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Advances in the study of soil-structure interaction effects on the
dynamic response of piled structures

Abstract. My original contribution to knowledge is an analysis of the soil-structure
interaction effects on the period and damping of pile-supported structures. For this pur-
pose, an equivalence between the interacting system and a single-degree-of-freedom sys-
tem which reproduces, as accurately as possible, the coupled system response within the
range where the peak response occurs is established. The coupled-system response is ob-
tained by using a substructuring model in which the structure is considered as a single-
degree-of-freedom shear structure that represents, from a general point of view, one
mode of vibration of multi-storey buildings. In order to determine the dynamic charac-
teristics of this equivalent single-degree-of-freedom system, this Ph. D. thesis addresses
the development, implementation and validation of a simple and stable procedure which
considers kinematic and inertial interaction effects and takes into account all the ele-
ments of the matrix of impedances. A boundary element-finite element coupling formu-
lation is used to compute impedances and kinematic interaction factors of the pile group
configurations studied in this thesis. The proposed procedure is applied to perform para-
metric analyses for the purpose of determining the influence of the main parameters of
soil-structure interaction problems on the dynamic response of the superstructure. The
scope of this thesis also encompasses the study of deep foundations including battered
piles. In this line, the proposed procedure is also used to contribute to clarify whether
the use of battered piles has a positive or a negative influence on the dynamic response of
superstructures. Ready-to-use graphs are presented for the estimation of flexible-base
period and damping in terms of their fixed-base values and the system configuration.
These results are used to build modified response spectra that include soil-structure
interaction effects. Likewise, the influence of the rake angle of piles on the dynamic

response of the foundation itself is also investigated.

Keywords: piled foundations, soil-structure interaction, effective period, effective damp-
ing, kinematic interaction, substructure model, inclined piles, seismic response







Avances en el estudio de los efectos de interaccion suelo-estructura
en la respuesta dinamica de estructuras cimentadas con pilotes

Resumen. La contribucién original de este trabajo consiste en un anélisis de la influen-
cia de los efectos de interaccion suelo-estructura sobre el periodo y el amortiguamiento
de estructuras pilotadas. Con este propdsito, se establece una equivalencia entre el sis-
tema objeto de estudio y un sistema de un grado de libertad que reproduce, de la forma
maés precisa posible, la respuesta del sistema acoplado dentro del rango en el que se pro-
duce la respuesta maxima. La respuesta del sistema acoplado se obtiene utilizando un
modelo de subestructuracion en el cual la estructura se considera como una estructura
a cortante que representa, desde un punto de vista general, un modo de vibracién de
edificios de varias plantas. Con el fin de determinar las caracteristicas dindmicas de
dicho sistema equivalente, esta tesis aborda el desarrollo, la implementacién y la va-
lidacién de un procedimiento sencillo y estable que tiene en cuenta todos los términos
de la matriz de impedancias asi como los efectos de interacciéon cinematica e inercial.
Se ha empleado una formulacién acoplada de elementos de contorno y elementos finitos
para el calculo de las impedancias y los factores de interaccién cinematica de las con-
figuraciones de grupos de pilotes estudiados en esta tesis. El procedimiento propuesto
se aplica a la realizaciéon de analisis paramétricos que permiten determinar la influen-
cia de los principales parametros del problema de interaccion suelo-estructura sobre la
respuesta dinamica de la superestructura. El Ambito de esta tesis abarca también el es-
tudio de cimentaciones con pilotes inclinados. En esta linea, el procedimiento propuesto
se usa con el fin contribuir a esclarecer el efecto beneficioso o perjudicial que el uso de
pilotes inclinados tiene sobre la respuesta dinamica de la superestructura. Asimismo,
se estudia también la influencia que tiene el Angulo de inclinacién de los pilotes sobre la

respuesta de la cimentacién en si misma.

Palabras clave: cimentaciones pilotadas, interaccién suelo-estructura, periodo efectivo,
amortiguamiento efectivo, interaccién cinemaética, subestructuracion, pilotes inclinados,
respuesta sismica
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1.1 Introduction

Pile foundations are deep foundations consisting of either a single long, slender,
columnar element or a group of them whose heads are often connected by a reinforced
concrete block named pile cap. A pile cap transfers and distributes the loads from the su-
perstructure to the foundation and also provides lateral restraint to the tops of the piles
when necessary. Piles are typically made from steel, reinforced concrete, pre-stressed
concrete and sometimes timber.

The use of piles and pile foundations dates back to prehistoric times. The inhabitants
of the Alpine region during the Neolithic and the Bronze Age built their homes on wooden
piles driven in the soft bottoms of shallow lakes. This type of construction was also
used in different places all over the world as Oceania, Africa and South America. Venice
stands on wooden piles since the 9th century. Over a million of wooden piles were dug
underwater in order to build Santa Maria della Salute church in Venice in the 17th
century. The use of steel piles began in the 19th century and that of concrete piles in the
20th century. Today, pile foundations are frequently used to support high rise structures,
nuclear reactor buildings, bridge piers, offshore platforms and marine structures.

Pile foundations are commonly used to transfer the loads from a structure above
ground through soft, weak underlying surface soil, or even through swelling or collapsing
soils, to deeper strata with higher bearing capacity and stability. They are also adopted
to transmit uplift loads gradually by side shear, in those cases in which competent layers
are not found within an acceptable depth, as well as to resist large horizontal loads by
using vertical piles subjected to bending and shear or inclined piles. This type of founda-
tion is also advisable in situations where the underlying soil is not adequate to prevent
excessive settlement. With regard to the seismic behaviour of structures, the use of pile
foundations can improve their seismic response by reducing the seismic input and, at
the same time, increasing the system damping.

Conventional methods used in the analysis and design of structures usually assume a
fixed-base condition. This implies that the foundation-soil system underlying the struc-
ture is rigid and soil-structure interaction (SSI) effects are neglected. The dynamic soil-
structure interaction consists of inertial interaction and kinematic interaction. Inertial
interaction results from the inertial forces transmitted by the mass of the superstruc-
ture to the compliant soil. Kinematic interaction arises as a result of the inability of
the foundation to conform to the distortions of the soil generated by the incident earth-
quake waves. The study of the behaviour of structures during earthquake events has
revealed that the soil-structure interaction can affect the dynamic response of buildings,
especially in the case of stiff structures founded on relatively soft soils.

In view of the foregoing, an adequate assessment of the structural dynamic response
requires the development of models that rigorously incorporate the interaction between
the structure and the soil on which it is founded. The methodologies used for seismic
analyses considering soil-structure interaction can be classified into direct and substruc-
turing approaches.

A three step or substructure approach is commonly used to analyse the seismic be-
haviour of structures including SSI effects arising when fixed-base conditions are not
assumed for the structure. This methodology consists in breaking the solution of the
problem into three parts. The first part addresses the determination of the foundation
motion when subjected to the seismic waves and considering that both the structure
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and the foundation are massless. The next part consists in obtaining the foundation
impedances which represent the stiffness of the foundation support and the damping as-
sociated with foundation-soil interaction. Finally, the last part is the computation of the
response, at each frequency, of the structure supported on springs and dashpots, char-
acterized by the foundation impedance matrix, and subjected to the motion computed
in the first part. This methodology provides accurate results for the kind of problems
tackled in this dissertation and, at the same time, is easy to implement. This approach
is particularly appropriate for conducting parametric analysis to determine the influ-
ence of the main parameters of the SSI problem on the final response with an affordable
computational effort. Another important advantage of this approach it that symmetry
or cylindrical conditions can be applied to reduce the size of the model, without loss of
accuracy, if the foundation meets these requirements, even if the superstructure does
not. In addition, the analysis of each part (superstructure, foundation and soil) of the
whole system can be performed by using the most suitable method in each case.

On the other hand, direct approaches model in a single step the soil, foundation and
structure and consider mutual interaction in a more rigorous manner. The main short-
coming of these approaches is their relative computational cost, due to the complexity
of models with a larger number of degrees of freedom. In fact, few parametric studies
are normally performed with direct approaches, since variations in the properties of any
part of the system entail a complete new analysis. Even so, these methods are specially
competitive in the analysis of interaction phenomena among nearby structures, and in
problems involving nonlinearities.

The use of substructuring methodologies in the analysis of the dynamic response of
structures supported by shallow or embedded foundations has been the subject of much
research. However, the study of the dynamic behaviour of pile-supported structures
has received less research attention. Aiming at contributing to fill this gap, this work
exploits the advantages of the substructure methodology in order to develop a simple
and stable procedure for the estimation of periods and dampings of pile-supported shear
structures, in the linear range, including soil-structure interaction. For this purpose,
an equivalence between the interacting system and a single-degree-of-freedom (SDOF)
system which reproduces, as accurately as possible, the coupled system response within
the range where the peak response occurs is established. The coupled system response
is obtained by using a substructuring model in which the structure is considered as a
SDOF shear structure that represents, from a general point of view, one mode of vi-
bration of multi-storey buildings. Both, dynamic and kinematic interaction effects are
included in the analysis of this coupled system and all the elements of the impedance
matrix are taken into account. Impedances and kinematic interaction factors of the pile
group configurations investigated are calculated using a three-dimensional boundary el-
ement - finite element methodology. The structure is analysed as founded on an elastic
homogeneous half-space and excited by vertically incident S waves.

Once the model is formulated, implemented and validated, it has been applied to pile
foundations comprising vertical and battered piles. Inclined piles are frequently used
in foundations that are expected to resist important lateral loads. Vertical piles trans-
mit these loads only through shear and bending. However, raked piles have the ability
of transmitting them primarily in axial compression and/or tension, which implies an
increase of their lateral stiffness. Thus, when subjected to lateral loading, batter piles
present generally smaller deformations and offer larger bearing capacity than vertical
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piles of the same material and dimensions. Until 1990s, inclined piles were frequently
used in seismic design of bridges as well as in design of marginal wharfs and other port
and harbour structures. However, the use of inclined piles became highly discouraged
after the unsatisfactory seismic performance that deep foundations with battered piles
showed during a series of earthquakes. In fact, the specification of batter piles as foun-
dation systems in seismically active regions is generally avoided, due also to the lack of
understanding regarding the seismic response of batter piles and pile foundations with
inclined elements and, in the European case, to the note in part 5 of Eurocode 8 stating
that the use of inclined piles for transmitting lateral loads to the soil is not recommended
when designing for earthquake resistance. Indeed, the need for more research on all
facets of this problem is apparent from the lack of information available in the literature
and in the different building codes. In recent years, inclined piles have recovered their
popularity. Indeed, several studies have shown the beneficial role of battered piles on
the seismic response of the structure. However, further research is needed to be able
to elucidate in which cases the presence of raked piles is beneficial or detrimental. The
kinematic interaction factors of pile foundations with inclined elements is one of the as-
pects that have not received enough attention. Moreover, the influence of pile rake angle
on the seismic response of the superstructure is another aspect that still needs more
research. These two aspects are investigated in this work.

An analysis of the influence of SSI effects on the dynamic response of slender and
non-slender structures supported on several configurations of 2 x 2, 3 x 3 and 4 x 4 pile
groups is accomplished in this work through a procedure based on a substructure model.
The relevance and main trends observed in the influence of the variation of the main
parameters of the problem on the dynamic response of the structure are inferred from
the presented results.

This document includes ready-to-use graphs for the estimation of flexible-base period
and damping, in terms of their fixed-base values, for several system configurations. Max-
imum shear forces together with base displacement and rocking peak response are also
provided. Moreover, modified response spectra considering soil-structure interaction
effects are obtained for different rake angles.

1.2 Literature review

The seismic design of Nuclear Power Plants in the 60s and 70s brought with it a
growing interest in seismic soil-structure interaction. The research works undertaken
by Parmelee [1], Parmelee et al. [2], Perelman et al. [3] and Sarrazin et al. [4] were
pioneers in the investigation of the influence of the compliance of the supporting soil on
the dynamic response of one-storey-shear-structures. A review of the research developed
in the early stages of seismic soil-structure interaction can be found in [5].

When analysing the seismic behaviour of structures, kinematic and inertial effects
associated to soil-structure interaction affect the dynamic characteristics of the interact-
ing system and influence the ground motion around the foundation. Thus, it is important
to assess the variations of the system period associated with the soil stiffness, as well as
the variations of the modal damping associated with the material damping in the soil
and especially with the radiation effects.
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The effects of SSI on the dynamic characteristics of soil-structure systems have been
widely studied both for shallow foundations [6—11] and for embedded foundations, using
both 3D models [12—-15] and 2D models [16,17]. The papers by Jenning and Bielak [6],
Veletsos and Meek [7], Luco [10], Wolf [11] or Bielak [12], all introduce the analogy of
a fixed-base replacement SDOF oscillator whose period and damping can represent the
dynamic behaviour of the structure-foundation system. In all these pioneering works,
some simplifying assumptions were used in order to obtain results or expressions for
the effective system period and damping: the influence of the coupled terms of the soil-
impedance matrix was neglected and, for embedded foundations, the kinematic effects
of the incident wave were not considered, using as base excitation a horizontal harmonic
motion with constant amplitude. In contrast, Kausel and Roésset [18], and later Kausel
et al. [19], use a three-step or substructure approach that makes it possible to break
the solution of the soil-structure interaction problem into three steps, considering kine-
matic interaction. The effects of the foundation embedment considering both kinematic
and inertial interaction were taken into account by Avilés and Pérez-Rocha [14] (for 3D
rectangular foundations), by Avilés and Suérez [20] (for axisymmetrical embedded foun-
dations in a layer), and by Todorovska [16] and Todorovska and Trifunac [17,21] who
presented a 2D model with analytical solutions for impedances and kinematic effects
for very long buildings founded on rigid cylindrical foundations. Also, Todorovska and
Trifunac [17,21] and Avilés et al. [15] for problems with square embedded foundations,
studied the effects of the type of waves and their angle of incidence on the system fre-
quency and damping.

Regarding pile-supported buildings, there are few studies in the scientific literature
examining the effects of SSI on their dynamic characteristics [22—30]. Rainer [22] used
a substructuring methodology to analyse the modal damping of a superstructure sup-
ported on piles. Kaynia and Mahzooni [23] used a three-dimensional Green’s functions-
based formulation, for the pile foundation, and a single-degree-of-freedom (SDOF) model
for the structure, in order to calculate the seismic shear forces in the piles during the
seismic kinematic and inertial interaction phases for different pile foundations. On the
other hand, Aguilar and Avilés [26] analysed piled foundations by extending the Avilés
and Pérez-Rocha’s [14] procedure for embedded foundations and thus they studied the
SSI effects on the system period and damping for a specific configuration of 8 x 8 piles
neglecting kinematic interaction effects. For the purpose of obtaining manageable ap-
proximated expressions for the period and damping of the interacting system, Avilés and
Pérez-Rocha [14] adopted a simplification which consists in neglecting the cross-coupled
horizontal-rocking terms of the impedance matrix and then also the high-order terms
involving products of damping coefficients in the resulting expressions. Such assump-
tion has been extensively used by many authors [6-13, 31]. However, neglecting the
cross-coupled horizontal-rocking stiffness and damping terms is not acceptable for pile
foundations, not even for certain configurations of embedded foundations. Therefore,
in order to consider crossed-coupled impedances, some authors [27,32] propose to con-
dense the soil-foundation interaction to a point at a certain virtual depth such that the
impedance matrix becomes diagonal. Maravas et al. [27] presented a simple methodology
in order to study SSI effects on single-pile supported one-storey shear structures by ob-
taining its period and damping. However, there are no parametric studies of this nature
for piled foundations consisting of a variable number of piles, with different embedment
and spacing between them.
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In regard to pile groups including battered elements, until today, it has not been
clarified whether the use of inclined piles has a detrimental or beneficial effect on the
response of the superstructure or the foundation itself when submitted to seismic loads.
Related studies have been conducted in order to identify the drawbacks and advantages
of battered piles. Pioneering works in this line are those presented by Banerjee and
Driscoll [33] and Poulos and Davis [34], which suggest that further research needs to
be undertaken to better understand the behaviour of this type of foundations. Some au-
thors [35—-37] developed numerical analyses that point to the larger axial loads along the
pile shaft, as well as to the increasing bending moment at the pile head, as arguments to
use vertical piles instead of inclined piles for seismic loads. Other results discouraging
the use of inclined piles in seismic areas are those provided by Neely [38] and Ravazi
et al. [39]. Conversely, field evidence of the beneficial role of battered piles has been
found both for the structure they support and for the piles themselves [40,41]. These
conclusions are in line with those inferred from different numerical analyses [42-44].
This fact, explains why the research on the topic has boosted in the last years (see, for
instance, [45-55]). However, only Gerolymos et al. [44] and Giannakou et al. [48] have
analysed the influence of using deep foundations with inclined piles on the dynamic re-
sponse of the supported structures.

Impedances and kinematic interaction factors are key and non-trivial aspects of the
soil-structure interaction problem. They can be used to analyse SSI effects on structures
making use of substructure approaches as done in [23, 24, 56] for pile-supported struc-
tures. Different expressions and graphs are available in the literature for certain config-
urations. However, in general, obtaining accurate values for a particular case requires
the use of sophisticated numerical models that allow incorporating the foundation-soil
interaction in a rigorous manner.

A large number of works address the computation of impedance functions (dynamic
stiffness) of piles and pile groups. For example, analytical expressions for single floating
piles are reported by Gazetas [57], while Dobry and Gazetas [58] present expressions
for pile groups using group factors that are an extension of those obtained for static
problems by Poulos [59]. Other researches related to impedance expressions have been
carried out by Konagai et al. [60], Taherzadeh et al. [61] or Dai and Roésset [62]. Differ-
ent numerical techniques have also been used to determine the dynamic stiffness of pile
foundations. For example, a computational procedure based on a finite element model
is used by Wolf et al. [63] to obtain frequency-dependent dynamic stiffness of single piles
and foundations with 2 x 2 and 10 x 10 piles embedded in stratified soils. Kaynia [64] ob-
tained dynamic stiffnesses and kinematic interaction factors for several configurations
of pile groups embedded in a homogeneous half-space by using a formulation based on
Green’s functions. Velez et al. [65] used a finite element formulation to compute the dy-
namic stiffness and damping of single piles. Dynamic stiffnesses and dampings of single
piles as well as those corresponding to 2 x 2 and 4 x 4 pile groups were computed by
Miura et al. [66] through a 3D formulation based on Green’s functions. Horizontal and
rocking impedances for 5 x 5 pile groups were computed by Kaynia and Mahzooni [23]
through a formulation previously proposed by Kaynia and Kausel [67]. A boundary el-
ement code presented by Aznarez [68] was used by Vinciprova et al. [69] and Maeso et
al. [70] to obtain impedances of piles and pile groups embedded in viscoelastic and poroe-
lastic soils. Padroén et al. [71] provided impedance functions corresponding to several
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configurations of pile groups, computed by using a three-dimensional boundary element
(BEM)- finite element (FEM) coupling model.

With regard to inclined piles, Mamoon et al. [72] presented dynamic stiffnesses for a
specific configuration of 3 x 3 pile group. Later, Giannakou et al. [46] used a 3-D finite-
element model to obtain impedance functions of a single pile embedded in a homogeneous
or non-homogeneous soil. Impedance functions for several configurations of 2x 2 and 3 x 3
pile groups including inclined piles were presented by Padroén et al. [49].

In regard to kinematic interaction factors, and with respect to numerical research,
several studies have also been carried out for piled foundations using only vertical piles.
Gazetas [73] provided kinematic interaction factors for end-bearing single piles embed-
ded in different soils and subjected to vertically incident S-waves. Mamoon and Ah-
mad [74], as well as Mamoon and Benerjee [75], presented pioneer works in which the
response of single piles and pile foundations subjected to vertically and obliquely incident
waves is analysed in terms of kinematic interaction factors. This problem was studied
also for Rayleigh waves by Makris and Badoni [76]. One of the most comprehensive anal-
yses were addressed by Kaynia and Novak [77], in which kinematic interaction factors
corresponding to several pile group configurations subjected either to obliquely incident
body waves or to Rayleigh waves were obtained. Other works providing kinematic inter-
action factors for pile foundations are, for instance, those presented by Kaynia [64], Fan
et al. [78], Gazetas et al. [79], Kavvadas and Gazetas [80] and Padrén [81].

Although other authors have accomplished analyses of the kinematic response of bat-
tered piles (e.g. [37, 82]), kinematic interaction factors of inclined piles have been pre-
sented only by Giannakou [47] for groups of 2 x 1 piles. Therefore, it is apparent that
further research is needed in this aspect.

The research work presented in this Ph. D. thesis is inscribed in a research line
that has been developed, for about the last 20 years, at the Continuum Mechanics and
Structures Division of the University Institute of Intelligent Systems and Numerical Ap-
plications in Engineering (SIANI) at the University of Las Palmas de Gran Canaria. This
line started in the late 1970s, in the research group led by Professor José Dominguez at
the University of Seville, with the pioneering works developed by Dominguez [83] and
Dominguez and Alarcén [84]. These cited works address the application of the direct
boundary element method to elastodynamic problems. In subsequent years, this group
developed several relevant works in this line (see, for instance, [85—88]). A detailed com-
pendium of the work done in this research line at the University of Seville until 1993
can be found in [89]. A three-dimensional multidomain boundary element code in the
frequency domain [90-92], developed by Professors Orlando Maeso and José Dominguez,
resulted from the fruitful collaboration between the University of Seville and the Uni-
versity of Las Palmas de Gran Canaria. Following this line, a boundary element code
that allows analysing the seismic response of arch dams with porous sediments [93-96],
as well as computing impedances of piles and pile groups in viscoelastic and poroelastic
soils [69, 70], was presented in the Ph. D. thesis of Juan J. Aznarez [68]. In order to
simplify this methology, and also to reduce its computational cost without losing rigour,
the Ph. D. thesis of Luis A. Padrén [81] dealed with the formulation and implementa-
tion of a model in which piles are modelled using finite elements as beams according to
the Bernoulli hypothesis, while soil is modelled using boundary elements. This three-
dimensional harmonic coupling model allows the study of the dynamic behaviour of pile
foundations [71]. Later, it has been extended to address the dynamic analysis of pile
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foundations including battered elements [49]. Moreover, it has also been used to tackle
the study of the dynamic response of the superstructure, as well as to analyse the in-
teraction phenomena between nearby structures [97]. Subsequently, this code has been
used to analyse how the type of seismic body wave and its angle of incidence influence
bending moments at cap level of single piles and 3 x 3 pile groups [98].

