
Intrinsic ordering, combinatorial numbers and

reliability engineering

Luis González∗
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Abstract

A new algorithm for evaluating the top event probability of large fault trees
(FTs) is presented. This algorithm does not require any previous qualitative
analysis of the FT. Indeed, its efficiency is independent of the FT logic, and
it only depends on the number n of basic system components and on their
failure probabilities. Our method provides exact lower and upper bounds
on the top event probability by using new properties of the intrinsic order
relation between binary strings. The intrinsic order enables one to select
binary n-tuples with large occurrence probabilities without necessity to eval-
uate them. This drastically reduces the complexity of the problem from
exponential (2n binary n-tuples) to linear (n Boolean variables). Our algo-
rithm is mainly based on a recursive formula for rapidly computing the sum
of the occurrence probabilities of all binary n-tuples with weight m whose
1s are placed among the k right-most positions. This formula, as well as the
balance between accuracy and computational cost, is closely related to the
famous Pascal’s triangle.
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1. Introduction

One of the most common techniques for analyzing system safety and relia-
bility is the fault tree analysis (FTA), an extensively used method worldwide,
which is mainly based on probability theory and Boolean algebra [1, 2, 3].
Large, complex systems where FTA has been widely applied can be found in
many different scientific or engineering areas, such as aeronautics, chemistry
and materials, energy resources, mechanics, meteorology and climatology,
nuclear physics, robotics, etc. (see, e.g., [4] for an exhaustive list of such
subject categories).

FTA was first conceived in 1961 by H. A. Watson of Bell Telephone Lab-
oratories to perform a safety evaluation of the Minuteman Launch Control
System [5]. The basic idea of FTA is the translation of the failure behavior of
a technical system into a visual diagram involving logic gates, i.e., the fault
tree (FT) [6]. A FT is a logical representation of the manner in which combi-
nations of failures of the basic components of a system lead to the undesired
state of the system, the so-called top event [7, 8].

One of the main topics in FTA is to estimate the failure probability of
the whole system –also called the system unavailability, or the top event
probability. Many different techniques have been proposed in the literature
to evaluate the system unavailability; see, e.g., [6, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21] and the references contained therein.

Throughout this paper, we consider complex systems depending on an
arbitrarily large number n of statistically independent random Boolean vari-
ables x1, . . . , xn. The usual convention is to assign the value 1 or 0 to variable
xi if component i fails or works, respectively. So, each one of the binary n-
tuples of 0s and 1s, u = (u1, . . . , un) ∈ {0, 1}n, describes the current situation
of the n basic components of the system (failing or working) and, in the fol-
lowing, we shall refer to these binary n-tuples as binary strings, or as system
elementary states.

Then, using a more precise algebraic terminology, the FT can be described
by a stochastic Boolean function

Φ : {0, 1}n −→ {0, 1}
(x1, . . . , xn) 7→ Φ (x1, . . . , xn)

depending on the n basic variables xi of the system. Assuming that Φ = 1 if
the system fails, Φ = 0 otherwise, then the failure probability of the whole
system can be evaluated by computing the probability Pr {Φ = 1}.
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Let us recall that a fault tree is said to be coherent if its structure function
Φ satisfies the following two conditions (see, e.g., [22, 23, 24])

(i) Relevance. Each component xi is relevant, i.e., it contributes to the
system state. Formally, for all i = 1, 2, . . . , n

Φ (0i, x) 6= Φ (1i, x) , for some vector x,

where

Φ (0i, x) = Φ (x1, . . . , xi−1, 0, xi+1, . . . , xn) ,

Φ (1i, x) = Φ (x1, . . . , xi−1, 1, xi+1, . . . , xn) .

(ii) Monotonicity. The system neither transits from a failed state to a good
state by the failure of a component, nor transits from a good state to
a failed state by the repair of a component. Formally, the structure
function Φ is non-decreasing in each variable, i.e.,

Φ (x) ≥ Φ (y) if x > y,

where x, y ∈ {0, 1}n, and x > y means that xi ≥ yi for every component
i = 1, 2, . . . , n, with xi > yi for some i.

When at least one of the two above conditions is not fulfilled, the system
is non-coherent.

Most of FTA methods for evaluating the top event probability Pr {Φ = 1}
are based on the minimal cut set approach [8]. A (minimal) cut set is a
(minimal) combination of component failures that leads to the system failure
(top event). However, for large, complex FTs it is not possible, in general, to
enumerate all its minimal cut sets due to high memory requirements and long
computing time, since the number of potential minimal cut sets exponentially
increases, in general, with the size of the FTs, that is, with the numbers of
their basic events and gates [13].

The main goal of this paper is to present a new algorithm for obtaining
exact lower and upper bounds on the top event probability (for both coherent
and non-coherent systems), with no need to find the minimal cut sets. More-
over, indeed our method does not require any previous qualitative analysis
of the FT to estimate the system unavailability.

At the end of this paper, we will explain in detail the characteristics and
advantages of our proposed method. At this moment, let us mention that
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its main advantage, compared with many other techniques proposed in the
literature to obtain exact lower and upper bounds on system unavailability, is
the following. Our algorithm does not require any knowledge or information
(often required by other techniques) about the Boolean (structure) function
of the FT. Moreover, we shall prove that it is possible (and easy) to assure
a priori the maximum admissible error in the estimation, since this error is
independent of the FT to be evaluated, and it only depends on the occurrence
probabilities of certain selected binary n-tuples.

The bounds on system unavailability can be obtained from the occurrence
probabilities of any subset of selected system elementary states. However, the
main point is that the accuracy in the estimation (difference between upper
and lower bounds) of Pr {Φ = 1} improves at the same time as the sum of the
occurrence probabilities of all the selected elementary states increases. Hence,
in order to get a good compromise between accuracy and computational
cost, we need to select as few binary n-tuples u as possible, with occurrence
probabilities Pr {u} as large as possible.

For selecting the binary strings u with large occurrence probabilities, we
use a theorem that states new properties related to the intrinsic order crite-
rion (IOC). IOC is a simple, positional criterion that allows us to compare
the occurrence probabilities Pr {u} , Pr {v} of two given binary n-tuples u, v
with no need to evaluate them, simply looking at the relative positions of
their 0s and 1s. IOC was first described in [25]: a theoretical paper where the
intrinsic ordering is introduced in the context of the evaluation of stochastic
Boolean functions.

Other theoretical results and practical applications of IOC can be found
in [26, 27, 28, 29, 30, 31, 32]. Let us briefly describe the main ideas or
techniques presented in these works. In [26], different characterizations as
well as necessary conditions and sufficient conditions for the intrinsic order
are derived. In [28, 30], we provide two different algorithms for counting and
generating all the binary n-tuples which are always more probable (less prob-
able) than a fixed n-tuple u ∈ {0, 1}n. Based on these algorithms, in [31] we
determine, for any fixed binary n-tuple u, all its possible “ranks” (positions)
in the list of all the 2n binary n-tuples, arranged in decreasing order of their
occurrence probabilities. The usual representation for the intrinsic order,
the so-called intrinsic order graph, is constructed in [29], and some order-
theoretic and graph-theoretic properties of this graph are derived in [32].

