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Abstract

In previous works, many authors have widely used mass densimodels for wind field
simulation by the finite element method. On one hand, we hawveldped a 3-D mass
consistent model by using tetrahedral meshes which ardtasineously adapted to complex
orography and to terrain roughness length. In addition, avelincluded a local refinement
strategy around several measurement or control pointsifis@nt contours, as for example
shorelines, or numerical solution singularities. On theeothand, we have developed a 2.5-
D model for simulating the wind velocity in a 3-D domain inrtes of the terrain elevation,
the surface temperature and the meteorological wind, wisictonsider as an averaged
wind on vertical boundaries. Using the meteorological wasddatum, the 2.5-D model
provides a 3-D local wind modified by topography and thermmatlgents on the surface by
solving only a 2-D optimal control problem where the bourdeondition is the control.
In this case, the finite element discretization consists tiaagular mesh adapted to the
terrain topography and roughness length. In both modetswihd field adjusts to several
wind speed measurements at several points in the 3-D domdiaventually to an average
wind flux on the boundary.

In this paper we introduce several advances in the 2.5-D d@ndvihd models and we
compare their results on a region located in the ProvinceugfoL(Spain) with realistic
data that have been provided by the compBegarrollos Blicos S.A(DESA). In order
to obtain the best adjustment of models results to the meamnts, the main parameters
governing the models are estimated by using genetic atgositwith a parallel implemen-
tation.
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1 Introduction

The society has been becoming aware of environmental prshlelimate change)
and nowadays it appreciates the use of renewable enerdosy st years the use
of wind power for producing electric energy has augmentetickerably. So com-
panies of this sector are requesting more and more so@tedi¢ools that allow
them to face the competitive and demanding market. Wind isate interesting
tools to the study of several problems related to the atnersplsuch as, the ef-
fect of wind on structures, pollutant transport [26], fireesding [19], wind farm
location, etc.

Diagnostic models are not used to make forecasts througbretting conservative
relations [30]. Therefore they are also called kinetic ni®d#&2]. These models
generate wind fields that satisfy some physical conditibmsass conservation law
is the only imposed restriction, we are defining a mass ctardisnodel [13,35].
The relative simplicity of diagnostic models makes themaattve from the prac-
tical point of view, since they do not require many input datal may be easily
used. Pennel [29] checked that, in some cases, improved coasstent models
such as NOABL and COMPLEX obtained better results than atikpamic mod-
els which are more complex and expensive. However, we haadkéointo account
that a simple mass consistent models neither consider #hegfiects nor those
due to pressure gradients. As a consequence, problemsékareezes can not be
simulated with these models unless such effects are incatgab into the initial
wind data using observations in selected locations [1128] 3-D mass consis-
tent models have been designed for simulating the effediseobrography on the
steady average wind (i.e., average wind in intervals frormiffutes to 1 hour) by
imposing the incompressibility condition for the air. Tha¥xists a wide range of
diagnostic models which have been used by scientists ingarabof meteorology
and air pollution.

The primitive 2-D mass consistent models did not considerténrain orography
and the vertical profile of the wind. They built an horizontaérpolated wind field
taking into account only the distance from the mesh nodesdonteasurement
stations and then they solved the two-dimensional elliptmblem arising from
the discretization in a plane; see [37] for a 2-D adaptivedirlement model with
a mixed formulation. Nowadays, in problems defined over demperrain, it is
possible to use high quality adaptive 3-D meshes of theatatomains. However,
most of the existing models use to work with uniform meshdss Btrategy is
impracticable for problems with complex terrain since tize 8f the elements must
be very small in order to capture the digital information lo¢ tterrain elevation.
Moreover, in this case there would be regions where such steatent size would

* Corresponding author.
Email addressf er r agut @isal . es (L. Ferragut).
URL:http://web. usal . es/ ferragut (L. Ferragut).



not be necessary. This would finally lead us to larger lingatesns of equations
and higher computational cost for solving them. Our first 8ibdels (see [23,24])
had some of these limitations since the meshes used formgtime terrain surface
were uniform.

In [26,27], we presented a new 3-D finite element model thes aslaptive unstruc-
tured meshes of tetrahedrons with elements of small sizeenhiss necessary but
maintaining greater elements where such level of disattiz is not required. The
resulting 3-D mesh were constructed by using a refinemeaefidement process to
adapt a 2-D mesh to the terrain surface, a vertical spacimgjifan to locate nodes
in the air and a Delaunay triangulation algorithm [6]. Thiaptive mesh gener-
ation technique was introduced in [20,21,25]. The gendratesh has a higher
density of nodes near the terrain surface, where we needpnecesion, or close to

significant contours that has an important role in the sitmralike shorelines or

roughness length contours [7,8]. In a postprocess, the 38hrs smoothed and,
if necessary, untangled by using the algorithm in [7] in orfdemprove the mesh

guality. In addition, a local refinement procedure was psagofor improving the

numerical solution [10,16]. Finally, although mass cotesis models are widely
used, they are often criticized because their results glyatepend on some gov-
erning parameters. These parameters are generally apy@at@d using empirical

criteria. Our 3-D wind model includes a tool for the parametgimation based on
genetic algorithms [17,27,33].