1.3 Aims and objectives

This research work aims to take advantage of the BEM-FEM coupling model devel-
oped by Padroén et al. for the purpose of computing impedances and kinematic interac-
tion factors for several configurations of pile foundations, in order to perform parametric
studies using substructuring techniques. As it is true that numerous references deal
with the use of substructuring methodologies in the analysis of the dynamic response
of structures supported by shallow or embedded foundations, it is likewise so that the
literature is sparse on the study of the dynamic behaviour of pile-supported structures.
Therefore, following the reference works for shallow and embedded foundations systems,
the main objective of this Ph. D. thesis is to develop a procedure, based on a substruc-
ture model, which allows us to evaluate the influence of SSI on the dynamic behaviour
of shear structures founded on square pile groups.

The effective period and damping of the interacting system [7, 12-14,21] represent
the dynamic parameters of an equivalent viscously damped SDOF system excited by the
free-field ground motion. This replacement oscillator should reproduce, as accurately
as possible, the coupled system response within the range where the peak response oc-
curs. This work aims at developing a simple and stable procedure, in the frequency
domain, for the estimation of periods and dampings of shear buildings supported on
piles, taking into account both kinematic and inertial interaction effects. To this end, a
comparative review of the different strategies used in the literature for establishing this
equivalence and calculating the parameters of the above-mentioned SDOF system must
be performed in order to identify those that best suit to the problem under study. Fur-
thermore, the simplifications adopted for shallow and embedded foundations by many
authors [6-13, 31] should be analysed to determine if they are applicable to pile foun-
dations and how they affect the accuracy of the results. In this line, the influence of
considering the cross-coupled impedances and the kinematic interaction factors, for the
case of pile group configurations, must also be studied.

The accuracy of the proposed procedure will be assessed through comparisons with
the solution obtained from the iterative resolution of a complex-valued system of equa-
tions, which represents the equation of motion of the interacting system.

Once the model is formulated and validated, the objective is to perform parametric
analyses, considering a set of configurations of pile groups, for the purpose of studying
the influence of SSI on the seismic response of the superstructure. The idea is to express
all equations in terms of the main dimensionless parameters of the problem, in order to
facilitate the analysis of their influence on the system dynamic response.

The scope of this work also encompasses the study of deep foundations including bat-
tered piles. Thus, the analysis of the influence of the rake angle of piles on the dynamic
behaviour of the superstructure will be accomplished, aiming at clarifying the beneficial
or detrimental role of foundations comprising inclined piles.
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1.4 Published works derived from this Ph. D. thesis

Published works derived from this Ph. D. thesis

The procedure proposed in this dissertation, as well as part of the results, have been
previously presented in different journals and conferences [54,55,99-105]. Details con-
cerning these research works are presented below.

1.4.1 Contributions in JCR journals

®* Medina, C., Aznarez, J. J., Padrén, L. A. and Maeso, O. (2013) Effects of soil-
structure interaction on the dynamic properties and seismic response of piled struc-
tures. Soil Dynamics and Earthquake Engineering, 53, 160-175.

* Medina, C., Padrén, L. A. , Aznarez, J. J. , Santana, A. and Maeso, O. (2014) Kine-
matic interaction factors of deep foundations with inclined piles. Earthquake En-
gineering and Structural Dynamics, 43, 2035-2050.

¢ Medina, C., Padrén, L. A. , Aznérez, J. J. and Maeso, O. (2015) Influence of pile in-
clination angle on the dynamic properties and seismic response of piled structures.
Soil Dynamics and Earthquake Engineering, 69, 196-206.

1.4.2 Conference contributions

* Medina, C., Padrén, L. A., Aznarez, J. J. and Maeso, O. (2011) Influencia de los fené-
menos de interaccién en las propiedades dindmicas de estructuras de edificacién
pilotadas. Proceedings of the Congress on Numerical Methods in Engineering 2011,
Coimbra, Portugal, pp. 96—115.

¢ Medina, C., Aznarez, J. J., Padrén, L. A. and Maeso, O. (2013) A procedure for
evaluating the soil-structure interaction effects on the system period and damping
of pile-supported structures. Proceedings of 4th ECCOMAS Thematic Conference

on Computational Methods in Structural Dynamics and Earthquake Engineering,
COMPDYN 2013, Kos Island, Greece, pp. 4463—4487.

¢ Medina, C., Aznéarez, J. J., Padrén, L. A. and Maeso, O. (2014) Influence of pile
rake angle on the seismic response of pile foundations and piled structures. Pro-
ceedings of the 9th International Conference on Structural Dynamics, EURODYN
2014, Porto, Portugal, pp. 733—740.

* Medina, C., Aznarez, J. J., Padréon, L. A. and Maeso, O. (2014) Seismic response
of deep foundations and piled structures considering inclined piles. Proceedings
of the jointly organized 11th World Congress on Computational Mechanics (WCCM
XI) and 5th European Congress on Computational Mechanics (ECCM V), Barcelona,
Spain, pp. 453—463.

* Medina, C., Padrén, L. A., Aznarez, J. J. and Maeso, O. (2015) Respuesta sismica
de estructuras de edificacién cimentadas sobre pilotes inclinados. Proceedings of
the Congress on Numerical Methods in Engineering, Lisbon, Portugal, no. 237.
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e Padrén, L. A., Medina, C., Alamo, G. M., Aznarez, J. J., Santana, A., Maeso, O.,
Garcia, F. and Chirino, F. (2015) Pilotes inclinados: situacién normativa y ventajas
e inconvenientes de su uso en proyectos de edificacién en zonas con riesgo sismico.
Proceedings of the 19th International Congress on Project Management and Engi-
neering, Granada, Spain.

1.5 Structure of the dissertation

The present dissertation has been structured in 7 chapters. The core of the disser-
tation is addressed in chapter 2 and consists in the development of a simple and stable
procedure for the estimation of the effective period and damping of linear shear struc-
tures supported on piles. The chapter begins outlining the basic concepts needed to
understand the three-step or substructure approach used to model the problem in hand.
Once the problem under investigation is defined in detail, the corresponding equations of
motion are written. A semi-analytical model is used to identify the main dimensionless
parameters characterizing the dynamic response of pile foundations. Then, given that
hollow piles have been modelled in this work by equivalent solid piles, the accuracy of
this approach is assessed. Afterwards, the different steps of the procedure followed to ex-
press the system equations of motion in terms of a set of dimensionless parameters, cov-
ering the main features of SSI problems, are explained. This considerably facilitates the
analysis of the influence of each parameter on the system dynamic response. Then, the
estimation of the dynamic characteristics of a SDOF system reproducing, in an accurate
manner, the response of the coupled system within the range where the peak response
occurs, is tackled. For this purpose, the different strategies previously proposed by other
authors to establish this equivalence and determining the dynamic characteristics of the
replacement oscillator are analysed and compared. In this line, the harmonic response
spectra corresponding to the resulting SDOF systems, obtained by applying the differ-
ent strategies to the case of pile foundations, are compared with the harmonic response
spectrum of the interacting system in order to determine if the simplifying assumptions
adopted in each one of them are suitable for pile-supported structures. Then, a modified
strategy, yielding accurate results for structures supported by shallow, embedded or pile
foundations, is proposed including cross-coupled horizontal-rocking impedances. After-
wards, the implementation in a code of the proposed procedure is explained. Finally, the
validation of the proposed model is completed by comparing the obtained results with
those previously provided by other authors for shallow and embedded foundations.

The boundary element (BEM)- finite element (FEM) coupling model used to com-
pute the impedances and kinematic interaction factors of piled foundations is outlined
in chapter 3. Likewise, the boundary element formulation that will be used in a later
chapter to assess the accuracy of the BEM-FEM formulation, applied to the determi-
nation of kinematic interaction factors for deep foundations including inclined piles, is
described.

The analysis of the influence of SSI on the dynamic behaviour of the superstructure
through a procedure based on a substructure model, as that explained in chapter 2,
requires that impedance functions and kinematic interaction factors are previously ob-
tained. In this line, chapter 4 addresses the numerical computation of the impedance
functions and kinematic interaction factors of pile foundations through the formulation
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described in chapter 3. The geometrical configuration of the pile groups considered in
this research are described, and the material properties corresponding to piles and soil
are also defined at the beginning of this chapter. Then, the set of vertical pile group
configurations considered in this study is defined. The corresponding impedance func-
tions and kinematic interaction factors are provided in plots. Subsequently, impedances
and kinematic interaction factors corresponding to several configurations comprising in-
clined piles are represented. These values are needed to accomplish substructuring anal-
yses that allow determining how the variations of the rake angle of piles affect the dy-
namic response of the superstructure when considering SSI. The main trends observed
in the dynamic behaviour of the soil-foundation system are analysed, both for vertical
pile groups and for those including inclined elements.

Chapter 5 deals with the analysis of the effects of SSI on the dynamic properties and
the seismic response of structures supported on vertical piles. The geometrical configu-
ration, as well as the material properties of the cases under investigation, are presented
at the beginning of the chapter. The values obtained in chapter 4 for impedance func-
tions and kinematic interaction factors are used herein to perform several parametric
analyses by using the procedure previously developed and validated in chapter 2. This
way, a study of the influence of the main parameters of SSI problems on the dynamic re-
sponse of the superstructure is accomplished. Results for 21 different configurations of
2x 2,3 x3and 4 x 4 pile groups are analysed. Ready-to-use graphs are presented for the
estimation of flexible-base period and damping in terms of their fixed-base values and
the system configuration. Subsequently, this has allowed obtaining modified response
spectra including SSI effects. Maximum shear forces together with base displacement
and rocking peak response are also provided in plots. Furthermore, the importance of
considering cross-coupled impedances and kinematic interaction factors is also investi-
gated. This chapter finishes with the main conclusions drawn from the obtained results.

Chapter 6 investigates whether battered piles play a beneficial or detrimental role
when submitted to dynamic loads, which still remains an open question. In this line,
the contribution of this chapter focuses on the influence of pile rake angle on the seismic
response of shear structures founded on square pile groups. To this end, results for
several configurations of 2 x 2 and 3 x 3 pile groups including battered elements are
obtained. As done in chapter 5 for vertical piles, results in terms of effective period
and damping, and maximum shear force at the base of the structure, are depicted and
analysed. Likewise, modified response spectra are built for different values of the rake
angle. At the end of this chapter, the main conclusions drawn from the analysis of the
results obtained for the cases under investigation are summarised.

Finally, the most relevant conclusions extracted from this work are summarised in
chapter 7. The document finishes proposing future research developments that could
follow this dissertation.
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2.1 Introduction

Soil-structure interaction involves kinematic and inertial effects that affect the dy-
namic behaviour of the structures. Thus, a proper assessment of their dynamic response
requires the development of models that incorporate, in a rigorous manner, the interac-
tion between the structure and the soil on which it is founded. These interaction phenom-
ena depend on factors such as: the foundation type, its geometry and embedment depth,
the soil type, as well as the characteristics of the structure. In line with other authors’
studies for shallow [7] and embedded foundations [14], a simple substructuring model of
soil-structure interaction in the frequency domain is proposed in this chapter to evalu-
ate the influence of the above-mentioned factors on the dynamic response of structures
founded on pile groups and subjected to seismic loads.

Firstly, the substructuring methodology used herein is outlined in section 2.2. After-
wards, the problem under investigation is defined in section 2.3. Then, the substructure
model used in this work is presented in section 2.4. A simple semi-analytical model is
used in section 2.5 in order to determine the main dimensionless parameters character-
izing the dynamic behaviour of pile groups. Then, in order to validate a simplification
used in this investigation consisting in modelling the annular cross-section of piles by
using an equivalent solid circular section, the accuracy of the results in terms of im-
pedances and kinematic interaction factors is assessed in section 2.6. Afterwards, the
dimensionless equations of motion of the system are expressed in terms of a set of pa-
rameters characterizing the SSI problem. These parameters are defined in section 2.7.
Subsequently, section 2.8 addresses the diagonalization of the impedance matrix which
allows obtaining manageable expressions for the shear force at the base of the structure.
The strategies previously proposed by other authors for establishing an equivalence be-
tween the interacting system and a SDOF replacement oscillator, and determining its
dynamic characteristics, are analysed in section 2.9. Then, in this section, a simple and
stable procedure is proposed for the estimation of periods and dampings of pile shear
buildings, taking SSI into account and considering crossed impedances as well as all
damping terms. Section 2.10 deals with the implementation of this procedure. Finally,
the validation of the proposed model is addressed in section 2.11, through comparison
against results obtained by other authors for shallow and embedded foundations.

2.2 The three-step approach

In this section, a basic problem of structural dynamics, sketched in figure 2.1, is used
to explain the substructure approach employed in this work to tackle the soil-structure-
interaction problem. As indicated in this figure, the soil and the structure are repre-
sented by monodimensional elements subjected to bending. These elements, which are
assumed to be axially inextensible, are connected by an infinitely rigid slab representing
the foundation. The foundation mass m, is presumed to be uniformly distributed over
a square area. The moment of inertia of this slab is denoted by I,. The mass matrices
corresponding to the soil and the structure are represented by M* and M*'", respectively.
In this case, vertical displacement and rocking are restricted at the base, and the whole
system is subjected to a horizontal displacement at the base denoted by 4.
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Ficure 2.1: Direct approach.

2.2.1 Direct approach

The behaviour of the system represented in figure 2.1 may be approximated by that
of a three-degree-of-freedom (3DOF) system, defined by the foundation horizontal dis-
placement &5 and rocking d3, together with the horizontal displacement at the top of the
structure 64. The equation of motion corresponding to the lower element can be written
as

01
[K52 K§3]'[52—51]_w2[m§1 My mgs]' 5 :[féS] 2.1)

S S S S S S
K3, K3y d3 M3p Mgzy Mg33 5 I3
3

Likewise, the equation of motion of the upper element can be expressed as

str str str str str str
K3 Ki3 K3 d2 Moy Mgz Moy 02

str
str str str . _ 2 str str str . — 2
Ky Kiy Ky 04 miy mis miy 04 ’
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Finally, the system equation of motion can be obtained by adding equations (2.1)
and (2.2), incorporating the foundation rotational inertia I, as well as the foundation
mass m,, yielding the following equation:

s str s str str
s str s str str
K3+ K35 K33+ K33W  K3j

str str str
K5 Kis K
t t t
m3y +m3y° +mo m3s + msg msy 02
2 t t t
str str str
mMyo mMys3 Mgy 04
S S
K3, may
2
= | K3, 201+ w m3, - 01
0 0
or, alternatively, as
S S S S IR i T
K3y K33 0 m3y ms 0 02
s s 2 s s .
K3, K33 0 wo | m3y m33 0 03
0 0 0 0 0 0 04
d 7 L J
Kstr Kstr Kstr mstr+m mstr mstr T i 5 1
22 23 24 22 o 23 24 2
2
R o e I S R o B XD
str str str str str str
K Kish Ky My My3 My ) | 04 |
S S
K3, may
_ s . 2 s .
= | K3, 01 +w’ | m; o1
0 0

2.2.2 Substructure approach

The problem depicted in figure 2.1 can be alternatively addressed through a sub-
structure approach. According to Kausel and Roésset [18], the solution can be broken
into three steps.

In the first step, as shown in figure 2.2, the horizontal displacement 55! and rocking
of the massless rigid slab, when subjected to the input motion §;, is determined.
Assuming that f§ = 0 and f5 = 0, yields

KI
(53

K3y K 551—51 m3; M3y My 0
[ . — w2 | oK | = 0 (2.5)

s s KI s s
K3, K3 03 M3y M3y M3y
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=

Ficgure 2.2: Step 1. Kinematic interaction.

The second step consists in computing the stiffness and damping of the lower element
in the horizontal (K3,), rocking (K;) and cross-coupled horizontal-rocking (K3, and K3,)
vibration modes. For this purpose, all motions are restricted at the bottom of the lower
element and a unitary displacement or rocking is applied at the top. The problem solved

in this step is sketched in figure 2.3.
%* 1 (0)

0 (1)

{KSQ Kés}
K3 K

TT7TTTT7TTT7777

Ficure 2.3: Step 2. Impedance functions.

The equation of motion corresponding to this step can be written as

K3, K3 m3y Mg 3 I3

Finally, as depicted in figure 2.4, the inertial interaction is considered by assuming
the upper element supported on springs and subjected to the motion computed in the
first step, which results from kinematic interaction.
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Ficurk 2.4: Step 3. Inertial interaction.

The equation of motion of the upper element was already written in equation (2.2).
On the other hand, the equation corresponding to the lower part of the system shown in
figure 2.4 can be expressed as

{[K§2 ngl_WQImsg mis”_[52—5§”]:[f5] @8
K3, K33 M3y M3y 03 — a3! f3

By adding equations (2.2) and (2.8), and incorporating the foundation rotational in-
ertia I, as well as the foundation mass m,, the following equation is obtained:

K3y K33 0 m3y m33 0 02
K3 K33 0] — w” m3, m33 0 o3
0 0 O 0 0 O 04
K5y K3 K3 mig tme miy miy | (6] o0
wy| B Ry R | e miy mig L mgy | | b |

Ky KK miy omiy o omiy ) 6

_ K3y K33 | i My M3 ) o3t ]

K3 K3 m3; M3 5§<I i

The left-hand side of equation (2.9) matches that of equation (2.4). According to equa-
tion (2.6), the right-hand side of equation (2.9) and that of equation (2.4) are equivalent.
Thus, the simple problem analysed in this section allows us to prove that the direct ap-
proach and the three-step approach lead to identical system equations of motion.
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2.3 Problem definition

The dynamic response of pile-supported shear structures in the linear range is in-
vestigated in this work making use of a single-degree-of-freedom system in its fixed-base
condition, as the one depicted in figure 2.5, that may represent either one-storey struc-
tures or one mode of vibration of multi-storey buildings. The superstructure can be de-
fined by its fixed-base period T, its mass m, the structural stiffness k, the height A of
the resultant of the inertia forces for the mode, the moment of inertia of the vibrating
mass I, and the viscous damping ratio £&. The structure is considered to be founded on a
square pile group embedded in a homogeneous, viscoelastic and isotropic half-space, as
depicted in figure 2.5. It is assumed that the pile heads are constrained by a rigid pile
cap, considered as a rigid square plate of negligible thickness, which is not in contact
with the half-space. The moment of inertia of this pile cap is denoted by I,. All piles
have identical geometrical properties defined by length I and sectional diameter d. Sev-
eral configurations of pile groups have been considered in this study. Each one of them
is defined by number of piles, foundation halfwidth b, centre-to-centre spacing between
adjacent piles s and rake angle of piles #. The columns of the structure are assumed
to be massless and axially inextensible. Both the foundation mass and the mass of the
structure are presumed to be uniformly distributed over identical square areas. This
model of the foundation-structure system is an enhancement of that which appears to
have been first used by Parmelee [1] in 1967 for shallow foundations and, according to
Veletsos and Meek [7], has formed the basis of most subsequent investigations.

S waves

Ficure 2.5: Problem definition. Single shear structure supported on a piled foundation
embedded in a homogeneous half-space under vertically-incident S waves.

If SSI is taken into account, the system behaviour can be approximated by that of a
three-degree-of-freedom (3DOF) system, defined by the foundation horizontal displace-
ment u° and rocking ¢°, together with the structural horizontal deflection u. (Note that
rocking of pile cap and structure are identical). The system is subjected to vertically-
incident plane S waves. Because of the characteristics of the structural model and the
wave excitation, the vertical and torsional motions are neglected in this study.
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2.4 Substructure model

The problem described in section 2.3 can be studied using a substructure approach,
in which the system is subdivided into building-cap superstructure and soil-foundation
stiffness and damping, represented by means of springs and dashpots, as shown in fig-
ure 2.6 (b).

Ug

[

—~— ka::v, Cxx
Mo, Lo

S waves

Ficurk 2.6: (a) Problem definition. (b) Substructure model of a one-storey structure.

According to Kausel and Roésset [18], the solution can be broken into three steps.
This substructure approach was explained in section 2.2 for the case of a simple problem
of structural dynamics depicted on the left side of figure 2.7. This figure illustrates the
analogy between that problem and the SSI problem addressed in this work.

1. Kinematic interaction. In the present case, the first step consists in the determi-
nation of the motion of the massless pile cap when subjected to the same input mo-
tion as the total solution. Even for vertically-incident harmonic plane S waves (in
which the free-field displacement at the ground surface is exclusively horizontal),
this frequency dependent kinematic interaction factors are represented by horizon-
tal (u,) and rocking (¢,) motions at the pile cap.

2. Impedance functions. The second step is to determine the impedances, which
are complex-valued frequency-dependent functions (kyz, ¢z ), (Koo, cop) and (kpo, c1)
that represent the stiffness and damping of the soil in the horizontal, rocking and
cross-coupled horizontal-rocking vibration modes, respectively. The mathematical
representation of impedance functions is K;; = k;; +1ia,c;j, where a, = wb/c,; being
i the imaginary unit i = v/—1, w the excitation circular frequency, c; = /jus/ps the
speed of propagation of shear waves in the halfspace, and i and p, the soil shear
modulus of elasticity and mass density, respectively.