All the above commented papers are mainly theoretical, and they do not
contain algorithms for evaluating the unavailability of technical systems. An
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algorithm for estimating the top event probability is given in [27], and it is
also based on IOC. The main differences between the algorithm performed
in [27] and the one proposed here are the following:
(i) The former selects a proper set of binary n-tuples, basically by taking into
account the weight (number of 1-bits in the bitstring) and the lexicographic
(truth-table) order between the bitstrings. The latter improves this selection
strategy by using new properties of the intrinsic order instead of the lexico-
graphic order. This leads to a more efficient algorithm, since the occurrence
probabilities of the selected bitstrings are now larger, and thus the number
of binary n-tuple probabilities that need to be computed is reduced.
(ii) For computing the occurrence probability of each selected binary n-tuple
with weight m, the former needs to multiply n factors, while the latter only
needs to multiply m + 1 factors. This is especially useful, for computational
purposes, when the selected binary n-tuples have small weights, which is in
general the case in the algorithm proposed in this paper.
(iii) For computing the maximum error in the estimation of the system un-
availability (so that we can assure the required accuracy), both algorithms
evaluate the total sum of the selected binary n-tuple probabilities. However,
while the former uses a non-recursive formula for this purpose, the latter uses
a recurrence relation, which is computationally more efficient.

Moreover, the balance between accuracy and computational cost in our
new algorithm is based on the above mentioned recursive formula, which is
closely related to the famous Pascal’s triangle.

This paper has been organized as follows. Section 2 is devoted to set the
assumptions and basic notations used in this work. In Section 3, we present
all the required background about the above mentioned deterministic method
for estimating the system unavailability and about the intrinsic order relation.
Beginning with our new, unpublished results, in Section 4, we state some
new properties of the intrinsic order. Section 5 is devoted to present a simple
recurrence relation, closely related to the Pascal’s formula, for computing the
sums of the selected binary string probabilities. In Section 6, we present our
algorithm for estimating the system unavailability, and we illustrate it with
a real-life example. Finally, in Section 7 we present our conclusions.

2. Assumptions and notation

2.1. Assumptions

(i) The components and system have binary states.
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(ii) The basic components are non-repairable.

(iii) The FT contains only static gates; it is not a dynamic FT.

(iv) The basic events are assumed to be mutually statistically independent.

(v) The probability of failure of each basic event is given.

In addition to the above assumptions, let us mention that the number of
basic components and the number of gates of the FT to be solved may be
arbitrarily large. Moreover, any event, basic or gate, may appear at multiple
locations in the FT (i.e., repeated events are allowed). Finally, our method
can be applied to both coherent and non-coherent FTs, and the FT logic
may be arbitrarily complex.

2.2. Nomenclature and notation

n number of basic system components
{0, 1}n set of all the 2n binary n-tuples
xi i-th basic Boolean variable of the system:

xi = 1 if component i fails, xi = 0 otherwise
xi negation of variable xi

pi basic (failure) probability of component i:
pi = Pr {xi = 1}, 1− pi = Pr {xi = 0}

qi a quotient: qi = pi/ (1− pi), 1 ≤ i ≤ n
u = (u1, . . . , un) binary n-tuple describing a system elementary state
Mu

v the (2× n)-matrix whose first and second row are
the binary n-tuples u and v, respectively

Pr {u} occurrence probability of system elementary state u
Φ Boolean (structure) function describing the FT:

Φ = 1 if the system fails, Φ = 0 otherwise
Pr {Φ = 1} top event probability or system unavailability
C1, C0 subsets of the sets of binary n-tuples for which

Φ = 1, 0, respectively:
C1 ⊆ {u ∈ {0, 1}n | Φ (u) = 1}
C0 ⊆ {u ∈ {0, 1}n | Φ (u) = 0}

L, U lower and upper bounds on system unavailability
wH (u) Hamming weight of u, i.e., its number of 1-bits:

wH (u) =
∑n

i=1 ui

u(10 decimal numbering of binary n-tuple u:
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u(10 =
∑n

i=1 2n−iui

� intrinsic order relation between binary n-tuples
. covering relation associated to the intrinsic order
In the partially ordered set ({0, 1}n ,�)
S0 occurrence probability of the binary n-tuple (0, . . . , 0):

S0 = Pr {(0, . . . , 0)} =
∏n

i=1 (1− pi)
Ck

m set of all binary n-tuples with weight m whose 1s are
placed among the k right-most positions

Sk
m sum of probabilities of all binary n-tuples of Ck

m

ε required accuracy to estimate system unavailability
C set of selected binary n-tuples used in the algorithm
T total number of binary n-tuples used in the algorithm
S sum of occurrence probabilities of all binary n-tuples

used in the algorithm
A−B set difference: A−B = {x ∈ A | x /∈ B }
u + C arithmetic sum of element u and set C:

u + C = {u + v | v ∈ C }
|·| cardinality of a set

3. Preliminary results

As commented in Section 1, our algorithm will provide exact lower and
upper bounds on the failure probability Pr {Φ = 1} of an n-component sys-
tem. In the next subsection, we explain how such bounds can be obtained
from any arbitrary subset of the set {0, 1}n of all system elementary states.

3.1. Bounds on system unavailability

Denoting by pi the failure probability of the i-th system component, i.e.,

Pr {xi = 1} = pi, Pr {xi = 0} = 1− pi, 1 ≤ i ≤ n,

then, due to the statistical independence between basic components, the
occurrence probability of each system elementary state u is given by the
expression

Pr {u} = Pr {(u1, . . . , un)} =
n∏

i=1

pui
i (1− pi)

1−ui for all u ∈ {0, 1}n . (3.1)
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In other words, Eq. (3.1) means that Pr {u} can be simply computed as the
product of factors pi or 1− pi, if ui = 1 or ui = 0, respectively.

Now, it is well known that the probability of a Boolean function Φ taking
value 1 can be exactly computed as the sum of the occurrence probabilities of
all system elementary states for which Φ = 1 or, alternatively, as the remain-
der to 1 of the sum of the occurrence probabilities of all system elementary
states for which Φ = 0 [33]. That is,∑

u∈{0,1}n

Φ(u)=1

Pr {u} = Pr {Φ = 1} ≡ 1− Pr {Φ = 0} = 1−
∑

u∈{0,1}n

Φ(u)=0

Pr {u} . (3.2)

For small values of the number n of basic system components, Eq. (3.2)
enables one to exactly compute the failure probability, Pr {Φ = 1}, of the
system. However, for large values of n this procedure is not feasible in prac-
tice because of the exponential nature of the problem. Just think that there
are 2n binary n-tuples of 0s and 1s. To overcome this obstacle, we can obtain
lower and upper bounds L, U on the top event probability, Pr {Φ = 1}, as
follows.

