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Abstract

In previous works, many authors have widely used mass consistent models for wind field
simulation by the finite element method. On one hand, we have developed a 3-D mass
consistent model by using tetrahedral meshes which are simultaneously adapted to complex
orography and to terrain roughness length. In addition, we have included a local refinement
strategy around several measurement or control points, significant contours, as for example
shorelines, or numerical solution singularities. On the other hand, we have developed a 2.5-
D model for simulating the wind velocity in a 3-D domain in terms of the terrain elevation,
the surface temperature and the meteorological wind, whichis consider as an averaged
wind on vertical boundaries. Using the meteorological windas datum, the 2.5-D model
provides a 3-D local wind modified by topography and thermal gradients on the surface by
solving only a 2-D optimal control problem where the boundary condition is the control.
In this case, the finite element discretization consists on atriangular mesh adapted to the
terrain topography and roughness length. In both models, the wind field adjusts to several
wind speed measurements at several points in the 3-D domain and eventually to an average
wind flux on the boundary.

In this paper we introduce several advances in the 2.5-D and 3-D wind models and we
compare their results on a region located in the Province of Lugo (Spain) with realistic
data that have been provided by the companyDesarrollos Éolicos S.A.(DESA). In order
to obtain the best adjustment of models results to the measurements, the main parameters
governing the models are estimated by using genetic algorithms with a parallel implemen-
tation.

Key words: Wind field modelling, mass consistent models, parameter estimation, genetic
algorithms, adaptive mesh refinement, finite element method.
PACS:

Preprint submitted to Elsevier 19 April 2010

Manuscript
Click here to view linked References

http://ees.elsevier.com/indaer/viewRCResults.aspx?pdf=1&docID=761&rev=2&fileID=23889&msid={B8D79CE8-59D0-46F7-9B39-7FF4C92B8923}


1 Introduction

The society has been becoming aware of environmental problems (climate change)
and nowadays it appreciates the use of renewable energies. Along last years the use
of wind power for producing electric energy has augmented considerably. So com-
panies of this sector are requesting more and more sophisticated tools that allow
them to face the competitive and demanding market. Wind models are interesting
tools to the study of several problems related to the atmosphere, such as, the ef-
fect of wind on structures, pollutant transport [26], fire spreading [19], wind farm
location, etc.

Diagnostic models are not used to make forecasts through integrating conservative
relations [30]. Therefore they are also called kinetic models [12]. These models
generate wind fields that satisfy some physical conditions.If mass conservation law
is the only imposed restriction, we are defining a mass consistent model [13,35].
The relative simplicity of diagnostic models makes them attractive from the prac-
tical point of view, since they do not require many input dataand may be easily
used. Pennel [29] checked that, in some cases, improved massconsistent models
such as NOABL and COMPLEX obtained better results than otherdynamic mod-
els which are more complex and expensive. However, we have totake into account
that a simple mass consistent models neither consider thermal effects nor those
due to pressure gradients. As a consequence, problems like sea breezes can not be
simulated with these models unless such effects are incorporated into the initial
wind data using observations in selected locations [11,28]. So, 3-D mass consis-
tent models have been designed for simulating the effects ofthe orography on the
steady average wind (i.e., average wind in intervals from 10minutes to 1 hour) by
imposing the incompressibility condition for the air. There exists a wide range of
diagnostic models which have been used by scientists in problems of meteorology
and air pollution.

The primitive 2-D mass consistent models did not consider the terrain orography
and the vertical profile of the wind. They built an horizontalinterpolated wind field
taking into account only the distance from the mesh nodes to the measurement
stations and then they solved the two-dimensional ellipticproblem arising from
the discretization in a plane; see [37] for a 2-D adaptive finite element model with
a mixed formulation. Nowadays, in problems defined over complex terrain, it is
possible to use high quality adaptive 3-D meshes of the studied domains. However,
most of the existing models use to work with uniform meshes. This strategy is
impracticable for problems with complex terrain since the size of the elements must
be very small in order to capture the digital information of the terrain elevation.
Moreover, in this case there would be regions where such small element size would
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not be necessary. This would finally lead us to larger linear systems of equations
and higher computational cost for solving them. Our first 3-Dmodels (see [23,24])
had some of these limitations since the meshes used for defining the terrain surface
were uniform.

In [26,27], we presented a new 3-D finite element model that uses adaptive unstruc-
tured meshes of tetrahedrons with elements of small size where it is necessary but
maintaining greater elements where such level of discretization is not required. The
resulting 3-D mesh were constructed by using a refinement/derefinement process to
adapt a 2-D mesh to the terrain surface, a vertical spacing function to locate nodes
in the air and a Delaunay triangulation algorithm [6]. This adaptive mesh gener-
ation technique was introduced in [20,21,25]. The generated mesh has a higher
density of nodes near the terrain surface, where we need moreprecision, or close to
significant contours that has an important role in the simulation, like shorelines or
roughness length contours [7,8]. In a postprocess, the 3-D mesh is smoothed and,
if necessary, untangled by using the algorithm in [7] in order to improve the mesh
quality. In addition, a local refinement procedure was proposed for improving the
numerical solution [10,16]. Finally, although mass consistent models are widely
used, they are often criticized because their results strongly depend on some gov-
erning parameters. These parameters are generally approximated using empirical
criteria. Our 3-D wind model includes a tool for the parameter estimation based on
genetic algorithms [17,27,33].