3. Inertial interaction. Finally, the last step consists in the computation of the
response at each frequency of the structure supported on springs and subjected to
the motion computed in the first step.
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Ficure 2.7: The three-step approach.
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2.4.1 Equations of motion

The equations of motion of the system shown in figure 2.6(b), assuming small dis-
placements, can be written in terms of relative motions, uf = u® — u, and ¢ = ¢° — ¢g,
as

m - [+t + g + h(@r + Pg)] + K -u=0 (2.10)

Mo - [y + 1g) + Kaz -ty + Kgp -0 — K -u=0 (2.11)

m - hlii 4 iy + g + h(P + @g)] + L&y + Pg)

‘ Uor ¥ Pg)l ¥ (2.12)
+K9m'ur+K99'§0r+IO(SOr+QOQ) =0

where equation (2.10) represents the horizontal force equilibrium of the vibrating mass,
equation (2.11) the horizontal force equilibrium of the soil-foundation system and equa-
tion (2.12) the moment equilibrium of the structure-foundation system about the centre
of gravity of the pile cap. Dots indicate time derivatives. In the frequency domain (with
time dependance e“?), this set of equations can be expressed in a matrix form as

K 0 0 m m mh
“K Ky Ky | -2 0 me 0
0 Ko, Kyg mh mh I
(2.13)
U m mh
ul | = w? my | Ug + 0 [y
o mh It

where It = mh? + I, + I and K = k + i2w, méw, being w,, = 27/T the fixed-base natural
frequency of the superstructure. Once the foundation input motion is computed and the
right-hand vector and the coefficient matrix are known, the structural deflection and
foundation relative motions can be computed in the frequency range of interest.

2.5 Main parameters characterizing piles dynamic behaviour

This section outlines the procedure followed in identifying the main dimensionless
parameters characterizing the dynamic behaviour of a single pile when considering soil-
structure interaction. This will make it possible to express the system equations of mo-
tion in equation (2.13) as a function of these parameters, which in turn allows performing
parametric analyses in order to determine how the variations of each one of them affect
the system dynamic response.

Figure 2.8 shows a simplified model based on the Winkler approach for embedded
beams, which is used in this section to identify the parameters on which depends the
pile dynamic response. This type of models have been previously used by other au-
thors to obtain impedance functions and kinematic interaction factors of piled founda-
tions [79, 80,106-113]. In this model, the soil is represented by means of springs and
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Ficurk 2.8: Beam on Dynamic Winkler Foundation.

dashpots continually distributed along the pile length and characterized by impedances
which oppose horizontal displacement K, = k, + iwc,. k, and ¢, represent, respectively,
the soil stiffness and damping, i = \/—1 is the imaginary unit and w is the excitation
circular frequency. The soil material properties are: Young’s module E;, mass density
ps, shear modulus of elasticity us and damping coefficient £;. On the other hand, the
pile is modelled as an Euler-Bernoulli beam subjected to a vertically incident SH wave
field denoted by u;. The pile geometry is defined by the pile length L and external di-
ameter d, and its cross-section is characterized by its area A, and rotational inertia I,.
The pile material properties are: Young’s module Ep, mass density p,, shear modulus of
elasticity fi,, and damping coefficient fp. Finally, u = u(w, z) and v = v(w, 2) represent,
respectively, the horizontal and vertical displacements at any point of the pile.
Considering as external forces acting on the section, the inertia forces and those
caused by an incident wave field acting on springs and dashpots, the dynamic equilib-
rium equation for a differential portion of the pile subjected to bending can be expressed

as
4

EN'pINpW + (K, — ﬁp;lpr)u =K,uy (2.14)
z
where the vertically incident SH waves field u; has the following expression:
_ 1 —ik(z—2zs) ik(z—zs)
ur =3 (e +e ) (2.15)

being k = w/c, the angular wave-number and z, the free-surface coordinate.
A vertical pile, as that shown in figure 2.8, is subjected to bending. However, the
more inclined the more the pile works axially according to the following equation:

_ 92 _
gpAp(Tz;’ + (K - ﬁpAp&) v=K. v (2.16)

24 SS| effects on the dynamic response of piled structures | SIANI University Institute



Substructuring methodology 2

where K, = k, + iwc, represents the impedance that oppose the displacement and v; is
the component of the incident field in the direction of the pile longitudinal axis.

The solution of these equations is the sum of the solution of the homogeneous equation
vy and uy, respectively, and any particular solution vp and up, in each case, that satisfies
the corresponding equation. Thus v = vy +vp and u = ug + up.

The respective homogeneous solutions satisfy the following equations:

0%u R

4 2
— . = 2.1
941 +A,u=0 ; 92 +Av=0 (2.17)
being
2 Ko — ppAyw? s K, — ppAyw?
M= = ; N=E2 P (2.18)
Eply fipAp

Given that their solution is of the type e“*, the characteristic equations can be written,
respectively, as follows:

Q4M=0 o aleAl=0 (219)
thus PR A2
ot = e ppAwt K- A (2.20)
E,I, fipAp

which have complex solutions that can be written, respectively, as

o &/ M, elOu/4+(-1)7/2) being j=1,2,3,4 (2.21)
Oé‘qj) — /Mvei(ev/2+(j_1)7r belng ] = 1’ 2 (222)

where M, and M, are the modules, and 6, and 6, are the phases of the complex numbers
o} and o2, respectively. In this way,

Jj=4 ) v
ug = Z Djea{” and vy = ZDje“’J”Z (2.23)
j=1

The homogeneous solution at the pile top depends then on the following parameters:

(L)t = L (2.24)
Epl, K
K.L? pp Apw?

(apL)? = 22 [ 1 Lo (2.25)
/LpAp Kz

where K, can be expressed as n,F;, and K, as n,FE,, being n, and n, proportionality
constants, and E; = 2(1 + v5)c2ps. This yields the expressions below.

4 ~ A 2
(L)t =y 2l (g e o” 1 (2.26)
B, 1, pe 2 121+ vs)
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2 ~ A 2
(wLl)? =n, e 2 [ P p ! (2.27)
» Ap ps €2 ny2(1+ vy)

Moreover, when introducing the incident field, the particular solutions at the pile top
depend also on the parameter L.

At this point, the dimensionless parameters characterizing the pile dynamic behaviour
can be identified from equations (2.26) and (2.27). On the one hand, it can be seen that
both expressions depend on

Pp APWQ
ps 2
On the other hand, equations (2.26) and (2.27) depend, respectively, on

(2.28)

[+~

A (2.29)

h

E,
E,
and
E, Ay
E, L?
Performing some basic algebraic operations, from equation (2.29):

n T -~ T 4
E, I, E,I,I, E,n (d) ©2.31)

(2.30)

Es L4 E,I,L*  E,64

L

where I, = 7d*/64 is the rotational inertia corresponding to a solid circular pile cross-
section whose diameter coincide with the external diameter of its actual annular cross-
section. Besides, E, = F,I,/I, represents the Young’s module of an equivalent solid pile
that could model the dynamic behaviour of the actual hollow pile.

Similarly, from equation (2.30):

E,A, E,I,I,A, E,I,[*> E,nx (d)4<L)2 (2.52)
EsL?  E I, fp L2  E,L* 212) E,64 \ L Ep '
being A, = md?/4 the area of a solid circular cross-section of diameter d.

Finally, from equation (2.28):

.~ ~ 2
pp Apw? _ Ap pp Apw? _ pp (“d> u (2.33)

Ps Cg B Ap ps Cg B E Cs 4

being p, = ﬁpflg, /Ap the mass density corresponding to the above-mentioned equivalent
solid pile, and z’% = I,/ A, the radius of gyration of the actual pile cross-section.
Thus, the main parameters of the problem can be written as follows:

E, L L Pp wd
= 5 = 5 = 5 == 5 Vs

= 2.34
E; 7 d ’ ip Ps Cs ( )

Ul ®w

where s/d represents the pile spacing ratio for pile groups.

Identical dynamic behaviour is expected for all cases in which these dimensionless
parameters have the same values. In order to test this hypothesis, the dynamic response
of a set of different pile group configurations with identical values of these parameters
is analysed in section 2.6.
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2.6 Influence of pile cross-section geometry on the dynamic behaviour
of piles

The set of dimensionless parameters characterizing the dynamic behaviour of piles
when considering SSI has been identified in section 2.5. For most of the results reported
in this document, it is assumed that E,/E; = 10% and p;s/p, = 0.7. When using steel piles,
an annular cross-section, as that shown on the right side of figure 2.9, is the pile cross-
section geometry which would correspond to real cases with such values of the pile-soil
Young’s modulus ratio E,/E and the soil-pile densities ratio p,/pp.

Ficure 2.9: Piles cross-section.

In this figure, the value of the parameter  represents the ratio between the internal
and the external diameter of the pile section, and takes values into the range 0 < < 1.
Thus, the area of the annular cross-section can be expressed as

2
A, = %(1 —42) (2.35)

Likewise, its rotational inertia can be written as

4
I, = %(1 —~h (2.36)
However, the impedance functions and the kinematic interaction factors, correspond-
ing to the different pile group configurations under study in this work, are computed
by considering a solid circular pile cross-section, as that depicted on the left side of fig-
ure 2.9. The area and rotational inertia of a solid circular cross-section (y = 0), are

denoted by A4, and I, respectively. According to equations (2.35) and (2.36), when v = 0,

5 2
Ap=Ap(y=0) = % (2.37)
and
- d4
I,=I,(y=0)= ”67 (2.38)

Thus, the radius of gyration of a solid circular cross-section i, can be defined as
. I d
ZPZZP(VZO):\/IZZZ (2.39)
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Therefore, when considering a solid circular pile cross-section, the dimensionless pa-
rameter L/i, depends only on the pile slenderness ratio L/d, which implies that the
dynamic behaviour of piles can be characterized by the following six parameters:

B L p  wd .5
B od o ow Vs i o (2.40)
Firstly, this section aims at verifying that, as expected, identical results are obtained
for impedances and kinematic interaction factors corresponding to all cases in which the
dimensionless parameters characterizing the SSI problem have the same values. For
this purpose, a pile model with the same solid circular cross-section (4, = A, = cte
and I, = I, = cte) is used herein to represent several annular pile cross-sections with
different thickness, according to the value of v in each case. The values of the properties
assigned to the solid circular cross-section in order to model the actual annular cross-
section, E, and p,, vary with v according to equations (2.41) and (2.42).

E,= Epi = E,(1—~% (2.41)
A,
Pp = prz = p(l - 72) (2.42)

where the Young’s module and density of the pile material are denoted by Ep and pp,
respectively.

In this study, the properties of pile material are considered to be Ep = 2.8-10%Pa
and p, = 1kg/m?. It is assumed that the pile external diameter is d = 2 and the pile
length is considered to be L = 30. The values adopted for the dimensionless parameters
characterizing the dynamic behaviour of pile groups are indicated in table 2.1. Each row
in table 2.2 lists the properties corresponding to the model of each annular section under
study. It can be seen that the parameter L /Ep keeps constant for all values of ~, given
that it depends only on L/d when the pile cross-section has a solid circular geometry.

TasLE 2.1: Values adopted for the dimensionless parameters characterizing the SSI prob-
lem.

E,/Es L/d ps/pp wd/cs vs s/d
10° 15 07 0—1 04 5,10

On the other hand, the accuracy of modelling a hollow pile by assuming a solid circu-
lar cross-section is assessed by obtaining impedance functions and kinematic interaction
factors considering the actual annular geometry of the pile cross-section in each case.
Table 2.3 lists the properties corresponding to each annular section under investigation.
The same values of the dimensionless parameters considered for all the cases reported in
table 2.2 have been assumed for those reported in table 2.3. Now the objective is to com-
pare the results corresponding to each row in table 2.3, representing the actual annular
cross-section geometry, with those obtained for the same row in table 2.2, corresponding
to an equivalent solid circular cross-section in each case. This allows elucidating whether
the approach that consists in modelling hollow piles as solid piles yields accurate results
or not.
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2

TasLE 2.2: Model solid circular cross-section geometry and equivalent material proper-

ties.

2

Ap

Iy

L/iy

Ep

Es

Pp

Ps

0.00

3.1416

0.7854

60.00

2.800

103

2.800

1.000

0.700

0.50

3.1416

0.7854

60.00

2.625 -

103

2.625

0.750

0.525

0.80

3.1416

0.7854

60.00

1.653 -

103

1.653

0.360

0.252

0.90

3.1416

0.7854

60.00

0.962 -

103

0.962

0.190

0.133

0.95

3.1416

0.7854

60.00

0.519 -

103

0.519

0.098

0.068

TaBLE 2.3: Actual annular cross-section geometry and material properties.

v A I, L/, E, Es pp ps g”éﬁ -10* ?;‘zlg
0.00 3.1416 0.7854 60.00 2,800 2.800 1.000 0.700  9.6963  3.4907
0.50 2.3562 0.7363 53.67 2,800 2.625 1.000 0.525 9.6963  2.7929
0.80 1.1310 0.4637 46.85 2,800 1.653 1.000 0.252  9.6963  2.1283
0.90 0.5969 0.2701 44.60 2,800 0.962 1.000 0.133  9.6963  1.9287
0.95 0.3063 0.1457 43.50 2,800 0.519 1.000 0.068 9.6963  1.8347

The radius of gyration of the annular cross-section 7,, can be expressed as a function of
that corresponding to a solid circular cross-section i, with the same diameter as follows:

=z Ip . 1 -4
iy == =1 (2.43)
P Ap p 1— ,)/2
Thus, the parameter L/i, can be written as
L Li
Z = 7;1’ (2.44)
tp d iy

Therefore, the column corresponding to L/ ip in table 2.3 shows the relation between
the radius of gyration of the actual annular pile cross-section i, and that corresponding
to the virtual equivalent solid cross-section i, used in the approach of table 2.2.

It should be noted that the ninth column in table 2.3 contains the values of a parame-
ter that influences the behaviour of piles when subjected to bending (see equation (2.26)).
Likewise, the tenth column in table 2.3 reflects the values of a parameter that affects the
response of piles when subjected to axil (see equation (2.27)). It can be observed that the
variations of L/i, only affect the last column associated to axil. In fact, this param-
eter has no influence when the pile is only subjected to bending (see equations (2.31)
and (2.32)), and only appears when the pile works axially. Thus, the ninth column in
table 2.3, which is associated to bending, remains constant. The more inclined, the more
the pile works axially. Therefore, modelling piles of annular cross-section by solid piles
yields less accurate results as the rake angle increases.
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In order to illustrate the accuracy of this approach, impedances and kinematic inter-
action factors, corresponding to several pile group configurations including vertical and
battered piles, have been computed, through a BEM-FEM methodology developed by
Padroén et al. [71] and outlined in section 3.5, for the different annular pile cross-sections
reported in table 2.3 as well as for the corresponding solid circular section in table 2.2.

Different 2 x 2 and 3 x 3 pile group configurations, with pile spacing ratios s/d = 5
and 10, are analysed. All of them follow the pattern represented in figure 2.10. Config-
urations containing vertical piles and piles inclined in the direction of excitation, with
three different rake angles # = 10°, 20° and 30°, are considered.

2% 2 3x3
z z
Pg Pg
4 \ Ug (| \ Ug
L L
0 d 0 d
LY
S waves
S Yy El Yy
2 o 2 L
S I s o ¢ O
— oo —esEE—
(©) ©) oo o ol
b b
b=s b=3s/2

Ficure 2.10: Pile foundation geometry.

The hypothesis of the first part of the analysis was verified, given that all rows in ta-
ble 2.2, corresponding to the same solid circular section (A, = A, = cte and I, = I,, = cte)
with different values of E, and p, but with the same values of the main parameters of
the problem (E,/Es, L/d, L /Ep, Pp/Ps, Vs), lead to identical results for all the pile group
configurations under study. Thus, the black line corresponding to v = 0 in all the fig-
ures in sections 2.6.1 and 2.6.2 represents, at the same time, the results for all rows in
table 2.2.
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The accuracy of the results obtained by modelling hollow piles as solid ones is ana-
lysed below from the results obtained in terms of impedances and kinematic interaction
factors.

2.6.1 Impedance functions

Figures from 2.11 to 2.13 show impedance functions, for all the configurations un-
der investigation, corresponding to the horizontal, rocking and cross-coupled horizontal-
rocking vibration modes, respectively. Although four different rake angles have been
considered in this study, aiming at providing the reader with concise information that
can be easily interpreted, only those results corresponding to the rake angles § = 0° (ver-
tical piles) and # = 30° are shown herein to illustrate the conclusions of this analysis.
Each column of these figures corresponds to a particular pile group configuration.

It can be observed that the variation of v does not yield great differences in terms of
impedances, which implies that modelling the annular cross-section of piles (v > 0) as
a solid cross-section (v = 0) allows obtaining results accurate enough to represent the
stiffness and damping of the soil-foundation system. However, in these figures, it can
be observed that modelling hollow piles as solid piles yields less accurate results as the
rake angle increases.

For the purpose of assessing more precisely the accuracy of this simplification con-
cerning the pile cross-section geometry, the percentage error in terms of the area under
the curves of stiffness and damping, yielding from assuming a solid cross-section instead
of an actual annular cross-section with v = 0.9, has been calculated in the frequency
range of interest for seismic loading (0 < wd/cs < 0.5) according to Gazetas et al. [79]. In
this line, table 2.4 reflects data for several configurations of piles comprising vertical or
inclined piles with a rake angle 6 = 30°.

TaBLE 2.4: Percentage error for impedance functions yielding from modelling a hollow
pile with v = 0.9 by an equivalent solid pile. 0 < wd/cs < 0.5.

2 %2 3x3

s/d 5 10 5 10

0 0°  30° 0°  30° 0° 30° 0> @ 30°
kpo/(psd) 188 1.06 1.11 3.51 257 0.14 1.07 2.88
cex/(psd) 049 393 023 505 059 253 021 3.50
keg/(usd®) 571 140 555 4.73 045 0.80 6.42 5.34
coo/(psd®) 10.71 6.12 11.28 9.13 6.65 6.38 10.92 9.39
kow/(usd®) 2.02 0.06 142 16.36 4.06 2.25 1.46 14.04
coe/(psd?) 019 2743 090 2042 1.96 19.11 0.38 18.45
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2x2 2x2 3x3 3x3

K, /(u, d) x 1072

K /(u, d) x 1072

0=0°

el d) x 107
~

C (g d) x 1072
o~

Ficure 2.11: Influence of pile cross-section geometry. Horizontal impedances of different
2 x 2 and 3 x 3 pile groups with vertical (¢ = 0°) or inclined elements (¢ = 30°). E,/E; =
1000 and & = 0.05.
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2x2 2x2 3x3 3x3
s/d=5 s/d=10 s/d=5 s/d=10

6=0° v=0.00
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Ficure 2.12: Influence of pile cross-section geometry. Rocking impedances of different
2 x 2 and 3 x 3 pile groups with vertical (¢ = 0°) or inclined elements (¢ = 30°). E,/E; =
1000 and &5 = 0.05.
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2x2 2x2 3x3
s/d=5 s/d=10

0=0° ¥=0.00
y=0.50

4L y=0.80
¥=0.90

y=0.95

Koy /(1 4 x 107

Koy /(u, d3) x 107

Cox/(s d%) x 107

Cox/ (U dz) x 107

Ficure 2.13: Influence of pile cross-section geometry. Horizontal-rocking cross-coupled

impedances of different 2 x 2 and 3 x 3 pile groups with vertical (¢ = 0°) or inclined
elements (¢ = 30°). E,/E, = 1000 and ¢, = 0.05.
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2.6.2 Kinematic interaction factors

This section intends to illustrate the extent to which the kinematic interaction factors
of pile groups consisting of piles with annular cross-section (v > 0) can be approximated
by those of an equivalent group of piles with an equivalent solid circular cross-section
(y = 0). For this purpose, figures 2.14 and 2.15 present, respectively, translational and
rotational kinematic interaction factors for different configurations of 2 x 2 and 3 x 3 pile
groups. In these figures, the first and the third row correspond to vertical pile groups,
while the second and the fourth row correspond to pile groups including battered ele-
ments with a rake angle § = 30°. As mentioned before, results obtained for rake angles
f# = 10° and 20° are not shown in these figures in order to provide the reader with an
information that can be easily interpreted.

No major differences have been observed in the kinematic interaction factors obtained
for different values of v. This allows us to conclude that the simplification of the pile cross-
section geometry that has been adopted in this work provide results accurate enough for
the configurations under investigation.

In order to assess more precisely the accuracy of this simplification that affects the
pile cross-section geometry, the percentage error in terms the area under the curves
of the kinematic interaction factors, yielding from assuming an equivalent solid cross-
section instead of an actual annular cross-section with v = 0.9 has been calculated in the
frequency range of interest for seismic loading (0 < wd/cs; < 0.5) according to Gazetas
et al. [79]. In this line, table 2.5 provides data for several configurations of piles with
vertical or inclined piles with a rake angle 6 = 30°.

TaBLE 2.5: Percentage error for kinematic interaction factors yielding from modelling a
hollow pile with v = 0.9 by an equivalent solid pile. 0 < wd/cs < 0.5.

2x2 3x3
s/d 5 10 5 10
0 0° 30 0° 30° 0° 30° 0° 30°
[I,] 191 3.13 093 1.73 1.99 2.82 0.80 1.34
Im([7,] 292 0.03 278 1.47 2.87 158 3.02 2.19
L]
L]

7.70 0.67 7.65 200 3.60 0.51 7.37 1.86
11.03 3.22 4.75 0.27 6.83 851 4.67 2.21
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2x2 2x2 3x3 3x3
s/d=5 s/d=10 s/d=5 s/d=10

Re[Iu:ug/ugO]

Re[Iu:ug/ugO]

-0.4

0=0°"

02 1t 1

0.0 B

Im[Iu:ug/ugO]

02 f 1t 1

-0.4

6=30°
04 1t 1

02

00 1= NG

02t 1t 1t 1t 1

Im[Iu:ug/ugo]

0.4 . . . . . . . . . . . . . . . .
0 02 04 06 08 0 02 04 06 08 0 02 04 06 08 0 02 04 06 08

wd/c, wd/c, wd/c, wd/c.

