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A. Santana, J. J. Aznárez, L. A. Padrón, O. Maeso

Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingenieŕıa (SIANI)
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Abstract

This work presents a time–harmonic boundary element – finite element three–dimensional model
for the dynamic analysis of building structures founded on elastic or poroelastic soils. The build-
ing foundation and soil domains are modelled as homogeneous, isotropic, elastic or poroelastic
media using boundary elements. The foundation can also be modelled as a perfectly rigid body
coupled to soil and structure. The buildings are modelled using Timoshenko beam finite el-
ements that include the torsional eccentricity of non–symmetrical buildings. The excitation
model includes far–field plane seismic waves of P, S or Rayleigh type for viscoelastic soils and
P1 and S type for poroelastic soils. Modelling foundation and structure as rigid body and
Timoshenko beam respectively, conveys important benefits such as a significant reduction in
the number of degrees of freedom in the problem, which allows to study problems involving
several building structures and the interactions between them with acceptable computational
effort. Results are presented for validation purposes first, and for studying the influence of
modelling the soil as a viscoelastic or poroelastic region afterwards. A study of the modelling
of structure–soil–structure interaction effects is also performed.

Keywords: soil–structure interaction, structure–soil–structure interaction, numerical model, bound-
ary element method, poroelastic soil, building structures

1 Introduction

The main goal of this work is the formulation of a frequency–domain coupled boundary element –
finite element (BEM–FEM) model to study the dynamic and seismic response of a building or a
group of building structures founded on elastic or poroelastic soils. For this purpose, a previous
multidomain BEM model (Maeso et al, 2002, 2004, 2005; Aznárez et al, 2006) was enhanced by
adding new features in order to reduce the computational cost when dealing with that kind of
problems. That multidomain BEM formulation has been used to study different problems of interest
in the field of earthquake engineering, such as, for instance, the seismic response of: arch dams
including the effects of spatial distribution of the excitation and of the presence of poroelastic
sediments (Maeso et al, 2002, 2004); piles and groups of piles in poroelastic soils (Maeso et al,
2005); or non–slender buried structures and the effects of its flexibility in the response (Vega et al,
2013).

In the model presented herein, the soil is modelled as an elastic or poroelastic region using
boundary elements, as briefly presented in section 2. When the hypothesis of infinite rigidity
is applicable to the foundation, this model allows the incorporation of regions with rigid body

*This is the pre-peer reviewed version of the following article: A BEM–FEM model for the dynamic analysis of
building structures founded on viscoelastic or poroelastic soils. Bull Earthq Eng (2015) 14(1):115–138. The final
publication is available at Springer via http://dx.doi.org/10.1007/s10518-015-9817-z.
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behavior embedded in the soil. The coupling between the boundary element mesh and the rigid
body is possible through a numerical strategy based on the application of additional compatibility
and equilibrium equations at the soil–foundation interfaces. Then, the movement of the foundation
can be measured with only an arbitrary point of reference, yielding a considerable reduction in the
number of degrees of freedom of the problem. The implementation of this strategy to the BEM
system of equations is explained in section 3.

The building structures are modelled as elastic homogeneous beams using two–noded finite
elements including the shear deformation (Timoshenko’s beam theory), and also the torsional ec-
centricity for non–symetrical superstructures. In section 4, the modified stiffness matrix (taking
the effects of the torsional eccentricity into account) and the characteristics of this finite element
are presented. The point of reference of the rigid domain will be used to couple the equations of
motion of the superstructure to the system of equations that defines the behavior of the soil and
the foundation.

Free soil surface

Buildings
(modelled using Timoshenko beam finite elements)

Embedded foundations
(flexible or rigid domains)

Unbounded soil
(elastic or poroelastic halfspace)

Boundary element
mesh of the soil

Incident wave

Figure 1: Group of four nearby buildings founded on a halfspace. Sketch of main elements included
in the model.