We have also introduced in the 3-D model a characterization of the atmospheric
stability that is carried out by means of the experimental measures of the intensities
of turbulence. In addition, since several measures are often available at the same
vertical line, we have constructed a least square adjustment of such measures for
developing a vertical profile of wind velocities from an optimum friction velocity.

The main goal of this paper is to compare and show the ability,as well as establish
its limits, of two models providing a wind field with a minimumof experimental
wind data in a real and practical case, more precisely in the case of wind farms
where the user needs to have a short term prediction of the wind from the last
meteorological measures and predictions. The space scale of the meteorological
prediction is usually too large to cover the engineering requirements in a wind farm.
These models provide a solution that can satisfy these requirements and represent
an improvement from the existing mass consistent codes.

We compare results of the 3-D mass consistent model with a 2.5-D vertical diffu-
sion wind field model. If the significant phenomena that we want to simulate occurs
in a zone where the horizontal dimensions are much larger than the vertical one,
then an asymptotic approximation of the primitive Navier-Stokes equations can be
obtained as in the model developed in [1]. The most relevant aspect of this asymp-
totic approach is that provides a three–dimensional velocity wind field that verifies
the incompressibility condition in the air layer, governedby a two–dimensional
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equation, so that it can be coupled with temperature surfacedistribution in order to
take into account thermal effects as sea breezes. In addition, the terrain elevation is
also considered by the model.

The validity of this 2.5-D model has the following limits: The nonlinear terms are
neglected and we assume that the air temperature linearly decreases with the height.
On the contrary the model takes into account buoyancy forces, slope effects and
mass conservation. The 2.5-D wind model presented in this article is an adaptation
of the wind model proposed in [1], such that the data can be given on several points
located in the domain. These data should be obtained from experimental measure-
ments or meteorological predictions.

In order to check the accuracy of the results and the efficiency of the two models
with realistic data, the companyDesarrollos Éolicos S.A.(DESA) has provided
us with technical support about digital terrain elevation maps related to orography
and roughness length, as well as measurements of wind and turbulence intensity in
several anemometers located in Lugo (Spain).

The outline of this paper is as follows. In section 2, we describe the general nota-
tion common to both models. In section 3, we present the 2.5-Dvertical diffusion
wind field model, including the asymptotic equations and theadjustment of point
data by solving an optimal control problem. In section 4, we summarize the 3-D
mass consistent model and we introduce a technique for inserting new information
about wind measures at different heights and turbulence intensities. The 2-D adap-
tive discretization of the terrain surface and the 3-D mesh generation procedure is
presented in section 5, including an adaptive strategy to capture the orography and
roughness information simultaneously and additional local refinements in different
regions of the terrain. Several ideas about the parameter estimation of both models,
with a parallel implementation of genetic algorithms, are summarized in section 6.
A comparison between the results of the 2.5-D and 3-D models,in a realistic case
for an episode along a day, is presented in section 7. Finally, we summarize the
conclusions of this work and the topics that need further research.

2 Notation

Let us consider the three–dimensional domainΩ={(x, z) : x ∈ ω, h(x)< z<δ}
representing the air layer of the studied region. In the 2.5-D model, we assume that
the heightδ is small in front of the width and that the height of the terrain surface at
pointx, h(x), is smaller thanδ. We note that previous assumption is not necessary
in the 3-D model.

We decompose the boundary ofΩ into ∂Ω = S ∪ A ∪ L, whereS = {(x, z) : x ∈
ω, z = h(x)} is the terrain surface,A = {(x, z) : x ∈ ω, z = δ} is the air upper
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horizontal boundary andL = {(x, z) : x ∈ ∂ω, h(x) < z < δ} is the air lateral
vertical boundary.

For the 2.5-D model, letω ⊂ ℜ2 be a two–dimensional normalized bounded do-
main, representing the projection of the three–dimensional terrain surfaceS.

We denote by(x, z) any point of the three–dimensional domainΩ, and by(x) any
point of the bi–dimensional domainω. Then we denote by an indexxz the three–
dimensional operators, and by an indexx the bi-dimensional operators.

We use small letters for the two–dimensional problem, and capital letters for the
three–dimensional problem.

U = (U1, U2, U3) denotes the air velocity field. For the 2.5-D model, we distinguish
the vertical velocity from the horizontal one denotingW = U3, V = (U1, U2). P
is the potential,T is the temperature,τ the time andvm is the meteorological wind.
Depending on the context the symbolU represents instantaneous velocity or mean
velocity.

Finally N is the inner unit normal vector field to∂Ω, andn = (n1, n2) is the inner
unit normal vector field to∂ω.

3 Vertical Diffusion Wind Field Model in 2.5-D

In this section we present the 2.5-D wind model which includes temperature effects.
An asymptotic analysis gives a three dimensional convective model governed by a
two dimensional equation. This model adjusts a three dimensional velocity wind
field in a thin layer under the influence of the orography and temperature distribu-
tion, so that it can be coupled with two dimensional fire spread simulation models
[1].