—_

Ficure 2.14: Influence of pile cross-section geometry. Translational kinematic interac-
tion factor I, of different 2 x 2 and 3 x 3 pile groups with vertical (¢ = 0°) or inclined
elements (§ = 30°). £,/E, = 1000 and &, = 0.05.
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Ficure 2.15: Influence of pile cross-section geometry. Rotational kinematic interaction
factor I, of different 2 x 2 and 3 x 3 pile groups with vertical (§ = 0°) or inclined elements
(0 =30°). E,/E; = 1000 and &, = 0.05.
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2.7 System equations and dimensionless parameters

A set of dimensionless parameters, covering the main features of SSI problems, has
been repeatedly used in the related literature to perform parametric analyses [7, 8,13,
14]. Following these authors, the parameters used in this work to characterize the soil-
foundation-structure system are:

1. Wave parameter o = ¢;7'/h, that measures the soil-structure relative stiffness.
2. Slenderness ratio h/b.

3. Mass density ratio 6 = m/(psAyh) between structure and supporting soil, being
Ay the area of the base of the structure. Thus, in the case of square foundations
Ay = 4b? and, consequently, § = m/(4psb%h).

4. Foundation-structure mass ratio m,/m.
5. Fixed-base structure damping ratio £.
6. Dimensionless fixed-base natural frequency of the structure A = w,, /w.

7. Dimensionless excitation frequency a, = wb/cs = (b/d)(wd/cs).

A hysteretic damping model of the type s = Re[us](1+2i&;) is considered in this work
for the soil material, being &, the corresponding damping coefficient.

Regarding the pile foundation, the main dimensionless parameters characterizing its
dynamic behaviour, which were identified in section 2.5, are considered:

1. Pile spacing ratio s/d.

2. Embedment ratio L/b.

3. Pile-soil Young’s modulus ratio E,/E;.
Dimensionless frequency a,.

Soil-pile densities ratio p,/pp.

SR

Pile slenderness ratio L/d.
7. Rake angle of piles 6.

8. Poisson’s ratio of the soil v, .

By performing basic algebraic operations, the equation of motion of the system (2.13)
can be expressed as a function of the dimensionless parameters defined above, in order to
facilitate the analysis of their influence on the system dynamic response. Such operations
are described below:

1. After adding the first two rows, the second row represents the horizontal equilib-
rium of the whole.
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0 0 m m mh

K
0 K. Ky - m m+m, mh
0

Ko, Kpp mh mh Ir
(2.45)
U m mh
u. | = w? m+mgy | Ug+ | mh | @g
L mh It

2. By introducing the structural stiffness and damping expressions, k = w?m and
¢ = 2mwypéw/a,, into equation (2.45), and dividing the whole equation by the free-
field motion at the surface ii,,, leads to equation (2.46).

w2m+i2w,méw 0 0 m m mh
0 K.. K — m m+m, mh
0 Ky, Kpp mh mh Ir
(2.46)
u /g, m . mh
ugfiig, | == | mtmo | Tuty | mh | I
or/ g, mh I

where I, = ug/uy, and I, = ¢4b/u,y, are the normalized kinematic interaction
factors, which are both functions of the dimensionless frequency a,.

3. The ratio w?/w? can be extracted as a common factor from the first term of equa-
tion (2.46). On the other hand, the structural mass m can be extracted as a common
factor from both sides of this equation which leads to equation (2.47).

MNH2XEE 0 0 1 1 h
i . O Keg KzG . 1 1 mo h
22 w?m  w?m +
Ko, K I
0 w297'n w297$z h h RT (2.47)
wlu/iig, 1 . h
Wiugfiig, | == [ 147 | Lo | b | L
w?%('p?c"/ugo h %

4. Dividing by h the third row of the equation and the third column of the system
matrix, and replacing the rotational inertias I, and I by their expressions I, =
mob?/3 and I = mb?/3, respectively, equation (2.47) results in equation (2.48).
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A2 0 0 1 1 1
1
Kza: Ka: — (e]
F ’ 0 w?m w2nfh L 1+ % 1
Koy K b2 o
0 wanh w2frfh 1 1 1+3W(1+%) (248)
wzu/u’go 1 h
.. 1
208 [iig, | =— 142 Iu‘f‘g h I,
2
nng/ugo 1 h—i—%(l%—%)

5. The terms of the system equation of motion that depend on impedances can be also
expressed as a function of the dimensionless parameters already defined, as indi-

cated below. It is worth mentioning that Ky, = K,y as a consequence of reciprocity
theorems.
Ky o Nsbf{:r:a: o (cgps)bf{:cr o oh 2 m bf{x:c - No?hl - (2.49)
wm o wm wPm \T ) 46b2h w?m 1672 b6 '
Keo (150> K o B (Cgﬂs)be(a;e _(oh 2 m be(x@ \2o21 - (2.50)
w2mh  w?mh  w?mh 46b2h mhw? ~ 16726 '
Kgg B M3b3kgg . (Czps)bgkf)g . Lh 2 m bgkgg )\202 16 - (2 51)
w2mh?  w?mh?  w?mh? 46b2h mh2w® 16720 h '
Thus, the equation of motion of the system can be written as follows:
A2 H2)6 0 0
1 hl 11 7
0 )\2 2 ESK )\202516 2Kr9
0 )‘2U2§16 162 Ko N0 216 2h6K99
1 1 1 w2 /iig,
|1 142 1 wiufiig, | = (2.52)
2 .
1 1 1+ 31)? (1 + %) whh$ [,
1 1
2 m h
=N ke | Lty 1 I,
2
! g (14+752)

where the rotational inertias have been replaced by the expressions I = mb?/3 and I, =
m,b? /3, respectively, given that pile cap and structure mass are assumed to be uniformly
distributed over square areas. The impedance functions are normalized as follows: K,, =
Koo/ (11sh), Koo = Koo/ (1sb®) and K9 = K9/ (5b%), and the kinematic interaction factors
are normalized with the free-field motion at the surface u,,, being I,, = uy/u,, and I, =
©qgb/ug,, both functions of the dimensionless frequency a,.
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2.8 Diagonalization of the impedance matrix
The dynamic response of the interacting system can be expressed in terms of the

shear force at the base of the structure per effective earthquake force unit [7,114] defined
as

(2.53)

Thus, @ can be obtained by solving, at each frequency, the complex system of algebraic
equations given in (2.52) for w2u/iig, .

The usefulness of presenting the seismic response of the structure in these terms, lies
in the fact that the product of this value with the structural mass and the corresponding
free-field horizontal acceleration at ground surface level results in the amplitude of the
shear force at the base of the structure.

In order to obtain manageable approximated expressions for ), while keeping the
crossed-coupled impedances, it is necessary to condense the soil-foundation interaction
to a point at a certain virtual depth D(w) = —K,9/K,, (see figure 2.16) such that the
impedance matrix becomes diagonal, as some authors propose [27,32].

05

Ficure 2.16: Equivalent model with diagonalized impedance matrix.

Considering the system shown in figure 2.16, the foundation equation of motion can

be written as follows:
F - Ky Kar:G u
Ko, Koo 2

M

(2.54)

S0 30
—_
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Condensing the soil-foundation interaction to a point at a certain virtual depth D(w),
the equation of motion of the foundation can be expressed as

MY —FPD Ko Koo o
where F' = F, M — FPD = M, ul’ = ué — oI’ D and of = ©¢.
Thus, equation (2.55) can also be written as
M K@:r + Kach K09 + 2K:):9D + Kac;L’DQ (2

It can be seen that to obtain a diagonal impedance matrix the pile cap pole must be
displaced a distance D(w) = —Kjy, /K., which leads to the equation below. Note that, as
mentioned before, Ky, = K,y as a consequence of reciprocity theorems.

FP
MP

P
P ] (2.57)

being K@g — K92$/Km; = K@QD.
Hence, the equations of motion of the interacting system written in equations (2.10),

(2.11) and (2.12) can be now expressed, referred to that point located at a virtual depth
D, as

m- [i+al + il + (h+ D) (¢F + D))+ K -u=0 (2.58)

me - [if + i) + (B + @) D] + Koo -ul =K -u=0 (2.59)

m- (h+ D) [i+ i +iiy + (h+D) - (35 + @5 )] +1- (37 +@5) +
.p ..pP P P =P =P P (2.60)
mo - D iy +iiy + (B, + &) - D] + Lo~ (& + &g) + Koo, -9y =0

where equation (2.58) represents the horizontal force equilibrium of the structure, equa-
tion (2.59) the horizontal force equilibrium of the structure-foundation system, and equa-
tion (2.60) the moment equilibrium of the structure-foundation system about the point
located at a virtual depth D to which the soil-foundation interaction has been condensed.
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In the frequency domain (with time dependance e'“!), this set of equations can be
expressed in a matrix form as

K 0 0
-K K,z O
0 0 Koo,
m m m(h+D) u
—w? 0 Mo meD : uf = (2.61)
m(h+D) m(h+D)+ m,D It oF
m m(h+D)
w? m u;j—l— moD @5
m(h+D) + myD I

where I+ = m(h + D)? + m,D? + I, + I, K = k +ia,c, and motions have been assumed to
be time-harmonic of the type u(t) = uel“?.

It should be noted that, after this transformation explained above, the equations of
motion of the interacting system are written in terms of the horizontal and rocking input
motions at the point to which the soil-foundation interaction has been condensed, uf and
gof; , whereas equation (2.13) was expressed in terms of the horizontal and rocking input
motions at the pile cap, v, and ¢,. Moreover, equation (2.61) is written in terms of the
relative horizontal displacement and rocking at the point mentioned before, v and ¢?,
instead of being expressed in terms of the foundation relative horizontal displacement
and rocking at the pile cap level, u¢ and ¢¢.

A similar procedure to that described in section 2.7 is followed, in order to express the
system equations of motion in the frequency domain as a function of the dimensionless
parameters already defined. In this line, the algebraic operations performed for this
purpose are explained in detail below:

1. The first step consists in adding the two first rows of the equation. Thus, the second
row will represent the horizontal equilibrium of the whole.

2. Then, by introducing the structural stiffness and damping expressions, k = w2m

and ¢ = 2mw,éw/a,, in equation (2.61), and dividing the equation by the free-field
motion at the surface i,, leads to equation (2.62).
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wim+i2w,méw 0 0
0 Ko 0 -
0 Koo,
m m m(h+ D) u/ig,
W' m m+m,  m(h+ D) +m,D| ¢ | uf /i, (2.62)
m(h+D)m(h+D)+m,D It oF Jiig,
m P m(h+D) P
= w? m4+m ng—l- m(h+D)+m,D :79
m(h+D)+m,D | Iy %

3. The ratio w?/w? can be extracted as a common factor from the first term of the
equation above. On the other hand the structural mass m can be extracted as a
common factor from both sides of this equation which leads to

ANH2XEE 0 0

K‘ZZB
F 0 w?m KO
0 e
1 1 h+D wh/ig,
~| 1 I+ h+D+2eD | ol wiuf fig, (2.63)
° I .
h+D h+D+2eD Z w2l /iy,
1 P h+D o7
=w? 1+7e R h+ D+=2D <
Ugo ugo
h+D+ ™D -

4. By dividing by (h + D) the third row of the equation and the third column of the
system matrix, equation (2.63) can be written as follows:

MNH2XEE 0 0
Kacx
i 0 Loz 0
0 0 Koo,
w?m(h+D)?
1 1 1 wiu/ugo
—|1 14me 14 2o D w2ul i, (2.64)
o_D b> 5 , D2 .
U1+ I ggypye (UH50) + 5 o wyy (h+D)gy [ilg,
1 P h+D o
=w? Lyme | 2t h+D+ ™D =
o D 9o b2 o o D2 go
4+ 05D h+D+ 3575y (14752) + 5 vy
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5. The terms of the system matrix where there are impedance expressions can be
also expressed as a function of the dimensionless parameters already defined, as

indicated below:

Koo _ psbKew _ (po )bl _ (0h\* m bEsy _ N0’ bl (2.65)
w?m w?m w2m T ) 46b2h w?>m  1672b6 " '
Koo, _ Hsb’Kep, (c2ps)b* Koy, _
w?m(h+ D)?  w?m(h+ D)?  w?m(h+ D)? (2.66)
B Lh 2 m bBKGHD B )\202 lﬁ b2 K .
"\ T ) 4602hm(h + D)2w? ~ 16726 b (h+ D)2 %P

It is worth mentioning that the rocking input motion at the point to which the soil-
foundation interaction has been condensed matches that at the pile cap (@5 = g). Like-
wise, the relative rocking motion at that point coincide with the foundation relative rock-
ing motion (o = ¢¢). Considering these equivalences, and given that ug = ug — pgD,
equation (2.64) can be written as

A242X¢H 0
0 )‘2021617r2 %%f(m 0
0 0 A2U2ﬁ%%ﬁf}bgD
1 1 W%U/ugo
|1 ryme 1+ e Dy | whl /g, (2.67)
1 1422y 143t (14 20) + 2P wh (h+ D),
1 1
—_)\2 14+me | I+ % 1 Iy
L+ 5o wts L+ 3haminy (1 52)
or, alternatively, as
(1+i2¢") 0 0
N 0 a2, (1+i2,) 0 -
\ 0 0 0y (1+12€90)
1 1 1 wiu/g,
1 14me 1+ me Dy | wiu /g, (2.68)
|1 14Tl 1 (4 ) + el wp (h=+D)gt g,
1 1
—_\2 pyme |14 1 1,
m b
1+ Mo D L+ 37 gy (L4 52)
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where,
1
1 hl-
2 _ 2 nl
Qg = 0" o373 5 ke (2.70)
c
= (2.71)
: 2k
o2 2 1 Mlg, Lf( (2.72)
0= 16x2bs | (h+ D)2 %P '
Im ¥ K,
hrD)Z 00D
€0 = : 2 | (2.73)
2Re [(h+D)Q KQ@D]
being K,, = Kyw + i¢. and
- 1 K}
Ko, = b <K09 - K:E:Z) (2.74)
2 2 % % 2\ !
b h h\ Ko Ko,
—_— = -] =2 =)= = 2.
(h+ D)? ((b) <b>K+<K)) @1
D Ko (Kee B\
Ox Ox
= = — — — 2.

Finally, neglecting m,, I and I,, as usual (see, for instance [6,12, 14]), yields

(1+i2¢") 0 0
M0 a2, (14i26,) 0 -
0 0 a2, (14i2&9p)
\ % 2.77)
111 wlu/iig, )
111 : w2ul /iig, =-\? (Iu+bl¢) 1
111 w2 (h + D)¢t g,

Solving the complex system of algebraic equations given in (2.77) for w2u/ii,, yields
the following expression for the shear force at the base of the structure per effective
earthquake force unit Q:

AN FiBOY) (2.78)

= Q) =
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where
1 1446, 1+ 48pe¢
AN =173 = Pz 14, Vo, (1+48) *7
B(}\): g’ § _facw 5 _590 (280)

A2, (1+4€2,)  Naj,(1+485)

2.9 Effective period and damping of the soil-foundation-structure
coupled system
The objective of this section is to find the dynamic characteristics of a viscously damped

single-degree-of-freedom (SDOF) oscillator (figure 2.17 (b)) able to reproduce, as accu-
rately as possible, the response of the coupled system shown in figure 2.17 (a).

(a)

Ug

ka:a:a CI(E

kz@a Cx6

Pg

Ficure 2.17: (a) Substructure model of a one-storey structure. (b) Equivalent single-
degree-of-freedom oscillator.

This equivalent SDOF system can be defined by its undamped natural period T and
its damping ratio &, so that its equation of motion can be written as

~2 1
o (2.81)
9 (‘f’Q = 1) —i2é2
w5 Wn,
being &, = 27/T and
B ~2
— |“nt (2.82)
Ugo

the transfer-function used to establish this equivalence, which is the most appropriate
from an operational point of view since it represents the ratio of the shear force at the
base of the structure to the effective earthquake force [114].

It is not possible to find a SDOF system with constant impedances that exactly re-
produces the harmonic response curve of a three-degrees-of-freedom (3DOF) system with
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either constant or frequency-dependent impedances. Therefore, the aim is to reproduce
the 3DOF system response within the range where the peak response occurs. As the def-
inition of a SDOF system needs only two parameters, the strategies used to determine
its dynamic characteristics are based on taking one common point between the target
response of the 3DOF system and that of a SDOF system that best approximates it.
From an engineering point of view, the most intuitive strategy consists in taking as
common point the one corresponding to the maximum value @, of the response spectra
(see MAX in figure 2.18) as some authors such as Todorovska [16] or Avilés and Pérez-
Rocha [14] do. This point can be determined in this case by the iterative resolution of
the system of equations (2.52), which allows finding the peak-response period 7}, and the
corresponding maximum value ),,. Then, assuming that the damping mechanism of the
equivalent SDOF oscillator is of viscous nature, it is well-known [115] that its damping

ratio can be found as
1
-1 Q2 -1\
=—(1- m 2.83
v ( V@ ) (259

which is obtained from the expression for @, in figure 2.18. Now, the natural period of
the equivalent oscillator 7' can be computed as

T=1\/1-28T, (2.84)

which is applicable only for damping values smaller than 1/v/2 [115].

U/ﬁg|

2
n

Q=

A A =wp/w

Ficure 2.18: Maximum searching strategy (MAX) for obtaining the natural frequency
and damping of the equivalent SDOF system.
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Nevertheless, this strategy leads to unreliable natural frequencies in highly damped
systems, in which the peak-response frequency becomes rather undefined. In these cases,
the harmonic response spectra become flatter which makes it more difficult to find the
frequency value associated with the maximum response value. In order to avoid this
drawback, other approach based on finding the eigenvalue ) of the 3DOF system can be
used.

The identification of the equations of motion of the coupled system (equations (2.78),
(2.79), (2.80)), obtained after the diagonalization of the impedance matrix performed in
section 2.8, and that corresponding to the SDOF system (equation (2.82)) at resonance
allows obtaining the effective period by finding the root of equation (2.79). Obviously,
the 3DOF system has more than one vibration mode and hence equation (2.79) has more
than one root. However, in most cases of interest, the maximum response corresponds to
the first mode. For this reason, from now on, the procedure focuses on that first solution
), despite being aware that there are more. Thus, the system damping ratio can be
determined as & = 1/(2Q(X)).

Note that using the root )\ of equation (2.79) leads to a SDOF system whose peak
response does not always lead to an acceptable approximation for the 3DOF system peak
response (see ROOT in figure 2.19). In fact, this approach looses accuracy as 1/o or
L/b increase, as well as for decreasing structural slenderness ratios h/b. In order to
illustrate these effects, figures 2.20 and 2.21 depict the response of the target coupled
system (3DOF) together with the response of a SDOF equivalent system whose dynamics
characteristics are computed by using this strategy. The results provided in these figures
correspond to structures with /b = 1, 2 and 5, supported by 3 x 3 pile groups with s/d =5
and L/b =1 and 4.

U/@g‘

2
n

Q=

N A = wp/w

Ficure 2.19: Root finding strategy (ROOT) for obtaining the natural frequency and damp-
ing of the equivalent SDOF system without neglecting second-order damping terms.
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Ficurk 2.20: Replacement oscillator approach to 3DOF system on a 3 x 3 pile group with
s/d=5and L/b=1. E,/Es = 10 and & = 0.05. ROOT strategy.
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Ficure 2.21: Replacement oscillator approach to SDOF system on a 3 x 3 pile group with

s/d=>5and L/b=4. E,/Es = 10 and & = 0.05. ROOT strategy.
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On the other hand, neglecting (as Avilés and Pérez-Rocha [14] do) all second-order
damping terms, leads to the following approximate expressions for A and B:

AN =15~ Sz, ~ e, =59
b = € —Epo
B\ =2 — — 2.86

The dimensionless undamped natural frequency of the SDOF system \ = w,, /@, can
be found as the root of equation (2.85). This is equivalent to the resolution of the eigen-
value problem from equation (2.77), without considering damping.

As, in this case, £ = 1/(2Q()\)), and taking the approximate expression for Q()) ob-
tained from taking equations (2.85) and (2.86) as values of A and B, one can write the
system damping ratio as

: h -1 fmc 509
f“(“b@) vl )

However, this approach does not always provide a good approximation for the 3DOF
system peak response as shown in figure 2.22, where results obtained by using this strat-
egy (EIGEN-S) are represented for structures supported on a 3x 3 pile group with s/d =5
and L/b = 2.

(2.87)
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10 + EIGEN-S - 4 10 + 4 10 + 4
o 9t 1 9t 1 9t 1
8t 1 8t 1 8t 1
7 7 7
6 9 12
1/0=0.2
5t 1 8t 11 ]
o 4t 7t 1 10t 1
3t 6t 1 9t 1
2 5 8
4 7 12
3t 6F 11 ]
o 2r 5t 1 10 ¢ 1
1t 4t 1 9t 1
0 3 8
4 6 11
1/0=0.4
3t 1 st 1 10t ]
o 2t 4t 1 9t 1
1t 3t 1 8t 1
0 2 7
4 5
1/0=0.5
3t 1 4r ] ]
O 4 4

Ficurk 2.22: Replacement oscillator approach to 3DOF system on a 3 x 3 pile group with
s/d=5and L/b=2. E,/Es = 103 and & = 0.05. EIGEN-S strategy.
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Consequently, the proposed procedure (EIGEN in figure 2.23) computes the dimen-
sionless undamped natural frequency of the SDOF system ) as the root of equation (2.85)
but, unlike what Avilés and Pérez-Rocha [14] do, this procedure calculates ¢ from equa-
tions (2.79) and (2.80) for the values of A and B instead of equations (2.85) and (2.86),
which yields the following expression:

. h -1 5/ 1 gxx 599
= ‘ (I“bl“") [Xﬁv <a3x(1 T12E0) | ad (1t 12599)>] ' 259
= | QW) =l
03
=
E
Il
S

A A =wp/w
Ficure 2.23: Proposed procedure (EIGEN) for obtaining the natural frequency of the

equivalent SDOF system by neglecting second-order damping terms, and determining
the damping coefficient by considering them.

