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Abstract

We present a new strategy for constructing spline spaces over hierarchical
T-meshes with quad- and octree subdivision scheme. The proposed tech-
nique includes some simple rules for inferring local knot vectors to define
C2-continuous cubic tensor product spline blending functions. Our conjec-
ture is that these rules allow to obtain, for a given T-mesh, a set of linearly
independent spline functions with the property that spaces spanned by nested
T-meshes are also nested, and therefore, the functions can reproduce cubic
polynomials. In order to span spaces with these properties applying the
proposed rules, the T-mesh should fulfill the only requirement of being a 0-
balanced mesh. The straightforward implementation of the proposed strategy
can make it an attractive tool for its use in geometric design and isogeometric
analysis. In this paper we give a detailed description of our technique and i-
llustrate some examples of its application in isogeometric analysis performing
adaptive refinement for 2D and 3D problems.

Keywords: isogeometric analysis, multivariate splines, local refinement,
T-mesh, nested spaces.

1. Introduction

The main drawback of using B-splines and NURBS for geometric design
is the impossibility to perform local refinement. T-splines were introduced by
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Sederberg et al. [1] as an alternative to NURBS. Based on the idea of admit-
ting meshes with T-junctions and inferring local knot vectors by traversing
T-mesh edges, T-splines have provided a promising tool for geometric mod-
elling that allows to perform local refinement without introducing a large
number of superfluous control points. Later, in [2], T-splines were incorpo-
rated to the framework of isogeometric analysis. Isogeometric analysis (IGA)
was introduced in 2005 by Hughes et al. in [3, 4]. It has arisen as an attempt
to unify the fields of CAD and classical finite element methods. The main
idea of IGA consists in using for analysis the same functions that are used
in CAD representation of the geometry.

To use spline functions for numerical analysis and obtain a proper con-
vergence behaviour, these functions must meet some requirements: linear
independence, polynomial reproduction property, local supports and possi-
bility to perform local adaptive refinement. This issue has been the object
of numerous research works in recent years.

Analysis-suitable T-splines, proposed by Scott et al. in [5], are a class of
T-splines defined over T-meshes that should meet certain topological restric-
tions formulated in terms of T-junction extensions. Basis functions defined
over an extended analysis-suitable T-mesh are linearly independent [6] and
form a partition of unity. The refinement algorithm allows to accomplish
highly localized refinements and constructs nested T-spline spaces, but it
presents an elevated implementation complexity and, as far we know, the
generalization of the strategy to 3D cases is still an open question.

Another approach to the problem of local enrichment of the approxima-
tion space is the hierarchical refinement, originally introduced by Forsey and
Bartels in [7] and later developed in [8]. Recently, hierarchical refinement
technique in the context of isogeometric analysis was described in [9, 10, 11].
This approach is based on a simple and natural idea to construct multilevel
spaces by replacing coarse level functions with finer basis functions. Starting
from an initial uniform mesh, hierarchical refinement scheme leads to se-
quential construction of nested spline spaces with linearly independent basis
functions. Simplicity of its implementation and straightforward generaliza-
tion to 3D make it an attractive option for local refinement. However, a
drawback of this strategy is the impossibility to define a spline space over a
given arbitrary T-mesh as well as the presence of redundant basis functions
and excessive support overlapping. An interesting theoretical approach to
the latter problem was given in [12]. The truncation technique is applied to
redefine the function supports and reduce their overlapping.
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Other options for performing local refinement of spline spaces are C1-
continuous PHT-splines [13] or local refined splines (LR-splines) [14].

In the present paper we propose another possible alternative for the con-
struction of spline functions that span spaces with nice properties. The
technique we present here is designed for hierarchical T-meshes (multilevel
meshes) with a quad- and octree subdivision scheme. This type of meshes
can be efficiently implemented with tree data structures [15] which are fre-
quently used in engineering. Due to the elevated complexity of all current
strategies, the main goal we pursue here is the simplicity and low computa-
tional cost of the implementation, both in 2D and 3D. For that, we have to
assume a restriction on the T-mesh. Namely, the T-mesh should fulfill the re-
quirement of being a 0-balanced mesh. A balanced mesh condition is usually
imposed to have gradual transition from the coarse mesh to the finer zones.
In addition, for our technique, this condition is an obligatory prerequisite
that the T-mesh should fulfill. Assuming this reasonable restriction over the
T-mesh, we can define easily cubic spline functions that span spaces with
desirable properties: linear independence, C2-continuous, cubic polynomial
reproduction property, nestedness of spanned spaces and a straightforward
implementation. The key of the strategy lies in some simple rules used for
inferring local knot vectors for each blending function.

The paper is organized as follows. Some basic concepts about B-splines
and T-meshes are given in Section 2. Section 3 includes the general scheme
of our strategy and the description of its main stages. In Section 4 we explain
in detail the key of our technique, that is, the rules used for inferring func-
tion supports in order to span spaces with desirable properties. In Section
5 the properties of the defined functions are given and the issue of support
overlapping and sparsity of stiffness matrix is discussed. Computational ex-
amples of performing adaptive refinement for 2D and 3D Poisson problems
are presented in Section 6. Conclusions are given in Section 7.

2. Basic concepts

2.1. B-spline basis functions

We start with a brief summary of the main concepts about B-splines.
A set of B-spline basis functions Bi,p (i = 1, 2, . . . , n) of degree p, inferred

from a non-decreasing sequence Ξ = {ξ1, ξ2, . . . , ξn+p+1}, called knot vector,
is defined by the Cox-de Boor recursion formula
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Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,
0 othewise.

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Bi+1,p−1(ξ).

A knot vector Ξ is called open knot vector if the first and the last knots
are repeated p+ 1 times. At each knot of multiplicity m the basis functions
are Cp−m.

A B-spline curve is defined as a linear combination of B-spline basis func-
tions

S(ξ) =
∑
i∈I

Pi Bi,p(ξ),

where coefficients Pi ∈ Rs are called control points, typically s = 2 or 3.
Multivariate B-splines are defined as a tensor product of univariate B-spline

functions

Bi,p(ξ) =
d∏

k=1

Bik,p(ξ
k),

where ξ = (ξ1, . . . , ξd) and the multi-index i = (i1, . . . , id) ∈ I. The multi-index
set is defined by I = {1, 2, . . . , n1} × · · · × {1, 2, . . . , nd}.

A B-spline surface (solid) is defined as a linear combination of bivariate
(trivariate) B-spline functions

S(ξ) =
∑
i∈I

Pi Bi,p(ξ),

where the control points Pi ∈ Rs (s = 2 or 3) form a control mesh.
For more details about B-splines see [16].