In short, the BEM–FEM model presented in this paper is able to rigorously represent the es-
sential aspects of the problem at hand while being, at the same time, versatile and computationally
efficient. The model could be used not only to address problems involving building structures (as
sketched in Figure 1, where the main aspects of the model are presented), but also, wind turbines
or other type of structures. Previous works, both analytical and numerical, with common features
to the present research are, among others, those of Luco and Cortesse (1973); Wong and Trifunac
(1975); Simpson (1978); Luco and Wong (1982); Luco (1986); Hejal and Chopra (1989); Todorovska and Trifunac
(1990); Wang and Schmid (1992); Todorovska and Al Rjoub (2006a,b)

In section 5, some comparison results for validation purposes are presented together with results
to study the influence of the viscoelastic or poroelastic nature of the soil in the response and the
effects of the structure–soil–structure interaction. Final conclusions are summarized in section 6.

2 Boundary element model for the soil (Soil boundary element

equations)

In this work, the regions discretized using the boundary element method (soil, foundation and
superstructure in the multidomain BEM approach, and only soil in the BEM – FEM approach)
are modelled as linear homogeneous, isotropic, elastic or poroelastic regions, and welded conditions
are assumed between the different domains. The boundaries are discretized into three–dimensional
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quadrilateral (9–noded) and triangular (6–noded) quadratic boundary elements yielding to the
traditional boundary element system of equations

Hu = Gp (1)

for an elastic soil, where the elements of the matrices H and G are obtained by integration of
the 3–D time–harmonic viscoelastic fundamental solution times the corresponding shape functions,
respectively, and where u and p are the vectors of the nodal displacements and tractions. Corner
problems are solved by means of a non–nodal collocation strategy, which also allows using non-
conforming meshes (see e.g.: Aliabadi, 2002; Aznárez, 2002).

In the case of water–saturated soils, Biot’s theory (Biot, 1956) for poroelastic media is adopted.
Thus, the vectors of the nodal normal fluid displacements U and the nodal fluid equivalent stresses
τ are also variables of the problem. The boundary element system of equations including these
variables may be expressed as follows (Domı́nguez, 1992; Maeso et al, 2005):

[

Hss Hsw

Hws Hww

] [

u

τ

]

=

[

Gss Gsw

Gws Gww

] [

p

U

]

(2)

where the superscripts ’s’ and ’w’ denote respectively the solid skeleton and the pore water of the
poroelastic medium. The elements of the submatrices H and G are obtained by integration of the
3–D time–harmonic poroelastic fundamental solution times the corresponding shape functions, over
the boundary elements. More details of this formulation and its numerical aspects can be found in
Domı́nguez (1993); Maeso et al (2005) and Aznárez et al (2006).

If plane harmonic waves impinging the foundation site from a far source are considered, the
presence of the foundation disrupts in the incident wave fields of a uniform elastic or poroelastic
halfspace. The incident wave field is completely known. The fields of the total displacements uT

and tractions pT are the superposition of the incident and scattered fields, denoted by subscript I
and S respectively, so that uT = uI + uS and pT = pI + pS.

The algebraic BEM system of equations (1) considering the soil as an elastic halfspace may be
written for the scattered fields as:

H (uT − uI) = G (pT − pI) (3)

For a poroelastic halfspace, the incident fields of the fluid equivalent stress and the normal fluid
displacement are respectively denoted by τ I and UI. Then, being τT = τ I+τS and UT = UI+US,
the system of equations (2) for the scattered fields may be written as:

[

Hss Hsw

Hws Hww

] [

uT − uI

τT − τ I

]

=

[

Gss Gsw

Gws Gww

] [

pT − pI

UT −UI

]

(4)

The results presented in section 5 for viscoelastic soils have been computed considering harmonic
planar incident waves of P and S types with vertical incidence or Rayleigh wave type. In the case
of poroelastic soils, vertical incident wave fields are considered of P1 and S type. Incident P2 waves
in saturated soils with realistic properties are highly damped and are therefore not observed in
practice, reason why they have not been considered in this study.

3 Rigid body model for the foundation

When the hypothesis of perfect rigidity does apply, assuming the foundation as a rigid body implies
a significant reduction of the degrees of freedom of the problem.