Figure 2.24 shows that considering second-order damping terms when computing the
SDOF effective damping ¢ (EIGEN) yields a better approximation for the 3DOF system
peak than neglecting them (EIGEN-S). For this purpose, results corresponding to both
approaches are plotted together with the dynamic response of the target coupled system
(3DOF) for structures supported on a 3 x 3 pile group with s/d = 5 and L/b = 4.

Figures 2.25, 2.26 and 2.27 allow analysing how the pile group configuration affects
the influence that neglecting all second-order terms has on the dynamic characteristics
of the equivalent system. For this purpose, results in terms of the system effective pe-
riod 7/T and damping ¢ are depicted in these figures for several configurations of pile
groups. The influence of adopting this simplification increases with decreasing values of
the pile slenderness ratio L/d (see figure 2.25), the structural slenderness ratio 4/b and
the wave parameter o, as well as with increasing values of the embedment ratio L/b (see
figure 2.26), and the group size (see figure 2.27). Indeed, this assumption may lead to
significant differences on the system period and damping values when 1 /b < 2.
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Ficure 2.24: Replacement oscillator approach to SDOF system on a 3 x 3 pile group with
s/d=5and L/b=4. E,/Es = 10% and & = 0.05. EIGEN vs EIGEN-S.
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Ficure 2.25: Influence of neglecting all second-order damping terms. Root finding proce-
dure (EIGEN) vs simplified root finding procedure (EIGEN-S). Effective period 7'/T" and
damping ratio ¢ for a 4 x 4 pile group with L/b =2, E,,/E; = 103 and &, = 0.05.
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Ficure 2.26: Influence of neglecting all second-order damping terms. Root finding proce-
dure (EIGEN) vs simplified root finding procedure (EIGEN-S). Effective period 7'/T and
damping ratio ¢ for a 4 x 4 pile group with s/d = 3.75, E,/E; = 10° and &, = 0.05.
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Ficure 2.27: Influence of neglecting all second-order damping terms. Root finding proce-
dure (EIGEN) vs simplified root finding procedure (EIGEN-S). Effective period 7'/T" and
damping ratio £ for 2 x 2, 3 x 3 and 4 x 4 pile groups with L/b =4, L/d = 15, E,/E; = 10
and & = 0.05.
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In order to illustrate the different strategies used to determine the dynamic charac-
teristics of an equivalent SDOF system, figure 2.28 shows a schematic representation
of the response of the target coupled system (3DOF) together with that of the different
equivalent SDOF models described along this section. Differences have been exagger-
ated in the figure to highlight the characteristics of these strategies, and show that none
of these approaches reproduces exactly the response of the coupled system, having each
one of them its own advantages and disadvantages.

1 Q= 71
= | Q= il
(=)
g § *
Nsﬁ (]
3 X
[ -
Q’ [}
1 3DOF ——
[ MAX ——
[ ROOT
- EIGEN ——
N A A A =wp/w

Ficure 2.28: Strategies for obtaining the natural frequency and damping of the equiva-
lent SDOF system.

When ¢ < 0.2, effective period and damping results obtained either from the root
finding procedure (EIGEN) proposed in this thesis, or by the iterative solution of the
system of equations given in equation (2.52) to find the maximum response value (MAX),
are almost coincident. Figure 2.29 illustrates this fact for one particular case. However,
although both procedures lead to good results in most cases, it is important to point out
that, contrary to what occurs with the maximum searching algorithm (MAX), the root
finding procedure (EIGEN) will show, in all cases, a stable behaviour whose reliability
is not affected by increasing values of the equivalent system damping (5 > (.2). For this
reason, the simplified procedure (EIGEN) is the strategy employed forward, being also
true that, as discussed below, the equivalent SDOF system is not always applicable as a
simplified methodology for highly damped systems.

Finally, after having described the numerical procedure to be used for defining the
parameters of the equivalent single-degree-of-freedom system, and keeping in mind that
the response of such SDOF replacement oscillator does not match exactly that of the com-
plete 3DOF system, it is necessary to establish a practical range of validity which, as gen-
erally assumed, will depend on the problem characteristics. Avilés and Suarez [20] drew
the conclusion that the equivalent SDOF approach is not adequate for highly damped
systems (¢ > 0.2), which usually corresponds to very short structures (h /b < 1) on soft
soils (1/0 > 0.2). The results obtained for a significant number of the configurations
analysed in the present work agree with such conclusion and suggest a limit value of
the parameter 1/0 between 0.2 and 0.3, depending on the configuration. However, in
many other cases, the replacement SDOF oscillator yields excellent results even for high
damping ratios (¢ > 0.2). On the other hand, the pile group configuration is another
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Ficure 2.29: Root finding procedure (EIGEN) vs maximum searching algorithm (MAX).
Effective period 7'/T and damping ratio ¢ for a 2 x 2 pile group. E,/Es; = 103, s/d = 15,
h/b=2,510,L/b=2, L/d =30 and & = 0.05.

important parameter in the range of validity of the approach. In order to illustrate this
fact, figure 2.30 presents frequency response functions and elastic response spectra (cor-
responding to the N-S component of the 1940 El Centro Earthquake [114]) both obtained
keeping 1/0 constant as in [7], for the case of a 2 x 2 pile group with embedment and slen-
dernessratiosof L/b = 2and L/d = 7.5 and 15, respectively. In both cases, for 2 /b = 1, the
equivalent damping ratio ¢ is very similar (see right plots in the same figure). However,
while the SDOF replacement oscillator is able to approximate very closely the frequency
response functions of the complete system when L/d = 15, the same does not hold when
L/d = 7.5. As a consequence, the elastic response spectra obtained from the equivalent
SDOF system are very close to those obtained using the response of the complete 3SDOF
system for L./d = 15 and all values of 1 /0. However, discrepancies are very important for
L/d ="7.5, even for 1/0 = 0.1. Therefore, it is important to point out that the equivalent
single-degree-of-freedom approach shows a finite range of validity that should be take
into account before its practical application.
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Ficure 2.30: Replacement oscillator approach to 3DOF system on a 2 x 2 pile group.
L/b=1,L/d="7.5 (top) and L/d = 15 (bottom). Transfer functions (left column), elastic
response spectra corresponding to the 1940 El Centro Earthquake (central column), and
damping ratio (€) of the equivalent SDOF replacement oscillator (right column).

2.10 Implementation

For the purpose of illustrating the practical implementation of the strategies ex-
plained in section 2.9 in a code, algorithms 2.1 and 2.2 show, respectively, pseudocodes
for the computation of the system effective period 7/T and damping ¢ through a maxi-
mum finding strategy (MAX), as well as by using root finding procedures (ROOT, EIGEN
or EIGEN-S).

The maximum finding algorithm consists in an iterative procedure that searches the
maximum of the harmonic spectrum for different values of the wave parameter 0. As
shown in algorithm 2.1, this procedure starts in 0 = 0,42, Where 1/0,,,, takes a value
close to zero which corresponds to very soft structures or very hard soils. This implies
that the system period in flexible base tends to the value corresponding to fixed-base
condition T — T and, consequently, the system effective period T/T tends to the unit
value T/T — 1. Thus, with the assumption of A() = 1, values of the shear force at the
base of the structure per effective earthquake force unit Q are computed at A — A, A(?
and \) + A\, being A\ — 0, through the expression in equation (2.78), where A® and
B are obtained from equations (2.79) and (2.80), respectively. Given that these curves
are known to be smooth, the search point is displaced in the direction of increasing @ until
a maximum is reached, moment in which the corresponding A\ is stored as the period
(T;,/T)® corresponding to the maximum response Q,, for this value of 0. Afterwards,

the effective damping ratio £ is determined by introducing the obtained value for Q%)
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in equation (2.83). Finally, the effective period of the equivalent oscillator (7'/7)( is
computed from equation (2.84). Then, the iterative procedure is repeated for decreasing
values of o until ¢ = oy, this time starting at the last computed value of A, being
A = 2\@=1),

On the other hand, algorithm 2.2 outlines the implementation of the procedure pro-
posed in this work (EIGEN), as well as that of other strategies (ROOT and EIGEN-S), also
based on root finding algorithms. It is worth mentioning that the same algorithm can
be used to obtain results corresponding to each one of these strategies only by modifying
the expressions used to compute the real (A) and imaginary (B) parts of the denominator
of the shear force at the base of the structure per effective earthquake force unit (), and
that used to determine the system effective damping ¢. This algorithm is an iterative
procedure that searches the root of the real part A of the denominator of (). In the case
of the procedure named ROOT, A is defined in equation (2.79). However, for strategies
EIGEN and EIGEN-S all second-order damping terms are neglected and, consequently,
A is computed from equation (2.85). This iterative procedure stars in ¢ = 0,4, Where
1/0maz — 0 which implies that T /T — 1, as explained above. Thus, with the assumption
of \(¥ = 1, values of A are computed at \(). and \() + A\, being A\ — 0. These two
points are moved until the sign of A experiences a change, moment in which the value of
X which leads to the lower absolute value of A is stored as the system effective period
(T/T)®. Then, Q) is computed from equation (2.78), being A) and B() obtained ei-
ther from equations (2.79) and (2.80), when second order damping terms are considered
(ROOT and EIGEN), or from equations (2.85) and (2.86), when these terms are neglected
(EIGEN-S). Finally, the system effective damping ¢ is determined either from equa-
tion (2.88) (ROOT and EIGEN) or from its approximate expression in equation (2.87)
(EIGEN-S). Afterwards, the iterative procedure is repeated for decreasing values of o
until 0 = o,in, this time starting at the last computed value of )\, being (V) = \(—1).
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Algorithm 2.1 Pseudocode for the computation of T/T = F(o) and ¢ = G(o) using the
maximum finding algorithm (MAX)

INPUT: Set of parameters defining the system: h/b, J, £, foundation impedances (K ya,
Ky, and Kyy) and kinematic interaction factors (I, and I,); and algorithm parameters
Omin, Omaz, Ao, and AN,
Q" is obtained from equation (2.78), being A® and B obtained, respectively, from
equations (2.79) and (2.80).
for 00 = 0,42 10 Tpnin, in steps of Ao do
if ) = 5,,. then
A 1
else
A@) o \GE-1)
end if
V= Q@ —AN)
Y =)
9 =00 +ax)
if Q1 > Q" then
A0 X AN
ng) — ng)
Qéz) - ng)
QY = Q@ + Ay
else if Qgi) > Qgi) then
2D XD AN
Qéz) — Qg)
ng) — ng)
QY = Q0@ — Ay
end if . ‘ .
while (Q1 > QY").0R.(Qf > Q)
(T /T)® = \O)
QU QY
compute ¢ from Eq. (2.83)
compute (7/7)" from Eq.(2.84)
end for
OUTPUT: o) (T/T)®, £0)
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Algorithm 2.2 Pseudocode for the computation of 7/T = F(o) and ¢ = G(o) using root
finding algorithms (ROOT, EIGEN or EIGEN-S)

INPUT: Set of parameters defining the system: h/b, §, £, foundation impedances (Kys,
Ky, and Kyy) and kinematic interaction factors (I, and I,); and algorithm parameters
Omin, Omaz, Ao, and AN,
A® is obtained from equation (2.79) (ROOT) or from equation (2.85) (EIGEN and
EIGEN-S).
for 0 = 0,42 t0 Tpin, in steps of Ao do
if ) = 5,,. then
A 1
else
AD ¢ (T/T))
end if
AP = A\D)
AP = AN + AN)
if (A" > 0 AND. A{” > 0) .OR. (4! < 0 .AND. A}’ < 0) then
A0 A AN
AW A
AP = AN + AN)
else ,
if [A"] > 4Y)| then
(T/T)® XD — A\
else
(T/T)@ A
end if
end if 4 ' '
while (4" > 0 .AND. 4’ > 0) .OR. (4" < 0 .AND. 4’ < 0)
compute Q) from equation (2.78), being A) and B obtained, respectively, ei-
ther from equations (2.79) and (2.80) (ROOT and EIGEN), or from equations (2.85)
and (2.86) (EIGEN-S).
compute ¢ from equation (2.88) (ROOT and EIGEN) or from equation (2.87)
(EIGEN-S).
end for
OUTPUT: o) (T/T)®, £0)
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2.11 Model validation

In order to complete the validation of the proposed model, the results obtained from
the system dimensionless equations of motion are validated in this section through com-
parison against results provided by Veletsos and Meek [7] for shallow foundations, paper
in which impedance functions come from Bielak [12] and Verbic and Veletsos [116]. More-
over, results computed for embedded foundations are compared with those obtained by
Avilés and Pérez-Rocha [14].

2.11.1 Shallow foundations. Comparison with Veletsos and Meek [7]

The system equations of motion (equation (2.68)) obtained in section 2.8 for pile foun-
dations applies as well to shallow foundations. Nevertheless, in this case, the cross-
coupled impedances are cancelled (K, = 0) yielding D = 0, which implies that u = u¢.
Moreover, the foundation input motion coincides with the free-field motion at the ground
surface, which is exclusively horizontal (uy, = u4, and ¢, = 0). Therefore, the kinematic
interaction factor associated with rotation is cancelled I/, = 0, whereas that associated
with translation is equal to the unit I, = 1. Thus, equation (2.68) can be written for
shallow foundations as

(1412¢") 0 0
2 0 o2, (14i2,.) 0 -
0 0 0439(14-12599)
(11 1 w2y,
1 142 1 | wiul /i, (2.89)
11 1t (1) w2het fiig,
1
=—N| 14 me
1
where,
¢ =L (2.90)
=3 ,
1 hl-
2 2
_ hir 2.91
Yz =7 16725 6 (2.90)
é
= G (2.92)
6 Qkxac
1 bl-
2 _ 2 e
X0 = 15275 00 (2.93)
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Cop
2kgo

§o0 = (2.94)

being K:m = ]}xx + i¢z; and Kgg = ]%99 + icgg.

In the case of shear structures supported by shallow foundations consisting of a rigid
circular plate of negligible thickness, as those studied by Veletsos and Meek [7], the
problem under study corresponds to the sketch depicted in figure 2.31. In this figure,
the parameters defining the superstructure are the same as those mentioned in sec-
tion 2.3 for the case of pile foundations. In that section, the foundation mass m, and the
mass of the structure m were supposed to be uniformly distributed over square areas,
whereas Veletsos and Meek presume that they are uniformly distributed over circular
areas. Notice that the rotational inertias have, in this case, the expressions I, = m,r?/4
and I = mr?/4, respectively, being r the radius of these circular areas. Likewise, the
structural slenderness ratio is now defined as h/r. Furthermore, this change in the
foundation geometry also entails a variation in the expression that relates mass den-
sity ratio J to soil density p;. This relation can be written, for circular foundations, as
§ = m/(psmr?)h. In addition, impedances are normalized, in this case, with respect to r
as follows: K, = Kuu /(usr) and Koo = Kpg /(usr3). Finally, the dimensionless frequency
is here defined as a, = wr/c;.

S waves

Ficurke 2.31: Problem definition. Single shear structure supported on a shallow founda-
tion at the surface of a homogeneous half-space under vertically-incident S waves.

A dimensionless system equation of motion, analogous to that provided above for
square foundations (equation (2.89)), can be obtained for circular foundations from equa-
tion (2.13) by considering the above-mentioned changes in the procedure already de-
scribed in section 2.7, which leads to the following expression:
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(141i2¢") 0 0
N 0 a2, (1+i26) 0 -
0 0 azy(1412&pp)
(11 1 wiu/iig,
1 14 1 | wiul /g, (2.95)
IR B B = W2ht g,
1
==\ | 14 me
1
where,
=L (2.96)
=5 .
1 hl-
2 2
- a2 hax 2.
Oy =0 47T37“(5k (2.97)
T (2.98)
Qkx:v
1 r1-
2 _ 2
Qg = O 4771'3%5 k‘gg (299)
Coo
=z (2.100)
o0 Do

being Ky = kyy + iéz, and Kpg = kgg + igp.

It should be noted that the results presented herein have been obtained considering
the following parameters: m,/m =0, I, = 0, v; = 0.45, { = 0.02 and § = 0.15, as Veletsos
and Meek do.

With regard to the impedances of the foundation mat, Veletsos and Meek [7] give a
set of simple expressions for horizontal and rocking impedance functions which depend
on a series of dimensionless parameters (o, oy, 5 and Sy). These expressions can be
written as follows:

Koo = k5, (km n iaoém) (2.101)
Kag = k3o (oo + a0t (2.102)
where
. 8
k.= LsT (2.103)
2—v

S
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~

kve = 0 (2.104)
bz = Ba (2.105)
koo = 5— st (2.106)
koo = v (2.107)
oo = P (2.108)

The values for the dimensionless parameters «,, oy, 5; and Sy, corresponding to a
supporting soil with a Poisson’s ratio v; = 0.45, have been digitized from the cited work
and are depicted in figure 2.32. Plots for other values of v, can be found in [117].

1.5 T T T T T T T
o
<ol
gl
5 05 F .
=3 )
G
o
& 00 Ff .
= o
s o
05 r B, —— .
Bo
_1.0 1 1 1 1 1 1 1

wr/c

Ficure 2.32: Dimensionless coefficients in expressions for foundation stiffness and damp-
ing (after Veletsos and Meek [7]).

It may be noticed that the expression proposed for the static stiffness in the rock-
ing vibration mode (equation (2.106)) does not allow expressing the system equation of
motion in terms of the dimensionless parameters defined in section 2.7. Indeed, a mis-
match can be detected through a comparison against that extracted from a paper by
Veletsos and Verbic [118], which was previously extracted from a report by Verbic and
Veletsos [116]. In order to clarify this point, the approximate expressions provided by
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2

Verbic and Veletsos for impedance functions are written below using the same mathe-
matical representation written in equations (2.101) and (2.102).

ks, = sT (2.109)
2 — vy

kpw = 1 (2.110)
bow = a1 (2.111)
5 o> 2.112

. b1(b2 a,) 5

=1 — 2.11
boo T+ (baa)? % R
. b1ba(be a,)?

S AN el 2.114
=15 (byao)? 2119

where a1, b1, by and b3 are numerical coefficients which depend on v,, as shown in ta-
ble 2.6.

TaBLE 2.6: Numerical coefficients in equations (2.111) to (2.114) (after Veletsos and Ver-
bic [118]).

Quantity Vs
0 1/3 045 05
a 0.775 0.65 0.60  0.60
by 0525 0.5 045 04
by 0.8 08 08 08
by 0 0 0023 0027

Moreover, results obtained for the harmonic response spectra by using the expres-
sions proposed by Veletsos and Meek for the impedances does not coincide with those
extracted from the plots provided in the same work. By contrast, the expressions pro-
vided by Veletsos and Verbic, allow obtaining these curves. Consequently, for the results
shown in this section, the impedance functions have been extracted from the aforemen-
tioned paper by Veletsos and Verbic.

For the purpose of validating the proposed model, figure 2.33 allows comparing the
results obtained with the proposed model against those provided by Veletsos and Meek,
in terms of system effective frequency 7'/ T and damping ¢ for structural slenderness
ratios h/r = 1, 2 and 5. As pointed out by Veletsos and Meek, some relevant conclusions
can be drawn from these results:

* The system effective frequency T'/T decreases with the wave parameter o, as well
as for increasing values of the structural slenderness ratio h/r.
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Ficure 2.33: Comparison between the results obtained with the proposed model and
those extracted from de original paper, by Veletsos and Meek [7].

* The influence of SSI on the system effective damping ¢ increases for decreasing

values of 0. The system damping may reach greater or lower values than that
corresponding to fixed-base condition depending on i /r. Veletsos and Meek explain
this fact as the result of two opposite effects: as the soil-structure relative stiffness
o decreases, the effective damping ratio ¢ tends to increase as a consequence of an
increment of the energy dissipated into the soil; however, a diminution of o leads
also to an increase of the foundation rocking, yielding higher inertia forces at the
structural mass m, which in turn results in an increment of the structural response.
This latter effect is more important as the slenderness ratio increases h/r, leading
to smaller values of the effective damping £. On the contrary, the former effect is
the controlling one for non-slender structures, which explains an increment of ¢ as
h/r decreases.

Negligible differences are obtained when comparing the results computed through

the proposed procedure with those provided by Veletsos and Meek. It is worth mention-
ing that the slight differences that can be observed in the effective damping are due to
small discrepancies between the expressions provided by Veletsos and Verbic and those
proposed by Veletsos and Meek for stiffness and damping coefficients, as shown in fig-
ure 2.34.

70
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Ficure 2.34: Comparison between stiffness and damping coefficients given by Veletsos
and Meek [7] and those provided by Veletsos and Verbic [118].

2.11.2 Embedded foundations. Comparison with Avilés and Pérez-Rocha [14]

The procedure proposed in this work is also applicable for embedded foundations as
that shown in figure 2.35. In this figure, the parameters characterizing the superstruc-
ture are the same as those defined in section 2.3 for the case of pile foundations. Nev-
ertheless, it should be noticed that, in this case, D, represents the embedment depth.
The foundation horizontal displacement «“ and rocking ¢°, as well as the horizontal u,
and rocking ¢, input motions are defined, in this case, at the bottom of the foundation.
Furthermore, the foundation mass m, is presumed to be located at half the depth of
embedment.
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S waves

Ficure 2.35: Problem definition. Single shear structure supported on a foundation em-
bedded in a homogeneous half-space under vertically-incident S waves.