Let C ⊆ {0, 1}n be an arbitrary subset of binary n-tuples (system ele-
mentary states), and let C1 and C0 be the two subsets of C for which Φ = 1
and Φ = 0, respectively, i.e.,

C1 = {u ∈ C | Φ (u) = 1} , C0 = {u ∈ C | Φ (u) = 0} .

Then using Eq. (3.2) we have∑
u∈C1

Pr {u} ≤
∑

u∈{0,1}n

Φ(u)=1

Pr {u} = Pr {Φ = 1} , (3.3)

∑
u∈C0

Pr {u} ≤
∑

u∈{0,1}n

Φ(u)=0

Pr {u} = Pr {Φ = 0} (3.4)

and from (3.3) and (3.4) we get the following lower and upper bounds L, U

L =
∑
u∈C1

Pr {u} ≤ Pr {Φ = 1} ≡ 1− Pr {Φ = 0} ≤ 1−
∑
u∈C0

Pr {u} = U.

(3.5)
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Note that, for a fixed set C of binary n-tuples, the above bounds L and
U depend on the Boolean function Φ, because the same happens with the
set partition

C = {u ∈ C | Φ (u) = 0} ∪ {u ∈ C | Φ (u) = 1} = C0 ∪ C1.

However, the maximum error in the estimation (difference between upper
and lower bounds)

U − L =

(
1−

∑
u∈C0

Pr {u}

)
−
∑
u∈C1

Pr {u} = 1−
∑

u∈C0 ∪ C1=C

Pr {u} (3.6)

is completely independent of the FT logic (i.e., it is the same for any Boolean
function Φ), and it only depends on the total sum,

∑
u∈C Pr {u}, of the occur-

rence probabilities of all the selected binary n-tuples u ∈ C. More precisely,
the accuracy in the estimate of the system unavailability, Pr {Φ = 1}, im-
proves at the same time as the maximum error U − L decreases, i.e., at
the same time as this total sum,

∑
u∈C Pr {u}, increases, as Eq. (3.6) has

shown [27].
Consequently, the main question is how to select the minor number of

system elementary states, u ∈ C, with occurrence probabilities, Pr {u}, as
large as possible, in order to minimize the computational cost –by increasing
the last sum in Eq. (3.6)– when estimating the system unavailability with
an acceptable accuracy, by using Eq. (3.5).

Note that the simplest answer to this question, namely ordering the 2n

binary n-tuple probabilities is not valid, because of the exponential nature of
the problem and the high computational costs in sorting algorithms. To avoid
this obstacle, in [25] we have established a simple, positional criterion that
allows us to compare two given elementary state probabilities, Pr {u} , Pr {v},
without computing them, simply looking at the positions of the 0s and 1s in
the n-tuples u, v. This criterion is explained in detail below.

3.2. The intrinsic order

In the following, we indistinctly denote the n-tuple u ∈ {0, 1}n by its
binary representation (u1, . . . , un) or by its decimal representation, denoted
here by u(10 , and we use the symbol “≡” to indicate the conversion between
them, i.e.,

u = (u1, . . . , un) ≡ u(10 =
n∑

i=1

2n−iui,
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e.g., for n = 7

u = (1, 0, 0, 1, 0, 1, 1) ≡ u(10 = 20 + 21 + 23 + 26 = 75.

3.2.1. The intrinsic order criterion

Given two system elementary states u, v ∈ {0, 1}n, the ordering between
their occurrence probabilities Pr (u), Pr (v) obviously depends on the basic
failure probabilities pi, as the following simple example shows.

Example 3.1. Let n = 3, u = 3 ≡ (0, 1, 1) and v = 4 ≡ (1, 0, 0). Using Eq.
(3.1), we have

p1 = 0.1, p2 = 0.2, p3 = 0.3 : Pr {(0, 1, 1)} = 0.054 < Pr {(1, 0, 0)} = 0.056,

p1 = 0.2, p2 = 0.3, p3 = 0.4 : Pr {(0, 1, 1)} = 0.096 > Pr {(1, 0, 0)} = 0.084.

However, under some adequate assumptions, for some pairs of binary
strings the ordering between their occurrence probabilities is independent of
the basic probabilities pi, and it only depends on the relative positions of their
0s and 1s. More precisely, the following theorem [25, 27] provides us with an
intrinsic, positional order criterion to compare the occurrence probabilities
of two given binary n-tuples without computing them.

Theorem 3.1 (The intrinsic order theorem). Let n ≥ 1. Let x1, . . . , xn

be the n basic components of an n-component system. Assume that they are
statistically independent and that their basic probabilities pi = Pr {xi = 1}
satisfy

0 < p1 ≤ p2 ≤ · · · ≤ pn ≤
1

2
. (3.7)

Then the probability of the n-tuple v = (v1, . . . , vn) ∈ {0, 1}n is intrinsically
less than or equal to the probability of the n-tuple u = (u1, . . . , un) ∈ {0, 1}n

(that is, for all set of basic probabilities {pi}n
i=1satisfying (3.7)) if and only if

the matrix

Mu
v =

(
u1 . . . un

v1 . . . vn

)
either has no

(
1
0

)
column, or for each

(
1
0

)
column in Mu

v there exists (at least)

one corresponding preceding
(
0
1

)
column (IOC).
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Remark 3.1. In the following, we assume that the basic probabilities pi

always satisfy condition (3.7). Note that this hypothesis is not restrictive for
practical applications because, if for some i : pi > 1

2
, then we only need to

consider the variable xi = 1 − xi, instead of xi. Next, we order the n new
Boolean variables by increasing order of their probabilities.

Remark 3.2. The main computational advantage of Theorem 3.1 is that,
instead of computing and ordering the 2n binary n-tuple probabilities Pr {u},
we only need to order the n basic probabilities pi, as shown in Eq. (3.7). In
other words, IOC reduces the complexity of the problem from exponential to
linear!

Remark 3.3. The
(
0
1

)
column preceding to each

(
1
0

)
column is not required

to be necessarily placed at the immediately previous position, but just at
previous position.

Remark 3.4. The term corresponding, used in Theorem 3.1, has the follow-
ing meaning: For each two

(
1
0

)
columns in matrix Mu

v , there must exist (at

least) two different
(
0
1

)
columns preceding to each other. In other words: For

each
(
1
0

)
column in matrix Mu

v , the number of preceding
(
0
1

)
columns must

be strictly greater than the number of preceding
(
1
0

)
columns.

