operators.
To assess their performance as a focus measures there were
used as testbed two set of images. In the first set of images
(PCB) the best performance was achieved by the measure
FLBP , whereas the measure FLBP−8−2 gives better perfor-
mance in the second set of images (microscope). This can
be due to the geometry of the images elements, with square
corners in the first set and rounded in the second set. In
both cases all the proposed measures fulfill the unimodality
and monotonicity properties but there exists difference in
the range of values, giving one of them a more sharp peak
than the others.

In order to know how good are the proposed measures, a
comparison with five well know focus measures was carried
out. The tests were realized with three set of images and as
conclusion the FLBP and FLBP−8−2 gives good results in
planar scenes like the PCB and microscope images but it has
a bad performance in scenes where elements in the scene
appear at different distance from the camera as in human-
computer interaction.

As future work, some experiments must be realized
in other to test the robustness to noise and illumination
changes in the image. Also, new LBP operators as those
that are rotation invariant or uniform ones can be included
in the study to test if they introduce some improvements
over the results obtained with the operators proposed in this
work.
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Table 1. Focus position of maximum (minimum) value for each measure
FLBP−8−1 FLBP−8−2 Tenengrad SML Energy Laplace Nanda

PCB image 210 210 215 215 215 215
Microscope image 35 35 34 35 34 35
HCI image 259 258 385 353 385 353
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Figure 11. Normalized curves for the face im-
age
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