The strategy implemented in this work to include rigid body restrictions is one of the three
techniques proposed by Thomazo and Mesquita (2007) and applied in two–dimensional problem by
these authors. The process may be summarized as the task of incorporating kinematic compatibility
restrictions and equilibrium conditions into the matrices of equations (3) and (4). Let us assume
that the rigid behavior does apply to the foundation, which is embedded in an elastic or poroelastic
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halfspace (see figure 2). Let Γs and Γr be the free soil surface and the rigid interface between soil
and foundation, respectively. Then, equations (3) and (4) can be written as:

[

Hss Hsr

Hrs Hrr

] [

us − (uI)s
ur − (uI)r

]

=

[

Gss Gsr

Grs Grr

] [

ps − (pI)s
pr − (pI)r

]

(5)

and
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(6)

uref

θrefx vref
θrefy

wref

θrefz Γs (free soil surface)

Γr (rigid interface)

P or S incident wave

Rayleigh incident wave

rigid
foundation

elastic or poroelastic domain Ω

Figure 2: Rigid model for an embedded foundation. Free surface Γs (ps = 0, τ s = 0) and rigid
interface Γr.

On the other hand, the six degrees of freedom of the rigid body (three displacements and three
rotations) can be measured from an arbitrary point of reference with coordinates (xref, yref, zref) and
may be organized in the rigid body displacements vector uref = (uref, vref, wref, θrefx , θrefy , θrefz ) T.
The kinematic compatibility relations that exist between the vector of displacements of rigid body
uref and the vector of displacements of the i-node ui = (ui, vi, wi)T at the interface Γr can be
written in matrix form as ui = Ci uref, where

Ci =





1 0 0 0 (zi − zref) (yref − yi)
0 1 0 (zref − zi) 0 (xi − xref)
0 0 1 (yi − yref) (xref − xi) 0



 (7)

and being (xi, yi, zi) the coordinates of the i–node over Γr. The kinematic compatibility relation-
ship for all nr nodes in Γr can be written as:

ur = Curef (8)

being ur = [u1, ... , unr ]T and C = [C1, ... , Cnr ]T.
Equilibrium between the forces acting on the rigid foundation, and the tractions and fluid

equivalent stresses on the soil–rigid body interface Γr is required. Let pj(x, y, z) = (pjx, p
j
y, p

j
z)T

be the vector of tractions, τ j(x, y, z) the fluid equivalent stress and nj(x, y, z) = (nj
x, n

j
y, n

j
z)T

the normal vector of the j–element over Γr. Considering the inertial forces and the vector of
resultants of the external forces acting at the center of mass of the rigid foundation Fcg =
(F cg

x , F cg
y , F cg

z , M cg
x , F cg

y , F cg
z )T, the equilibrium relations at the center of gravity of the rigid

body can be expressed as:
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F cg
k =

ne
∑

j=1

∫

Γj
r

(pjk + τ j nj
k) dΓ

j
r − ω2 M ucgk ; k = x, y, z

M cg
x =

ne
∑

j=1

(
∫

Γj
r

(pjy + τ j nj
y) (z

cg − zj) dΓj
r+

∫

Γj
r

(pjz + τ j nj
z) (y

j − ycg) dΓj
r

)

− ω2 Icgx θcgx

M cg
y =

ne
∑

j=1

(
∫

Γj
r

(pjx + τ j nj
x) (z

j − zcg) dΓj
r+

∫

Γj
r

(pjz + τ j nj
z) (x

cg − xj) dΓj
r

)

− ω2 Icgy θcgy

M cg
z =

ne
∑

j=1

(
∫

Γj
r

(pjx + τ j nj
x) (y

cg − yj) dΓj
r+

∫

Γj
r

(pjy + τ j nj
y) (x

j − xcg) dΓj
r

)

− ω2 Icgz θcgz

(9)

being M the total mass, Icgx , Icgy , Icgz the inertia moments at the center of mass of the foundation,
(xcg, ycg, zcg) the coordinates of the section center of gravity, ne the number of elements in the
rigid interface, ω the excitation frequency and (xj , yj , zj) the coordinates of the points over the
j–element. In terms of the nodal values of the variables, the set of equations (9) may be expressed
as:

Fcg = Epr + J τ r − ω2Mucg (10)

being E and J the matrices of equilibrium formed by integrals involving the corresponding elemental
shape functions, M a diagonal matrix that contains the total mass and the inertia moments of the
foundation, pr = (p1, ..., pnr)T, τ r = (τ1, .., τnr)T and ucg = (ucg, vcg, wcg, θcgx , θcgy , θcgz )T the
vector of displacements of the center of gravity of that foundation.