We have also introduced in the 3-D model a characterizatfidheoatmospheric
stability that is carried out by means of the experimentasuees of the intensities
of turbulence. In addition, since several measures ar@ @ftailable at the same
vertical line, we have constructed a least square adjustofesuch measures for
developing a vertical profile of wind velocities from an aptim friction velocity.

The main goal of this paper is to compare and show the atalityyell as establish
its limits, of two models providing a wind field with a minimuof experimental
wind data in a real and practical case, more precisely in #se of wind farms
where the user needs to have a short term prediction of thd fsom the last
meteorological measures and predictions. The space stéhe oneteorological
prediction is usually too large to cover the engineeringinesments in a wind farm.
These models provide a solution that can satisfy thesenme@gents and represent
an improvement from the existing mass consistent codes.

We compare results of the 3-D mass consistent model with-®2:&rtical diffu-
sion wind field model. If the significant phenomena that wettasimulate occurs
in a zone where the horizontal dimensions are much larger tthe vertical one,
then an asymptotic approximation of the primitive Naviéok®s equations can be
obtained as in the model developed in [1]. The most relevepeet of this asymp-
totic approach is that provides a three—dimensional vigleaind field that verifies
the incompressibility condition in the air layer, governey a two—dimensional



equation, so that it can be coupled with temperature sudetebution in order to
take into account thermal effects as sea breezes. In additie terrain elevation is
also considered by the model.

The validity of this 2.5-D model has the following limits: €monlinear terms are
neglected and we assume that the air temperature lineangates with the height.
On the contrary the model takes into account buoyancy fodtepe effects and
mass conservation. The 2.5-D wind model presented in thidears an adaptation
of the wind model proposed in [1], such that the data can bengin several points
located in the domain. These data should be obtained fromrempntal measure-
ments or meteorological predictions.

In order to check the accuracy of the results and the effigiefithe two models
with realistic data, the comparyesarrollos Blicos S.A.(DESA) has provided
us with technical support about digital terrain elevaticsps related to orography
and roughness length, as well as measurements of wind dnddoce intensity in
several anemometers located in Lugo (Spain).

The outline of this paper is as follows. In section 2, we déscthe general nota-
tion common to both models. In section 3, we present the 2/&ifical diffusion
wind field model, including the asymptotic equations andatpistment of point
data by solving an optimal control problem. In section 4, wemarize the 3-D
mass consistent model and we introduce a technique fottimgerew information
about wind measures at different heights and turbuleneasities. The 2-D adap-
tive discretization of the terrain surface and the 3-D mesfegation procedure is
presented in section 5, including an adaptive strategyptuca the orography and
roughness information simultaneously and additionallloeftnements in different
regions of the terrain. Several ideas about the parameterag®n of both models,
with a parallel implementation of genetic algorithms, arenearized in section 6.
A comparison between the results of the 2.5-D and 3-D modetsyealistic case
for an episode along a day, is presented in section 7. Fjneéysummarize the
conclusions of this work and the topics that need furthezaesh.

2 Notation

Let us consider the three—dimensional dom@ia {(x, z): x € w, h(x) < z2<§}
representing the air layer of the studied region. In the[2rdodel, we assume that
the heighty is small in front of the width and that the height of the temrsiirface at
pointx, h(x), is smaller thad. We note that previous assumption is not necessary
in the 3-D model.

We decompose the boundary@finto 02 = SU AU L, whereS = {(x,z) : x €
w, z = h(x)} is the terrain surfaced = {(x,z) : x € w, z = 0} is the air upper



horizontal boundary and = {(x,z) : x € Jw, h(x) < z < 0} is the air lateral
vertical boundary.

For the 2.5-D model, let c ®? be a two—dimensional normalized bounded do-
main, representing the projection of the three—dimensieniain surfaces.

We denote by(x, z) any point of the three—dimensional dom&inand by(x) any
point of the bi—dimensional domain. Then we denote by an index the three—
dimensional operators, and by an indethe bi-dimensional operators.

We use small letters for the two—dimensional problem, arpitalaletters for the
three—dimensional problem.

U = (Uy, Uy, Us3) denotes the air velocity field. For the 2.5-D model, we dgtish

the vertical velocity from the horizontal one denotiig = Us, V = (Uy,Us). P

is the potential]’ is the temperature; the time and,, is the meteorological wind.
Depending on the context the symlidlrepresents instantaneous velocity or mean
velocity.

Finally N is the inner unit normal vector field &2, andn = (n;, ny) is the inner
unit normal vector field téw.

3 Vertical Diffusion Wind Field Model in 2.5-D

In this section we present the 2.5-D wind model which inciigenperature effects.
An asymptotic analysis gives a three dimensional convectigdel governed by a
two dimensional equation. This model adjusts a three dimnaakvelocity wind

field in a thin layer under the influence of the orography amdperature distribu-
tion, so that it can be coupled with two dimensional fire spreianulation models

[1].