Thus, the equations of motion of the system sketched in figure 2.35 can be written,
in terms of relative motions uf = u® — u, and ¢ = ¢ — ¢4, as

m - [U+ iy + g + (h+ De) (P + ¢g)] + K -u=0 (2.115)
e o Dee . c c
mo-[uT—l—ug—f—7(%,4-909)]—l—Km-ur—i—Kxg-apr—K-u:O (2.116)

m - (h+ De)lii + iy + iig + (h + De) (@7 + @g)] + 1(B7 + Bg)
Do o Deio . e . (2.117)
+K0m‘U$+K09‘90$+m07[uﬁ+ug+7(90$+90g)]+lo(9076~+909) =0
where equation (2.115) represents the equilibrium of forces acting on the building, equa-
tion (2.116) the horizontal force equilibrium of the soil-foundation system and equa-
tion (2.117) the moment equilibrium of the structure-foundation system about the centre
of the base.

It can be observed that for D, = 0 equations (2.115), (2.116) and (2.117) coincide,
respectively, with those written in section 2.4.1 for pile foundations (equations (2.10),
(2.11) and (2.12)). Likewise, by following an analogous procedure to that described in sec-
tion 2.7, these equations can be written in the frequency domain (with time dependance
e'“!), in terms of the dimensionless parameters defined in that section. Furthermore, as
it was explained in section 2.8, the soil-foundation interaction is condensed to a point at
a certain virtual depth D(w) = — K,/ K., in order to diagonalize the impedance matrix.
Thus, the system equations of motion can be expressed as
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b h D\ '
h+D. <b + b> (2.127)
D De (b D.\!
€ 24 == 2.128
h+De b <b b ) (2.128)
Finally, neglecting m,, I and I,, as usual (see, for instance [6,12,14]), yields
(1+i2¢) 0 0 11 1
A2 0 o2, (1+i26,,) 0 -1 11
0 0 az,(1+i2&gg 111
\ ) 0 ) (2.129)
wy /g, 1
2 P/ g 2 h -De
Wy Uy /ugo ==A IU+ 34_7 LP 1
| wi(h+D+De)gt i, 1

Solving the complex system of algebraic equations given in equation (2.129) for w2u/ii,,
yields the following expression for the shear force at the base of the structure per effective
earthquake force unit Q:

w2u B _ IAA)—I—(%%—%) I,(\)
9 Il B TPV oY (2130
where
1 1446, 1+ 48
AN =1 A2 N2a2,(1+4&2,) A2a§9(1+4§§9) (2.131)
N e R
B =2 [5 Vo, (1+4€2,) A2a59<1+4539>] (2152

It should be noticed that, when the embedment depth is cancelled D, = 0, equa-
tions (2.118) and (2.129) coincide with those written for pile foundations in equations
(2.68) and (2.77), respectively. Likewise, the expression of the shear force at the base of
the structure per effective earthquake force unit () for embedded foundations (equation
(2.130)) matches that obtained for pile foundations (equation (2.78)) when D, = 0.

In order to validate the proposed model, figure 2.36 depicts the results provided by
Avilés and Pérez-Rocha [14] for embedded foundations, in terms of system effective pe-
riod T /T and damping ¢, together with those obtained by using the procedure proposed
in this Ph. D. thesis. In this figure, each column show results corresponding to a differ-
ent embedment ratio: D./b = 0 (left column), 0.5 (central column) and 1.5 (right column).
Likewise, each chart provide results for two structural slenderness ratios: h/b = 1, cor-
responding to non-slender structures, and h/b = 3, corresponding to slender structures.
Note further that results obtained when considering kinematic and inertial interaction
are represented together with those computed without considering kinematic interac-
tion. All these results are obtained making use of the impedance functions and input
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motions provided, in tabular form, by Mita and Luco [119] for the soil hysteretic damp-
ing ratios for S and P waves £s = 0.001 and £p = 0.0005, respectively. In addition, it is
assumed that v; = 1/3, £ = 0.05 and 6 = 0.15. It is worth mentioning that cross-coupled
impedances and all second-order damping terms have been considered.
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2.2 T T T T T T T T T T T
ol
L /|
2.0 /Q«
1.8 h/b =3 }/’ oy
£ 16t
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Avilés and Péerez-Rocha Avil€s and Péerez-Rocha
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035 r 1
D
tup hb=1
02t s
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;0’0/
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0.05 aoz:e’:g_’g:o_ oo od [T¥FTooecocovOoTTD | & o-0—0-0-0-00-97

0.0 0.1 0.2 0.3 0.4 00 0.1 02 03 0.4 00 0.1 02 03 04 05
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Ficure 2.36: Comparison between the results obtained with the proposed model and
those digitized from the original paper, by Avilés and Pérez-Rocha [14].

As already pointed out by Avilés and Pérez-Rocha, the following trends are worthy of
note in figure 2.36:

¢ The system effective period T /T grows as the wave parameter o decreases. For non-
slender structures (h/b = 1), it increases with the embedment ratio D./b. On the
contrary, in the case of slender structures (h/b = 3), T /T experiences a reduction as
D, /b grows. It should be noted that the system effective period increases with the
structural slenderness ratio h/b, except for D./b = 1.5. Besides, it can be observed
that the system period is not affected by the consideration of kinematic interaction.

» With regard to the system effective damping &, it can be seen that it experiences
a reduction as h/b grows. For non-slender structures (h/b = 1), ¢ is always over
that corresponding to fixed-base condition and it increases for decreasing values
of o, whereas in the case of slender structures (h/b = 3), the effects of SSI on ¢
depends on the value of 0. Moreover, when kinematic interaction is considered,
a significant increment of the effective damping is observed in the case of non-
slender structures (h/b = 1). However, for slender structures (h/b = 3), only slight
reductions or increments of ¢ result from considering kinematic interaction.
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Finally, it should be noted that the results obtained through the proposed procedure
show a strong agreement with those extracted directly from the cited paper written by
Avilés and Pérez-Rocha.
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Boundary elements based models for soil-structure interaction 3

3.1 Introduction

In this work, impedances and kinematic interaction factors are numerically obtained
by means of a boundary element (BEM) - finite element (FEM) coupling formulation,
developed by Padrén et al. [49,54,71,120], which allows dealing with the dynamic anal-
ysis of piles and pile groups. This formulation was implemented in a previously existent
multi-region BEM code [69, 70]. This 3D multi-region boundary element formulation,
in which both soil and piles are modelled as continuum isotropic homogeneous linear
viscoelastic regions with their actual geometries, is more rigorous and versatile than
the simplified BEM-FEM formulation used in this work. However, it involves a greater
number of degrees of freedom due to the fact that the pile-soil interface must also be
discretized. In this work, this BEM formulation is used to address the validation of the
BEM-FEM coupling formulation (as well as its implementation), in terms of the kine-
matic interaction factors of pile group configurations including battered piles.

This chapter begins by setting the basic governing equations of the elastodynamic
problem in section 3.2. Afterwards, the elastodynamic integral representation of the
problem is presented in section 3.3. Such representation allows the formulation of the
boundary element method outlined in section 3.4. Finally, the chapter ends in section 3.5
with a description of the BEM-FEM coupling formulation, used in this work to determine
the dynamic behaviour of 3D pile foundations embedded in viscoelastic soils.

3.2 Governing equations of linear elastodynamics

The governing equations of motion of an elastic, homogeneous, isotropic, linear body
can be obtained from the combination of kinematic relations, equilibrium equations and
constitutive law, ruling the dynamic behaviour of elastic solids. These equations can be
expressed as

pV*a+ (A + )V (V-u) + pb = pia (3.1)

which are the Navier’s equations, that represent the governing equations of motion in
terms of the displacement vector u at time ¢ of a point in a body 2 whose position vector
with respect to a system of fixed rectangular Cartesian coordinates is x. Here, dots
indicate time derivatives, p is the mass density and b is the vector of body forces per unit
mass. A and p are the Lamé’s constants, which are related to the Young’s modulus F
and the Poisson’s ratio v as

FE ) vE

2+ T O n -2 8:2)

lu:

being 1 the shear modulus.

As a differential equation, the solution of equation (3.1) requires the establishment
of a set of boundary conditions, in this case, applied in terms of known tractions and/or
displacements on the boundary I of the body 2, as well as time initial conditions Vx € .

In order to obtain a set of simpler differential wave equations, elastodynamic prob-
lems can be formulated in terms of the dilatation e = V - u and rotation w = V x u
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vectors. Taking the divergence and the curl of equation (3.1) one obtains, respectively,
the following two wave equations:

oV’e+V-b=2¢ (3.3)
EVO+Vxb=0 (3.4)
where
P Y R (3.5)
p P

Equations (3.3) and (3.4) represent the decoupled formulation of Navier’s equations
in terms of the dilatation and the three components of the rotation vector. Equation (3.3)
is a scalar wave equation with propagation velocity c,, while equation (3.4) is a vector
wave equation with propagation velocity c¢;. Therefore, waves within the elastic body
can be classified as irrotational and equivolumial waves, also called compressional (or
primary) and shear (or secondary) waves (P and S waves), respectively. The primary and
secondary names come from the field of seismology, because ¢, > ¢, and, consequently,
the former kind reaches first the seismological station in case of an earthquake.

3.3 The elastodynamic integral representation

The boundary element formulation of the problem is obtained from the transforma-
tion of the differential equations governing the dynamic behaviour of an elastic, homo-
geneous, isotropic, linear body into integral expressions.

The elastodynamic formulation used in this work considers time-harmonic body forces
and boundary conditions, with angular frequency w. In this case, it is possible to de-
fine two distinct elastodynamic states in the frequency domain as S, (u, o, b;w,2) and
Sk(u*, o, b*;w, Q). S will be a known reference solution used to solve the problem and
obtain the unknown state S,,. Assuming zero initial conditions, the dynamic reciprocal
theorem can be written as

/pu*dF+p/bu*dQ:/p*udF+p/ b*u d (3.6)
r Q r Q

where u and u* are the displacement vectors of any point of the domain; while p and p*
are the traction vectors on I', in equilibrium with the corresponding stress tensors o and
o*, for states S,, and S, respectively.

The reference state S, usually called fundamental solution, used in the present work
corresponds to the complete space because there is no closed form expression for the half-
space fundamental solution. Therefore, the soil free surface should be discretized. In
practice, however, only a small region around the analysis area has to be included in the
model to reach accurate results.

The fundamental solution used in the present work is that representing the response,
in terms of displacements and tractions, of an unbounded linear, elastic, homogeneous,
isotropic domain to a harmonic concentrated unit load of the form

pbi = (1) Oy € 3.7
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applied at the source point ¢ in the direction [, being §;; the Kronecker delta and /(¢) the
Dirac delta, defined as

1, ifeef
Q= .
/Qa(,,)d {0’ 2o (3.8)

The elastodynamic fundamental solution, that gives the displacement in a k direction
at the field point x due to the load applied at the source point ¢ in the direction I, is
written in equation (3.9). In turn, equation (3.11) represents the £ component of tractions
associated to a plane with exterior unit normal n at the field point x.

up (X, L,w) = [0 — X7 k7 1] (3.9

dmp

. 1 oy x or 2 or
(X, L, w) = i [((% - r> <5k1 n + T,k"l) - ;X <nk7",z =27y 611)

ax or 012; o Ox 2
2 K g T (2 - 2) (ar Tor X T B0

S

where r = |x — ¢| and

2
1 1 ZpT 1 1 ZsT
__(Cs> <22_>6 +<22—+1>6 (3.11)
Cp zyT 2pT r ZET ZsT T
2
3 3 ZpT 3 3 zZsT
) ) (2
Cp Zyr 2pT T Z5T 25T r
being
iw iw
Zp=—— ; Zg = —— 3.12)
Cp Cs

Hereafter, equations will be written representing a set of three equations arising
from the collocation of the unit load in the three directions of space, so that vectors u*,
p* and b* will be arranged into 3 x 3 matrices u*, p* and b*. When the fundamental
solution defined above is considered, and taking equation (3.7) into account, the last
term of equation (3.6) becomes

p / b udQ = / S(udQ =u' (3.13)
Q Q

Thus, the integral representation of the displacements field of the harmonic elastody-
namic problem when the point load is applied at ¢ € 2 can be written as

uL—l—/p*udF:/u*de‘—i—p/u*bdQ (3.14)
r r Q

where u and p are the displacement and traction vectors, while u* and p* are the fun-
damental solution tensors, which in matrix form can be written as

* * *

u1 Upp Upp Ugs
u=|uy [; W= | uj uj ujs (3.15)

* * *

u3 U3y Uzp Uss
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y41 Pi1 P2 Dis
P=|p |; P D31 Dy Da3 (3.16)
P3 P31 P32 D33

The integral formulation of the problem in equation (3.14) allows the computation of
displacements at internal points of (2 when displacements and tractions are known on
I'. For the purpose of obtaining an integral equation written in terms only of variables
on I' the unit load must be applied on the boundary (. € T'). In this case, a strategy
that consists in slightly modifying I" is used in order to subtract the singularity of the
fundamental solution when r — 0. As depicted in figure 3.1, the approximate boundary
considered is made up by the boundary I" of the domain 2 itself but augmented by a
semisphere I'. of radius ¢ — 0 whose centre is the collocation point .. This strategy
allows the decomposition of the boundary integrals into another two extended over I' — T,
and I';, respectively. Integrals extended over I — I'. do not contain the singularity, and
for ¢ — 0 they represent the Cauchy principal value of the original integral. On the
other hand, integrals extended over I'. are defined in the limit. This way, the boundary
integral representation of the problem can be expressed as

cLuL—i—/p*udF:/u*de—kp/u*bdQ (3.17)
r r Q

where all integrals are Cauchy principal value integrals and ¢* is the free term. In the
three-dimensional case, if the boundary is smooth at ¢, then ¢* = 1/21, while ¢ =1 at
internal points, I being the unit 3 x 3 diagonal matrix.

Ficure 3.1: Strategy for the singularity subtraction. Semisphere around the collocation
point for integration.

3.4 Boundary element method

The boundary integral representation of the displacements in each region (soil and
each pile) can be written, from equation (3.17) assuming zero body forces, as

cLuL—i—/p*udF:/u*de (3.18)
r r
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The numerical solution of equation (3.18) requires, first, the discretization of the
boundary surface into N, elements I'; and A, nodes so that

Ne
r~|Jr; (3.19)
j=1

where each element is defined by N nodes. Over each element j, displacement u and
traction p fields are approximated in terms of their values at nodal points making use
of a set of polynomial interpolation functions ®(£) expressed as a matrix of dimensions
3 x 3N; of the form

o1 0 0 ¢ 0 0 - G O
BE)=|0 ¢ 0 0 ¢ 0 -+ 0 ¢y 0 (3.20)
0 0 ¢r 0 0O ¢2 --- O N

containing the specific polynomial interpolation functions for the element. £ represents
the set of natural coordinates used to define a point in the reference element.
This way, the fields u(¢) and p(&) within an element are approximated as

u)=2¢uw ; p&=2¢p (3.21)

where u/ and p’ are vectors containing the element nodal displacements and tractions.
In this work, all boundaries are discretized into a finite number of isoparametric
quadratic elements of triangular and quadrilateral shapes with six and nine nodes, re-
spectively. These elements, together with their approximation functions, which are writ-
ten in terms of natural coordinates & and &, are defined in table 3.1. Only one quarter
of the geometry needs to be discretized due to the problem symmetries (see figure 3.2).

(I'5) (I)

free surface piles cap »
p3s =

P =0

Ficure 3.2: Multi-region boundary-element model definitions and BEM mesh.
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£,
2
5 4
»> §1
3 6 1
¢1 = &1(26 — 1) ; ¢g = 46160
¢ = £2(282 — 1) ; @5 = 46283
¢3 = &3(263 — 1) ; d6 = 46183
GE=1-&—-& ; 0<6 <1 3 0<6<1
7 6 5
@ O O
&
g
> 80 9 2,
o o o
1 2 3
s e =1(1-&&(&L 1)
 da=3(1+£6)6(1 - &)
e =3(1—ED&(L+1)
o ds = 3(6 — D&(1-€3)
-1<6 <1 ;3 —-1<&6&<1

TaBLE 3.1: Quadratic triangular and quadrilateral element types.

Once all boundaries have been discretized, equation (3.18) can be written, in a matrix
form, as

Nn Nn
> H™um =) Gp” (3.22)
m=1 m=1
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being
o — H" yife #m (3.23)
et +H™ ,ife=m '
H" - Z A P or dl (3.24)
G =" /F w* gy, dT (3.25)

and vectors u™ and p™, of dimensions 3 x 1, represent the three nodal components of
displacements and tractions at node m. Matrices H" and G'™, of dimensions 3 x 3,
represent the response at node m due to the harmonic unit load at collocation point ¢.
Note that different values of tractions may exist at the same point when this belongs
to more than one element with non-parallel exterior normals. This situation is solved by
considering more than one node at the same point. When both tractions are unknown,
the system matrix becomes singular because the equations associated to the duplicated
nodes are equal one to another. In this case, known as the corner problem, a non-nodal
collocation strategy is carried out. This procedure was studied in depth by Aznarez [68].
Finally, writing equation (3.22) for every single node, a system of equations of the
type
Hu =Gp (3.26)

is obtained, where @i and p are vectors of dimensions 3\, x 1 containing the problem
nodal values, and where matrices H and G are composed by submatrices H'" and G*".

Applying boundary conditions and rearranging the columns so that all unknowns are
grouped in a vector X, a square system of linear independent algebraic equations of the
form

Ax —f (3.27)

can be written, where f is the known vector arising from the application of the boundary
conditions and the subsequent rearrangement of equations.

A detailed explanation of the numerical evaluation of integrals and other numerical
aspects of the boundary element method can be found in [68, 89].

In order to illustrate the application of this methodology to the problem at hand, a
particular example will be developed in the next few lines. For the specific case of a single
floating pile embedded in a viscoelastic half-space the boundary element equations for
each region (pile and soil) in partitioned form are

HY&! + Ha), = GYB} + G5p) (8.28)
pr Hps = Gpp Gps N
] @) ],
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Imposing external boundary conditions (@] = @ and p; = 0) together with compati-
bility (@ = @2) and equilibrium (p5 = —p,) along the pile-soil interfaces, the combined
equations for the coupled impedance problem can be written as
[ 5 ] [ o |
N N I R N

u
0 HY -G Hy || |=| (3.30)
o HY -G¥ Hy | | P
us 0

When this single floating pile is embedded in a viscoelastic half-space subjected to a
seismic excitation, writing equation (3.22) for each node of each region, yields the follow-
ing matrix equations for pile and soil regions:

HYa} +Hyu) = GIpY, + Giph, (3.31)
[Hé’p Hy' ] b ] _ [ G GE | | B (3.32)
Hy" H3 | | @, Gy" G3° | | P,

where the sub-indexes 1 — 3 correspond, respectively, to the pile connection with the
rigid cap where tractions are null (I';), to the pile-soil interface (I's), and to the soil free-
traction ground surface (I's). The sub-index s indicates that the equations are written
for the scattered field.

When seismic waves impinge on the site under study, reflection and refraction phe-
nomena take place, and the arising wave field modifies the incident wave train. In this
work, the seismic excitation is assumed to be a harmonic plane S wave impinging the
model from a far source. The wave field in the halfspace discretization (1) consists of two
parts: the known incident field (@a;) and the unknown scattered field (ig). The resulting
displacement can be obtained by superposition as 1 = t; + tg. Likewise, the resulting
traction field can be expressed as p = p; + pg. Thus, equations (3.31) and (3.32) can be
expressed as follows:

HYG) + HOGS — GIpY — Gipl = H6{, + Hiw), — GIpY, — Giph,  (3.33)

ﬁ? 1_121
HY -Gy HY _GgS] P, | [ng ~GYY HY -GJ | | By,
ng _Ggp Hgs _Ggs H;p _Ggp H§S _Ggs ﬁ31
153 I_)31

(3.34)

us

Imposing external boundary conditions (p} = 0 and p; = 0) together with compati-
bility (@ = @2) and equilibrium (p5 = —p,) along the pile-soil interfaces, the combined
equations for the kinematic interaction factors problem can be written as

[ & | & |
H H, G 0 ) W H, G 0 "
o Hy —ap Y ||V =0 mp —ap || 7| (3
o HY -Gy Hy || P o HY -Gy Hy ||
i us 1 i us, ]
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Regarding material damping, in this work, it has been included in the model by con-
sidering BEM regions to be linear viscoelastic materials. The constitutive relation that
describes the time-harmonic behaviour of linear, homogeneous, isotropic, viscoelastic
media is identical to that corresponding to linear elastic problems, except for the fact
that the constitutive material parameters are complex-valued and frequency-dependent,
as shown in equation (3.36).

Oij = A(w) 5ij5kk + Q,U(W)Qj (336)
being

p(w) = Re[p](1 +1i26,(w)) (3.37a)

Aw) = Re[N|(1 + 1283 (w)) (3.37b)

where 3, and 3, are usually set to the same value .

When considering the specific problem of plane elastic waves propagating in a cer-
tain direction defined by a unit vector s, in the steady-state harmonic case, resulting
displacements of a point x are of the form

i = Acirsxd (3.38)

where A is the amplitude of the motion, i = /—1 and xk = w/c is the wave number, being
c the wave velocity. As A and ;. are complex values in case of viscoelastic materials, cs,
¢, and wave numbers ~ will also have an imaginary part. Therefore, according to equa-
tion (3.38), the wave motion will be multiplied by an exponentially decreasing function,
arising from the imaginary part of , in such a way that, as distance in the propagation
direction grows, the amplitude of the motion decays, being this phenomenon produced
by material damping.

A linear hysteretic viscoelastic damping model, where the Lamé’s constants are of
the form

= Re[p](1+i20) (3.39a)
A = Re[\(1+125) (3.39Db)

and ( is frequency independent, is considered to represent the dynamic behaviour of
materials included in the analysis performed in this work.