Equilibrium equations (10), defined at the center of gravity of the rigid body, can be generalized
for an arbitrary point of reference considering equilibrium and kinematic relations between this
point and the center of mass. These relations may be expressed in matrix form as follows:

Fcg = TFref ; ucg = Luref (11)

being

L =

















1 0 0 0 (zcg − zref) (yref − ycg)
0 1 0 (zref − zcg) 0 (xcg − xref)
0 0 1 (ycg − yref) (xref − xcg) 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(12)

and T = (LT)−1.
Applying boundary conditions, assuming welded contact conditions between soil and foundation

rigid body, taking the kinematic relation (8) into account and writing equilibrium equations from
(10) and (11) as additional equations, the systems of equation (5) results in





Hss Hsr C −Gsr ∅

Hrs Hrr C −Grr ∅

∅ −ω2 ML E −T













us

uref

pr

Fref









=





Hss Hsr −Gsr

Hrs Hrr −Grr

∅ ∅ ∅









(uI)s
(uI)r
(pI)r



 (13)
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while (6) yields, for poroelastic soils, the following system of equations:
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(14)

In this case, in order to define the relationship between the pore fluid and the rigid interface,
an additional condition is needed at the interface between rigid body and poroelastic soil. In
this work, two different contact conditions based on particular cases of the theory presented by
Deresiewicz and Skalak (1963), are considered: drained and undrained contact. On one hand, if
Γr is considered as a permeable interface (drained contact), the free drainage of the pore fluid is
possible, then the fluid equivalent stress τ r = 0 and the normal fluid displacement Ur is unknown.
On the other hand, if the rigid interface is impermeable (undrained contact), the fluid does not
soak through Γr, then the fluid equivalent stress τ r is unknown and the normal fluid displacement
Ur is completely constrained by the rigid surface and equal to the normal displacement of the solid
skeleton nr ur, where nr is the normal vector of the Γr rigid interface. Taking (8) into account,
this last condition can be expressed in (14) as Ur = nr Curef.

In both cases, displacements uref and reactions Fref at the point of reference are unknowns
of the system and will be used to couple, through kinematic compatibility and equilibrium, the
foundation to the base of the superstructure, discretized as presented in the next section.

4 Building modelling. Two–noded Timoshenko beam finite ele-

ments

In this work, buildings are discretized using three–dimensional two–noded Timoshenko beam finite
elements for frequency–domain problems, that take axial and torsional degrees of freedom into ac-
count, and that can be seen as an enhancement of the element proposed by Friedman and Kosmatka
(1993). Let u, v, w, θx, θy and θz be the six degrees of freedom (three displacements and three
rotations) defined at each node, as shown in figure 3. The vectors of nodal forces Fi and Fj are
coherent with the vectors of nodal displacements ui and uj.

For buildings with non–symmetrical cross–section, the shear–center (center of stiffness) C and
center of gravity G of the cross–section might not be located at the same point (see figure 4). The
differences between the coordinates of C and G represent the eccentricities along x–direction (ex)
and y–direction (ey). In these cases, the dynamic analysis forces to write the stiffness matrix given
by these authors at G for every ij–element of the building model. This fact makes possible that
the dynamic equilibrium equations of the ij–element may be expressed at the center of gravity of
the section as follows

[

Fi

Fj

]G

= (KG
ij − ω2MG

ij)

[

ui

uj

]G

(15)

6



x

y

z

uj
θjx

vj

θjy

wj

θjz

ui
θix

vi
θiy

wi

θiz

j–node

i–node

ui = (ui, vi, wi, θix, θ
i
y , θ

i
z)

T

uj = (uj , vj , wj , θjx, θ
j
y, θ

j
z)

T

Figure 3: Two-noded Timoshenko beam finite element used for building discretization.