3.1 Asymptotic equations

The air velocityU = (U, Uz, Us) and the potentiaP satisfy the Navier—Stokes
equations. On one hand, the momentum equation reads

1
a’r[I +U- szU - EAXZU + vsz = )\,Te?) in Q (l)

whereRe is the Reynolds numbek/ is an expansion factor ared = (0,0, 1).



On the other hand, the air compressibility is also neglecedhat

Ve - U=0 in Q (2)
Boundary conditions are
ou
U-N=0, a—Nmn_CU onsS 3)
U3 = 0, azUl = aZUQ = 0, onA (4)
U|, = (vm,0) onL (5)

where( is the friction coefficient and the subscript denotes the tangential com-
ponent,v,, is the meteorological wind, that we assumed to be knownzbotal,
non depending oa and with a null total flux through the lateral bounddrythat
is,

OV = 0, / (6 —h) vy -nds =0 (6)
ow
We complete these equations with the initial condition
Ul,— = U, (7)
whereU is the initial velocity, that we assume to be known.

Equations (1) to (7) are well posed.

We distinguish the vertical velocity from the horizontaleodenotinglV’ = Us,
V = (Ui, Us), and we define the horizontal flux at a pokE w and timer by

_ 5
V(r,x) = /h(x) V(71,x,2)dz (8)

The incompressibility and the fact that the air does neitnessS nor A, that is,
U - N = 0, involve that the horizontal flux is also incompressiblerth

Ve-V=0 in w (9)

Using the fact that thicknessof the considered air layer is small compared with
its width and assuming that the wind is not too strong, moeeipelyd?Re < 1
where)’ = m, then preserving only the dominant terms and re-scaling

P, equations (1) and (2) give in

~02.V+VP=0 (10)
0,P=\T (11)
Vi V+0.W=0 (12)



where\ = X Re. Reynolds number can be absorbed and does not appear in (10)
by choosing properly the scaling of the pressiéteConditions (3), (4) and (5)
particularly give

(V,W)-N=0, &.V=C(V, onS (13)
W=0 6.V=0 onA (14)
V.on=(-h)v, n on dw (15)

See [4] for a complete derivation of this vertical diffusioodel in a similar case.

Equations (10) to (15) are well posed: For givErandv,,, there exists a unique
solution(V, W, P) (up to an additive constant fdr). For more details about this
convection asymptotic model see [1].

Equations (10) and (11), together with conditions (13) &#,(provide

V(x,2) = m(x, 2) Vip(x) + n(x, 2) Vit (x) (16)
where

mix, 2) = %% . %iﬂ(x) + (4 Oh(x)— &5

n(x,z)= 517 + 652 35 z+ 24h (x) 6h (x)(0 4+ &)
1 2 13 1 3
+2€5h (x) + 35 h(x) 355

being¢ = % the inverse of the friction coefficieqtandt a re-scaled temperature

related to the terrain surface temperattire ¢(x) by #(x) = f_t}(l’(‘j{). We are as-
suming that the air temperature linearly decreases withhéight, 7'(, x, z) =

t(r, x)%. The potentiap(x) satisfies the following boundary problem

—Vi(aVyxp) = Vi (bVxt) inw a7)
dp ot
an- = _ba_n + (0 —h)vy,-n on Ow (18)
where 1
a=a(x)=3(0— h(x))*(36 + 6 — h(x))
and
b= b(x) = %(5—]1(){))2(252(25+5§)—25(5—5§)h(x)—(35+5£)h2(x)+h3(x))

Finally, the vertical velocity}” can be obtained from equation (12).



3.2 Adjustment of point data by solving an optimal contrallgem

Usually the wind flux is not known on the boundary, then praobld7)-(18) can

not be solved directly because in general we do not kngwn the boundary. Al-

ternately we know the direction and the intensity of the wandhe points where
the meteorological stations are placed. In this subseegt®meformulate the for-
mer problem so that the required data values are the winduresaat some given
points.

In order to simplify notation, as in the following we are reld only to the bidi-
mensional problem, we avoid the indgxf the differential operators.

Letv = (§ — h)v,, - n, the wind flux on the boundar§w, v € V the space of
functions verifyingf, v = 0.

We are going to formulate the former problem as an optimairobproblem. Given

N experimental measurements of the horizontal wind velo€ity: = 1, ..., N, at

N given pointsP; = (x;,z;), i = 1,...N, we search for the value af € V such

that the valuéV (x;, z;) given by the expression in (16) are as close as possible to
the experimental valu¥’;.

This is an optimal control problem where

e v € Vs the control.
e Problem (17),(18) are the state equations.
e \We will choose as cost function

LS V)~ Vil 2 [0
=35 XiyZi) = Vi Py

2i:1 “ 2 c%.)v
that is

m(x;, z;) Vp(x;) + n(x;, zl)Vt(xZ V,;

TR

In practice, we can use instead of (19) the following regaéat functional

J(v) = % é / pe,i(x)Hm(x, V() + nx, 5) Vi) — Vi

o 2

- 20
_'_2 Bwv ( )

wherep, ; is a suitable smoothing function given for example by

1 x—x;
peslx) = ol

)

€



Me 7= for [jx|| < 1
p(x :{
0 for ||x|| >1
for a smalle and M such that/ p.;(x)dx = 1
The optimal control problem to be solved is posed as follow:

Findu € V such that
J(u) = inf J(v) (21)

veY
The solutionu of the optimal control problem (21) is characterized.Byu) = 0.