The matrix condition IOC, stated by Theorem 3.1, is called the intrinsic
order criterion, because it is independent of the basic probabilities pi and
it only (i.e., intrinsically) depends on the relative positions of the 0s and 1s
in the binary strings u and v. Theorem 3.1 naturally leads to the following
partial order relation on the set {0, 1}n [25, 26]. The so-called intrinsic order
will be denoted by “�”, and when v � u we say that v is intrinsically less
than or equal to u.

Definition 3.1. For all u, v ∈ {0, 1}n

v � u iff Pr {v} ≤ Pr {u} for all set of basic probabilities {pi}n
i=1 s.t. (3.7)

iff matrix Mu
v satisfies IOC.

Throughout this paper, the partially ordered set (poset, for short) for n
variables ({0, 1}n ,�) will be denoted by In; see [34] for more details about
posets.
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Example 3.2. For n = 3: 3 ≡ (0, 1, 1) � 4 ≡ (1, 0, 0) and also, we have
that 4 ≡ (1, 0, 0) � 3 ≡ (0, 1, 1) because(

1 0 0
0 1 1

)
and

(
0 1 1
1 0 0

)
do not satisfy IOC (Remark 3.4). Therefore, (0, 1, 1) and (1, 0, 0) are in-
comparable by intrinsic order, i.e., the ordering between Pr { (0, 1, 1)} and
Pr { (1, 0, 0)} depends on the basic probabilities pi, as Example 3.1 has shown.

Example 3.3. For n = 4: 12 ≡ (1, 1, 0, 0) � 3 ≡ (0, 0, 1, 1) because(
0 0 1 1
1 1 0 0

)
satisfies IOC (Remark 3.3). Therefore, for all 0 < p1 ≤ p2 ≤ p3 ≤ p4 ≤ 1

2

Pr {(1, 1, 0, 0)} ≤ Pr {(0, 0, 1, 1)} .

Many different properties of the intrinsic order can be immediately de-
rived from its simple matrix description IOC. We refer the reader to [25,
26, 27, 28, 29, 30, 31, 32] for both theoretical consequences and practical
applications of IOC.

3.2.2. The intrinsic order graph

To finish this section, we present the graphical representation of the poset
In = ({0, 1}n ,�). The usual representation of a poset is its Hasse diagram
(see [34] for more details about these diagrams). Specifically, for our poset
In, its Hasse diagram is a directed graph (digraph, for short) whose vertices
are the 2n binary n-tuples of 0s and 1s, and whose edges go upward from v
to u whenever u covers v, denoted by u.v. This means that u is intrinsically
greater than v and there are no other elements between them, i.e.,

u . v ⇔ u � v and there is no w ∈ {0, 1}n s.t. u � w � v.

The Hasse diagram of the poset In will be also called the intrinsic order
graph for n variables. For small values of n, the Hasse diagram of In can be
constructed by direct application of IOC. For instance, the Hasse diagram of
I1 = ({0, 1} ,�) is given in Fig. 1.
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Indeed, note that I1 has a downward edge from 0 to 1 because 0 � 1,
since matrix (0

1) satisfies IOC (it has no (1
0) columns; see Theorem 3.1). This

is in accordance with the obvious fact that

Pr {0} = 1− p1 ≥ p1 = Pr {1} , since p1 ≤ 1/2 due to Eq. (3.7).

0
|
1

Fig. 1. The intrinsic order graph for n = 1 using decimal representation.

However, for large values of n we need a more efficient method. For this
purpose, in [29] we have developed an algorithm for iteratively building up,
for all n ≥ 2, the digraph of In from the digraph of I1 (depicted in Fig.
1). The next theorem states this algorithm, using the decimal representation
u(10 of the binary strings u = (u1, . . . , un) ∈ {0, 1}n. See [29] for the proof
and for additional properties of the intrinsic order graph.

Theorem 3.2 (Building up In from I1). For all n > 1, the digraph of
In = {0, . . . , 2n − 1} can be drawn simply by adding to the digraph of In−1 =
{0, . . . , 2n−1 − 1} its isomorphic copy 2n−1 + In−1 = {2n−1, . . . , 2n − 1}. This
addition must be performed placing the powers of 2 at consecutive levels of
the Hasse diagram of In. Finally, the edges connecting one vertex u of In−1

with the other vertex v of 2n−1 + In−1 are given by the set of vertex pairs{
(u, v) ≡

(
u(10 , 2n−2 + u(10

) ∣∣ 2n−2 ≤ u(10 ≤ 2n−1 − 1
}

.

Basically, Theorem 3.2 affirms that to construct In, we first add to In−1

its isomorphic copy 2n−1 +In−1, and then we connect one-to-one the nodes of
“the second half of the first half” to the nodes of “the first half of the second
half”: A nice fractal property of In!

In Fig. 2, the algorithm described by Theorem 3.2 is illustrated with the
intrinsic order graph for n = 1, 2, 3, 4 using the decimal numbering instead
of the binary representation of their 2n nodes, for a more comfortable and
simpler notation. An example of intrinsic order graph using the binary rep-
resentation of its nodes, namely the digraph of I4, is depicted in Fig. 3, in
the next section.

13



The intrinsic order graph of In displays all the binary n-tuples (i.e., its
2n nodes) from top to bottom in decreasing order of their occurrence proba-
bilities, as explained below.

Each pair (u, v) of vertices connected in the digraph of In either by one
edge or by a longer descending path (consisting of more than one edge) from
u to v, means that u is intrinsically greater than v, i.e., u � v. For instance,
looking at the Hasse diagram of I4, the right-most one in Fig. 2, we observe
that 3 ≡ (0, 0, 1, 1) � 12 ≡ (1, 1, 0, 0), in accordance with Example 3.3.

On the contrary, each pair (u, v) of non-connected vertices in the digraph
of In either by one edge or by a longer descending path, means that u and
v are incomparable by intrinsic order, i.e., u � v and v � u. For instance,
looking at the Hasse diagram of I3, the third one from left to right in Fig. 2,
we observe that 3 ≡ (0, 1, 1) and 4 ≡ (1, 0, 0) are incomparable by intrinsic
order, in accordance with Examples 3.1 and 3.2.

0
|
1

0
|
1
|
2
|
3

0
|
1
|
2
| �
3 4

� |
5
|
6
|
7

0
|
1
|
2
| �
3 4

� | �
5 8
| � |
6 9
| � |
7 10

� | �
11 12

� |
13
|

14
|

15

Fig. 2. The intrinsic order graph for n = 1, 2, 3, 4 using decimal representation.

4. New properties of the intrinsic order

Once we have presented, in Section 3, all the required background for
making this paper self-contained, from now on the rest of the paper is devoted

14



to our new results.
The following theorem states new properties of the intrinsic order rela-

tion, that will be used in the proposed algorithm. First, we need to set the
following notation.

For every binary n-tuple u = (u1, . . . , un), the Hamming weight –or sim-
ply the weight– of u, i.e., the number of 1-bits in u, will be denoted by

wH (u) =
n∑

i=1

ui.