2.2. T-meshes and T-splines

In order to overcome the drawback of tensor product structure, which does
not allow to perform local refinement, it is necessary to admit T-junctions in
the mesh. The concept T-junction is similar to hanging node in the classical
finite element method. An axes-aligned grid that allows T-junctions is called
T-mesh. As was mentioned in the previous section, there are several strate-
gies to define tensor product spline functions over T-meshes and one of these
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Figure 1: An example of T-mesh and inferring of local knot vectors for cubic T-spline
functions by traversing T-mesh edges.

strategies is T-splines. The underlying idea of T-splines consists in defining
blending functions by means of a set of local knot vectors instead of a global
knot vector, as in the case of B-splines or NURBS. A local knot vector for each
bivariate function Bα is inferred by traversing the T-mesh edges in both para-
metric directions starting from a vertex vα of the mesh (the anchor), see Fig.
1. For a pair of local knot vectors Ξj

α =
(
ξj1, ξ

j
2, ξ

j
3, ξ

j
4, ξ

j
5

)
, j = 1, 2 the bicu-

bic spline function Bα is defined as Bα(ξ
1, ξ2) = B[Ξ1

α](ξ
1)B[Ξ2

α](ξ
2), where

B[Ξj
α](ξ

j) is an univariate B-spline corresponding to the knot vector Ξj
α. In

general, T-spline blending functions do not span a polynomial space. Some
additional restrictions on the T-mesh configuration [5] should be satisfied in
order to span a polynomial spline space. If these restrictions are not veri-
fied, the T-splines should be normalized in order to form a partition of unity.

This leads to rational blending functions: Rα(ξ
1, ξ2) =

Bα(ξ
1, ξ2)∑

β∈ABβ(ξ1, ξ2)
,

where A is the index set of the basis spanned by the T-mesh. These rational
blending functions are capable of reproducing a constant function, but, in
general, can not reproduce a polynomial of a higher order. A T-spline ap-
proximation is constructed as a linear combination of all blending functions:
S(ξ1, ξ2) =

∑
α∈A Pα Rα(ξ

1, ξ2).
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(a) (b) (c)

Figure 2: Motivation of the strategy. (a) Initial mesh and a basis function Nα. (b) Refined
mesh, where the new T-spline space cannot reproduce the original function Nα. (c) We
try to preserve the original basis function Nα in the new space if it cannot be recovered.

3. Strategy for the construction of polynomial spline spaces over
hierarchical T-meshes.

In this section we describe our strategy to define tensor product spline
functions over hierarchical T-meshes. The strategy we propose has some
similarity with T-splines inasmuch as we define the blending functions from
local knot vectors that are inferred by traversing the T-mesh edges. Some
additional rules and requirements are imposed for the local knot vectors in
order to obtain spline spaces with nice properties. The strategy is mainly
motivated by the idea of preserving an original basis function if it cannot be
reproduced with the basis of the new space after a refinement. For example,
in the initial mesh of the Fig. 2(a), we define a basis function Nα associated
to the vertex α. Then, we perform some cell refinements as shown in Fig.
2(b). It is easy to check that the new T-spline space obtained in Fig. 2(b)
is not capable of reproducing the original basis function Nα. However, if
we define the function N̂α as shown in Fig. 2(c), keeping in this case the
initial basis unaltered in the new refined space, we guarantee the nestedness
of spline spaces.

In our strategy, the process of spline space construction for a given T-
mesh can be divided in the following three steps:

1. Mesh pretreatment (0-balancing)

2. Inferring local knot vectors

3. Modification of local knot vectors
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(a) (b)

Figure 3: Example of 0-balancing procedure. (a) A 0-unbalanced quadtree mesh. Cells to
be refined are shaded in blue. (b) Resulting 0-balanced mesh.

Next, we give a description of each step of the process.

3.1. Mesh pretreatment. 0-balanced quadtree and octree T-meshes.

Due to its simplicity, quadtree and octree meshes are an attractive tool for
performing adaptive refinement in IGA and geometric modelling. To guar-
antee a good quality of the approximation space constructed over a mesh, it
is preferable to have a gradual transition from the coarse mesh to the finely
refined zone. That is why it is common to work with balanced quadtree
and octree meshes. The strategy we propose in this paper is designed exclu-
sively for the 0-balanced T-meshes. A mesh with tree structure is said to be
0-balanced if for any k, no cell at level k shares a vertex (0-face) with a cell at
level greater than k+1. In other words, a 0-balanced quadtree mesh implies
that any cell has contact (through vertex, edge or face) only with cells that
differ at most in one level of depth. An example of 0-balanced procedure
quadtree is shown in Fig. 3(b). To obtain a 0-balanced quadtree, a standard
balancing procedure is applied. Note that refinements performed during the
0-balancing procedure do not propagate, see [17].

It should be highlighted that 0-balancing the T-mesh is an essential pre-
requisite for the construction of spline spaces by means of our technique. In
general, if the T-mesh is not 0-balanced, our rules for inferring local knot
vectors do not lead to polynomial spaces. Also, it is important to emphasize
that, for our 2D (3D) T-meshes, a subdivision of any cell is performed by
subdividing the cell in 4 (8) equal subcells so that, all cells of the same level

7



(a) No T-junction is
skipped.

(b) Two T-junctions are
skipped in each direc-
tion.

(c) Two T-junctions are
skipped and the knots are
repeated when the boundary
is reached.

Figure 4: Inferring local knot vectors for a bivariate function by traversing the T-mesh
edges.

have the same size and the edge size of a k-level cell is twice larger than the
edge size of a (k + 1)-level cell.

3.2. Inferring local knot vectors

Let us consider a T-mesh T of the squared parametric domain Ω = [0, 1]d,
d = 2 or 3. We call regular node the node of the mesh that is not a T-
junction. We associate a blending function only to regular nodes of the
mesh, as it is usual in classical finite element methods when working with
hanging nodes. The skeleton of a d-dimensional mesh T is the geometric set
of points composed of the union of all (d − 1)-faces of the mesh and it is
denoted by skt(T ). That is, for a 2D space, the mesh skeleton is the union
of all the edges of the mesh, and the skeleton of a 3D mesh is the union of
all its faces.

To define our cubic tensor product spline blending functions over a giv-
en d-dimensional T-mesh, a local knot vector for d parametric directions
should be assigned to each function Nα: Ξ

j
α =

(
ξj1, ξ

j
2, ξ

j
3, ξ

j
4, ξ

j
5

)
, j = 1, ..., d.

Similarly to [1], these knot vectors are inferred by traversing the T-mesh
skeleton. For simplicity, let us describe this procedure for a two-dimensional
T-mesh. Starting from the central knot (ξ13 , ξ

2
3), i.e., the anchor of the func-

tion, we walk across the T-mesh until intersecting perpendicularly a mesh
edge. According to our strategy, we should skip over the T-junctions where
the missing edge is perpendicular to the direction of our marching, see Fig.
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4. When the boundary of the parametric domain is reached while walking
across the mesh, we repeat knots creating an open knot vector structure
along the boundary, see Fig. 4(c). Note that all interior knots have multi-
plicity 1. Thus, we obtain for mesh T a set of blending functions {Nα}α∈AT

,
where AT is the index set. Figure 5 illustrates an example of T-mesh in the
parameter space and the anchors of all blending functions defined over this
mesh. Any interior regular node has exactly one function associated to it
and the boundary nodes have more than one function associated due to the
open knot vector structure.

The process of inferring local knot vectors can be resumed as follows:

• Blending functions are associated only to regular nodes of the mesh.