Using the general optimal control theory [15], and intradgdhe adjoin state, then
the problem (21) is characterized by the following threeatiguns relating , ¢ and
u:

1 R
/anp(u)~V<p+a/8wq<p:—/waL“Vgo Yo (22)
[ J
| avatw) - vy
N A~
Z/p” mVp(u) +nVi — Vym -V =0 Yo (23)
=1
* 1
u=——q on Ow (24)
a

There exist a unique solution of the problem (9). Moreovesbfem (20),(21), has
a unique solution [15].

3.3 A modified optimal control problem

If a good estimation of the wind flux ~ «* is known on the boundary then we can
modify the cost function in (20) as follows

2

J(v) = % 3 / pe,i<x)Hm<x, ) Vp(x) + n(x, %) Va(x) — V;

+ 5 aw(v —u*)? (25)

Note that we cannot impose at the same time the value of thd flir on the
boundary and the value of the solution at several given ppastonce the wind flux



v is given on the boundary the wind field is uniquely determibgd16), (17) and
(18). So the optimal control problem with the cost functi@d)(is a compromise
between both set of data. With the cost function (25) thenogitcontrol problem
is characterized by

1 . .
/anp(u)-Vgo%—a/awqap:/&uu@—Lth-Vgp Yo eV (26)
e Equation (23)

1
u=——q+u" on OJw (27)
!

4 Mass Consistent Model in 3-D

This model [23] is based on the continuity equation for arompressible flow
where the air density is constant in the dom@irandno-flow-throughconditions
on S U A (terrain and top) are considered

Vi -
U-

0 in Q (28)
0 on SUA (29)

U
N
We formulate a least-square problentimwith Q = (@1, @2, @)3) to be adjusted

5@ = [ fof (@ - 02) +(@:-13)") +a3 (@ -18)"] a2 (30)

where the interpolated win®® = (U7, U2, U?) is obtained from experimental
measurements, and, a; are the Gauss precision moduli. This problem is equiva-
lent to find a saddle poir{iU, ¢) of the Lagrangian (see [37])

E(U) = min {E Q) + /Q ¢vxz~QdQ} (31)

QeK

beingU = (U;,U,, Us), ¢ the Lagrange multiplier an& the set of admissible
functions. The Lagrange multipliers technique is used toimize the problem
(31), whose minimum comes to form the Euler-Lagrange equoati

0 0 0
Gi=U+ i Ga=U3+ . i=U+A50 @)

where = (5, B, B,) is the diagonal transmissivity tensor, with = ﬁ and
B, = ﬁ Sincea; andas, are constant if2, the variational approach results in an
2

10



elliptic problem substituting (32) in (28)

2 2 2 0 0 0
@_'_@ @@ — i (8(]1 + 0U2 + 8U3> in O (33)

0x2 | Oy2 | Br 022 B\ ox | 9y = 0z

We consider Dirichlet condition for open low-throughboundaries and Neumann
condition for terrain and top

¢p=0o0on L (34)
BVyp-N=-U""N on SuUA (35)

The problem given by (33)-(35), is solved using tetrahe@irale elements (see
[20], [27]) which leads to a set of x 4 elemental matrices antlx 1 elemental
vectors. These are assembled to form a symmetric linearaystequations which
is solved by a preconditioned conjugate gradient method.

Remark: Notice that the adjusted wind field satisfyV x U = V x U°. Notice
that the adjusted wind fielJ satisfiesV x U = V x UY. In addition, the boundary
condition (35) is well defined once the interpolated wilitlis fixed.

4.1 Interpolated Wind

The first step for constructing the interpolated wind is tbecalled horizontal in-

terpolation. The measurements of the wind speeds are alé¢egl at station height
zn, using the distance and the height difference between eanhaul the station

[23]

0 gl d; El |Ahil
U'(x, 2m) = e 1 +(1—e)% 1 (36)
i=1 al_l2 2‘;1 | Al

whereUY = (V,, ;) is the velocity observed at statiarocated at(x;, z;), N

is the number of stations considered in the interpolatigns the horizontal dis-
tance from station to the point where we are computing the wind velodityh;, |

is the height difference between staticand the studied point, ands a weighting
paramete(0 < ¢ < 1), which allows to give more importance to one of these inter-
polation criteria. We note that the anemometers give ugzbotal wind velocities,
so,W; = 0 in this cases.