3.1 Asymptotic equations

The air velocityU = (U1, U2, U3) and the potentialP satisfy the Navier–Stokes
equations. On one hand, the momentum equation reads

∂τU + U · ∇xzU −
1

Re
∆xzU + ∇xzP = λ′Te3 in Ω (1)

whereRe is the Reynolds number,λ′ is an expansion factor ande3 = (0, 0, 1).
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On the other hand, the air compressibility is also neglected, so that

∇xz · U = 0 in Ω (2)

Boundary conditions are

U · N = 0,
∂U

∂N

∣

∣

∣

∣

tan
= ζU onS (3)

U3 = 0, ∂zU1 = ∂zU2 = 0, onA (4)

U
∣

∣

∣

L
= (vm, 0) onL (5)

whereζ is the friction coefficient and the subscripttan denotes the tangential com-
ponent,vm is the meteorological wind, that we assumed to be known, horizontal,
non depending onz and with a null total flux through the lateral boundaryL, that
is,

∂zvm = 0,
∫

∂ω
(δ − h)vm · n ds = 0 (6)

We complete these equations with the initial condition

U|τ=0 = U0 (7)

whereU0 is the initial velocity, that we assume to be known.

Equations (1) to (7) are well posed.

We distinguish the vertical velocity from the horizontal one denotingW = U3,
V = (U1, U2), and we define the horizontal flux at a pointx ∈ ω and timeτ by

V(τ,x) =
∫ δ

h(x)
V(τ,x, z) dz (8)

The incompressibility and the fact that the air does neithercrossS norA, that is,
U · N = 0, involve that the horizontal flux is also incompressible, then

∇x ·V = 0 in ω (9)

Using the fact that thicknessδ of the considered air layer is small compared with
its width and assuming that the wind is not too strong, more preciselyδ′2Re ≪ 1
whereδ′ = δ

width of the layer
, then preserving only the dominant terms and re-scaling

P , equations (1) and (2) give inΩ

−∂2
zzV + ∇xP = 0 (10)

∂zP = λT (11)
∇x · V + ∂zW = 0 (12)
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whereλ = λ′Re. Reynolds number can be absorbed and does not appear in (10)
by choosing properly the scaling of the pressureP . Conditions (3), (4) and (5)
particularly give

(V,W ) · N = 0, ∂zV = ζV, onS (13)
W = 0, ∂zV = 0 onA (14)

V · n = (δ − h)vm · n on∂ω (15)

See [4] for a complete derivation of this vertical diffusionmodel in a similar case.

Equations (10) to (15) are well posed: For givenT andvm, there exists a unique
solution(V,W, P ) (up to an additive constant forP ). For more details about this
convection asymptotic model see [1].

Equations (10) and (11), together with conditions (13) and (14), provide

V(x, z) = m(x, z)∇xp(x) + n(x, z)∇xt̂(x) (16)
where

m(x, z) =
1

2
z2 − δz −

1

2
h2(x) + (δ + ξ)h(x) − ξδ

n(x, z) =−
1

24
z4 +

1

6
δz3 −

1

3
δ3z +

1

24
h4(x) −

1

6
h3(x)(δ + ξ)

+
1

2
ξδh2(x) +

1

3
δ3h(x) −

1

3
ξδ3

beingξ = 1
ζ

the inverse of the friction coefficientζ and t̂ a re-scaled temperature

related to the terrain surface temperaturet = t(x) by t̂(x) = λt(x)
δ−h(x)

. We are as-
suming that the air temperature linearly decreases with theheight,T (τ,x, z) =
t(τ,x) δ−z

δ−h(x)
. The potentialp(x) satisfies the following boundary problem

−∇x(a∇xp) = ∇x(b∇xt̂) in ω (17)

a
∂p

∂n
= −b

∂t̂

∂n
+ (δ − h)vm · n on ∂ω (18)

where

a = a(x) =
1

3
(δ − h(x))2(3ξ + δ − h(x))

and

b = b(x) =
1

30
(δ−h(x))2

(

2δ2(2δ+5ξ)−2δ(δ−5ξ)h(x)−(3δ+5ξ)h2(x)+h3(x)
)

Finally, the vertical velocityW can be obtained from equation (12).
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3.2 Adjustment of point data by solving an optimal control problem

Usually the wind flux is not known on the boundary, then problem (17)-(18) can
not be solved directly because in general we do not knowvm on the boundary. Al-
ternately we know the direction and the intensity of the windat the points where
the meteorological stations are placed. In this subsectionwe reformulate the for-
mer problem so that the required data values are the wind measures at some given
points.

In order to simplify notation, as in the following we are related only to the bidi-
mensional problem, we avoid the indexx of the differential operators.

Let v = (δ − h)vm · n, the wind flux on the boundary∂ω, v ∈ V the space of
functions verifying

∫

∂ω v = 0.

We are going to formulate the former problem as an optimal control problem. Given
N experimental measurements of the horizontal wind velocityVi, i = 1, ..., N , at
N given pointsPi = (xi, zi), i = 1, ...N , we search for the value ofv ∈ V such
that the valueV(xi, zi) given by the expression in (16) are as close as possible to
the experimental valueVi.

This is an optimal control problem where

• v ∈ V is the control.
• Problem (17),(18) are the state equations.
• We will choose as cost function

J(v) =
1

2

N
∑

i=1

‖V(xi, zi) −Vi‖
2 +

α

2

∫

∂ω
v2

that is

J(v) =
1

2

N
∑

i=1

∥

∥

∥

∥

m(xi, zi)∇p(xi) + n(xi, zi)∇t̂(xi) − Vi

∥

∥

∥

∥

2

+
α

2

∫

∂ω
v2 (19)

In practice, we can use instead of (19) the following regularized functional

J(v)=
1

2

N
∑

i=1

∫

ω
ρǫ,i(x)

∥

∥

∥

∥

m(x, zi)∇p(x) + n(x, zi)∇t̂(x) − Vi

∥

∥

∥

∥

2

+
α

2

∫

∂ω
v2 (20)

whereρǫ,i is a suitable smoothing function given for example by

ρǫ,i(x) =
1

ǫ2
ρ(

x − xi

ǫ
)
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ρ(x) =
{Me

− 1

1−||x||2 for ||x|| < 1

0 for ||x|| ≥ 1

for a smallǫ andM such that
∫

ρǫ,i(x)dx = 1

The optimal control problem to be solved is posed as follow:
Findu ∈ V such that

J(u) = inf
v∈V

J(v) (21)

The solutionu of the optimal control problem (21) is characterized byJ ′(u) = 0.