The occurrence probability of the zero n-tuple will be denoted by S0, i.e.,
according to Eq. (3.1),

S0 = Pr

{(
0,

n︸︷︷︸. . . , 0

)}
=

n∏
i=1

(1− pi) . (4.1)

For the nonzero n-tuples –that is, for those with weight greater than or
equal to 1–, we shall denote by Ck

m (Sk
m, respectively) the set (the sum of

the probabilities, respectively) of the binary n-tuples with weight m whose
1s are placed among the k right-most positions (1 ≤ m ≤ k ≤ n), i.e.,

Ck
m = {u ∈ {0, 1}n | wH (u) = m, ui = 1 ⇒ i ∈ {n− k + 1, . . . , n}} ,

Sk
m =

∑
u∈Ck

m

Pr {u} .

Note that, for the extreme cases k = m and k = n, we have, on one hand

Cm
m =

{(
0,

n−m︸ ︷︷ ︸. . . , 0, 1,
m︸︷︷︸. . . , 1

)}
, Sm

m = Pr

{(
0,

n−m︸ ︷︷ ︸. . . , 0, 1,
m︸︷︷︸. . . , 1

)}

and, on the other hand

Cn
m = {u ∈ {0, 1}n | wH (u) = m} , Sn

m =
∑

u∈{0,1}n, wH(u)=m

Pr {u} , (4.2)

that is, Cn
m (Sn

m, respectively) is simply the set (the sum of the probabilities,
respectively) of all binary n-tuples with Hamming weight m.
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Obviously, if u is a binary n-tuple with weight m whose 1s are placed
among the k − 1 right-most positions, then u is also a binary n-tuple with
weight m whose 1s are placed among the k right-most positions, i.e.,

Cm
m ⊂ Cm+1

m ⊂ · · · ⊂ Ck−1
m ⊂ Ck

m ⊂ · · · ⊂ Cn−1
m ⊂ Cn

m,

and thus

Sm
m < Sm+1

m < · · · < Sk−1
m < Sk

m < · · · < Sn−1
m < Sn

m.

Theorem 4.1. Let n ≥ 1. Then
(i) For every binary n-tuple v with weight m > 0, there exists, at least, one
binary n-tuple u with weight m− 1 such that u � v.
(ii) For every binary n-tuple v ∈ Ck

m−Ck−1
m , such that 0 < m < k ≤ n, there

exists, at least, one binary n-tuple u ∈ Ck−1
m such that u � v.

Proof. We give a constructive proof explicitly defining the binary strings u.
(i) Let v be a binary n-tuple with weight m > 0. Choose any index j ∈
{1, . . . , n} such that vj = 1. Define u as follows

ui =

{
0 if i = j,
vi if i 6= j.

In this way, wH (u) = wH (v)− 1 = m− 1. Moreover, matrix Mu
v has exactly

one
(
0
1

)
column (its j-th one), while its remaining n−1 columns are either

(
0
0

)
or
(
1
1

)
. Hence, Mu

v has no
(
1
0

)
columns and then, by Theorem 3.1, it satisfies

IOC. Therefore, by Definition 3.1, u � v.
(ii) Let v ∈ Ck

m−Ck−1
m (m < k ≤ n). Then v is a binary n-tuple with weight

m whose 1s are placed among the k right-most positions, but not among the
k − 1 right-most positions. Hence, since vn−k+1 is the bit placed at the k-th
position from right to left in the n-tuple v, we have

vn−k+1 = 1 and ∃ j > n− k + 1 s.t. vj = 0.

Define u as follows

ui =


0 if i = n− k + 1,
1 if i = j,
vi if i 6= n− k + 1, j.
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In this way, wH (u) = wH (v) = m, and u ∈ Ck−1
m . Moreover, matrix Mu

v

has exactly one
(
1
0

)
column (its j-th one) and exactly one

(
0
1

)
column (its

(n− k + 1)-th one), while its remaining n− 2 columns are either
(
0
0

)
or
(
1
1

)
.

Hence, the only
(
1
0

)
column of Mu

v is preceded by a corresponding
(
0
1

)
column

(since n−k+1 < j), and thus, by Theorem 3.1, Mu
v satisfies IOC. Therefore,

by Definition 3.1, u � v. �

Theorem 4.1 and its proof can be illustrated by Fig. 3, where the digraph
of I4 (the right-most one in Fig. 2) is depicted using now the binary repre-
sentation of their nodes, instead of their decimal equivalents. For instance,
consider the binary 4-tuple v = (1, 1, 0, 0) ∈ {0, 1}4. On one hand, since
m = wH (v) = 2 then, according to Theorem 4.1-(i), we can choose, e.g.,
u = (1, 0, 0, 0), so that wH (u) = 1 and u � v. On the other hand, since
v = (1, 1, 0, 0) ∈ C4

2−C3
2 then, according to Theorem 4.1-(ii), we can choose,

e.g., u = (0, 1, 1, 0), so that wH (u) = 2, u ∈ C3
2 and u � v.

(0, 0, 0, 0)
|

(0, 0, 0, 1)
|

(0, 0, 1, 0)
| �

(0, 0, 1, 1) (0, 1, 0, 0)
� | �

(0, 1, 0, 1) (1, 0, 0, 0)
| � |

(0, 1, 1, 0) (1, 0, 0, 1)
| � |

(0, 1, 1, 1) (1, 0, 1, 0)
� | �

(1, 0, 1, 1) (1, 1, 0, 0)
� |

(1, 1, 0, 1)
|

(1, 1, 1, 0)
|

(1, 1, 1, 1)

Fig. 3. The intrinsic order graph for n = 4 using binary representation.
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5. The sums Sk
m and the Pascal’s triangle

In this section, we present a simple recurrence relation, closely related
to the Pascal’s triangle, for rapidly computing the sums Sk

m defined in the
previous section. This relation is given in the next theorem. Due to its
recursiveness, our formula is very adequate for computational purposes and,
indeed, it is the main result underlying our algorithm for estimating the
system unavailability –presented in the next section.

First, we associate to each one of the basic probabilities pi (1 ≤ i ≤ n),
the corresponding quotient

qi =
pi

1− pi

for all i = 1, 2, . . . , n.

Note that, due to our hypothesis (3.7) and to the increasing character of
function y = x

1−x
, we have

0 < q1 ≤ q2 ≤ · · · ≤ qn ≤ 1.