• Local knot vectors are inferred by walking across the mesh until inter-
secting the mesh skeleton. This intersection should not coincide with a
T-junction perpendicular to the marching direction.

• Boundary knots are repeated to create an open knot vector structure
along the boundary.

Next, in order to span a spline space with good properties, some function
supports should be modified. This issue is addressed in the next subsection.

3.3. Modification of local knot vectors

The key of our strategy lies in some simple rules used for the modi-
fication of the function supports that lead to the construction of a poly-
nomial spline space over a given 0-balanced T-mesh. In order to describe
the idea, let us introduce some notation. For the local knot vectors Ξj

α =(
ξj1, ξ

j
2, ξ

j
3, ξ

j
4, ξ

j
5

)
, j = 1, ..., d let us denote the length of each knot interval

as ∆j
i = ξji+1 − ξji , j = 1, ..., d and i = 1, ..., 4.

The support of a d-variate blending function Nα is a d-dimensional rect-
angular box : [ξ11 , ξ

1
5 ]× · · · × [ξd1 , ξ

d
5 ]. We are going to call frame of a function

support the union of all (d − 2)-faces of this box and we will denote it by
frm(suppNα). That is, for the rectangular support of a bivariate function,
the frame is the union of the four vertices of this rectangle. For the cuboidal
support of a trivariate function, its frame is composed of the union of the
twelve edges of this cuboid.
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Figure 5: An example of T-mesh with its anchors. Red circles represent the interior
nodes that have one blending function associated to them, black circles are the boundary
nodes that have 2 blending functions and the black squares are the boundary nodes with
4 blending functions due to the open knot vector structure along the boundary.

Once the function supports are inferred, we modify them in such a way
that, for each blending function Nα, its knot vectors Ξ

j
α j = 1, ..., d verify the

following simple conditions:

Condition 1: Local knot vectors of the d-variate function Nα verify1

∆j
1 > ∆j

2 = ∆j
3 6 ∆j

4, j = 1, ..., d, (1)

Condition 2: The frame of the function support should be situated over the
mesh skeleton:

frm(suppNα) ∈ skt(T ). (2)

Thus, the function supports that do not meet Conditions 1 or 2 should
be modified. To perform this modification we extend the original support
by changing some knot intervals until the resulting support satisfies both
conditions. We are going to refer to these support modifications as Extension
rule 1 and 2, respectevly.

In the next section we give a detailed description of this procedure for 2D
and 3D cases.

1Except the cases involving repeated knots that are explained at the end of Section 4.1.
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4. Support modification

Here, we present simple support Extension rules 1 and 2 to obtain local
knot vectors that fulfill Conditions 1 and 2 formulated in the previous section.
We proceed as follows. First, if after traversing the T-mesh skeleton the local
knot vectors of a function do not satisfy Condition 1, we modify some of their
knots in order to meet Condition 1. Then, the fulfillment of Condition 2 is
checked and, if it is not satisfied, another appropriate modification of the
support is carried out. As a result of these modifications we obtain a new
extended support with local knot vectors which verify both conditions. These
modifications are easily implemented taking into account the balanced tree
structure of the mesh. Let see in detail this procedure.

To clarify the notation, in the rest of the paper we denote the para-
metric coordinates as (ξ, η, ζ) and it is related to the previous notation as
(ξ1, ξ2, ξ3) = (ξ, η, ζ). Consequently, (Ξ1,Ξ2,Ξ3) = (Ξ,H,Z) and (∆1

i , ∆
2
i , ∆

3
i )

= (∆ξ
i , ∆

η
i , ∆

ζ
i ).

4.1. Support extension for 2D meshes

In order to facilitate the description and illustration of the strategy, some
concepts and notation introduced in section 3 have to be particularized to
the 2D case. The skeleton skt(T ) of a two-dimensional mesh T is the union
of all edges of the mesh. For a bivariate function let us denote the vertices
of its rectangular support as V1,1 = (ξ1, η1), V5,1 = (ξ5, η1), V5,5 = (ξ5, η5) and
V1,5 = (ξ1, η5). Then, the frame of a function support is the union of its four
vertices, i.e., frm(suppNα) = {Vn,m, n,m ∈ {1, 5}}. Figure 6 illustrates the
introduced notation for a bivariate function support.

Formulation of Condition 1 for the local knot vectors Ξ and H is simple
and does not need any clarification. Condition 2 adapted to 2D case is for-
mulated as follows: The four vertices of a function support should be situated
over the mesh edges.

Extension rule 1. If the local knot vector Ξ of a function does not satisfy
Condition 1, we modify this vector by skipping over the minimal number of
knots until ∆ξ

1 > ∆ξ
2 = ∆ξ

3 6 ∆ξ
4 is verified, and analogously, for H. This

modification is made independently for each parametric direction applying
certain extension rules. Let see an example of support extension for a bivari-
ate function. Leftmost function support shown in Fig. 7(a) does not meet
Condition 1. For the knot vector Ξ we have ∆ξ

3 > ∆ξ
4, so the knot interval

∆ξ
4 should be modified. Let us denote h = max(∆ξ

2, ∆
ξ
3) = max(∆η

2, ∆
η
3).
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Figure 6: Support notation for 2D case.

Note that both maxima coincide due to the quadtree structure and the fact
that the T-junctions are skipped. Then, the fifth knot ξ5 is redefined as
ξ∗5 ← ξ3 + 2h. For the local knot vector H we have ∆η

2 > ∆η
3, so the knots η4

and η5 should be modified as η∗4 ← η3 + h, η∗5 ← η3 + 2h.
Extension rule 2. Once Condition 1 is satisfied, in order to fulfill Condi-

tion 2, we check whether the vertices of the function support are situated over
the mesh edges. If not, we modify the knot vectors by skipping over a knot for
both parametric directions and placing this vertex over the mesh edges. Fig-
ure 7(b) illustrates this procedure. The checking is performed independently
for each of the four quadrants of the function support. Note that for our
0-balanced quadtree we should make this checking only for some functions.
For example, without loss of generality, the support vertex V5,5 = (ξ5, η5)

must be checked only if ∆ξ
3 = ∆ξ

4 = ∆η
3 = ∆η

4. An example of a func-
tion support violating Condition 2 is illustrated in Fig. 7(b). The vertex
V5,5 = (ξ5, η5) of this support is not situated over a mesh edge, so the fifth
knots for both parametric directions should be redefined as ξ∗5 ← ξ3 + 3h,
η∗5 ← η3 + 3h, and thus, the new vertex V5,5 is placed over the mesh edges.

The extension of any other function support is completely analogous to
these two examples. In all possible cases, the extension of a function support
implies to change one or two knot intervals by duplicating its size.

Detailed algorithms for Extension rule 1 and 2 used to modify a bivariate
function support according to Conditions 1 and 2 are given in Algorithms 1
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(a) Condition 1 is not satisfied because ∆ξ
4 < ∆ξ

3 and ∆η
3 < ∆η

2 .

(b) Condition 2 is not satisfied because V5,5 /∈ skt(T ).