Using the general optimal control theory [15], and introducing the adjoin state, then
the problem (21) is characterized by the following three equations relatingp , q and
u:

•
∫

ω
a∇p(u) · ∇ϕ+

1

α

∫

∂ω
qϕ = −

∫

ω
b∇t̂ · ∇ϕ ∀ϕ (22)

•
∫

ω
a∇q(u) · ∇ψ

−
N
∑

i=1

∫

ω
ρǫ,i(m∇p(u) + n∇t̂− Vi)m · ∇ψ = 0 ∀ψ (23)

•

u = −
1

α
q on ∂ω (24)

There exist a unique solution of the problem (9). Moreover, problem (20),(21), has
a unique solution [15].

3.3 A modified optimal control problem

If a good estimation of the wind fluxv ≈ u∗ is known on the boundary then we can
modify the cost function in (20) as follows

J(v)=
1

2

∑

i

∫

ω
ρǫ,i(x)

∥

∥

∥

∥

m(x, zi)∇p(x) + n(x, zi)∇q(x) − Vi

∥

∥

∥

∥

2

+
α

2

∫

∂ω
(v − u∗)2 (25)

Note that we cannot impose at the same time the value of the wind flux on the
boundary and the value of the solution at several given points, as once the wind flux
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v is given on the boundary the wind field is uniquely determinedby (16), (17) and
(18). So the optimal control problem with the cost function (25) is a compromise
between both set of data. With the cost function (25) the optimal control problem
is characterized by

•
∫

ω
a∇p(u) · ∇ϕ+

1

α

∫

∂ω
qϕ =

∫

∂ω
u∗ϕ−

∫

ω
b∇t̂ · ∇ϕ ∀ϕ ∈ V (26)

• Equation (23)
•

u = −
1

α
q + u∗ on ∂ω (27)

4 Mass Consistent Model in 3-D

This model [23] is based on the continuity equation for an incompressible flow
where the air density is constant in the domainΩ, andno-flow-throughconditions
onS ∪A (terrain and top) are considered

∇xz · U=0 in Ω (28)
U ·N=0 on S ∪ A (29)

We formulate a least-square problem inΩ with Q = (Q1, Q2, Q3) to be adjusted

E(Q) =
∫

Ω

[

α2
1

(

(

Q1 − U0
1

)2
+
(

Q2 − U0
2

)2
)

+ α2
2

(

Q3 − U0
3

)2
]

dΩ (30)

where the interpolated windU0 = (U0
1 , U

0
2 , U

0
3 ) is obtained from experimental

measurements, andα1, α2 are the Gauss precision moduli. This problem is equiva-
lent to find a saddle point(U, φ) of the Lagrangian (see [37])

E (U) = min
Q∈K

[

E (Q) +
∫

Ω
φ∇xz ·Q dΩ

]

(31)

beingU = (U1, U2, U3), φ the Lagrange multiplier andK the set of admissible
functions. The Lagrange multipliers technique is used to minimize the problem
(31), whose minimum comes to form the Euler-Lagrange equations

U1 = U0
1 + βh

∂φ

∂x
, U2 = U0

2 + βh
∂φ

∂y
, U3 = U0

3 + βv
∂φ

∂z
(32)

whereβ = (βh, βh, βv) is the diagonal transmissivity tensor, withβh = 1
2α2

1

and

βv = 1
2α2

2

. Sinceα1 andα2 are constant inΩ, the variational approach results in an
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elliptic problem substituting (32) in (28)

∂2φ

∂x2
+
∂2φ

∂y2
+
βv

βh

∂2φ

∂z2
= −

1

βh

(

∂U0
1

∂x
+
∂U0

2

∂y
+
∂U0

3

∂z

)

in Ω (33)

We consider Dirichlet condition for open orflow-throughboundaries and Neumann
condition for terrain and top

φ=0 on L (34)
β∇xzφ · N=−U0 ·N on S ∪A (35)

The problem given by (33)-(35), is solved using tetrahedralfinite elements (see
[20], [27]) which leads to a set of4 × 4 elemental matrices and4 × 1 elemental
vectors. These are assembled to form a symmetric linear system of equations which
is solved by a preconditioned conjugate gradient method.

Remark: Notice that the adjusted wind fieldU satisfy∇× U = ∇× U0. Notice
that the adjusted wind fieldU satisfies∇×U = ∇×U0. In addition, the boundary
condition (35) is well defined once the interpolated windU0 is fixed.

4.1 Interpolated Wind

The first step for constructing the interpolated wind is the so-called horizontal in-
terpolation. The measurements of the wind speeds are interpolated at station height
zm using the distance and the height difference between each point and the station
[23]

U0(x, zm) = ε

N
∑

i=1

U0

i

d2

i

N
∑

i=1

1

d2
i

+ (1 − ε)

N
∑

i=1

U0

i

|∆hi|

N
∑

i=1

1
|∆hi|

(36)

whereU0
i = (Vi,Wi) is the velocity observed at stationi located at(xi, zi), N

is the number of stations considered in the interpolation,di is the horizontal dis-
tance from stationi to the point where we are computing the wind velocity,|∆hi|
is the height difference between stationi and the studied point, andε is a weighting
parameter(0 ≤ ε ≤ 1), which allows to give more importance to one of these inter-
polation criteria. We note that the anemometers give us horizontal wind velocities,
so,Wi = 0 in this cases.