Remark 5.1. We must highlight here that the above quotients qi can be
used to reduce the computational cost, when computing the occurrence prob-
abilities of the binary n-tuples u = (u1, . . . , un). Instead of using Eq. (3.1),
taking advantage of the occurrence probability S0 of the zero n-tuple (com-
puted by Eq. (4.1)), we have

Pr {u} = Pr {(u1, . . . , un)} =
n∏

i=1

pui
i (1− pi)

1−ui =
n∏

i=1
ui=1

pi

n∏
i=1

ui=0

(1− pi)

=
n∏

i=1
ui=1

pi

1− pi

n∏
i=1

(1− pi) = Pr

{(
0,

n︸︷︷︸. . . , 0

)} n∏
i=1

ui=1

qi = S0

n∏
i=1

ui=1

qi,

so that

Pr {u} = Pr {(u1, . . . , un)} = S0

n∏
i=1

ui=1

qi. (5.1)

The above strategy for deriving Eq. (5.1) (which computes the binary string
probabilities) has also been used in [27] for a different purpose, namely for
obtaining an explicit, non-recursive formula to compute the maximum error
in the estimation of the system unavailability.
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We stress out the fact that Eq. (5.1) is especially useful for reducing the
computational cost, when the Hamming weight of u (i.e., the number of bits
ui = 1) is small, which is in general the case for the bitstrings used in the
algorithm that we propose in the next section. Indeed, suppose that we want
to compute the occurrence probability of a binary n-tuple u = (u1, . . . , un)
with a small weight m. If we use Eq. (3.1), we need to multiply the n factors

pui
i (1− pi)

1−ui =

{
pi if ui = 1,

1− pi if ui = 0
(1 ≤ i ≤ n) .

Otherwise, using Eq. (5.1), we only need to multiply the m + 1 factors
S0, qi1 , . . . , qim , where i1, . . . , im are the positions of the m 1-bits in u. For
instance, for

n = 9, u = (0, 0, 1, 0, 0, 0, 0, 1, 1) , wH (u) = 3,

using Eq. (3.1), we get

Pr {u} = (1− p1) (1− p2) p3 (1− p4) (1− p5) (1− p6) (1− p7) p8 p9,

while, using Eq. (5.1), we get

Pr {u} = S0 q3 q8 q9.

Theorem 5.1. For all n ≥ 1 and for all m, k such that 1 ≤ m ≤ k ≤ n

Sk
m = Sk−1

m + qn−k+1S
k−1
m−1, (5.2)

where we adopt the conventions that Sk
0 = S0 for all k = 0, 1, . . . , n − 1 and

Sm−1
m = 0 for all m = 1, 2, . . . , n.

Proof. First, note that, according to the definition of the sums Sk
m, the

expressions Sk
0 (0 ≤ k ≤ n− 1) and Sm−1

m (1 ≤ m ≤ n), to which the above
conventions are referred, do not make sense. We distinguish the following
two cases.
(a) For k = m, we have

Sm
m = Pr

{(
0,

n−m︸ ︷︷ ︸. . . , 0, 1,
m︸︷︷︸. . . , 1

)}

=
pn−m+1

1− pn−m+1

Pr

{(
0,

n−m + 1︸ ︷︷ ︸. . . , 0, 1,
m− 1︸ ︷︷ ︸. . . , 1

)}
= qn−m+1S

m−1
m−1
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and this is exactly Eq. (5.2) for k = m, since we have adopted the convention
that Sm−1

m = 0 (1 ≤ m ≤ n).
(b) For k > m, we give a combinatorial proof. The set Ck

m of the binary
n-tuples (u1, . . . , un) with weight m whose 1s are placed among the k right-
most positions, namely n−k+1, . . . , n, can be partitioned into the following
two subsets:

(b.1) The subset of n-tuples u ∈ Ck
m such that un−k+1 = 0.

(b.2) The subset of n-tuples u ∈ Ck
m such that un−k+1 = 1.

The first subset is exactly the set of binary n-tuples with weight m whose
m 1s are placed among the k−1 right-most positions, i.e., the set Ck−1

m . The
second subset is exactly the set of binary n-tuples with weight m such that
un−k+1 = 1 and whose remaining m − 1 1-bits are placed among the k − 1
right-most positions, i.e., the set(

0,
n− k︸ ︷︷ ︸. . . , 0, 1, 0,

k − 1︸ ︷︷ ︸. . . , 0

)
+ Ck−1

m−1

=

{(
0,

n− k︸ ︷︷ ︸. . . , 0, 1, 0,
k − 1︸ ︷︷ ︸. . . , 0

)
+ v

∣∣ v ∈ Ck−1
m−1

}
.

So, we have the set partition

Ck
m = Ck−1

m ∪

[(
0,

n− k︸ ︷︷ ︸. . . , 0, 1, 0,
k − 1︸ ︷︷ ︸. . . , 0

)
+ Ck−1

m−1

]
(5.3)

and thus we get
Sk

m = Sk−1
m + qn−k+1S

k−1
m−1,

since Sk
m, Sk−1

m and qn−k+1S
k−1
m−1 are obviously the sums of the occurrence

probabilities of all the n-tuples belonging to the sets

Ck
m, Ck−1

m and

(
0,

n− k︸ ︷︷ ︸. . . , 0, 1, 0,
k − 1︸ ︷︷ ︸. . . , 0

)
+ Ck−1

m−1,

respectively. �

The above combinatorial proof suggests a tight connection between our
model and the famous Pascal’s triangle. Indeed, note that each sum Sk

m is
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taken over the corresponding set Ck
m, whose cardinality is the combinatorial

number
(

k
m

)
, since m 1s must be placed among k positions. That is,

Sk
m =

∑
u∈Ck

m

Pr {u} and
∣∣Ck

m

∣∣ =

(
k

m

)
, 1 ≤ m ≤ k ≤ n. (5.4)

In Fig. 4, we illustrate this connection. The left triangle contains the
sums Sk

m (1 ≤ m ≤ k ≤ 4) of system elementary state probabilities. The
right triangle contains the binomial coefficients

(
k
m

)
(1 ≤ m ≤ k ≤ 4), that

is, it is the Pascal’s triangle where its left-most diagonal
{(

k
0

)}
k≥0

has been
deleted in order to avoid the repetition of the zero n-tuple probability S0.
Clearly, Eq. (5.4) shows that each one of the sums Sk

m is taken over exactly(
k
m

)
binary strings. The interpretation of Fig. 4, for the relationship between

accuracy and computational cost, is the following. The error estimate of
the system unavailability, Pr {Φ = 1}, is reduced by the quantity Sk

m at the
same time as the Boolean function Φ, describing the FT logic, needs to be
evaluated at

(
k
m

)
binary strings.

S1
1

S2
1 S2

2

S3
1 S3

2 S3
3

S4
1 S4

2 S4
3 S4

4

(
1
1

)(
2
1

) (
2
2

)(
3
1

) (
3
2

) (
3
3

)(
4
1

) (
4
2

) (
4
3

) (
4
4

)
Fig. 4. Accuracy/computational cost ratio and the Pascal’s triangle.

Moreover, for the case m < k, counting the binary n-tuples involved in
each of the three sums of formula (5.2) or, equivalently, counting the binary
n-tuples belonging to each of the three sets of partition (5.3), we get∣∣Ck

m

∣∣ =
∣∣Ck−1

m

∣∣+ ∣∣Ck−1
m−1

∣∣ ,
and then, using Eq. (5.4), we obtain the famous Pascal’s formula(

k

m

)
=

(
k − 1

m

)
+

(
k − 1

m− 1

)
.