Figure 4: Building model with generic non–symmetrical cross–section.

where KG
ij is the stiffness matrix defined at the center of gravity, and MG

ij is the consistent
mass–matrix of the ij-element, obtained as the addition of two matrices, the first one asso-
ciated to the translational inertia and the second one associated to the rotatory inertia (see
Friedman and Kosmatka, 1993).

In order to build KG
ij, a simple procedure is implemented. The starting point is the element

stiffness matrix proposed by Friedman and Kosmatka (1993) adapted so as to represent a three–
dimensional problem and to include the torsional term µJ/L (where µ is the material shear modulus,
J is the torsional constant, and L is the element length). Such element stiffness matrix is defined
at the shear center of the section and is written at the center of gravity (where inertial forces
are applied) through the following kinematic and equilibrium relations between C and G for the
ij–element,

[

ui

uj

]C

=

[

S 0
0 S

] [

ui

uj

]G

;

[

Fi

Fj

]G

=

[

ST 0

0 ST

] [

Fi

Fj

]C

(16)

where

S =

















1 0 0 0 0 −ey
0 1 0 0 0 ex
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(17)

Thus, the stiffness matrix of an eccentric beam element can be obtained from:
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KG
ij =

[

ST 0

0 ST

]

KC
ij

[

S 0
0 S

]

(18)

Eccentricities ex and ey, shear correction factors αx and αy, and torsional constant J corre-
sponding to building cross-sections were obtained using the module ’Sections’ in the BeamTool of
ANSYS®.

5 Results

This section presents, for validation and illustration purposes, results corresponding to three dif-
ferent problems: a) a soil–structure interaction problem where the soil is modelled as a viscoelastic
region, b) the study of the influence of considering a soil of poroelastic nature in the previous SSI
problem, and c) the study of a SSSI problem, i.e., of the influence of nearby structures in the
response of the system.

F
o
u
n
d
a
ti
o
n

1
0
m

1
0
0
m

x, u

y, v

z, w

4
0
m

25m

20m

1
0
m

2
0
m

1
0
m

C G

ex

ex = 2.37039 m

Figure 5: Building model dimensions.

Figure 5 shows the dimensions and the U–shaped cross–section of the 100 meters high building
involved in all cases of study. The fundamental fixed–base frequency of the building is fxz

fb =
0.564Hz (Txz

fb ≈ 1.773 s) in the xz–plane and f yz
fb = 0.920Hz (Tyz

fb ≈ 1.087 s) in the yz–plane. The
rest of properties used in order to model the superstructure as a Timoshenko beam are: equivalent
shear modulus µb = 3.0 · 108 N/m2, equivalent linear density ρb = 2.7 · 105 kg/m, Poisson’s ratio
νb = 0.2 and hysteretic damping ratio ξb = 0.05.

Table 1 presents the properties of the cross–section of the building, being Ix, Iy the inertia
moments, J the torsional constant, A the area and αx, αy the shear correction factors.

Table 1: Properties of the building cross–section for the FE definition

Ix
(

N ·m2
)

Iy
(

N ·m2
)

J
(

N ·m4
)

A
(

m2
)

ex (m) ey (m) αx αy

130000.0 40763.9 84281.6 900.0 2.37039 0.0 0.886399 0.748341

5.1 Soil–structure interaction problem in viscoelastic soil

This section presents results corresponding to a SSI problem involving a building founded on an
equivalent elastic soil with the properties of the drained poroelastic medium (elastic drained soil)
as in Todorovska and Al Rjoub (2006a). The properties of such equivalent drained elastic soil are:
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shear wave velocity cs = 300m/s, Poisson’s ratio νs = 0.3, damping hysteretic ratio ξs = 0.05 and
density ρs = 1620 kg/m3.