In the vertical profile of wind, we assume that this model doesnot take into account
the turbulence phenomena near the terrain due to its roughness. Thus, we establish

U0(x, z) = 0 z ≤ z0 (37)
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wherez0 is the roughness length corresponding to the pointx.

We have considered a logarithmic profile [13] in the surface layer, which takes into
account the previous horizontal interpolation [23], as well as the effect of rough-
ness and the air stability (neutral, stable or unstable atmosphere, according to the
Pasquill stability class) on the wind intensity and direction. Above the surface layer,
a linear interpolation is carried out using the geostrophicwind. The logarithmic
profile is given by

U0(x, z) =
U∗

k
(log

z

z0
− Φm) z0 < z ≤ zsl (38)

whereU∗ is the friction velocity corresponding to the pointx, k is von Karman
constant andzsl is the height of the surface layer. The value ofΦm depends on the
air stability

Φm = 0 (neutral)

Φm = −5
z

M
(stable)

Φm = log





(

θ2 + 1

2

)(

θ + 1

2

)2


− 2 arctan θ +
π

2
(unstable)

(39)

whereθ = (1−16 z
M

)1/4 and 1
M

= azb
0, with a, b, depending on the Pasquill stability

class.M is the so called Monin-Obukhov length. The friction velocity is obtained
at each pointx from equation (38) and the interpolated field given by (36) atthe
height of the stationszm.

U∗ =
k U0(x, zm)

log
zm

z0
− Φm

(40)

The height of the planetary boundary layerzpbl above the ground is chosen such
that the wind intensity and direction are constant at that height

zpbl =
γ ||U∗||

f
(41)

wheref = 2ψ sinϕ is the Coriolis parameter (ψ is the earth rotation andϕ the
latitude), andγ is a parameter depending on the atmospheric stability. The mixing
heighth coincides withzpbl in neutral and unstable conditions. In stable conditions,
Zilitinkevich suggests (see [3])

h = γ′

√

||U∗||M

f
(42)

whereγ′ is another constant of proportionality. The height of the surface layer is
zsl = h

10
. Fromzsl to zpbl, a linear interpolation with geostrophic windUg is carried

out
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U0(x, z) = ρ(z)U0(x, zsl) + [1 − ρ(z)]Ug zsl < z ≤ zpbl (43)

ρ(z) = 1 −

(

z − zsl

zpbl − zsl

)2 (

3 − 2
z − zsl

zpbl − zsl

)

(44)

Finally, this model assumes

U0(x, z) = Ug z > zpbl (45)

4.2 Improvements to the Wind Model

Our wind model has been improved in order to consider the additional information
that currently may be available at measurement stations. Onthe one hand, we have
usually different stations located in the same tower for minimizing costs and fixing
the wind profiles. Thus, the computation of the friction velocity, which was directly
computed from a single wind velocity measured at a station, must be obtained from
several measures. For this purpose, a least square approximation is carried out. On
the other hand, these stations usually provides measures ofthe turbulence intensity
which is related to the atmospheric stability of the region.So, the knowledge of the
range of turbulence intensity will allow us to select the stability class. Following
the Pasquill model for the atmospheric stability [34] and defining new ranges of
turbulence intensity, a new table for Pasquill stability classification is built.

4.2.1 New computation of the Friction Velocity

If n measures were available in a vertical line of the pointx, the equation (40)
would yieldn different friction velocities at this horizontal location,

U∗
i =

k U0
i (x, zei

)

log
zei

z0
− Φm(zei

)
i = 1, ..., n (46)

wherezei
is the height of the measurements stations. In order to obtain the optimum

value ofU∗, we solve a least square problem involving the wind velocities mea-
sured at different height and considering that the frictionvelocity is not a function
of the height. If we define

Ai =
1

k

(

log
zei

z0
− Φm(zei

)
)

i = 1, ..., n (47)

and we fix the same friction velocityU∗ for all stations,

U0
i (x, zei

) = U∗Ai i = 1, ..., n (48)
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If Usi
is the measured velocity at the i-th station, then the function to be minimized

is,

Fobj(U
∗) =

n
∑

i=1

(

U0
i (x, zei

) − Usi
(x, zei

)
)2

=
n
∑

i=1

(U∗Ai − Usi
(x, zei

))2 (49)

whose minimum is obtained for the following friction velocity,

U∗ =

n
∑

i=1
AiUsi

(x, zei
)

n
∑

i=1
A2

i

(50)

4.2.2 Atmospheric Stability versus Turbulence Intensity

The atmospheric stability may be characterized by using thePasquill stability clas-
sification of Table 1. It considers the following classes forstability: A (extremely
unstable), B (moderately unstable), C (slightly unstable), D (neutral), E (slightly
stable) and F (moderately stable) [34].