In the vertical profile of wind, we assume that this model dusdake into account
the turbulence phenomena near the terrain due to its rogghmbus, we establish

U%(x,2) =0 z < 2 (37)

11



wherez, is the roughness length corresponding to the point

We have considered a logarithmic profile [13] in the surfagyet, which takes into
account the previous horizontal interpolation [23], aslwslthe effect of rough-
ness and the air stability (neutral, stable or unstable spimere, according to the
Pasquill stability class) on the wind intensity and direatiAbove the surface layer,
a linear interpolation is carried out using the geostroptiied. The logarithmic
profile is given by

*

U
’ (logzi0 —d,) 20 < 2 < zg (38)

U%(x,2) =

whereU* is the friction velocity corresponding to the poixt & is von Karman
constant and,; is the height of the surface layer. The valuelgf depends on the
air stability

®,=0 (neutral)
z
b, = —5M2 (stable) (39)
2
®,, = log (9 ;Ll) (9;1> ] —2arctan9+g (unstable)

wheref = (1-16%)"* and-; = a2, with , b, depending on the Pasquill stability
class.M is the so called Monin-Obukhov length. The friction velgdg obtained
at each poink from equation (38) and the interpolated field given by (36hat
height of the stations,),.

k Uv m
log ™ — @,
<0

The height of the planetary boundary laygy above the ground is chosen such
that the wind intensity and direction are constant at thaghte

U*
Zpbl = M (41)

where f = 21 sin ¢ is the Coriolis parameter/(is the earth rotation angd the
latitude), andy is a parameter depending on the atmospheric stability. Tikegn
height. coincides withz,;,; in neutral and unstable conditions. In stable conditions,
Zilitinkevich suggests (see [3])

(42)

where~’ is another constant of proportionality. The height of thefasze layer is
2o = % Fromz, to z,, a linear interpolation with geostrophic widi, is carried
out

12



U’ (x, 2) = p(2) U%(x, 24) + [1 — p(2)]U, Ze < 2 < Zphl (43)
2
plz)=1— <7Z — ) <3 gt AL ) (44)
Zpbl — sl Zpbl — Zsl
Finally, this model assumes

UO(X, z)=U, Z > Zpy (45)

4.2 Improvements to the Wind Model

Our wind model has been improved in order to consider thetiadail information
that currently may be available at measurement stationsh©ane hand, we have
usually different stations located in the same tower forimining costs and fixing
the wind profiles. Thus, the computation of the friction \aig, which was directly
computed from a single wind velocity measured at a statiarstine obtained from
several measures. For this purpose, a least square apjpitaxins carried out. On
the other hand, these stations usually provides measuthks tfrbulence intensity
which is related to the atmospheric stability of the regi®o, the knowledge of the
range of turbulence intensity will allow us to select thebgity class. Following
the Pasquill model for the atmospheric stability [34] anfirdeg new ranges of
turbulence intensity, a new table for Pasquill stabilitgsdification is built.

4.2.1 New computation of the Friction Velocity

If n measures were available in a vertical line of the painthe equation (40)
would yieldn different friction velocities at this horizontal locatipn

k U?(X, Ze,)
log = — @,,(2,)

20

)

i=1,...,n (46)

wherez,, is the height of the measurements stations. In order torotitaioptimum
value of U*, we solve a least square problem involving the wind velesitnea-
sured at different height and considering that the frictielocity is not a function
of the height. If we define

1 o )
A; = % (1og Zzol — q)m(zei)) i=1,...,n 47)

and we fix the same friction velocity* for all stations,

U)(x, z,) = U*4; 1=1,...,n (48)

13



If Us, is the measured velocity at the i-th station, then the fandid be minimized
is,

n

FObj (U*) = Z (U? <X7 Zei) - Usi <X7 Zei))2 = i (U*AZ - Usi <X7 Zei))z (49)

=1 =1
whose minimum is obtained for the following friction velogi

3 AiUsi (X7 Zei)
i=1

U= (50)
A7

o

I
—_

)

4.2.2 Atmospheric Stability versus Turbulence Intensity

The atmospheric stability may be characterized by using#sguill stability clas-
sification of Table 1. It considers the following classesdtability: A (extremely

unstable), B (moderately unstable), C (slightly unstglejneutral), E (slightly
stable) and F (moderately stable) [34].

Pasquill stability class

Isolation Nighttime

Surface wind >4/8 <3/8
speed (m/s) Strong Moderate Slight Clouds Clouds

<2 A A-B B - -

2-3 A-B B C E F

3—95 B B-C C D E

5—6 C C-D D D D

> 6 C D D D D

For A-B, take the average of the values of A and B, etc.

Table 1
Pasquill Stability Classification depending on the surfaded speed and the isolation.
Strong isolation corresponds to a sunny afternoon of thelleisummer in England; slight
isolation is related to same conditions in middle-winteigttime means the time from
one hour before the sunset to one hour after the sun risestaNelass D should be used
also, independently of the wind speed, for clouded sky atbegday or the night, and for
any condition of the sky during the hour before and after figattime.

The anemometers generally provides measures of the ityerigurbulence that
may help to complete the information about the class of apimesc stability in
the studied region. The intensity of turbuleride defined as the square root of the
sum of variances?, o2, o3, of the three components of the velocity, UY, U?,

14



respectively, divided by the average wind velocity that Ibesn measured,

2+ 2_'_ 2
j= VIL T2 T O (51)

1G]

However, only measures of speed variations are often éaibat not of the wind
direction. In such cases, equation (51) is reduced to,

O'O

§ = — 52
g (52)

wherecs? represents the standard deviation of the measured windspee

While an unstable atmosphere implies a high level of turcde with a range of
turbulence intensities betweér2 and0.4 approximately, a stable atmosphere, with
a small or almost null turbulence, is characterized by isitees from0.05 to 0.1
[18]. In Table 2, the above relations of the turbulence isiigrand the atmospheric
stability have been considered in order to define the Pdsgaillility class.