Figure 7: Extension rules. (a) An example of support modification by Extension rule 1.
(b) An example of support modification by Extension rule 2.

and 2.
Figure 8 shows some examples of support modification. Functions that

satisfy both conditions and should not be modified are given in Fig. 8(a).
Examples of support extension according to Condition 1 are shown in Fig.
8(b), (c), (d) and (e). And Fig. 8(f), (g) and (h) illustrate support extension
according to Condition 2 or both.

Note that an exception for Condition 1 is a knot vector that contains a
knot interval of length 0 due to the open knot vector structure along the
boundary. In this case, a knot vector should fulfill the inequality (1) not
taking into account the knot intervals of length 0. Consequently, an exception
for the application of the extension rules is the case when the boundary of
the parametric domain is reached traversing the T-mesh edges, see Fig. 8(c),
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(d) and (e).

Remark 1. It is important to highlight that the application of the extension
rules always places the new knots over the mesh edges, i.e., the extension
rules just skip over some knots, but do not create knots that are not induced
by the T-mesh.

Remark 2. Note that in the case when a function support violates Condition
2, the extension of this support in order to place its vertex over the mesh
skeleton can be made by modifying only one of the knot vectors instead of
both. This option leads to the loss of symmetry for the spline space and to
the non-uniqueness of the resulting function support. So, for simplicity, we
extend the knot vectors in both parametric directions.

Algorithm 1: Extension rule 1.

Input: A knot vector Ξ = (ξ1, ξ2, ξ3, ξ4, ξ5), ξi ∈ [0, 1].
1 Function Modify1 (Ξ)
2 Ξ∗ ← Ξ
3 h = max(∆2,∆3)
4 if ∆2 < ∆3 and ξ2 > 0 then
5 ξ∗2 ← ξ3 − h
6 ξ∗1 ← ξ∗2
7 if ξ∗1 > 0 then ξ∗1 ← ξ3 − 2h
8

9 if ∆1 < ∆2 and ξ1 > 0 then
10 ξ∗1 ← ξ3 − 2h

11 if ∆2 > ∆3 and ξ4 < 1 then
12 ξ∗4 ← ξ3 + h
13 ξ∗5 ← ξ∗4
14 if ξ∗5 < 1 then ξ∗5 ← ξ3 + 2h
15

16 if ∆4 < ∆3 and ξ5 < 1 then
17 ξ∗5 ← ξ3 + 2h

18 return Ξ∗

Output: A corrected knot vector Ξ∗ that satisfies Condition 1.
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(a) Initial supports that satisfy both
conditions and should not be modified.

(b) Condition 1 is not satisfied because

∆ξ
1 < ∆ξ

2, so ξ∗1 ← ξ3 − 2h.

(c) Condition 1 is not satisfied because

∆ξ
2 < ∆ξ

3, so ξ∗1 ← ξ3 − 2h and
ξ∗2 ← ξ3 − h.

(d) Condition 1 is not satisfied because
∆η

1 < ∆η
2 , so η∗1 ← η3 − 2h.

(e) Condition 1 is not satisfied because

∆ξ
2 < ∆ξ

3 and ∆η
2 < ∆η

3 , so ξ∗2 ← ξ3−h,
η∗2 ← η3 − h and η∗1 ← η3 − 2h.

(f) Condition 2 is not satisfied because
V5,5 /∈ skt(T ), so ξ∗5 ← ξ3 + 3h and
η∗5 ← η3 + 3h.

(g) Condition 2 is not satisfied because
V1,1 and V1,5 /∈ skt(T ), so ξ∗1 ← ξ3−3h,
η∗1 ← η3 − 3h and η∗5 ← η3 + 3h.

(h) Conditions 1 and 2 are not sat-

isfied because ∆ξ
2 > ∆ξ

3, ∆η
2 > ∆η

3

and V1,1 /∈ skt(T ), so ξ∗4 ← ξ3 + h,
ξ∗5 ← ξ3 + 2h, η∗4 ← η3 + h, η∗5 ← η3 +
2h, ξ∗1 ← ξ3 − 3h, η∗1 ← η3 − 3h.

Figure 8: Examples of function support modification with Extension rule 1 and 2. Initial
support is marked in blue and extended support in red.
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Algorithm 2: Extension rule 2 in 2D.

Input: A 0-balanced mesh T and a pair of local knot vectors S = {Ξ,H}.
1 Function Modify2 (T, S)
2 S∗ ← S

3 h = max(∆ξ
2,∆

ξ
3)

4 for n ∈ {1, 5} do
5 for m ∈ {1, 5} do
6 if (ξn, ηm) /∈ skt(T ) then
7 ξ∗n ← ξ3 + 3h sgn(ξn − ξ3)
8 η∗m ← η3 + 3h sgn(ηm − η3)

9 return S∗

Output: A modified support S∗ = {Ξ∗,H∗} that satisfies Condition 2.

4.2. Support extension for 3D meshes

In this section we give a description and illustration of the proposed stra-
tegy for defining trivariate spline functions over 0-balanced octree T-meshes.

The skeleton skt(T ) of a three-dimensional mesh T is the union of all faces
of the mesh. For a trivariate function let us denote the vertices of its support
as Vn,m,k = (ξn, ηm, ζk) where n,m, k ∈ {1, 5}. And the edge of a support
formed by the two vertices Vn,m,k and Vp,q,r is denoted as E(n,m,k),(p,q,r). Then,
the frame frm(suppNα) of a trivariate function support is the union of its
twelve edges. Figure 9 illustrates the introduced notation for the support of
a trivariate blending function.

The formulation of Condition 1 for the local knot vectors of a trivariate
function is analogue to the 2D case. Condition 2 adapted to 3D meshes is
stated as follows: Edges of the cuboidal function support should be situated
over the mesh faces.

The implementation of the strategy for 3D is similar to the 2D case. To
satisfy Condition 1, Extension rule 1 is applied to each of the three local knot
vectors of a function analogously to the 2D case using Algorithm 1.

Extension rule 2. In order to fulfill Condition 2, we check whether the
edges of a function support are situated over the mesh faces. If not, the
two knot vectors perpendicular to this edge should be modified by skipping
over a knot for both parametric directions and placing this edge over the
mesh faces. This checking is performed independently for each of the eight
quadrants of the function support and, in each quadrant, three edges should
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Figure 9: Support notation for 3D case.

be checked. Figure 10 illustrates the support extension procedure for the
quadrant of the vertex V5,1,1. Due to the octree structure only two cases can
take place: (i) the quadrant contains one edge that is not situated over the
mesh faces or (ii) the quadrant contains three edges and a vertex that are
not situated over the mesh skeleton. Now we study each case.

(i) If a quadrant contains one edge that does not fulfill Condition 2, then
two knot vectors perpendicular to this edge are modified, see Fig. 10(a).
For the function support shown in Fig. 10(a) left, the edge E(5,1,1),(5,1,5) is
not situated over the mesh faces. Therefore, its two knot vectors Ξ and
H perpendicular to this edge are modified in order to place the edge over
the mesh faces, namely, knots ξ5 and η1 are redefined as ξ∗5 ← ξ3 + 3h and
η∗1 ← η3 − 3h, where h = max(∆ξ

2, ∆
ξ
3) = max(∆η

2, ∆
η
3) = max(∆ζ

2, ∆
ζ
3).