6. The algorithm

Based on the previous ideas and propositions, in this section we present
a new algorithm for evaluating the system unavailability. We call it the
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FTA via Intrinsic Ordering & Pascal’s Triangle Algorithm (FTAIOPT -
Algorithm, for short) because the FTA of the current system is based on
an adequate selection of binary n-tuples (i.e., with large occurrence prob-
abilities) tightly connected to both the intrinsic ordering and the Pascal’s
triangle. Next, we illustrate our approach on a real-world analysis problem
taken from [35].

6.1. The FTAIOPT-Algorithm

For each given maximum admissible error ε, the FTAIOPT-Algorithm
provides lower and upper bounds on the failure probability Pr {Φ = 1} of
a (coherent or non-coherent) system depending on n mutually independent
basic components. The set {pi}n

i=1 of basic probabilities must satisfy the
(non-restrictive) hypothesis (3.7). If this assumption is not satisfied by the
current system, then we proceed as explained in Remark 3.1 and next, we
rewrite the Boolean function Φ using the new Boolean variables.

The following are the main ideas of the FTAIOPT-Algorithm:
(i) Theorem 4.1-(i) has stated that for every nonzero binary n-tuple v of
weight m we can always find a binary n-tuple u of weight m−1, s.t. Pr {u} >
Pr {v}. Theorem 4.1-(ii) has stated that for every nonzero binary n-tuple v
of weight m whose 1s are placed among the k right-most positions, but not
among the k − 1 right-most positions, we can always find a binary n-tuple
u of weight m whose 1s are placed among the k − 1 right-most positions,
s.t. Pr {u} > Pr {v}. Hence, we select the sets Ck

m of binary n-tuples in
increasing order of the weight m (for m = 1 to n), and for each fixed weight
m, in increasing order of k (for k = m to n).
(ii) To compute the sums Sk

m, we use the recurrence formula (5.2) stated by
Theorem 5.1.
(iii) In order to get the required accuracy (maximum admissible error ε), we
select the binary n-tuples until we assure that the sum of their occurrence
probabilities is greater than or equal to 1 − ε. In this way, according to
Eq. (3.6), we have∑

u∈C

Pr {u} ≥ 1− ε ⇔ U − L = 1−
∑
u∈C

Pr {u} ≤ ε. (6.1)

(iv) For each one of the selected binary n-tuples, u ∈ C, we compute its oc-
currence probability, Pr {u}, by Eq. (3.1) and evaluate the Boolean function
Φ. According to Eq. (3.5), we get the lower and upper bounds on system
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unavailability

L =
∑

u∈C, Φ(u)=1

Pr {u} ≤ Pr {Φ = 1} ≤ 1−
∑

u∈C, Φ(u)=0

Pr {u} = U,

satisfying, as desired,
U − L ≤ ε.

Based on these ideas, our algorithm can be described as follows.
The FTAIOPT-Algorithm

Step 1. For i = 1 to n compute qi = pi

1−pi
.

Step 2. Compute S0 = Pr

{(
0,

n︸︷︷︸. . . , 0

)}
(using Eq. (4.1)).

Step 3. If S0 ≥ 1− ε (the zero n-tuple is enough!) then goto Step 9 (due to
Eq. (6.1))
Step 4. For k = 0, 1, . . . , n − 1 : define Sk

0 = S0 (by convention, Theorem
5.1).
Step 5. For m = 1, 2, . . . , n : define Sm−1

m = 0 (by convention, Theorem
5.1).
Step 6. Call S = S0.
Step 7. For m = 1 to n (due to Theorem 4.1)

For k = m to n (due to Theorem 4.1)
compute Sk

m = Sk−1
m + qn−k+1S

k−1
m−1 (by Theorem 5.1)

if S + Sk
m ≥ 1− ε then goto Step 8 (due to Eq. (6.1))

Next k
Compute S = S + Sn

m (S is the sum of the probabilities of all
n-tuples with weights 0, . . . ,m, due to Eq. (4.2))

Next m
Step 8. For all nonzero selected n-tuples u ∈ Cn

1 ∪ · · · ∪Cn
m−1 ∪Ck

m compute
Pr {u} (using Eq. (5.1)).
Step 9. For all nonzero selected n-tuples u ∈ Cn

1 ∪ · · · ∪ Cn
m−1 ∪ Ck

m and for
the zero n-tuple do:

If Φ (u) = 1 then L = L + Pr {u} ,
If Φ (u) = 0 then V = V + Pr {u} .

Step 10. Compute U = 1− V and write (due to Eq. (3.5))

L ≤ Pr {Φ = 1} ≤ U.
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6.2. A real-world example

Our real-life example corresponds to the accumulator system (ACC) of
a pressured water reactor (PWR) in a nuclear power plant, which has been
taken from [35]. The ACC is a passive injection system that is a part of the
PWR emergency core coolant injection system, where one accumulator is at-
tached to the cold leg of each loop of the reactor coolant system to provide a
source of emergency make-up water for that loop if a loss of coolant accident
(LOCA) occurs. The accumulator is simply a pressure vessel partially filled
with borated water, and pressurized with nitrogen gas. When pressure in
the cold leg drops below 650 psig, the check valves open, and borated water
is forced into the reactor coolant system. The PWR has 3 loops, hence there
are three accumulators, one attached to cold leg of each loop. The contents of
2 accumulators are required to successfully reflood the core following a large
LOCA. If a LOCA occurs in a cold leg, the content of the corresponding
accumulator is lost through the break; thus both of the remaining 2 accu-
mulators must successfully discharge their contents into the reactor coolant
system to protect the core. Therefore, success for the accumulator discharge
to the reactor coolant system for the postulated cold leg LOCA requires both
accumulators. The total CPU time required to solve this numerical example
was less than one second, using a 2GHz Pentium IV.

The ACC failure behavior is represented by a coherent fault tree with
83 basic components and 42 logic gates. For a maximum admissible error
ε = 10−6, it was enough to use the zero 83-tuple (with weight m = 0); all the
83 binary 83-tuples of weight m = 1; and the

(
34
2

)
= 561 binary 83-tuples of

weight m = 2, whose 1s are placed among the k = 34 right-most positions.
That is, the set of selected binary 83-tuples was

C = {0} ∪ C83
1 ∪ C34

2 .