3.5 Boundary element - finite element coupling model

The model developed by Padrén et al. [71] for piled foundations is along the lines of
those proposed by other authors [23, 64,66]. The dynamic response of the soil region is
modelled by using a BEM formulation which considers the tractions at pile-soil inter-
faces as body forces acting within the domain. The stiffness of piles is introduced by
longitudinal finite elements linking the internal nodes of the soil. The whole approach is
depicted in figure 3.3. The main advantage of this approach is that, being able to produce
accurate results, it assumes that soil continuity is not altered by the presence of piles
and, consequently, it is not necessary to discretize the pile-soil interfaces by boundary
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elements, which considerably reduces the number of degrees of freedom in comparison
with a pure multi-region boundary element approach. Due to the problem symmetries,
only one quarter of the geometry needs to be discretized. Moreover, the pile discretiza-
tion is independent of the soil mesh which allows using the same boundary mesh for all
the pile group configurations under investigation.

Z

BEM discretization

U, Py sk of free surface I,

iy ’ " III o\ y

o—pt \ X

-— / o\

- ] +
£ ]

Incident / Qg% / b 74
field BEM internal points \ FEM elements & nodes
Interaction forces acting Interaction forces acting
within the soil over the pile

Ficure 3.3: BEM-FEM model.

The piles are modelled by FEM according to the Euler-Bernoulli hypothesis and are
discretized into three-node beam elements, shown in figure 3.4, in which the displace-
ments along the element are approximated by the following interpolation functions:

w; = prug, + P20k, + p3uy; + Patm, + @50, 5 i=1,2 (3.40a)
U3 = Q1Uk; + PoUly + P3Uny (3.40b)
where
_ 3 1o 1.3
o1 =E(= +E+ 56 - 56
1
pr = JE(-1+€+8 =€)
p3 =1—2¢8%+¢* (3.41)
YL BN DU R e
1 =E(G+E- 7€ - 58
1
5 = E(-1 -+ &+ &%)
and
1
61 = 56— 1)
go=1-¢ (3.42)
1
63 = 5E(E+1)
being £ the elemental dimensionless coordinate varying from £ = —1 to £ = +1.
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Ficure 3.5: External punctual forces (left) and tractions along the pile-soil interface
defined on the generic element
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The external forces defined over the generic element are schematized in figure 3.5.
The tractions along the pile-soil interface are approximated by

¢ = ¢1qk, + d2q1; + P3Gm;, 3 1=1,2,3 (3.43)

using the set of shape functions defined in equation (3.42).

The principle of virtual displacements is used to obtain the mass and stiffness matri-
ces (M, and K;) for the described element type [115], and also the matrix Q; that trans-
forms nodal tractions g”’ into equivalent nodal forces. Thus, the dynamic behaviour of
pile j in a finite element sense, can be described as

(K; — w’M;) @ = F5*' + Q;q” (3.44)

where ﬁ? is the vector of nodal translation and rotation amplitudes along the pile, ij
represents the punctual forces acting at the top and the tip of the pile and w is the fre-
quency of excitation.

The soil is modelled by the BEM as a linear, homogeneous, isotropic, viscoelastic
unbounded region with complex valued shear modulus p of the type 1 = Re[u|(1 + 2i5),
where ( is the damping coefficient. The boundary integral equation for a time-harmonic
elastodynamic state defined in a domain €2 with boundary I" can be written in a condensed
form as

1

"p
cLuL+/p*udF:/u*de‘+Z
r T
J

/F u'q* dly,, — §; X/ F,, (3.45)
Pj

where ¢ is the local free term matrix at collocation point x*; I'; is the pile-soil interface
along the load-line j; u and p are the displacement and traction vectors, and u* and p*
are the elastodynamic fundamental solution tensors representing the response of an un-
bounded region to a harmonic concentrated unit load with a time variation ¢! applied
at a point x*; n, is the total number of load-lines; q°/ denotes the distribution of inter-
action loads along the pile shaft applied on a line defined by the pile axis; and Y’/ is a
three-component vector that represents the contribution of the axial force F},; at the tip
of the j** load-line.

The boundary surface I' is discretized into quadratic elements of triangular and quadri-
lateral shapes with six and nine nodes, respectively. The displacement and traction
fields u and p, over each boundary element, is approximated in terms of their values
at nodal points (1 and p) making use of the polynomial interpolation functions. Thus,
equation (3.45) can be written for all nodes in I" as a matrix equation of the type

Tp Tp
H*a — Gssl—) _ Z Gsqusj + Z TSjij =0 (3.46)
j=1 j=1

where 1 and p are the vectors of nodal displacements and tractions of boundary ele-
ments; q° is the vector of tractions defined at a series of internal nodes; H*® and G**
are coefficient matrices obtained by numerical integration over the boundary elements
of the fundamental solution times the corresponding shape functions; and G**7 is the
coefficient matrix obtained by numerical integration over load-line j of the fundamental
solution times the interpolation functions (3.42), when the unit load is applied on T'.
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Moreover, equation (3.45) can be written for all internal nodes in load-line I';,, which
results in the matrix equation below:

np Tp
Ca? + HP%d — GP5p — Z GPiPigsi + Z YV F, =0 (3.47)
j=1 j=1

where u” is the vector of nodal displacements along load-line i, which is multiplied by
the diagonal matrix C, whose non-zero terms are valued 1/2 in positions corresponding
to pile nodes placed on a smooth surface (as e.g. pile heads) and unity at the internal
points.

The axial punctual force F),, considered at the tip of a floating pile j adds a new
unknown per pile, in such a way that an extra equation needs to be written. To do so,
the unit load must be applied in the vertical direction at any non-nodal point. The point
with elemental dimensionless coordinate £ = —1/2 in the bottom element of the pile
has been chosen because of its nearness to the tip. The third row (corresponding to the
application of the unit load in the vertical direction) of equation (3.48) written for a non-
nodal point placed between the two bottom nodes of the pile yields a suitable additional
equation for this purpose.

Np Tp
@ﬁii + HPiSt — Gpisf) _ Z GPin(lSj + Z ‘r?inj =0 (3.48)
Jj=1 J=1

where @}’ is the vector of nodal displacement of element I';, and ® is the matrix of shape
functions specified at the collocation point.

As explained in section 3.4, when the soil-foundation system is subjected to a seismic
excitation, the resulting displacements and traction fields can be obtained by superposi-
tion as follows:

u="uy+ug (3.49)

P =P;+Ps (3.50)

where the sub-indexes 1 and s correspond, respectively, to incident and scattered fields.
In this case, equation (3.46) can be written, in terms of the total field, as

Tp Tp
Ha — Gssp _ Z G5Pi q + Z TSjij =0 (3.51)
j=1 j=1

On the other hand, equation (3.46) can also be written in terms of the incident field
as

H**#i; + G*p; =0 (3.52)

where tractions along the pile-soil interface and forces at piles tip are not present be-
cause they only exist in the scattered fields. The subtraction of equation (3.52) from
equation (3.51) yields

np np
H*a-G*p— ) G*q%+> YIF, =H"u; +G"p, (3.53)
j=1 j=1
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3 Boundary elements based models for soil-structure interaction

The same procedure can be followed to obtain the boundary element equations (3.47)
and (3.48) for load-lines. It should be noticed that the pile finite elements equation (3.44)
contains variables existing only in the scattered field, and consequently does not need to
be rewritten.

Imposing additional equations of equilibrium and compatibility by correlating BEM
load lines and FEM piles, equations (3.44), (3.46), (3.47) and (3.48) can be rearranged
in a system of equations representing the soil-pile foundation problem.

A more detailed explanation of this formulation as well as the numerical evaluation
of integrals over load lines can be found in [81].
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Numerical computation of impedances and kinematic interaction factors 4

4.1 Introduction

The present chapter deals with the numerical computation of the impedance func-
tions and kinematic interaction factors corresponding to all the pile group configura-
tions under investigation. As explained in chapter 2, their computation is a key aspect
of the substructuring methodology, which is the base of the procedure proposed in this
dissertation to determine the influence of the main parameters of the soil-structure-
interaction problem on the dynamic behaviour of shear structures in the linear range.
In this work, impedances and kinematic interaction factors are numerically obtained by
means of a BEM-FEM coupling formulation, developed by Padrén et al. [49,54,71,120]
and outlined in section 3.5, which allows dealing with the dynamic analysis of piles and
pile groups. This formulation was implemented in a previously existent multi-region
BEM code [69,70] that is explained in section 3.4. In this work, this BEM formulation is
used to address the validation of the BEM-FEM coupling formulation (as well as its im-
plementation), in terms of the kinematic interaction factors of configurations including
battered piles.

Sections 4.2 and 4.3 address the concepts of dynamic stiffness and kinematic interac-
tion factors, respectively. The geometrical characteristics, as well as the material prop-
erties, of the pile group configurations studied in this research work are defined in sec-
tion 4.4. Afterwards, the values of the parameters defining the set of pile group config-
urations under investigation consisting of vertical piles are defined in section 4.5. The
impedance functions and the kinematic interaction factors corresponding to each one of
these configurations are presented in section 4.6. These values will be used in chapter 5
in order to perform parametric analyses that allow studying the influence of the main
parameters of the SSI problem on the dynamic behaviour of the structure supported on
these piled foundations. On the other hand, section 4.7 addresses the analysis of the
influence of rake angle and direction of inclination of piles on the kinematic interaction
factors of deep foundations. This section intend to contribute to clarify the beneficial or
detrimental role of battered piles when submitted to dynamic loads, as well as to pro-
vide the scientific and engineering communities with the kinematic interaction factors
corresponding to the different pile group configurations analysed in terms of impedance
functions by Padroén et al. [49]. Then, section 4.8 gives the values of the parameters that
characterize the set of pile group configurations that will be used in chapter 6 for the pur-
pose of analysing the influence of the rake angle of piles on the dynamic response of shear
structures founded on pile groups comprising inclined piles. The impedance functions
and kinematic interaction factors corresponding to these configurations are represented
and analysed in section 4.9. Results are given in ready-to-use dimensionless graphs in
order to facilitate their use in soil-structure interaction studies. All plots are presented
as a function of the dimensionless frequency.

4.2 Computation of impedances

Impedances are complex-valued frequency-dependent functions (k,.,c.z), (Kga, coo)
and (kg, c.9) that represent the stiffness and damping of the soil-foundation system in
the horizontal, rocking and cross-coupled horizontal-rocking vibration modes, respec-
tively. In order to compute them, pile heads are subjected to forced vibration in each of

SSI effects on the dynamic response of piled structures | SIANI University Institute 95
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the oscillation modes. Then, the ratio between each component of the vector of forces
(and moments) applied at the pile top and the corresponding term of the resulting vector
of displacements (and rotations) at the same point yields the dynamic stiffness matrix
K;j of the foundation. For pile groups, the impedances are obtained from the proper
combination of the contributions of each pile.

The mathematical representation of dynamic stiffness, as complex-valued functions
of the excitation circular frequency w, can be written as

Kij = kil'j + iCLOCZ'j (41)

where k;; and c;; are the frequency dependent dynamic stiffness and damping coeffi-
cients, respectively, i = \/—1 is the imaginary unit, a, is the dimensionless frequency
expressed as

wb

(4.2)

Ay —
Cs
being b the foundation halfwidth and cs the speed of propagation of shear waves in the
half-space which can be expressed as

e =t (4.3)
Ps

where s and p; are the soil shear modulus of elasticity and mass density, respectively.

As the coupled BEM-FEM formulation used to determine the impedances of several
pile groups embedded in a viscoelastic half-space is implemented in a software that in-
corporates symmetry properties and due to the problem symmetries, only a quarter of the
total geometry of the problem has to be discretized. A sensitivity analysis was performed
to establish the extension and topology of the optimal meshes. Quadratic boundary el-
ements of quadrilateral shape are used to discretize the soil as a linear, homogeneous,
isotropic and viscoelastic half-space. The length of free surface that has been discretized
is, approximately, four times the pile length. The criterion used in the choice of the ele-
ment size consist in keeping its main dimension always shorter than the half of the wave
length. The total number of nodes and elements resulting from such discretization is
5407 and 1320, respectively. On the other hand, three-node beam elements have been
used to discretize piles by finite elements according to the Euler-Bernoulli hypothesis.
The number of elements used in this case depends on the pile length.

4.3 Computation of kinematic interaction factors

Kinematic interaction refers to the behaviour of the foundation, which due to its ge-
ometry and stiffness filters the seismic input. Thus, kinematic interaction leads to a
foundation input motion different than the free-field ground motion.

In order to consider kinematic interaction effects, the motion of the massless pile cap
when subjected to the same input motion as the total solution is computed. Even for
vertically-incident harmonic plane S waves (in which the free-field displacement at the
ground surface is exclusively horizontal), this frequency dependent kinematic interaction
factors are represented by horizontal (u,) and rocking (¢,) motions at the pile cap.
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The kinematic interaction factors are functions of the dimensionless frequency a,
that can be normalized with the free-field motion at the surface u,, as follows:

=22 (4.4)
ugo
b

I, =% (4.5)
ugo

As explained before for the case of impedances, a BEM-FEM coupling formulation
has been used to compute kinematic interaction factors for different configurations of
pile groups.

4.4 Problem definition

All the configurations under study consist of piles arranged in square regular groups
which are symmetrical with respect to planes xz and yz (see figure 4.1). These pile groups
are considered to be embedded in a homogeneous, viscoelastic and isotropic half-space
and subjected to vertically-incident S waves. Pile heads are constrained (through fixed-
head connection conditions) by a rigid mass-less pile cap which is assumed to be free of
contact with the soil. Free-head single piles are also studied. Welded boundary contact
conditions at the pile-soil interfaces are assumed. All piles have identical material and
geometrical properties.

Figure 4.1 illustrates the main geometrical parameters of the system: piles length
(L) and diameter (d), spacing between centers of adjacent pile heads (s), and rake angle
between the vertical and the pile axis (§). The foundation halfwidth is defined as b = d
for single piles, b = s for 2 x 2 pile groups, b = 3s/2 for 3 x 3 pile groups and b = 2s for
4 x 4 pile groups. It is worth noting that some vertical piles are included in 3 x 3 pile
groups for the purpose of maintaining symmetry with respect to planes xz and yz. Those
configurations with 4 x 4 piles are only used in this work for vertical piles (6 = 0).

When analysing the dynamic behaviour of piles it is necessary to consider their geo-
metrical characteristics as well as the material properties. As explained in section 2.5,
the main dimensionless parameters characterizing piles dynamic behaviour are:

* The pile-soil Young’s modulus ratio E,/E;.

The pile slenderness ratio defined as L/d.

The soil-pile densities ratio ps/pp.

The dimensionless excitation frequency a, = wd/cs.

The Poisson’s ratio v.

Moreover, the dynamic response of pile groups depends also on the following dimen-
sionless parameters related to the foundation geometry:

¢ The pile spacing ratio s/d.

¢ The foundation embedment ratio L/b.

SSI effects on the dynamic response of piled structures | SIANI University Institute 97
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The equations of motion of the substructuring model described in section 2.4.1 are
expressed in terms of these dimensionless parameters, which considerably facilitates
the analysis of their influence on the system dynamic response by performing parametric
studies. The main advantage of using dimensionless parameters is that the conclusions
drawn from the obtained results are applicable to all those different real cases with the
same values of these parameters.

In this work, the following properties are considered: soil internal hysteretic damping
coefficient 3; = 0.05, soil Poisson’s ratio v; = 0.4, soil-pile density ratio ps/p, = 0.7, and
pile-soil modulus ratios E,/E; = 10° (soft soil) and E,/E; = 10? (stiff soil).

2% 2 3 X 3 4 x 4
z . ,
Pg Pg ©q
(] \ Ug 'd \ Ug \ U
 —— [—— E———
€z 777 T ] — *1.
L
L L
0 d 0 d ]
>
Ly \
s ¥ s Y s
2., |s_ 2 s 2 s
= ke > <]
o S old &
N ot Y e
o o|lo o
o
* v o 0o o0 o T
3 M) ot s A
"""""" e 0 O O O O ©
b b b
b =S b = 38/2 b — 28

FiGure 4.1: Pile foundation geometry.
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4.5 Pile group configurations consisting of vertical piles

Table 4.1 lists the values of the main dimensionless parameters governing the SSI
problem corresponding to the different configurations of vertical pile groups analysed in
this work. The dynamic response of several groups of 2 x 2, 3 x 3 and 4 x 4 piles is studied
herein.

TaBLE 4.1: Pile group configurations consisting of vertical piles.

s/d

L/b L/d

2x2 3x3 4x4

7.5 7.5 5 3.75

15 15 10 7.5

7.5 3.75 2.5 1.875

2 15 7.5 5 3.75
30 15 10 7.5

15 3.75 25 1.875

30 7.5 5 3.75

The varying values of the pile spacing ratio s/d are chosen in order to make the dif-
ferent results more comparable among each other by keeping the foundation halfwidth b
constant for configurations with different number of piles. In order to facilitate the inter-
pretation of the results, figure 4.2 depicts a sketch of the different configurations when
considering the same pile diameter (d = cte) for all cases. It can be observed that the
same value of b corresponds to all configurations in the same row. In turn, three differ-
ent values are chosen for the pile slenderness ratio (L/d = 7.5, 15, and 30) as well as for
the foundation embedment ratio (L/b = 1, 2, and 4), in order to analyse the effects of the
variation of these parameters on the dynamic behaviour of the pile foundation. All con-
figurations follow the pattern represented in figure 4.1 and correspond to the description
exposed in section 4.4.
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L/b L/d 2 x 2 3 x 3 4x4
s T T T
15 |
7.5 1T T m
o0 T

Ficure 4.2: Sketches of the different vertical pile group configurations assuming the
same diameter d = cte for all cases.
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All the pile group configurations are analysed in the frequency range of interest for
seismic loading (wd/cs < 0.5, according to Gazetas et al. [79]). For the purpose of ver-
ifying that this range of frequencies is appropriate for the research work presented in
this document, figure 4.3 depicts, for all of the 21 configurations under study and for 4
different values of the structural slenderness ratio »/b, the value of the dimensionless
excitation frequency wd/c, which corresponds to the effective period 7/T of an SDOF
equivalent system which reproduces the coupled system response within the range where
the peak response occurs. The dynamic behaviour of each one of these different config-
urations has been studied within a range of values of the wave parameter such that
1/o < 0.5. It is assumed that & = 0.05, v = 0.4, E,/Es = 10° and ps/p, = 0.7. The
vertical axis represents the maximum value reached for the dimensionless excitation
frequency within all the analysed range of 1/0. The horizontal axis represents the struc-
tural slenderness ratio. Each cross in the plot area represents one of the 84 different
cases analysed. As it can be observed in this figure, it has been found that the value of
wd/cs is always below 0.5.

0.5
041 3 ]
< 03t ]
: ;
5 02¢f 1
s i
o 3} : —
§
0.0 ‘ : f
) 5 10

h/b
Ficurke 4.3: Range of the dimensionless frequency wd/c, for all cases under investigation.

4.6 Impedances and kinematic interaction factors for vertical pile
groups

Figures 4.4, 4.5 and 4.6 show, respectively, the impedances of the 2 x 2, 3 x 3 and
4 x 4 pile group configurations under investigation (see table 4.1), in the range of the
dimensionless excitation frequency a, = wd/cs needed to obtain all the results presented
in chapter 5. In each figure, the first and the second row represent, respectively, the
frequency dependent dynamic stiffness and damping coefficients. The different columns
correspond, from left to right to the horizontal, rocking and cross-coupled horizontal-
rocking vibration modes, respectively. Impedance values are represented herein nor-
malized with the soil shear modulus of elasticity ;s and the pile diameter d as follows:
uw/phsd, Coa /s, koo 11sd®, coo/1usd®, kyo/1sd® and cg/psd?. Each curve in a plot area cor-
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responds to a particular pile group configuration, characterized by the pile spacing ratio
s/d and the embedment ratio L/b.

L/b=1s/d=7.5 —— L/b=2s/d=3.75 ——— L/b=4 s/d=3.75
sld=15 ——— s/d=7.5 s/d=7.5
sld=15
6 14 2
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wd/cg wd/cg wd/c,

FiGure 4.4: Impedance functions of different 2 x 2 pile groups. E,/Es; = 10° and & = 0.05.

All the results represented in terms of impedance functions have a dimensionless
character, thus their physical interpretation must be carefully done and requires a spe-
cific data processing, taking into account the influence of every dimensionless parameter.
Although these results could be interpreted in different ways, lets consider for example
that all configurations are embedded in the same soil (¢, = cte) and that all piles have
the same diameter (d = cte). When analysing only the results corresponding to configu-
rations with the same value of the embedment ratio L /b and the same number of piles, it
can be observed that the soil-foundation horizontal stiffness k., and damping c,, gener-
ally increases with the distance between adjacent piles s. Looking at figure 4.2 it can be
noticed that an increment of s implies, in these cases, greater values of the pile length L
as well as an increase of the foundation halfwidth 6. Moreover, the variation of k., and
¢z With the excitation frequency w increases with the pile spacing ratio s/d, reaching
greater values as w grows. With regard to the soil-foundation rocking stiffness kg9 and
damping cgy, it can be seen that they increase with the pile spacing ratio s/d. With re-
spect to the stiffness k.4 for the cross-couple vibration mode, it generally increases for
greater values of the distance between adjacent piles s. However, the damping coefficient
cz9 does not show a clear trend within the analysed range of frequencies.
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Ficure 4.5: Impedance functions of different 3 x 3 pile groups. E,/FE; = 10° and & = 0.05.
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Ficure 4.6: Impedance functions of different 4 x 4 pile groups. E,/Es; = 10° and & = 0.05.
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On the other hand, figures 4.7 to 4.13 depict the kinematic interaction factors, in a
dimensionless form, for all the configurations under investigation. In each figure, the
first and the second row represent, respectively, the effective seismic pile-cap horizontal
and rocking motions normalized with the free-field ground-surface motion. In each row,
the plot area on the left side shows the real part of the kinematic interaction factor,
whereas that on the right shows the values corresponding to its imaginary part. The
horizontal axis represents the dimensionless excitation frequency.
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Ficure 4.7: Idealized shape of the kinematic interaction factors of pile groups with dif-
ferent s/d, L/b and number of piles embedded in a soil with E,/E; = 10% and & = 0.05.