(ii) If a quadrant contains three edges that are not situated over the mesh
faces, then the three knot vectors are modified by skipping over a knot for
each of the three parametric directions, see Fig. 10(b). Vertex V5,1,1 and the
three edges connected to it are not situated over the mesh skeleton, so all the
three knot vectors are modified to place the three edges over the mesh faces:
ξ∗5 ← ξ3 + 3h, η∗1 ← η3 − 3h, ζ∗1 ← ζ3 − 3h.

Algorithm 3 explains the Extension rule 2 used to modify a trivariate
function support according to Condition 2.
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(a) Only one edge violating Condition 2. Node V5,1,1 is sited in the center of the face
of size 2h. The support is extended in two directions.

(b) Three edges violating Condition 2. Node V5,1,1 is sited in the center of the cell of size 2h.
The support is extended in three directions.

Figure 10: Extension rule 2 for support modification of a trivariate function.
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Algorithm 3: Extension rule 2 in 3D.

Input: A 0-balanced T-mesh T and three local knot vectors S = {Ξ,H,Z}.
1 Function Modify2 (T, S)
2 S∗ ← S

3 h = max(∆ξ
2,∆

ξ
3)

4 mov(i) := i+ 4 sgn(3− i)
5 for n ∈ {1, 5} do
6 for m ∈ {1, 5} do
7 for k ∈ {1, 5} do
8 if E(n,m,k),(mov(n),m,k) /∈ skt(T ) then

9 η∗m ← η3 + 3h sgn(ηm − η3)
10 ζ∗k ← ζ3 + 3h sgn(ζk − ζ3)

11 if E(n,m,k),(n,mov(m),k) /∈ skt(T ) then

12 ξ∗n ← ξ3 + 3h sgn(ξn − ξ3)
13 ζ∗k ← ζ3 + 3h sgn(ζk − ζ3)

14 if E(n,m,k),(n,m,mov(k)) /∈ skt(T ) then

15 ξ∗n ← ξ3 + 3h sgn(ξn − ξ3)
16 η∗m ← η3 + 3h sgn(ηm − η3)

17 return S∗

Output: A modified support S∗ = {Ξ∗,H∗,Z∗} that satisfies Condition 2.
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5. Properties of our spline functions, support overlapping, sparsity
and condition number

Here, we summarize the properties and some characteristics of the spline
spaces constructed by means of our method.

5.1. Properties

For any 0-balanced mesh T , the set of blending functions defined according
to our strategy spans the space ST = span {Nα : α ∈ AT} with the following
properties:

1. Functions {Nα}α∈AT
are C2-continuous.

2. Functions {Nα}α∈AT
are linearly independent.

3. Spaces spanned by nested T-meshes are also nested:
T1 ⊂ T2 ⇒ ST1 ⊂ ST2.

4. Polynomial reproduction property: P3(Ω) ∈ ST .

A rigorous proof of these properties is currently under preparation and
we plan to give it in a future work. However, for a better understanding of
the strategy, some clues should be mentioned.

For the proof of linear independence of our blending functions it is essen-
tial to take into account that we do not repeat knots in the interior of the
domain, and each regular node of the T-mesh has only one function assigned
to it. Some reasoning from [18] can be used to proof the linear independence
of such functions.

A brief outline of the proof of the property (3) is given in the appendix
of the present paper.

It is worth mentioning that we have carried out numerous numerical ex-
periments and the claimed properties were verified in all of them.

5.2. Support overlapping

It should be pointed out that the proposed strategy can lead, in some cas-
es, to increased overlapping of the function supports of different refinement
levels, which can affect the conditioning and sparsity of the stiffness matrix.
This effect can take place in some problems with a very sharp singulari-
ty when the area marked to refine by the error indicator at each iteration is
smaller than the area occupied by the supports of the previous level. Accord-
ing to our strategy, a cell refinement always adds at least one new blending
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(a) A function su-
pport (red) that in-
tersects the refined
cell (shaded cell).

(b) New function su-
pport after apply-
ing additional refine-
ments.

(c) Three refinement steps around a singular point (black square) that
lead to an excessive overlapping of the function supports. Note that
the red support does not change.

(d) The same three refinement steps applying additional refinements.

Figure 11: Additional refinements in order to avoid excessive overlapping of the function
supports.
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function, while a function of the coarse level is replaced by the finer ones only
if all the cells that share their anchor are refined. To avoid a possible accu-
mulation of the functions of different refinement levels, the following strategy
can be adopted: if a function support intersects a cell marked to be refined,
then the coarsest cells sharing the anchor of the function are refined, see Fig.
11(a) and (b).

Application of this strategy is illustrated in Fig. 11(c) and (d). In this
example, let us suppose that the problem has a singularity at the center of
the domain, and at each iteration, we refine only the four cells adjacent to the
singularity point. Then, at each iteration there are functions whose support
is not changed, see Fig. 11(c). However, if at each iteration we perform a-
dditional refinements, functions of the coarser level are replaced by the finer
ones, see Fig. 11(d). This approach is similar to the one used in hierarchical
refinement where all supports that intersect the marked cell are also refined
in order to guarantee the replacing of the supports of the previous level by the
finer ones at each refinement step. Application of this additional refinement,
where needed, can reduce an excessive function overlapping and improve the
stiffness matrix conditioning and sparsity. However, due to the unnecessary
extension of the refined zone, the optimal rate of convergence can be lost.
In practice, we did not observe a significant advantage of this approach, and
taking into account its computational cost, we do not apply this strategy in
the computational examples presented in this paper. Moreover, it was ob-
served that for a large variety of problems, the excessive support overlapping
is avoided naturally after various refinement steps due to the behaviour of
the error indicator.

On the other hand, another possible solution for this problem is a more
accurate and selective definition of the function supports in order to obtain
a space with better support locality. The strategy we propose in this paper
can be improved by including more sophisticated rules for inferring function
supports, but that would probably lead to a more expensive implementation.

6. Computational examples

In this section we present computational examples of the application of
our technique in geometric design and analysis for problems involving adap-
tive refinement. The proposed method is tested by performing surface inter-
polation and resolution of 2D and 3D Poisson problems using IGA.
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(a) (b) (c)

Figure 12: Igea’s face. Spline representation of the surface from its triangulation. (a) Input
surface triangulation; (b) spline representation of the surface; (c) parametric T-mesh.

6.1. Spline representation of the surface from its triangulation

Here we construct a spline representation of a surface given by a triangula-
tion. First, a global parameterization of the surface triangulation is obtained
by means of the method proposed by M. Floater in [19]. As a result, we have
one-to-one mapping from planar triangulation of the parametric domain (u-
nit square) to the surface triangulation. Then, a quadtree T-mesh adapted
to the planar triangulation is constructed. For this purpose we have chosen
the following simple criterion. We start from a coarse T-mesh and refine it
until each cell of the mesh contains no more than a certain number of points
of the input triangulation (3 in our case). The spline approximation of the
surface is built as a linear combination of our blending functions

S(ξ) =
∑
α∈AT

Cα Nα (ξ) .