For validation purposes, results will be compared against those of the more rigorous multidomain
BEM presented in Maeso et al (2002, 2004, 2005); Aznárez et al (2006). When using such approach
to solve the problem, all domains defining the geometry (soil, foundation and building) are modelled
as linear homogeneous isotropic viscoelastic regions. Figure 6(a) shows the mesh of boundary
elements used for this purpose. The code is able to take the symmetry properties of the problem into
account, so only one half of the total geometry needs to be meshed. The element size must be smaller
than the half–wave length at the corresponding region for the highest frequency of analysis, in this
case 10 Hz. Free–surface extension and number of elements, are defined by performing convergence
analyses of the variables of interest for different meshes. The properties of the foundation are
coincident with the parameters previously defined for the building domain, except for the value
of the shear modulus, which is assumed to be one hundred times stiffer than the equivalent shear
modulus of the Timoshenko beam used to model the building. On the other hand, the mesh used
to solve the problem with the BEM–FEM model is presented in figure 6(b). Free–surface and
foundation–soil interfaces coincide with those of the mesh used for the multidomain BEM approach
(figure 6(a)). The buried part of the building is modelled now as a perfectly rigid domain using the
formulation explained in section 3 so, in this case, only the perfectly rigid interfaces and the free
surface of the soil need to be meshed with boundary elements. The building itself is now discretized
using two–noded Timoshenko finite elements (10 finite elements with 10 meters length) instead of
boundary elements. The reference point of the rigid body is located at the top of the foundation
domain, exactly on the symmetry x–axis and at the center of gravity G of the cross–section (see
detail in figure 6(b)).

x

y

z

(a)

Coupled BEM model

foundation BE mesh

building BE mesh

soil BE mesh

S–wave
x

yz

G

Point of reference

(b)

BEM–FEM model

S–wave
rigid foundation BE mesh

FE building model

Figure 6: (a) Multidomain BEM mesh. (b) BEM–FEM mesh, and detail of the coupling at the
point of reference.

Figure 7 shows the modulus of the vertical displacement w at the top and the base of the
building considering P–wave as excitation, and being wff the vertical free field displacement. On
the other hand, when the system is subjeted to S–waves inducing displacements along y–direction,
the variables of interest are the transversal displacements v and the bending rotation θx around x–
axis, together with the torsional rotation θz due to the eccentricity ex of the cross–section. Figure 8
shows the frequency response functions relating these three variables measured at the base and the
top of the building, to the transversal free field displacement vff and the half width of the section
(a=20 m).

Figures 7 and 8 show good agreement between the multidomain BEM and the BEM–FEM
models. Both models are able to capture the effects of soil–structure interaction, evident from the
comparison against the fixed–base response (represented with a black dashed line where appropiate),
as resonant frequencies and peak responses decrease significantly. The largest differences appear
when comparing torsional responses at the top. Discrepancies come from two sources: a) non-
uniform torsion, which is not taken into account by the finite element, and b) results for bending
and torsional rotation from the multidomain BEM are computed indirectly from the displacements
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Figure 7: Comparison between BEM and BEM-FEM models. Frequency response functions at
the base and the top of the building for vertical displacements w normalized with the free field
displacement wff due to vertically–incident P–waves.

of the mesh nodes. The results presented in the next subsections are obtained using only the
BEM-FEM model.

5.2 Soil–structure interaction problem in poroelastic soils

In order to study the influence over the previous SSI problem of considering a soil of poroelastic
nature, this section presents results regarding the dynamic response of the building when founded on
elastic or poroelastic soils. The properties of such poroelastic medium (after Todorovska and Al Rjoub,
2006a) are: soil porosity φ = 0.4, Poisson’s ratio ν = 0.3, density of the solid phase ρs =
2700 kg/m3, shear modulus of the solid phase µs (corresponding to a dry shear wave velocity
cs,dry =

√

µs/((1 − φ) ρs) = 300m/s), density of the fluid phase ρf = 1000 kg/m3, compressibility
of the fluid phase Kf = 2.2 × 109 N/m2, and apparent added density ρa = 300 kg/m3. The Biot’s
constant are Q = (1−φ)Kf = 8.80 · 108 N/m2 and R = φKf = 1.32 · 109 N/m2. Five different cases
of soils will be considered. For the elastic type, two different models are studied: elastic drained
soil (properties of soil in section 5.1) and elastic undrained soil (saturated soil). In this last case,
the soil properties are: the shear modulus µus = 1.458 · 108 N/m2, the density ρus = 2020 kg/m3,
the damping hysteretic ratio ξ = 0.05 and the value of the Poisson ratio νus = 0.4876, which is
related to Biot’s parameters as follows:

νus =
λs + µs +

(Q+R)2

R

2
[

λs + µs +
(Q+R)2

R

] (19)

where λs is the Lame’s constant. In the poroelastic case, three different models are studied char-
acterized by dissipation constants b = 0, 1.569 · 105 and 1.569 · 106 N·s/m4, corresponding to
Darcy’s hydraulic conductivities k = ∞, 10−2 and 10−3 m/s, according to the relationship (see e.g.
Bougacha and Tassoulas, 1991):

b = ρf g
φ2

k
(20)

where g(m/s2) is the gravity acceleration. Undrained contact condition between rigid foundation
and soil are always assumed, except when b = 0, case in which both drained and undrained
contact conditions are studied. The results presented in figures 9 and 10 were obtained considering
undrained contact condition. The mesh used in this study is shown in figure 6(b).

Figure 9 presents the frequency response functions |w/wff|, |u/wff| and a · |θy/wff| representing
vertical and horizontal displacements and bending rotation at the base and the top of the building.
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Figure 8: Comparison between BEM and BEM-FEM models. Frequency response functions at the
base and the top of the building for transversal displacements v in y–direction, bending rotations
θx around x–axis and torsional rotations θz, normalized by the free field displacement vff due to
vertically–incident S–waves.

Fixed–base response at the top of the building is also included for reference (black dashed line).
The building is subjected to vertically–incident P–waves, but the presence of the non-symmetrical
structural section generates not only vertical displacements w but also horizontal displacements
in the x–direction u and bending rotations θy. The model captures not only the soil–structure
interaction, but also the influence of the type of soil in the response of the structure, which produces
significant differences for frequencies above 4Hz. Differences in the response at the top of the
building can be seen, particularly at the peaks. The small box in the plot of the frequency response
function of the displacement w at the top shows a detailed view of the first peak. It can be
seen that that the first mode frequency slightly increases, and also the response functions, for the
water–saturated soils.

Figure 10 presents the response at the top and bottom of the building when subjected to
vertically–incident S–waves producing transversal displacements along the y–direction. Due to the
torsional eccentricity of the building, torsional rotation a · |θz/vff| exists together with transversal
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Figure 9: Vertical displacements |w/wff|, horizontal displacements |u/wff| and bending rotations
a · |θy/wff| at the base and the top of the building due to vertically–incident P–waves. Elastic model
(drained and undrained) and poroelastic model with different values of the dissipation constant ’b’.

displacement |v/vff| and bending rotation a · |θx/vff|. In this case, the influence of the soil model
on the response is very small. Only a slight increase in the fundamental frequency and a reduction
of the peak are observed in for the water–saturated soils. As expected, if the soil is considered as
elastic undrained, the response of the structure is similar to that computed for poroelastic soils
with high values of ’b’ in both problems.

The model can be used not only to study the effects of the value of the dissipation constant ’b’
of the soil in the response, but also the effects of the contact condition between the rigid foundation
and the soil. All results presented above assumed undrained contact condition. Now, drained and
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Figure 10: Transversal displacement |v/vff|, bending rotations a · |θx/vff| and torsional rotations
a · |θz/vff| at the base and the top of the building due to vertically–incident S–waves. Elastic model
(drained and undrained) and poroelastic model with different values of the dissipation constant ’b’.

undrained contact conditions will be compared for b = 0. For this purpose, figure 11 shows the
frequency response functions of the vertical displacement |w/wff|, horizontal displacement |u/wff|
and bending rotation a · |θy/wff| at the base and the top of the building for vertically–incident
P–waves; and figure 12 presents transversal displacement |v/vff|, bending rotation a · |θx/vff| and
torsional rotation a · |θz/vff| at the base and the top of the building when the excitation is a S–wave.

The results show a significant influence of the contact condition when the system is subjected
to P–waves, but a negligible influence for S–waves. Similar effects of the contact condition can be
found in Japón et al (1997) when studying dynamic stiffness functions of foundations.