Pasquill stability class

Isolation Nighttime

Surface wind ≥ 4/8 ≤ 3/8

speed (m/s) Strong Moderate Slight Clouds Clouds

< 2 A A-B B - -

2 − 3 A-B B C E F

3 − 5 B B-C C D E

5 − 6 C C-D D D D

> 6 C D D D D

For A-B, take the average of the values of A and B, etc.
Table 1
Pasquill Stability Classification depending on the surfacewind speed and the isolation.
Strong isolation corresponds to a sunny afternoon of the middle-summer in England; slight
isolation is related to same conditions in middle-winter. Nighttime means the time from
one hour before the sunset to one hour after the sun rises. Neutral class D should be used
also, independently of the wind speed, for clouded sky alongthe day or the night, and for
any condition of the sky during the hour before and after the nighttime.

The anemometers generally provides measures of the intensity of turbulence that
may help to complete the information about the class of atmospheric stability in
the studied region. The intensity of turbulencei is defined as the square root of the
sum of variancesσ2

1 , σ
2
2, σ

2
3, of the three components of the velocityU0

1 , U
0
2 , U

0
3 ,
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respectively, divided by the average wind velocity that hasbeen measured,

i =

√

σ2
1 + σ2

2 + σ2
3

||U0||
(51)

However, only measures of speed variations are often available but not of the wind
direction. In such cases, equation (51) is reduced to,

i =
σ0

||U0||
(52)

whereσ0 represents the standard deviation of the measured wind speeds.

While an unstable atmosphere implies a high level of turbulence, with a range of
turbulence intensities between0.2 and0.4 approximately, a stable atmosphere, with
a small or almost null turbulence, is characterized by intensities from0.05 to 0.1
[18]. In Table 2, the above relations of the turbulence intensity and the atmospheric
stability have been considered in order to define the Pasquill stability class.

Pasquill stability class

Isolation Nighttime

Surface wind

speed (m/s) i > 0.35 0.35 ≥ i > 0.25 0.25 ≥ i > 0.15 0.15 ≥ i i > 0.075 0.075 ≥ i > 0.03 0.03 ≥ i

||U0|| < 2 A B B B F F F

2 ≤ ||U0|| < 3 A B C C E E F

3 ≤ ||U0|| < 5 B B C C D E E

||U0|| ≥ 5 C C C D D D D
Table 2
Pasquill stability classification taking into account the surface wind speed and the turbu-
lence stability.

5 Adaptive Discretization of the Domain

Several improvements have been implemented in our adaptivemesh generation
code. We have used simultaneous mesh adaption to terrain elevation and roughness
length, and a high local refinement degree in the surroundingof the measurement
stations or any other control point. The procedure builds first a sequence of nested
meshes using the 4-T Rivara’s algorithm [32]. The resulting2-D mesh, is the start-
ing point to build the 3-D mesh, using the procedure described in [20,21,25].
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We note that, in the case of the 2.5-D model, the problem is solved by only consid-
ering an adaptive 2-D triangulation of the rectangular region which is studied.

6 Parameters Estimation with Genetic Algorithms

Genetic algorithms (GAs) are optimisation tools based on the natural evolution
mechanism [2,17,36]. They produce successive trials that have an increasing prob-
ability to obtain a global optimum. This work is based on the model developed by
Levine [14]. It is a standard genetic algorithm code (pgapacklibrary), with string
real coding.

In the numerical experiments with the 2.5-D model, we look for optimal values of
the quadratic adjustment parametersa0 , a1 anda2 of the friction coefficientζ in
terms of the roughness of the terrain, i.e.,ζ = a0 + a1z0 + a2z

2
0 . We search for the

optimum of the linear parametera0 in [1, 10], the first order parametera1 in [0, 5]
and the second order parametera2 in [−0.05, 0.05].

In the numerical experiments with the 3-D model, we look for optimal values of
α, ε, γ andγ′. Specifically, the so called stability parameterα = α1

α2
determines

the rate between horizontal and vertical wind adjustment. For α >> 1 flow ad-
justment in the vertical direction predominates, while forα << 1 flow adjustment
occurs primarily in the horizontal plane (see equation (30)). Thus, the selection of
α allows the air to go over a terrain barrier or around it. We search the optimum
in [10−2, 102]. The second parameter to be estimated is the weighting coefficientε
(0 ≤ ε ≤ 1) involved in the horizontal interpolation of wind measurements (see
equation (36)). Forε → 1, the importance of thehorizontal distancefrom each
point to the measurement stations is greater, whileε → 0 signifies more impor-
tance of theheight differencebetween each point and the measurement stations.
The parameterγ is related to the height of the planetary boundary layer (seeequa-
tion (41)). There exist different versions of where to search for this parameter. The
interval [0.15, 0.4] considered in our simulations includes all the proposed search
spaces. Finally, the parameterγ′ appears in the computation of the mixing height
for stable atmosphere (see equation (42)). Several authorshave proposed that the
value ofγ′ should be searched in the surroundings of0.4. More details and refer-
ences about the discussion of these parameters can be found in [27].

We propose to minimise the following fitness function which is defined as the av-
erage relative error of the wind velocities given by the model with respect to the
measures at the reference stations,

F =
1

Nr

Nr
∑

i=1

||Vi −V(xi, zi)||

||Vi||
(53)
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whereV(xi, zi) is the horizontal wind velocity obtained by the model at the lo-
cation of stationi, Vi is the horizontal measured wind andNr is the number of
reference stations. Note that in the case of the 2.5-D model,F = F (a0, a1, a2) and
in the case of the 3-D model,F = F (α, ε, γ, γ′).