The control points Cα are found by imposing the interpolation conditions

xβ =
∑
α∈AT

Cα Nα

(
ξβ

)
, ∀ξβ, β ∈ AT ,
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where ξβ are interpolation points in the parametric domain and xβ are their
images in the physical space determined by the triangular parameterization.
As interpolation points we use the anchors of the functions, i.e., the regular
nodes of the T-mesh, and some additional interpolation points associated to
functions whose local knot vectors contain repeated knots on the boundary.
These additional points are situated at the midpoint of the edges that have
contact with the boundary and coincide approximately with the maximum
point of the corresponding blending functions. See [20] for more details.

The resulting spline surface, parametric T-mesh and input surface trian-
gulation are shown in Fig. 12.

6.2. Adaptive refinement for surface interpolation

In this example we interpolate the function

u(r) = r
1
2 , (3)

defined on the square domain [0, 1]2, being r =
√

(x− 0.5)2 + (y − 0.5)2.
The spline approximation of the surface (3) is built as a linear combination

of our blending functions

uh(ξ) =
∑
α∈AT

Cα Nα (ξ) .

And the control points Cα are found by imposing the interpolation con-
ditions

u(ξβ) =
∑
α∈AT

Cα Nα

(
ξβ

)
, ∀ξβ, β ∈ AT ,

Adaptive refinement is performed according to the indicator based on
exact L2 interpolation error:

η(Ωe)
2 = ∥u− uh∥2L2,Ωe

=

∫
Ωe

(u− uh)
2 dΩ.

A cell Ωe is marked to be refined if η(Ωe) > γ maxi {η(Ωi)}, being γ ∈
[0, 1].

Some steps of adaptive refinement for the surface interpolation (3) are
shown in Fig. 13, and Fig. 14 illustrates the convergence in L2-norm and
H1-seminorm.
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(a)

(b) (c)

(d) (e)

Figure 13: Adaptive refinement for surface interpolation (3). (a) Function to interpolate.
(b) Initial mesh. (c), (d) and (e) Some steps of adaptive refinement.
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Figure 14: Convergence of the adaptive refinement for the interpolation example (3) in
L2-norm and H1-seminorm, for γ = 0.3.

6.3. Poisson problem over a square domain

In this subsection we present an example of the resolution of a Poisson
problem on a square domain Ω = [0, 1]2 using isogeometric analysis. Let us
consider the problem

−△u = f in Ω,

u = g on ∂Ω.
(4)

Its variational formulation consists in finding u ∈ Vg(Ω) such that

a(u, v) = (f, v) ∀v ∈ V0(Ω),

where

a(u, v) =

∫
Ω

∇u · ∇v dΩ and (f, v) =

∫
Ω

f v dΩ.

The test function space is

V0(Ω) = {v ∈ H1(Ω) : v |∂Ω= 0},
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(a)

(b) (c)

(d) (e)

Figure 15: Resolution of the Poisson problem (4). (a) Numerical solution corresponding
to the final refinement. (b) Initial mesh. (c), (d) and (e) Several steps of the adaptive
process.
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the stiffness matrix.
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(d) Evolution of the density of the stiff-
ness matrix.

Figure 16: Convergence, condition number and density of the stiffness matrix for the
Poisson problem (4), for γ = 0.3.
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and the solution space is

Vg(Ω) = {v ∈ H1(Ω) : v |∂Ω= g}.

Let T be a T-mesh of Ω. Then we denote with VT (Ω) the finite dimen-
sional space spanned by the spline blending functions defined over T , and
with VgT ,T (Ω) the subspace of functions of VT (Ω) that are equal to gT at the
boundary, where gT is an interpolant of g.

The isogeometric approximation consists in finding uh ∈ VgT ,T (Ω) such
that

a(uh, vh) = (f, vh) ∀vh ∈ V0,T (Ω).

The problem (4) is set up in such a way that its analytical solution is a
function with singularities taken from [12] and given by

u(x, y) = exp
(
−7

√
(x− 0.5)2 + (y − 0.5)2

)
+

+exp
(
−7

√
(x− 0.25)2 + (y − 0.25)2

)
+

+exp
(
−7

√
(x− 0.75)2 + (y − 0.75)2

)
.

(5)

We perform an adaptive refinement based on an a posteriori error indi-
cator to improve the quality of the numerical solution. We have chosen a
simple residual-type error estimator given by

η(Ωe)
2 = ∥h (f +∆uh) ∥20,Ωe

=

∫
Ωe

h2 (f +∆uh)
2 dΩ,

where h is the diameter of the cell Ωe. The estimator is jump free through the
cell interfaces because of the smoothness of the isogeometric approximation.
A cell Ωe is marked to be refined if η(Ωe) > γ maxi {η(Ωi)}, being γ ∈ [0, 1].

During the assembly process we accomplish the numerical integration on
each element (cell) of the mesh, therefore it should be taken into account
that for exact integration results (when possible) the numerical integration
should be performed on each Bezier element, that is, on the subregion of the
cell where the blending functions are pure polynomials. For our balanced
quadtree meshes it implies to subdivide some cells in 2 or 4 subelements.
However, taking into account the smoothness of the functions across the
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(a) (b)

Figure 17: Parameterization of the computational domain for the problem of the section
6.4. (a) Colormap of the mean ratio Jacobian represented in the parametric domain. (b)
Colormap of the mean ratio Jacobian represented in the physical domain.

subelements boundary, more efficient quadrature rules can be used. For
example, in [21] authors propose a numerical procedure to compute weights
and points of quadrature rules on macro elements. These rules are exact for
blending functions and efficient in the sense that requires less evaluations
than classical Gauss rules on each element.

Some steps of adaptive refinement for the problem (4) and the numerical
solution corresponding to the final refinement iteration are shown in Fig. 15.
The convergence behaviour of the adaptive refinement in L2-norm and H1-
seminorm is shown in Fig. 16(a) and (b). The evolution of the density of the
stiffness matrix A, its condition number and the comparison of these values
for an uniform refinement are represented in Fig. 16(c) and (d), respectively.
The density of the matrix A is the fraction of non-zero elements and the
condition number is defined as κ(A) =∥ A ∥2 ∥ A−1 ∥2.

6.4. Poisson problem on a complex domain

In the next example, we present the result of the resolution of a Poisson
problem on a complex domain. We denote by Ω̂ = [0, 1]2 the parametric
domain and by Ω the physical or computational domain. Now the spline
blending functions are defined over a mesh T of the parametric domain.
Given Ω, we build a one to one parametric transformation S, that maps Ω̂
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(a) Final refinement in the
parametric domain.

(b) Final refinement in the physical domain.

(c) Numerical solution in the
parametric domain.

(d) Numerical solution in the physical domain.

Figure 18: Results of the adaptive refinement for the Poisson problem of the section 6.4.
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Figure 19: Convergence of L2-norm and H1-seminorm error for the Poisson problem of
the section 6.4, for γ = 0.3.

to Ω, i.e S : Ω̂→ Ω, using the algorithm described in our previous work [20].
This technique, based on a T-mesh untangling and optimization procedure,
allows us to obtain a good quality parameterization suitable for application
of IGA. The procedure is an extension of the ideas presented in our works [22,
23, 24, 25]. Another method for parameterization of computational domain,
based on pillowing technique, was given in [26, 27].