13



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

|w
b

as
e/

w
ff

|

 0

 2

 4

 6

 8

 10

 12

 14

|w
to

p
/w

ff
|

Elastic drained
Undrained contact, b=0
Drained contact, b=0
Fixed−base

 0

 0.01

 0.02

|u
b

as
e/

w
ff

|

 0

 0.02

 0.04

 0.06

 0.08

 0.1

|u
to

p
/w

ff
|

 0

 0.02

 0.04

 0.06

 0  2  4  6  8  10

a·
|(

θ y
) b

as
e/

w
ff

|

Frequency (Hz)

 0

 0.04

 0.08

 0.12

 0  2  4  6  8  10

a·
|(

θ y
) (

to
p

)/
w

ff
|

Frequency (Hz)

Figure 11: Vertical displacements |w/wff|, horizontal displacements |u/wff| and bending rotations
a · |θy/wff| at the base and the top of the building due to vertically–incident P–waves, for different
hydraulic contact conditions.

5.3 Structure–soil–structure interaction

The use of the BEM–FEM model presented above to study the effects of structure–soil–structure
interaction are explored in this section by presenting results of the dynamic response of the system
when two identical buildings are founded close to each other. The soil is considered as the elastic
drained domain described in section 5.1. Figure 13(a) shows a sketch of the problem in which
the geometrical and mechanical properties of buildings and soil correspond to those described in
the introductory part of the section 5. The two identical buildings are placed symmetrically with
respect to each other, being ’d’ the closest distance between them. Figure 13(b) shows the BEM–
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Figure 12: Transversal displacements |v/vff|, bending rotations a·|θx/vff| and the torsional rotations
a · |θz/vff| at the base and the top of the building due to vertically–incident S–waves, for different
hydraulic contact conditions.

FEM mesh used in the study. The response have been computed for two different values of the
distance ’d’ (25 and 50 meters) and considering a Rayleigh wave propagating from −x as the
incident field. The amplitude of this Rayleigh incident wave is assumed to be constant along the
whole free surface of the soil (zero damping in the incident field).

Figure 14 presents the dynamic response of the system in terms of horizontal displacement u,
vertical displacement w and rotation θy at the base and the top of both buildings, normalized with
the horizontal displacement of the incident wave uff. The response considering only the presence
of one building is included in both figures for reference. Structure–soil–structure interaction is
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(a)

x

yz

(b)

Figure 13: (a) Isometric view sketch of the problem of two buildings modelled with the BEM–FEM
model. (b) BEM–FEM mesh of two buildings (only one half of the geometry is meshed).

more significant on the vertical response, where the first building (building A) to be reached by the
wavefront develops larger peak responses than the second building (building B), whose response is
smaller than that of the single building in the whole frequency range.

6 Conclusions

A Boundary Element – Finite Element formulation has been proposed in this work for the time–
harmonic study of soil–structure and structure–soil–structure interaction problems involving build-
ings on foundations that can be assumed to be much stiffer than the surrounding soil. This
symplifying assumption allows to reduce the number of degrees of freedom of the problem by mod-
elling the foundation as a rigid body. Further reduction in the computational cost of the analysis
is obtained by modelling the superstructure as a Timoshenko beam.

For this purpose, a previous multidomain BEM formulation has been enhanced in order to
include coupling with rigid regions. Viscoelastic and poroelastic domains can be considered. The
introduction of Timoshenko beams in the model, coupled to those rigid bodies, has also been
implemented. The finite elements used to discretize such Timoshenko beams are presented in such
a way that the eccentricity of the structural section and its torsional response can be taken into
account.

Results corresponding to the seismic response of buildings and groups of buildings under S, P or
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Figure 14: Transversal displacements |u/uff|, vertical displacements |w/uff| and bending rotations
a · |θy/uff| at the base and the top of the buildings due to incident Rayleigh waves.

Rayleigh waves are presented for validation purposes first, and in order to illustrate the capabilities
of the model afterwards. The influence of the poroelastic natures of the soil is shown to be, in
the case of study, not significant when the system is subjected to shear waves, but important for
compressional waves. On the other hand, and from a single study comprising a system of two nearby
identical structures subjected to Rayleigh waves, structure–soil–structure interaction is shown to
affect the response of the buildings in such a way that the response of a single one is different from
that of the group.
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