7 Wind Simulations in a Realistic Episode

In order to compare the results of the two wind field models, wehave considered
a simulation using realistic wind data that have been supplied byDESAin several
measurement points for an episode along the March 21, 2003, see [22]. The first
step is to discretize the studied domain, the second is to estimate the main parame-
ters of the model and, then, apply the wind model using the estimated values. Next,
the wind velocity is checked in the control points.

We present several applications to show the improvements carried out in our wind
model. All experiment were run on a XEON precision 530, except the parameter
estimation problem which was solved using a cluster of PCs.

7.1 Surface mesh adaption to orography and roughness

The studied three-dimensional domainΩ is located in a region of Lugo, Spain, at
43N of latitude and it is defined by four points of UTM coordinatesA(609980,
4799020), B(626000, 4799020), C(626000, 4813040) andD(609980, 4813040),
respectively. The upper boundaryA of Ω has been taken at a heightδ = 4000 m
in the 3-D model andδ = 1080 m in the 2.5-D model. A digital elevation map
was provided byDESAon a quadrilateral grid of element size20 × 20 m. TheX
axis corresponds to East direction and theY one to North. Thus, we are working
with a region of16020 × 14020 m. The minimum and maximum terrain heights
are420m and1020m, respectively. Figure 1 represents a color map of the heights
of the terrain. The measurement stations and the control points have been approxi-
mately plotted, such that from North to South we can find E243,E208, E212, E242,
E206 and E283. Tables 3 and 4 contain their coordinates, respectively. The height
of all measurements and control points to the ground are indicated in Table 5 in
parentheses. All these points are located close to the top ofthe hills. Roughness is
an essential factor on the atmospheric stratification, and therefore, on the charac-
teristics of the resulting wind profile. Figure 2 shows the roughness length of the
terrain which were supplied byDESA. We remark that some stations and control
points are closed to contours of the roughness. In this case,the roughness length
values are0.03 m, 0.05 m, 0.08 m, 0.3 m and0.8 m.
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Station UTM-E UTM-N Height

E206 615396 4805218 924.8

E208 616917 4807256 945.0

E212 617423 4806382 895.0
Table 3
Coordinates inm of the measurement stations.

Control point UTM-E UTM-N Height

E242 618290 4806136 873.2

E243 616629 4808235 947.0

E283 617473 4804111 849.0
Table 4
Coordinates inm of the control points.

Fig. 1. Elevation map (m) of the studied region in Lugo. From North to South, we can see
the stations or control points E243, E208, E212, E242, E206 and E283.

Starting from a regular mesh of the rectangular region with element size of1 ×
1 km approximately, five global refinements are carried out using4-T Rivara’s
algorithm [32]. With this number of refinement steps, we obtain a mesh with an
element size about31m. In order to improve the discretization near the stations and
control points, five additional local refinements are applied inside six circles with
centre at the stations and control points, respectively, and diameter200 m. This
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Fig. 2. Roughness length map (m) of the studied region in Lugowith the station and control
points.

produces a local element size about1 m. Once we have interpolated the height and
the roughness length in the nodes of these refined two-dimensional mesh, we use
the derefinement algorithm [9,31] described in section 5.1 with εh = 10m andεr =
0.01m, keeping in any case the nodes located inside the six circles. In Figure 3 we
can see the resulting triangulation of the terrain surface.The corresponding three-
dimensional mesh, see Figure 4, contains102662 nodes and515812 tetrahedrons.

7.2 Parameter estimation along a day

We have taken into account Table 2 for determining the stability class from the
available turbulence intensity values. For the studied day, we have obtained neu-
tral conditions. So, for the 3-D model, we must estimate the stability parameterα,
the weighting parameterε related to the horizontal interpolation of wind velocities
and the parameterγ involved in the computation of the planetary boundary layer;
see, e.g., [27]. The estimation has been carried out each hour (24 computations).
We have applied genetic algorithms to solve these parameterestimation problems,
where the fitness functions (see equation (53)) are defined interms of the relative
velocity errors obtained by the model at the measurement stations. It is evident that,
in order to avoid spurious solutions, more than 20 repetitions for parameter setting
of each hour should be done. This fact would obviously imply an important increas-
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Fig. 3. Triangulation of the terrain simultaneously adapted to orography and roughness
corresponding to the studied region in Lugo.

Fig. 4. Adaptive 3-D mesh corresponding to the studied region in Lugo.
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ing on the computational cost of the parameter estimation process, even more if we
take into account that each evaluation of the fitness function supposes the resolution
of a finite element problem (in this case, about one hundred thousand unknowns).
Nevertheless, from our previous experience in this kind of wind simulation prob-
lems, we have observed that just one computation is enough for reaching a good
solution.

In Figure 5 we can see the evolution of the values of the three parameters of the 3-D
model along the episode. The values ofε are practically constant and approximately
equal to1. This means that only the horizontal distance has effect on the horizontal
interpolation. This result is agreed with the orographic characteristics of the studied
domain. Likewise the values obtained forγ are closed to0.15, that is, the lower limit
for this parameter which is related to low planetary boundary layers. However, the
stability parameterα varies in the interval 8-20. This range of values makes the
wind predominantly flow more over the obstacles than around them.
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α / 20
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γ

Fig. 5. Results of the estimation ofα, ε andγ (3-D model parameters) along the studied
episode (March 21, 2003).

In Figure 6 we see the evolution of the values of the three parameters of the 2.5-D
model along the episode. These parameters give the relationship between the rough-
ness and the friction coefficient. The variation of these parameters with the mete-
orological conditions can be explain by certain hidden nonlinearity of the model,
this means that the friction coefficient depends on the solution. As we can see in
Figure 6, the variation of the parameters is not too high, so in practice we could
assume constant values fora0, a1 anda2 and we would obtain similar results.