Pasquill stability class

Isolation Nighttime

Surface wind

speed (m/s) i>0.35 0.35>:¢>025 025>i>015 0.15>i i>0.075 0.075>i>0.03 0.03>4

U <2| A B B B F
2< U <3| A B C C E
3<||U|<5| B B C C D

U’ >5| C C C D D

O m m
O m m =

Table 2
Pasquill stability classification taking into account theface wind speed and the turbu-
lence stability.

5 Adaptive Discretization of the Domain

Several improvements have been implemented in our adapt@sh generation

code. We have used simultaneous mesh adaption to terraatieleand roughness
length, and a high local refinement degree in the surroundlirlge measurement

stations or any other control point. The procedure builds$ érsequence of nested
meshes using the 4-T Rivara’s algorithm [32]. The resulBirig mesh, is the start-

ing point to build the 3-D mesh, using the procedure desdrib¢20,21,25].
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We note that, in the case of the 2.5-D model, the problem isesgdby only consid-
ering an adaptive 2-D triangulation of the rectangularaegvhich is studied.

6 Parameters Estimation with Genetic Algorithms

Genetic algorithms (GAs) are optimisation tools based @nrthtural evolution
mechanism [2,17,36]. They produce successive trials @it hn increasing prob-
ability to obtain a global optimum. This work is based on thedel developed by
Levine [14]. It is a standard genetic algorithm coggdpackiibrary), with string
real coding.

In the numerical experiments with the 2.5-D model, we loakdptimal values of
the quadratic adjustment parametess a; anda, of the friction coefficient( in
terms of the roughness of the terrain, ie= ag + a2y + az22. We search for the
optimum of the linear parametey, in [1, 10], the first order parametey in [0, 5]
and the second order parametgtin [—0.05, 0.05].

In the numerical experiments with the 3-D model, we look fptimal values of
a, €, v and~’. Specifically, the so called stability parameter= 2L determines
the rate between horizontal and vertical wind adjustmeoit. oF>> 1 flow ad-
justment in the vertical direction predominates, whiledot < 1 flow adjustment
occurs primarily in the horizontal plane (see equation 3Dhus, the selection of
« allows the air to go over a terrain barrier or around it. Wergeahe optimum

in [1072,10%]. The second parameter to be estimated is the weighting cieeffi

(0 < e < 1) involved in the horizontal interpolation of wind measurense(see
equation (36)). Foe — 1, the importance of th@orizontal distancdrom each
point to the measurement stations is greater, while: 0 signifies more impor-
tance of theheight differencebetween each point and the measurement stations.
The parametey is related to the height of the planetary boundary layer ¢spm-
tion (41)). There exist different versions of where to shdar this parameter. The
interval [0.15, 0.4] considered in our simulations includes all the proposedchea
spaces. Finally, the parametgrappears in the computation of the mixing height
for stable atmosphere (see equation (42)). Several autlawes proposed that the
value of+’ should be searched in the surrounding® df More details and refer-
ences about the discussion of these parameters can be fo[#W].i

We propose to minimise the following fithess function whistdefined as the av-
erage relative error of the wind velocities given by the mMauiéh respect to the
measures at the reference stations,

1 N 'V, — V(x;,2)||
’ (53)
N Vi

7”21
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whereV (x;, z;) is the horizontal wind velocity obtained by the model at tbe |
cation of statiori, V; is the horizontal measured wind aid. is the number of
reference stations. Note that in the case of the 2.5-D madel,F'(ay, a1, a2) and
in the case of the 3-D model, = F(a,¢,7v,7).

7 Wind Simulations in a Realistic Episode

In order to compare the results of the two wind field models haee considered
a simulation using realistic wind data that have been sagfly DESAIn several
measurement points for an episode along the March 21, 2@@322]. The first
step is to discretize the studied domain, the second is itn&s the main parame-
ters of the model and, then, apply the wind model using theestd values. Next,
the wind velocity is checked in the control points.

We present several applications to show the improvementgdaut in our wind
model. All experiment were run on a XEON precision 530, ex¢kp parameter
estimation problem which was solved using a cluster of PCs.

7.1 Surface mesh adaption to orography and roughness

The studied three-dimensional domaélris located in a region of Lugo, Spain, at
43N of latitude and it is defined by four points of UTM coordinaté§09980,
4799020), B(626000, 4799020), C'(626000, 4813040) and D(609980, 4813040),
respectively. The upper boundasyof €2 has been taken at a height= 4000 m

in the 3-D model and = 1080 m in the 2.5-D model. A digital elevation map
was provided byDESAon a quadrilateral grid of element si2@ x 20 m. The X
axis corresponds to East direction and th@ne to North. Thus, we are working
with a region of16020 x 14020 m. The minimum and maximum terrain heights
are420 m and1020 m, respectively. Figure 1 represents a color map of the height
of the terrain. The measurement stations and the controtpbave been approxi-
mately plotted, such that from North to South we can find EE288, E212, E242,
E206 and E283. Tables 3 and 4 contain their coordinatesgcésgply. The height
of all measurements and control points to the ground areated in Table 5 in
parentheses. All these points are located close to the ttpedfills. Roughness is
an essential factor on the atmospheric stratification, bhacefore, on the charac-
teristics of the resulting wind profile. Figure 2 shows thagioness length of the
terrain which were supplied bBPESA We remark that some stations and control
points are closed to contours of the roughness. In this thsepughness length
values aré).03 m, 0.05 m, 0.08 m, 0.3 m and0.8 m.
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Station UTM-E UTM-N Height