The mean ratio Jacobian is used to evaluate the quality of the parame-
terization in the sense of its orthogonality and uniformity. Figures 17(a) and
(b) show the colormap of the parameterization quality for our parametric
and physical domains. It should be mentioned that for all numerical exam-
ples the parameterization of the computational domain is performed using
the same blending functions that are used for the solution approximation, so
isoparametric concepts holds during isogeometric analysis. That is, if VT (Ω̂)
is the finite dimensional space spanned by the spline functions associated to
a parametric mesh T , then the parametric mapping S is constructed as a
linear combination of functions from VT (Ω̂) and the discrete approximation
space VT (Ω) in physical domain is defined as follows:

VT (Ω) =
{
v ∈ H1(Ω) : v = v̂ ◦ S−1, for all v̂ ∈ VT (Ω̂)

}
.
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Now we consider a Poisson problem with Dirichlet boundary condition
on Ω, which exact solution is a function with steep wave front given by

u(r) = arctan(α(r − r0)),

where r =
√
(x− xc)2 + (y − yc)2, the parameter α determines the steep-

ness of the wave front and r0 is its location. In this example α = 200 and
r0 = 0.6. The center of the wave front (xc, yc) = (0, 0) is situated outside
our computational domain, so the function is smooth in Ω. The numerical
solution of the problem and the mesh corresponding to the final refinement
iteration is shown in Fig. 18. As expected, the error estimator has marked
for refinement the zone of the wave front. The evolution of the exact error
in L2-norm and H1-seminorm are shown in Fig. 19.

6.5. Poisson problem on 3D domain

The next computational example is the resolution of a 3D Poisson problem
using IGA. The computational domain is a spline approximation of a sphere
portion, see Fig. 20. The initial uniform mesh was composed by 4 × 4 × 4
cells. The approximation is constructed using our spline blending function.
The Poisson problem with Dirichlet boundary condition is set up so that the
analytical solution of the problem is

u(r) = sin

(
1

α + r

)
,

where r =
√

x2 + y2 and parameter α = 1/10π. This is a smooth function
with an oscillation near the origin. Results of the final refinement iteration
are shown in Fig. 20. The convergence behaviour of the adaptive refinement
is illustrated in Fig. 21.

7. Conclusions and future research

In this paper we have proposed a strategy for defining C2-continuous cubic
tensor product spline functions over quadtree and octree T-meshes. We only
demand these T-meshes to be 0-balanced and this requirement can be easily
satisfied by using a standard balancing procedure. The proposed strategy
includes simple instructions used for inferring local knot vectors to define
blending functions. We conjecture that the resulting spline spaces have nice
properties: linear independence and the characteristic that spaces spanned
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 20: Mesh and numerical solution in the sixth adaptive refinement step for the 3D
Poisson problem of the section 6.5. (a) Parametric mesh. (b) Physical mesh. (c) Numerical
solution in the parametric domain. (d) Numerical solution in the physical domain. (e) A
section of the parametric mesh. (f) A section of the physical mesh. (g) Numerical solution
in a section of the parametric domain. (h) Numerical solution in a section of the physical
domain.
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Figure 21: Convergence of L2-norm and H1-seminorm error for the Poisson problem of
the section 6.5, for γ = 0.3.

by nested T-meshes are also nested. The above mentioned properties were
verified in numerous numerical experiments and we plan to provide a rigorous
proof in our next work.

The implementation of our technique is straightforward taking into a-
ccount the balance mesh restriction. Examples of adaptive refinement using
IGA for 2D and 3D Poisson problems have been presented. In all of them,
optimal rates of convergence have been obtained. We believe that the sim-
plicity of our technique can make it an attractive tool for its application in
IGA and geometric design.

In future works we also plan to improve the strategy obtaining a better
locality of the function supports.
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Figure 22: Elemental refinements. A possible sequence of 0-balanced meshes {T e
i }, where

T e
i is obtained from T e

i−1 by refining only one cell.
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Appendix

Here we include an outline of the proof (2D case) of the nestedness of the
spline spaces constructed via our strategy.

It is worth noting that the rules we propose and the 0-balanced restriction
for the mesh lead to a very few number of all possible function supports that
can be defined over a T-mesh. In order to proof the nestedness of the spaces
for any two nested T-meshes T1 ⊂ T2, we should verify that any blending
function of ST1 can be represented as linear combination of blending functions
from ST2 . To this end, we have to perform this verification for all types of
function supports and for any possible mesh configuration. Applying some
reasoning, it is easy to see that this verification can be reduced to a few
number of basic cases. Firstly, to simplify the process, we assume that for
any two 0-balanced meshes T1 and T2 such that T1 ⊂ T2 there exists a
sequence of meshes {T e

i }i=1,n such that

(i) T1 = T e
0 ⊂ T e

1 ⊂ T e
2 ⊂ · · · ⊂ T e

n−1 ⊂ T e
n = T2,

(ii) any mesh T e
i is obtained from mesh T e

i−1 by refining only one cell,
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m
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Figure 23: (a) All possible configurations for a knot vector (without repeated knots).
(b) On the left, a function support of level m defined over a 0-balanced T-mesh. The
level of this function is determined by the cell marked in red. On the right, the quadtree
representation of the T-mesh. The tree node represented in red corresponds to the marked
cell of the mesh.

(iii) all the meshes {T e
i }i=1,n are 0-balanced.

A pair of 0-balanced meshes T e
2 and T e

1 is called elemental refinement
if T e

2 is obtained from T e
1 by refining only one cell, see Fig. 22. Since it

is sufficient to verify the nestedness of spaces for any elemental refinement,
from now on we assume that T1 ⊂ T2 is an elemental refinement. We have
to verify that, after refining a cell, the blending functions of the new space
ST2 are able to represent any blending function of the previous space ST1 .
The proof can be divided in two steps. First, we analyze some basic cases
corresponding to the simplest mesh configuration, then, more general mesh
configuration should be considered applying some recursivity idea to proof
the nestedness of spaces for arbitrary elemental refinement.

To make the necessary studies more graphic, first, we classify all function
supports that can take place according to our strategy. Then, we study
for each type all possible situations when a cell refinement affects this type
function support.

Classification of function supports
Let us consider any knot vector Ξ = (ξ1, ξ2, ξ3, ξ4, ξ5) and let∆ξ

i = ξi+1−ξi,
i = 1, ..., 4., so that, a set ∆ξ = (∆ξ

1, ∆
ξ
2, ∆

ξ
3, ∆

ξ
4) corresponds to each knot

vector Ξ. Due to the extension rule 1 and the balanced mesh condition
we have the following possible configurations for the set ∆ξ: (h, h, h, h),
(h, h, h, 2h), (2h, h, h, h) and (2h, h, h, 2h), see Fig. 23(a). All possible bi-
variate function supports are obtained by combining all configurations for Ξ
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(a) (b)

Figure 24: Two possible scenarios for a function support according to the underlying local
mesh. (a) The anchor of the m-level function coincides with the center of a (m− 1)-level
cell of the quadtree. (b) The rest of the functions.

and H, i.e., combining two sets ∆ξ and ∆η. Note that since we ignore the
hanging nodes while inferring two knot vectors, the value of h is the same for
∆ξ and ∆η, i.e., h = ∆ξ

2 = ∆ξ
3 = ∆η

2 = ∆η
3 and the value of h determines the

level of a function. A blending function is said to be of level m if the largest
cell contacting its anchor is of level m, see Fig. 23(b).