7.3 Comparison of model results with empirical data

Once the main parameters are estimated, we start the wind modelling along the
selected episode using the obtained values. For March 21, 2003, only measures
from two control points, E242 and E283, were available. Figures 7 and 8 show the
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Fig. 6. Results of the estimation ofa0, a1 and a2 (2.5-D model parameters) along the
studied episode (March 21, 2003).

wind speeds obtained with the models and the reference values measured at the
control points E242 and E283, respectively. More details ofthe errors of computed
winds with respect to the measured wind may be seen in Table 5.We remark that
the average errors at the measurement stations are small as expected. The average
error for the 3-D model is 27.24% at control point E242 and 4.94% at E283. In
addition, the average for the 2.5-D model is 1.05% and 43.28%, respectively. Then,
the 2.5-D model obtain better results close to measurementspoints. However, the
3-D model is more accurate far from measurements points. Specifically this effect
can be observed at the open boundaries of the domain, where the asymptotic model
cannot fit very well the boundary conditions.

Ideally the three graphics in figures 7 and 8 should be coincident. Of course the
measured wind, as many experimental measurements, are obtained by sampling
a Gaussian distribution. On average the measured wind verify mass conservation.
With both models we obtain a wind field that verify mass conservation.

8 Conclusions

We have presented two models for the wind field adjustment comparing the results
by means of an example with real data. Both models are mass consistent models.
The 3-D model needs a major use of empirical laws (initial interpolation, logarith-
mic profile, Pasquill stability class). Instead the 2.5-D model is a physical model
since it is an asymptotic approximation of Navier-Stokes equations. The 3-D model
is applicable in very general orographies since it admits all kinds of irregularities
and discontinuities. The 2.5-D model is an asymptotic model, it is valid only for
not very abrupt orographies.
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Fig. 7. Comparison of the wind velocities measured at the control station E242 (March 21,
2003).
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Fig. 8. Comparison of the wind velocities measured at the control station E283 (March 21,
2003).

Both models give very good results in the measurements points as expected. In the
control points we observe that the asymptotic model can provide very good results,
even better that the 3D model in some cases, when the hypotheses of the model are
satisfied.

We have used a technique for constructing tetrahedral meshes which are simul-
taneously adapted to the terrain orography and the roughness length. The use of
our refinement/derefinement process in the 2-D mesh corresponding to the terrain
surface allows us to obtain meshes that are accurately adapted to different func-
tions as well as are locally refined around several points. These characteristics of
the generated meshes are very important in the wind simulation since, on the one
hand, the quality of the representation of both orography and roughness is critical
for obtaining accurate results with the two models, and on the other hand, the local
refinement at the stations and control points is essential for inserting the wind data
of the stations or recovering such data at any required point.
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Stations and Average Average % Maximum Minimum Model

control points measured computed average absolute absolute

wind wind error error error

E206 (49 m) 15.37 15.50 0.81 % 0.46 0.01 3-D

15.37 14.82 3.62 % 1.15 0.23 2.5-D

E208 (15 m) 8.57 8.98 4.74 % 1.25 0.00 3-D

8.57 9.13 6.52 % 2.45 0.01 2.5-D

E208 (30 m) 9.25 9.92 7.21 % 1.36 0.05 3-D

9.25 9.42 1.82 % 1.41 0.00 2.5-D

E212 (15 m) 8.46 8.44 0.20 % 0.63 0.00 3-D

8.46 8.18 3.33 % 1.89 0.01 2.5-D

E212 (30 m) 9.02 9.85 9.25 % 1.60 0.31 3-D

9.02 8.46 6.17 % 2.16 0.01 2.5-D

E242 (40 m) 8.40 10.69 27.24% 5.09 0.09 3-D

8.40 8.49 1.05 % 2.54 0.01 2.5-D

E283 (49 m) 13.62 12.95 4.94 % 3.04 0.02 3-D

13.62 7.73 43.28 % 9.88 1.34 2.5-D
Table 5
Error of the computed wind at stations and control points.

Some improvements for the 3-D model have been carried out in the construction of
the initial wind based on the horizontal interpolation of wind measures and vertical
extrapolation in stratified atmosphere. The optimization of the friction velocity for
several measures in the same tower allows to minimize the differences between the
constructed vertical profile of wind and the measures. However, though such differ-
ences are small, further research is needed in order to construct new wind profiles
that exactly satisfy all the available measures of wind velocities. In addition, the
inclusion of observations of turbulence intensities has made the model to be able of
automatically updating the suitable wind profile as function of the corresponding
stability class.

The periodic updating of the main parameters of the models has proved to be fun-
damental for reducing the errors of the computed wind. However, further consid-
erations should be taken into account in future works for a better performance of
the models. For example, a finer map of roughness, a more sophisticated interpo-
lation of wind velocities, a better approximation of the friction coefficient and a
greater number of measurement stations well distributed over the studied region
will help to reduce the errors of the models. In order to obtain an accurate wind

24



field in zones with very steep slopes, the mesh should be adapted to the contour
lines, since a change in the direction of edges in the mesh maystrongly affect the
computed wind.

In short, when the terrain is very rugged the 3-D model is recommended, however if
the asymptotic assumptions are verified the 2.5-D model provides a good solution
and has the advantage of incorporating thermal effects if required.
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