Then, using a total number of (see Eq. (5.4) and Fig. 4)

T = |{0}|+
∣∣C83

1

∣∣+ ∣∣C34
2

∣∣ =

(
83

0

)
+

(
83

1

)
+

(
34

2

)
= 645

binary 83-tuples, the sum of the occurrence probabilities of all selected bit-
strings was (see Eqs. (4.1) & (5.4))∑
u∈C

Pr {u} = S = S0 +S83
1 +S34

2 = 9999.99065 ·10−4 ≥ 9999.99 ·10−4 = 1− ε.
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In this way, we have obtained the following lower and upper bounds on the
ACC unavailability

L = 3.74552 · 10−4 ≤ Pr {Φ = 1} ≤ 3.75487 · 10−4 = U,

satisfying, as desired (see Eq. (6.1) and Step 7),

U − L = 9.35 · 10−7 < 10−6 = ε.

Note that Steps 1-7 of the algorithm have determined that the above
binary 83-tuples are enough for estimating the ACC unavailability with the
required accuracy ε = 10−6. These steps only involve the basic probabilities
pi and the required accuracy ε. Thus, the same 645 binary strings are also
enough to estimate the top event probability of any other coherent or non-
coherent 83-system with the same set {pi}83

i=1 of basic probabilities as the
ACC system, and for the same maximum admissible error ε = 10−6.

Next, in Step 8 the occurrence probabilities of these 645 selected binary
strings are computed. Of course, due to the way in which Step 7 selects
the binary n-tuples (in increasing order of their Hamming weights), these
calculations can be carried out, with a very low computational cost (taking
advantage of the value S0 computed in Step 2), simply by using Eq. (5.1).
See Remark 5.1 and Step 8.

Note that the Boolean structure (function) of the system has not yet
used, i.e., the results obtained by Steps 1-8 are valid with independence of
the FT logic! In particular, it is also irrelevant whether the current system
is coherent or non-coherent.

Then, for each given structure function Φ, we only need to evaluate the
current Boolean function Φ on the 645 selected binary 83-tuples for obtain-
ing the corresponding exact lower and upper bounds L, U for each given
maximum admissible error (Steps 9-10).

Under quite general hypotheses, our algorithm provides exact lower and
upper bounds on system unavailability for a given accuracy. The main char-
acteristics and advantages of the proposed method are the following:
(i) Our algorithm, based on Eq. (3.5) and on the IOC, does not require any
knowledge or information (that other techniques often require) about the FT
structure function. This is the main advantage, compared with many other
methods. (ii) Because of Eqs. (3.5) and (3.6), the accuracy in the estimation
is independent of the FT logic, and it only depends on the sum of the oc-
currence probabilities of the selected binary n-tuples. (iii) Due to Eqs. (3.5)

25



and (6.1), one can assure a priori (i.e., with no need to use the Boolean struc-
ture function) the required accuracy, simply by computing the sum of the
selected binary string probabilities. (iv) For this reason, the set of bitstrings
that the algorithm has selected (using the IOC) for evaluating a given FT
with a maximum admissible error, would be also valid for evaluating, with
the same accuracy, any other FT with the same number of basic events and
with the same basic probabilities. That is, only the lower and upper bounds
depend on the FT logic, but not its difference (accuracy). (v) As explained
in Section 5, the balance between accuracy and computational cost is closely
related to the Pascal’s formula.

Finally, we would like to highlight, with an unquestionable argument, the
relevance (in the context of our model) of the intrinsic ordering for auto-
matically selecting binary n-tuples with large occurrence probabilities. For
large values of the number n of basic components (say, for instance, n = 203,
a reasonable number in practice) computing and sorting all the 2n binary
n-tuples in decreasing order of their occurrence probabilities would be not
only computationally expensive, but indeed physically impossible! Just think
that nowadays physicists estimate that the age of the Universe (from the Big-
Bang to present) is roughly 2203 Planck times. Recall that the Planck time is
the smallest possible measurement of time that has any physical meaning (1
Planck time ∼= 5.391 · 10−44 seconds; 1 second ∼= 1.855 · 1043 Planck times).

7. Conclusion

In this paper, we have presented a new, easily implementable algorithm
for obtaining exact lower and upper bounds on the system unavailability of
complex technical systems depending on an arbitrarily large number n of
statistically independent basic components. Our algorithm does not require
any previous qualitative analysis of the FT, its efficiency is independent of
the complexity of the FT logic, and it is based on the adequate selection of
system elementary states with large occurrence probabilities.

For selecting such system elementary states, we have derived new theo-
retical properties of the intrinsic ordering based on IOC: A matrix, positional
criterion that allows us to automatically compare binary n-tuple probabilities
without computing them, simply looking at the relative positions of their 0s
and 1s.

For assuring a priori the required accuracy in the estimation, we have
presented a recurrence relation, tightly related to the famous Pascal’s for-
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mula, for rapidly computing the sum Sk
m of the occurrence probabilities of

all binary n-tuples with weight m whose 1s are placed among the k right-
most positions. The accuracy improves by the quantity Sk

m at the same time
as the computational cost increases by the number

(
k
m

)
of bitstrings involved

in that sum, and used in the algorithm.
Finally, for future research one can think on improving the efficiency of

the proposed algorithm by finding alternative ways for automatically select-
ing system elementary states with large occurrence probabilities. Such new
selection strategies would be based on new theoretical properties of the in-
trinsic order relation, obtained from IOC.
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[16] C. Ibáñez-LLano, A. Rauzy, E. Meléndez, F. Nieto, A reduction ap-
proach to improve the quantification of linked fault trees through binary
decision diagrams, Reliab. Eng. Syst. Safety 95 (2010) 1314-1323.

[17] S. Reed, J.D. Andrews, S.J. Dunnett, Improved efficiency in the analysis
of phased mission systems with multiple failure mode components, IEEE
Trans. Reliab. 60 (2011) 70-79.

[18] A. Mentes, I.H. Helvacioglu, An application of fuzzy fault tree analysis
for spread mooring systems, Ocean Eng. 38 (2011) 285-294.

28



[19] J. Wu, S. Yan, L. Xie, Reliability analysis method of a solar array by us-
ing fault tree analysis and fuzzy reasoning Petri net, Acta Astronautica
69 (2011) 960-968.

[20] S.H. Han, H.-G. Lim, Top event probability evaluation of a fault tree
having circular logics by using Monte Carlo method, Nuclear Eng. De-
sign 243 (2012) 336-340.

[21] Y. Wang, Q. Li, M. Chang, H. Chen, G. Zang, Research on fault di-
agnosis expert system based on the neural network and the fault tree
technology, Procedia Eng. 31 (2012) 1206-1210.

[22] R.E. Barlow, F. Proschan, Statistical Theory of Reliability and Life
Testing: Probability Models, To Begin With, Silver Spring, MD, 1981.

[23] S. Beeson, J. Andrews, Calculating the failure intensity of a non-
coherent fault tree using the BDD technique, Qual. Reliab. Eng. Int.
20 (2004) 225-235.

[24] T.L. Chu, G. Apostolakis, Methods for probabilistic analysis of nonco-
herent fault trees, IEEE Trans. Reliab. R-29 (1980) 354-360.
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