E206 615396 4805218 924.8
E208 616917 4807256 945.0
E212 617423 4806382 895.0

Table 3
Coordinates inm of the measurement stations.

Control point  UTM-E  UTM-N Height

E242 618290 4806136 873.2
E243 616629 4808235 947.0
E283 617473 4804111 849.0

Table 4
Coordinates inn of the control points.

420.00 620.00 820.00 1020.00

Fig. 1. Elevation map (m) of the studied region in Lugo. FroortN to South, we can see
the stations or control points E243, E208, E212, E242, EROG283.

Starting from a regular mesh of the rectangular region wigment size ofl x

1 km approximately, five global refinements are carried out ugifig Rivara’s
algorithm [32]. With this number of refinement steps, we obtamesh with an
element size aboudtl m. In order to improve the discretization near the statiors an
control points, five additional local refinements are agplieside six circles with
centre at the stations and control points, respectively, dameter200 m. This
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0.03 0.29 0.54 0.80

Fig. 2. Roughness length map (m) of the studied region in igothe station and control
points.

produces a local element size abouk. Once we have interpolated the height and
the roughness length in the nodes of these refined two-dioreaisnesh, we use
the derefinement algorithm [9,31] described in section 5th wy, = 10m ande, =
0.01m, keeping in any case the nodes located inside the six cidclésgure 3 we
can see the resulting triangulation of the terrain surfabe. corresponding three-
dimensional mesh, see Figure 4, contdit®662 nodes and 15812 tetrahedrons.

7.2 Parameter estimation along a day

We have taken into account Table 2 for determining the stalblass from the
available turbulence intensity values. For the studied deyhave obtained neu-
tral conditions. So, for the 3-D model, we must estimate thbibty parametery,
the weighting parameterrelated to the horizontal interpolation of wind velocities
and the parameter involved in the computation of the planetary boundary layer
see, e.g., [27]. The estimation has been carried out eaah(Béicomputations).
We have applied genetic algorithms to solve these pararastienation problems,
where the fitness functions (see equation (53)) are definestnms of the relative
velocity errors obtained by the model at the measuremetmsgalt is evident that,
in order to avoid spurious solutions, more than 20 repeistiior parameter setting
of each hour should be done. This fact would obviously implynaportant increas-
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Fig. 3. Triangulation of the terrain simultaneously addpte orography and roughness

corresponding to the studied region in Lugo.
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Fig. 4. Adaptive 3-D mesh corresponding to the studied regid_ugo.
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ing on the computational cost of the parameter estimatioogss, even more if we
take into account that each evaluation of the fitness funstipposes the resolution
of a finite element problem (in this case, about one hundredsténd unknowns).
Nevertheless, from our previous experience in this kind midwsimulation prob-
lems, we have observed that just one computation is enougtedching a good
solution.

In Figure 5 we can see the evolution of the values of the thaespeters of the 3-D
model along the episode. The values afe practically constant and approximately
equal tol. This means that only the horizontal distance has effechemorizontal
interpolation. This result is agreed with the orographiareleteristics of the studied
domain. Likewise the values obtained foare closed t0.15, that is, the lower limit

for this parameter which is related to low planetary boupdiayers. However, the
stability parametery varies in the interval 8-20. This range of values makes the
wind predominantly flow more over the obstacles than arobetht

14 a /20 —— |
12 F p oo .

F . S I
0.8 -
0.6 - |

04 |- _

0.2 |- _

0 ! ! !
00:00 06:00 12:00 18:00 23:50

Fig. 5. Results of the estimation of ¢ and~ (3-D model parameters) along the studied
episode (March 21, 2003).

In Figure 6 we see the evolution of the values of the threerparars of the 2.5-D

model along the episode. These parameters give the redatpbetween the rough-
ness and the friction coefficient. The variation of theseypaaters with the mete-
orological conditions can be explain by certain hidden maarity of the model,

this means that the friction coefficient depends on the mwluAs we can see in
Figure 6, the variation of the parameters is not too highnspractice we could

assume constant values foy, a; anda, and we would obtain similar results.