Also, we can distinguish different function supports according to the un-
derlying local mesh that leads to this support.Basically, it depends on the
position of the anchor of the function, see Fig. 24. Scenario (a) the anchor
of the m-level function coincides with the center of a (m − 1)-level cell of
the quadtree, scenario (b) the rest of the functions, i.e., the anchor of the
m-level function does not correspond to any center of a (m− 1)-level cell of
the quadtree.

Finally, taking into account all the above considerations about values of
∆ξ and ∆η and the underlying local mesh, we can classify all function sup-
ports in nine types that are illustrated in Fig. 25. First six types correspond
to scenario (a) and the other three types correspond to scenario (b). Note
that type 6 and type 9 function supports can be considered as the same
type, although they come from different scenarios. Function supports with
repeated knots across the domain boundary can be included in the nine types
shown in Fig. 25.

Next, we have to see how an elemental refinement can affect a function
support of each type. As it was said before, the proof of the nestedness can
be reduced to the proof of nestedness for some basic cases.
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(a) Type 1 (b) Type 2 (c) Type 3

(d) Type 4 (e) Type 5 (f) Type 6

(g) Type 7 (h) Type 8 (i) Type 9

Figure 25: Function support classification according to the underlying local mesh and
configurations for ∆ξ and ∆η.

Function recuperation for the basic cases
For each support type, we have to analyze all possible elemental refine-

ments that affect this function and verify that the blending functions of the
finer mesh are able to reproduce the function under consideration. Let see
in detail an example of this study.

Here we illustrate type 2 function support. This type of function support
has the largest number of cases to study. Namely, we should study four
different situations that take place after a cell refinement. In these situations
the original type 2 function N0 associated to the anchor v0 is not a blending
function of the new space ST2 . The new function N̂0 associated to v0 can be
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(a) N0 = N̂0 +
1

4
N̂1 (b) N0 = N̂0 +

1

4
N̂1

(c) N0 = N̂0 +
1

4
N̂1 +

1

4
N̂2 +

1

16
N̂3 (d) N0 = N̂0 −

1

4
N̂1

Figure 26: Basic cases to study for type 2 function. Support of the function N0 defined
over T1 is represented by pink shadowed area in the leftmost and the rightmost images.
Blue discontinuous lines in the leftmost figure mark the refinement of T1 that leads to a
new mesh T2. Supports and the anchors of the blending from ST2 necessary to recuperate
the function N0 are marked by different colors in the rightmost image. (a) Type 2 support
turns into a type 3 support after a cell refinement. (b) Type 2 support turns into a type 4
support. (c) Type 2 support turns into a type 5 support after a cell refinement. (d) Type
2 support turns into a type 5 support.

type 3, 4, 5 or 1, as shown below.
Type 2 to type 3. In this case, type 2 function N0 of level m can be recuper-

ated by two new functions of the same level: type 3 function N̂0 and type
7 function N̂1. Only one of local knot vectors undergoes a knot insertion.
Without loss of generality, suppose that a new knot ξ̂ is inserted between the
fourth and the fifth knot of Ξ, see Fig. 26(a). Then, using the knot insertion
formula, it is easy to see that

N0(ξ, η) = B[Ξ]B[H] = B[Ξ1]B[H] + 1

4
B[Ξ2]B[H] = N̂0 +

1

4
N̂1,

where Ξ1 = (ξ1, ξ2, ξ3, ξ4, ξ̂) and Ξ2 = (ξ2, ξ3, ξ4, ξ̂, ξ5).
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6 ≡ 9 8 7

5

4

3

2

1

Figure 27: Graph of relations between different function types. An arrow coming out of
a circle with type number and pointing to another type means that this type support can
turn into the second one after a cell refinement.

Type 2 to type 4. Function N0 is split into two new functions of the same

level: type 4 function N̂0 and type 8 function N̂1. Local knot vector H
undergoes a knot insertion. A new knot η̂ is inserted in its local knot vector
H = (η1, η2, η3, η4, η5) between the fourth and the fifth knot, see Fig. 26(b).
Then

N0(ξ, η) = B[Ξ]B[H] = B[Ξ]B[H1] +
1

4
B[Ξ]B[H2] = N̂0 +

1

4
N̂1,

where H1 = (η1, η2, η3, η4, η̂) and H2 = (η2, η3, η4, η̂, η5).
Type 2 to type 5. For this case both local knot vectors undergo a knot in-

sertion. New knot ξ̂ is inserted between the fourth and the fifth knot of Ξ
and knot η̂ is inserted between the fourth and the fifth knot of H, see Fig.
26(c). Then function N0 is split into four functions of the same level: type
5 function N̂0, type 8 function N̂1, type 9 function N̂2 and type 9 (or 6)
function N̂3.

N0(ξ, η) = B[Ξ]B[H] = (B[Ξ1] +
1

4
B[Ξ2])(B[H1] +

1

4
B[H2]) =

= B[Ξ1]B[H1] +
1

4
B[Ξ2]B[H1] +

1

4
B[Ξ1]B[H2] +

1

16
B[Ξ2]B[H2] =

= N̂0 +
1

4
N̂1 +

1

4
N̂2 +

1

16
N̂3.

where H1 = (η1, η2, η3, η4, η̂), H2 = (η2, η3, η4, η̂, η5), Ξ1 = (ξ1, ξ2, ξ3, ξ4, ξ̂)
and Ξ2 = (ξ2, ξ3, ξ4, ξ̂, ξ5).
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Type 2 to type 1. In this case, due to extension rule 2, the support of a
function becomes larger after a cell refinement, see Fig. 26(d). Using knot

insertion formula, it is easy to see that N̂0 = N0 +
1

4
N̂1. So, the original

function N0 can be recuperated by two new functions: type 1 function N̂0

and type 7 function N̂1 as follows

N0(ξ, η) = B[Ξ]B[H] = B[Ξ2](ξ)B[H]− 1

4
B[Ξ1](ξ)B[H] = N̂0 −

1

4
N̂1.

where Ξ1 = (ξ̂, ξ1, ξ2, ξ3, ξ4) and Ξ2 = (ξ̂, ξ2, ξ3, ξ4, ξ5).
For the rest of the function supports the necessary verifications are carried

out in an analogous way. The graph given in Fig. 27 reflects the relation
between different function types and the number of situations to study for
each type. More specifically, an arrow coming out of a circle with type X and
pointing to another type Y means that a type X function can turn into the
type Y new function associated to the same anchor after a cell refinement.
For example, there are four arrows coming out of type 2 function, in line
with the four studied cases.
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