7.3 Comparison of model results with empirical data

Once the main parameters are estimated, we start the winellimgdalong the
selected episode using the obtained values. For March ZI3, 2Zhly measures
from two control points, E242 and E283, were available. Fagw and 8 show the
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Fig. 6. Results of the estimation af), a; and as (2.5-D model parameters) along the
studied episode (March 21, 2003).

wind speeds obtained with the models and the reference syahgasured at the
control points E242 and E283, respectively. More detaikheferrors of computed
winds with respect to the measured wind may be seen in TaWeSemark that
the average errors at the measurement stations are smapected. The average
error for the 3-D model is 27.24% at control point E242 and4%%at E283. In
addition, the average for the 2.5-D model is 1.05% and 43,288%pectively. Then,
the 2.5-D model obtain better results close to measurenpeiriss. However, the
3-D model is more accurate far from measurements pointsifaly this effect

can be observed at the open boundaries of the domain, wheeasymptotic model
cannot fit very well the boundary conditions.

Ideally the three graphics in figures 7 and 8 should be coamtidOf course the
measured wind, as many experimental measurements, areetbtay sampling

a Gaussian distribution. On average the measured windyveaks conservation.
With both models we obtain a wind field that verify mass covaton.

8 Conclusions

We have presented two models for the wind field adjustmenpeoimg the results
by means of an example with real data. Both models are massstemt models.
The 3-D model needs a major use of empirical laws (initiadnpolation, logarith-
mic profile, Pasquill stability class). Instead the 2.5-Ddmlois a physical model
since it is an asymptotic approximation of Navier-Stokesagipns. The 3-D model
is applicable in very general orographies since it admltkiatls of irregularities

and discontinuities. The 2.5-D model is an asymptotic maité valid only for
not very abrupt orographies.
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Fig. 7. Comparison of the wind velocities measured at thérobstation E242 (March 21,
2003).

T T T T
Measured wind
20 f~, 3-D Computed wind ------ -

> 2.5-D Computed wind

m/s

0 I - - - [ M M M PR Y - -
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

time

Fig. 8. Comparison of the wind velocities measured at thérobstation E283 (March 21,
2003).

Both models give very good results in the measurementsgpamexpected. In the
control points we observe that the asymptotic model canigeoxery good results,
even better that the 3D model in some cases, when the hygstbéthe model are
satisfied.

We have used a technique for constructing tetrahedral mesh&h are simul-

taneously adapted to the terrain orography and the rougHaegth. The use of
our refinement/derefinement process in the 2-D mesh comdgppto the terrain

surface allows us to obtain meshes that are accurately etlaptdifferent func-

tions as well as are locally refined around several pointes&ltharacteristics of
the generated meshes are very important in the wind simulgince, on the one
hand, the quality of the representation of both orographyranghness is critical
for obtaining accurate results with the two models, and erother hand, the local
refinement at the stations and control points is essenti@$erting the wind data
of the stations or recovering such data at any required point
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Stations and Average  Average % Maximum Minimum Model

control points measured computed average  absolute absolut

wind wind error error error
E206 @9 m) 15.37 15.50 0.81 % 0.46 0.01 3-D
15.37 14.82 3.62 % 1.15 0.23 2.5-D
E208 (15 m) 8.57 8.98 4.74 % 1.25 0.00 3-D
8.57 9.13 6.52 % 2.45 0.01 2.5-D
E208 80 m) 9.25 9.92 7.21% 1.36 0.05 3-D
9.25 9.42 1.82% 141 0.00 2.5-D
E212 (15 m) 8.46 8.44 0.20 % 0.63 0.00 3-D
8.46 8.18 3.33% 1.89 0.01 2.5-D
E212 80 m) 9.02 9.85 9.25% 1.60 0.31 3-D
9.02 8.46 6.17 % 2.16 0.01 2.5-D
E242 ¢0 m) 8.40 10.69 27.24% 5.09 0.09 3-D
8.40 8.49 1.05% 2.54 0.01 2.5-D
E283 @9 m) 13.62 12.95 4.94 % 3.04 0.02 3-D
13.62 7.73 43.28 % 9.88 1.34 2.5-D

Table 5
Error of the computed wind at stations and control points.

Some improvements for the 3-D model have been carried obeindnstruction of
the initial wind based on the horizontal interpolation oha@imeasures and vertical
extrapolation in stratified atmosphere. The optimizatibthe friction velocity for
several measures in the same tower allows to minimize tifereifces between the
constructed vertical profile of wind and the measures. Heweliough such differ-
ences are small, further research is needed in order torachaew wind profiles
that exactly satisfy all the available measures of wind eigiles. In addition, the
inclusion of observations of turbulence intensities haderthe model to be able of
automatically updating the suitable wind profile as funttad the corresponding
stability class.

The periodic updating of the main parameters of the modedphaved to be fun-
damental for reducing the errors of the computed wind. Haxedurther consid-
erations should be taken into account in future works fortéeb@erformance of
the models. For example, a finer map of roughness, a moresimalted interpo-
lation of wind velocities, a better approximation of thecfron coefficient and a
greater number of measurement stations well distributen the studied region
will help to reduce the errors of the models. In order to obtam accurate wind
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field in zones with very steep slopes, the mesh should be ediaptthe contour
lines, since a change in the direction of edges in the meshstnaggly affect the
computed wind.

In short, when the terrain is very rugged the 3-D model ismeoended, however if
the asymptotic assumptions are verified the 2.5-D modeligesva good solution
and has the advantage of incorporating thermal effectgjifired.
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