Figure 4.7 presents the kinematic interaction factors in terms of an idealized gen-
eral shape [79] for each L/d. This shape is the midline of a band which contains all the
curves obtained for the different configurations studied for this value of L/d. For the
purpose of illustrating how this idealized shape is determined, figures 4.8, 4.9 and 4.10
depict, for each value of L/d, the curves corresponding to the kinematic interaction fac-
tors of the different configurations under study, the band that they define, as well as the
midline whose values can be adopted as an approach of the kinematic interaction fac-
tors for all these configurations. With regard to the shape of the translational kinematic
interaction factor I, as a function of frequency, in the frequency range of interest for
earthquake loading (a, < 0.5), it can be observed that there exist a low-frequency range
in which I, takes values close to the unity, an intermediate-frequency range where I,
decreases monotonically with frequency and a small high-frequency range where its val-
ues fluctuates with frequency. On the other hand, the rotational kinematic interaction
factor I, increases with the dimensionless frequency wd/c;. It should be noticed that
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both the translational and the rotational kinematic interaction factors experience a de-
crease when considering greater values of the pile slenderness ratio L/d, which implies
also increasing values of the pile spacing ratio s/d for the configurations under study.

A sensitivity analysis was performed in order to assess the accuracy of approaching
the kinematic interaction factors by the idealized shape described above. Firstly, the
idealized shape, obtained as previously shown in figures 4.8, 4.9 and 4.10, was used to
compute the maximum value of the shear force at the base of the structure per effective
earthquake force unit @.,,, through the procedure proposed in chapter 2, for different
values of the structural slenderness ratio 4/b = 1, 2, 5 and 10. The obtained results were
compared against those obtained by using the exact values of the kinematic interaction
factors for each pile group configuration (see figures 4.11 to 4.13). It was found that by
using the idealized kinematic interaction factors for a given value of L/d (see figure 4.7),
the mean relative error within the range of the wave parameter 1/0 < 0.5 committed
in terms of @,,, taking as a reference the response obtained with their exact values, is
always lower than 14% for all the pile group configurations under study. It should be
noted that this error decreases for increasing values of i/b. Thus, when h/b = 10 the
relative error reaches a 4% for the most unfavourable configuration. However, when
h/b = 1 the relative error reaches a maximum value near 22%.

On the other hand, an analogous comparison was made between the results obtained
for @,, by using the exact values of the kinematic interaction factors for each configura-
tion and those obtained by approaching these values by an idealized shape representing
each set of configurations, not only with the same value of the pile slenderness ratio L/d
but also with the same value of the foundation embedment ratio L/b. As expected, the
mean relative error committed by using this approach reaches values slightly lower than
those obtained when considering the same idealized shape for configurations with differ-
ent values of L/b. In fact, the mean relative error committed is always lower than 11%
for all the pile group configurations under study, and the maximum value of the relative
error is near 19%.

Fan et al. [78] performed a parametric analysis for the purpose of investigating the
kinematic behaviour of typical pile-group configurations embedded in three idealized soil
profiles, one of which was a homogeneous half-space. They shown that the kinematic
interaction factor associated with translation I, depends mainly on L/d and it is not
significantly influenced by the pile-group configuration, number of piles in the group, and
relative spacing between piles. However, they showed that this conclusion is not so valid
for I, as these factors are usually important for pile-cap rotations. Therefore, although
the idealized shape of I, and I, for each value of L/d is presented, all results presented in
this chapter have been obtained with the exact kinematic interaction functions depicted
in figures 4.11 to 4.13.

In order to determine the influence of the pile-soil Young’s modulus ratio on the dy-
namic behaviour of the superstructure, an additional value of E,/E; has been consid-
ered. In this line, figures 4.14 and Figure 4.15 show, respectively, impedance functions
and kinematic interaction factors for 2 x 2 pile groups embedded in a homogeneous soil
such that E,/E, = 10%. Results for three different values of the pile slenderness ratio
(L/d = 7.5, 15 and 30) are represented. Comparing this results against those obtained
for E,/E; = 103, it can be observed that the influence of the variation of L/d is more
remarkable as the pile-soil Young’s modulus ratio increases.
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Ficure 4.8: Idealized shape of the kinematic interaction factors of different pile groups
with L/d =175, E,/E; = 10° and & = 0.05.
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Ficure 4.9: Idealized shape of the kinematic interaction factors of different pile groups
with L/d =15, E,/E; = 103 and &, = 0.05.
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Ficurk 4.10: Idealized shape of the kinematic interaction factors of different pile groups
with L/d = 30, E,/E; = 10% and &; = 0.05.
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Ficure 4.11: Kinematic interaction factors of different 2 x 2 pile groups, E,/Es = 103 and

¢ = 0.05.
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Ficure 4.12: Kinematic interaction factors of different 3 x 3 pile groups. E,/Es; = 103
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4.7 Influence of direction and angle of inclination of piles on the
kinematic response of deep foundations

The beneficial or detrimental role of battered piles on the dynamic response of piled
foundations has not been yet fully elucidated. In order to shed more light on this aspect,
kinematic interaction factors of single inclined piles, as well as those of 2 x 2 and 3 x 3 pile
groups with raked elements, embedded in a viscoelastic half-space and subjected to verti-
cally incident plane shear S waves, are presented in this section. These results have been
computed through the BEM-FEM formulation described in section 3.5. This formulation
was implemented in a previously existent multi-region BEM FORTRAN code [69,70] out-
lined in section 3.4. Its validity for obtaining kinematic interaction functions of vertical
piles has been already checked. For example, Padroén et al. [81] compare the obtained
results with those provided by Kaynia and Novak [77] for a single pile, as well as for 3 x 3
groups of piles under vertically incident S waves. Herein, the validation of the BEM-
FEM coupling formulation (as well as its implementation) for configurations including
battered piles is addressed. Afterwards, the relevance and main trends observed in the
influence of the rake angle and the direction of inclination of piles on the kinematic in-
teraction factors of the analysed foundations are inferred from the presented results.

4.7.1 Validation of the BEM-FEM coupling formulation

In order to assess the accuracy of the BEM-FEM formulation, described in section 3.5,
when applied to the determination of kinematic interaction factors corresponding to con-
figurations including battered piles, results computed with this model are compared with
those corresponding to the multi-region boundary element code outlined in section 3.4.

Figure 4.16 presents comparison results for several configurations of 2 x 2 inclined
pile groups according to the geometrical parameters and material properties defined in
section 4.4 and subjected to vertically incident S waves that, at free-field ground surface,
causes motions in the direction of the z axis. The first and the second rows of the plots
correspond to a pile spacing ratio of s/d = 5 and piles inclined, with a rake angle of
6 =10°, parallel and perpendicular to the direction of the excitation, respectively. The
third row shows the results corresponding to a pile spacing ratio of s/d = 10 and piles
inclined symmetrically along the cap diagonals with a rake angle of 6 =20°. Finally,
the fourth and fifth rows, present the results for a pile spacing ratio of s/d = 10 and
piles inclined, with a rake angle of # =30°, parallel and perpendicular to the direction
of the excitation, respectively. In all cases, results are obtained for two different pile-soil
stiffness ratios.

The results corresponding to the BEM-FEM coupling formulation are in strong agree-
ment with those obtained from the more rigorous multi-domain boundary element (BEM-
BEM) code. The resulting relative errors, for a dimensionless frequency value a, = 0.25,
for instance, are below 8% in terms of rotational kinematic interaction function /,, and
below 3% in terms of translational kinematic interaction function I,. Therefore, the
BEM-FEM formulation is the preferred method to carry out parametric studies, since it
is more cost-effective.
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spacing ratios s/d, rake angles ¢ and stiffness ratios £,/E,. Comparison between BEM-
BEM and BEM-FEM.
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4.7.2 Pile group configurations under investigation

This section provides kinematic interaction factors of single inclined piles, and 2 x 2
and 3 x 3 pile groups with battered elements according to the geometrical parameters and
material properties defined in section 4.4 and subjected to vertically-incident plane shear
S waves. The values of the dimensionless parameters for the pile group configurations
analysed in this section are listed in table 4.2.

TaBLE 4.2: Pile group configurations for the analysis of the influence of rake angle of piles
on the kinematic interaction factors of deep foundations.

L/b

L/d s/d
2x2 3x3

) 3 2

10 1.5 1

15

This study includes results corresponding to different pile group configurations with
piles inclined perpendicular or parallel to the direction of excitation as well as symmet-
rically along the cap diagonals. Four different rake angles have been considered: 6 =0°
(vertical piles), 10°, 20° and 30°. Some vertical piles are included in 3 x 3 pile groups in
order to maintain symmetry with respect to planes xz and yz. Results corresponding to
pile-soil stiffness ratios E,,/E; =1000 (soft soil) and 100 (stiff soil) are presented. Stabil-
ity and convergence analyses of the meshes have been performed in order to ensure the
accuracy of the obtained results.

The configurations analysed herein coincide with those whose impedance functions
were provided by Padrén et al. [49]. An analogous study is performed in this work, and
this section intends to provide the scientific and engineering communities with comple-
mentary data in terms of kinematic interaction factors needed to accomplish substruc-
turing analyses. This is why the same configurations are chosen for the study accom-
plished in this section.

4.7.3 Translational kinematic interaction factors of single piles

Figure 4.17 presents the translational kinematic interaction factors I,, correspond-
ing to free-head single inclined piles, together with the relative vertical displacements
produced at the pile top by the incident field. When the pile is inclined parallel to the
direction of the excitation (central column), I,, decreases for increasing rake angles up to
a, = 0.5 for £,/E; = 1000, and up to a, = 0.8 for E,/E, = 100. However, inclining the
pile perpendicular to the direction of excitation (left column) has no beneficial effects in
the low-frequency range and even shows a detrimental behaviour in the intermediate-
frequency region as it leads to increasing values of the horizontal motion. For low values
of a,, I, increases for increasing pile-soil modulus ratios. The opposite occurs for high
values of the dimensionless frequency. As expected, vertical displacements also grow
for increasing rake angles, reaching displacements up to 60% of the horizontal free-field
ground motion at a, = 0.3.
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Ficure 4.17: Translational kinematic interaction factor I, and vertical displacement
u,/ug, of a single pile for different rake angles 6.

4.7.4 Rotational kinematic interaction factors of single piles

Figure 4.18 depicts the rotational kinematic interaction functions I, for the cases
defined above. For increasing rake angles, rotation slightly decreases for low-to-mid fre-
quencies, and slightly increases for mid-to-high frequencies. Contrary to what could
have been expected, the rotation is almost independent of the direction of inclination.
In order to look into this fact, the deformed shapes of single piles, inclined in both di-
rections, at a, = 0.3 are represented in figure 4.19. It can be seen that the direction of
inclination does influence significantly the pile behaviour as a whole, although the com-
parison between the undeformed and deformed shapes shows similar rotations in both
configurations.
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4.7.5 Translational kinematic interaction factors of pile groups

Figures 4.20, 4.21, 4.22 and 4.23 show the influence of rake angle on the translational
kinematic interaction functions of four different configurations of pile groups. The low
frequency region in which 7, increases with frequency for single piles does not appear in
the translational kinematic interaction function of pile groups, case in which |I,| < 1 for
all a,. Inclining piles perpendicular to the direction of the excitation (left column) leads
generally to higher values of I, in comparison with those obtained with vertical piles.
Conversely, the use of piles inclined symmetrically along the cap diagonals (central col-
umn) generally results in a reduction of this motion in the low-to-mid frequency range.
A stronger filtering of the seismic excitation can be achieved by inclining piles parallel
to the direction of excitation (right column). The kinematic response of pile groups in-
cluding battered piles is less sensitive to variations of the rake angle as the pile spacing
ratio s/d and the number of piles increase. In all cases, I,, decreases for higher pile-soil
modulus ratios for low-to-mid frequencies.
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Ficure 4.20: Translational kinematic interaction factor I, of a 2 x 2 pile group with
battered piles with different rake angles 6 and s/d = 5.
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Ficure 4.21: Translational kinematic interaction factor I, of a 2 x 2 pile group with
battered piles with different rake angles 6 and s/d = 10.
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4.7.6 Rotational kinematic interaction factors of pile groups

Figures 4.24, 4.25, 4.26 and 4.27 present the rotational kinematic interaction factors
for the pile groups under study in order to illustrate how the use of pile groups including
battered piles influences the rocking motion at the pile cap. Higher pile spacing ratios
s/d or larger number of piles result in less cap rotation, though generally, this rotation
increases with the rake angle. This effect is more pronounced when piles are inclined
parallel to the direction of excitation. The more inclined, the more the pile works axi-
ally, that causes an axial displacement which in turn produces higher cap rotation. In
fact, the maximum value of this rotation occurs at a, ~ 0.3, which is the dimensionless
frequency corresponding to the maximum value of the vertical displacement at the top
of vertical single inclined piles (see right column of figure 4.17). However, no relevant
effects can be appreciated when inclining piles perpendicular to the direction of excita-
tion. The dependence on the direction of inclination does not exist for single piles (see
figure 4.18), which suggests that it is the constraint imposed by the rigid pile cap which
leads to changes in the dynamic behaviour of the foundation. Note that b (used for the
normalization of /) changes for every configuration. When taking this into account, the
absolute cap rotation strongly decreases with larger pile separations or number of piles.

Contrary to what occurs for vertical piles and even for single inclined piles, cap ro-
tation and horizontal free-field ground motion become out of phase when inclining piles
parallel to the direction of excitacion or simmetrically along the cap diagonals. This can
be observed in the first row of figures 4.24, 4.25, 4.26 and 4.27. For the purpose of illus-
trating this effect, figure 4.28 shows the deformed shape at a, = 0.3 of 2 x 2 pile groups
containing piles inclined parallel to the direction of excitation with four different rake
angles (solid color lines), together with the undeformed shapes (dashed lines), and the
deformed shape of the incident field u,, (grey solid line). The response is qualitatively
independent of the pile spacing ratio s/d. The lower the E,/E; ratio, the better the pile
compliance with the free-field motion.

The figures discussed above show a trend consisting in a monotonic increase of cap ro-
tation at low-to-mid frequencies for higher rake angles. However, the observed change of
phase suggests that this does not need to be the case. In order to analyse more closely the
effects of rake angle on the rocking motion at the pile cap, figure 4.29 shows the real part
and the modulus of the rotational kinematic interaction factor of four different configura-
tions with piles inclined parallel to the direction of excitation. Five different rake angles
have been considered: § =0° (vertical piles), 1°, 3°, 5°, and 10°. It is worth to notice that
the use of configurations with piles inclined a small rake angle (e.g. 6 =1°, § =3°) leads
to a minimum rocking motion at the pile cap. This might represent a beneficial effect
on the dynamic behaviour of slender structures, case in which the determination of an
optimum rake angle for a minimum rocking input motion could be interesting.
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Ficure 4.24: Rotational kinematic interaction factor /, and maximum pile head bending

strain ¢, (considering |u,, | = 1) of a 2 x 2 pile group with battered piles with different
rake angles 6 and s/d = 5.
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rake angles 6 and s/d = 10.
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Ficure 4.27: Rotational kinematic interaction factor /, of a 3 x 3 pile group with battered
piles with different rake angles 6 and s/d = 10.
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4.7.7 Influence of pile-soil Young's modulus ratio and pile slenderness ratio

The influence of pile-soil Young’s modulus ratio £,/ E; and pile slenderness ratio L/d
on the rotational kinematic interaction factors of configurations including battered piles
has also been studied. Additional L/d and E,/E ratios have been studied for configura-
tions with piles inclined parallel to the direction of excitation.

Figure 4.30 depicts, the rotational kinematic interaction factors corresponding to 2 x 2
pile groups with pile spacing ratio s/d = 5 and piles inclined in the direction of excitation.
Results for four different values of the pile-soil Young’s modulus ratio (£,/E, = 50, 100,
1000 and 5000) have been represented. Each one the columns corresponds to a different
value of the pile rake angle 6. It can be observed that, contrary to what occurs for vertical
piles, lower stiffness ratios E,/E; (stiffer soils) lead to larger cap rotations. On the other
hand, higher stiffness ratios (softer soils) result in an increase of the rake angle at which
cap rotation and horizontal free-field ground surface motion become out of phase at low-
to-mid frequencies. For instance, such an angle can reach values over 10° for E,/E, =
5000 (see figure 4.28).
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Ficure 4.30: Influence of the pile-soil Young’s modulus ratio £,/Es on the rotational
kinematic interaction factor I, of 2 x 2 piles groups with piles inclined parallel to the
direction of excitation with different rake angles 6 being s/d = 5.

Finally, it is worth noting that, when considering configurations with piles inclined
parallel to the direction of excitation, higher pile slenderness ratios yield increasing rock-
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ing motions at the pile cap in a low frequency range, contrary to what occurs for vertical
piles. For the purpose of illustrating this effect, figure 4.31 shows the rotational kine-
matic interaction factors of 2 x 2 pile groups with pile spacing ratio s/d = 5 and piles
inclined in the direction of excitation. Results for three different values of the pile slen-
derness ratio (L/d = 10, 15, and 20) have been represented.
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Ficure 4.31: Influence of the pile slenderness ratio L/d on the rotational kinematic in-
teraction factor I, of 2 x 2 piles groups with piles inclined parallel to the direction of
excitation with different rake angles 6 being s/d = 5.

4.7.8 Influence of rake angle on pile kinematic bending moments

Besides kinematic interaction factors, the influence of rake angle on pile kinematic
interaction forces is an important issue in the study of inclined piles subjected to SH
waves. This is because the possibility of the development of large kinematic bending
moments and shear forces when inclining the piles has resulted in a negative attitude
towards batter piles (see [44]). In order to look also into this aspect of the problem,
kinematic bending moments M at pile heads are presented, for some configurations and
vertically-incident S waves producing unitary horizontal free-field motion at the ground
surface, in terms of the pile maximum bending strain ¢,,. Note that the axis around which
such bending moments are measured is depicted in the corresponding figures. In [121],
Mylonakis et al. point out the convenience of representing the pile maximum bending
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strain ¢, instead of the kinematic bending moment A/. The use of this deformation-
related quantity has advantages such as its dimensionless nature, as well as the fact
that it can be directly measured experimentally and used to quantify damage. Moreover,
common structural materials such as concrete or steel have similar values of the ultimate
bending strain.

The relation between the pile maximum bending strain ¢, and the kinematic bending
moment M can be expressed as follows:

M

= 4.6
Bl (4.6)

€p

|

being I, the pile cross-sectional moment of inertia.

The third row of figures 4.24 and 4.25, illustrates how the variations of the rake an-
gle affect the maximum bending strain of piles in configurations of 2 x 2 pile groups.
When piles are inclined parallel to the direction of excitation (right column) or symmet-
rically along the cap diagonals (central column), the maximum bending strain increases
with the rake angle for both low and high frequencies (in terms of the frequency range
presented in the figures) when s/d = 5, reaching an increment of up to 60% in the low
frequency range (when E,/Es = 100) with respect to the values corresponding to vertical
piles. Nevertheless, for intermediate frequencies the rake angle does not have a signifi-
cant influence on the maximum bending strain. In those cases in which E,/E; = 1000,
the maximum bending strain reaches increments of up to 16% in the low frequency range.
When s/d = 10, maximum bending strain tends to increase with rake angle at mid-to-
low frequencies but decreases at higher frequencies. On the other hand, in those cases
in which piles are inclined perpendicular to the direction of excitation (left column), the
maximum pile bending strain decreases as the rake angle increases for low-to-mid fre-
quencies in all configurations. In short, in the mid-to-low frequency range maximum
pile bending strains at pile heads tend to increase when piles are inclined parallel to the
direction of the shaking; but tend to decrease when the piles are inclined perpendicular
to such direction.

4.7.9 Conclusions

This section provides kinematic interaction factors of single inclined piles, and 2 x 2
and 3 x 3 pile groups including battered elements embedded in a homogeneous viscoelas-
tic half-space and subjected to vertically-incident plane shear S waves. In order to study
the effect of rake angle on kinematic bending moments, maximum pile bending strain at
pile heads are also presented for some cases. A boundary element-finite element formu-
lation has been used to obtain numerical results for different soil properties, rake angles
and configurations.

The main conclusions drawn from the analysis of the results obtained for the cases
under study are summarised below:

* The ability of a deep foundation to filter the seismic input increases significantly if
all or some of it members are inclined in the direction of shaking.

* The beneficial role of the pile inclination disappears at high frequencies.
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¢ Both kinematic interaction factors strongly depends on the direction of inclination
of piles. Deep foundations including piles inclined perpendicular to the direction
of excitation generally have a detrimental role in terms of horizontal motion.

* The rotational kinematic interaction factor I, of battered single piles is almost
independent of the rake angle.

¢ Cap rotation and horizontal free-field ground motion become out of phase when
inclining piles parallel to the direction of excitation or symmetrically along the cap
diagonals. This effect depend on the rake angle, as well as on the pile-soil Young’s
modulus ratio.

* There exists an optimum rake angle (usually small) for which a minimum rotational
motion at pile cap is obtained in the low-to-mid frequency range. This phenomenon
could be used in order to minimize the seismic input of a structure submitted to
seismic loads although, in some cases, the realization of the optimum small rake
angles could not be feasible. A monotonic trend of increasing cap rotation for in-
creasing rake angles is observed for larger angles.

* Higher stiffness ratios (softer soils) result in an increase of the rake angle at which
cap rotation and horizontal free-field ground surface motion become out of phase
at low-to-mid frequencies.

¢ The kinematic response of pile groups including battered piles is less sensitive to
variations of the rake angle as the pile spacing ratio s/d or the number of piles
increase.

* Lower stiffness ratios E,/E; (stiffer soils) lead to higher cap rocking motions.

¢ Contrary to what occurs for vertical piles, a reduction of the pile slenderness ratio
L/d leads to decreasing values of the rocking motion at the pile cap, at least in a
low frequency range, when considering configurations with piles inclined parallel
to the direction of excitation.

¢ Inthe mid-to-low frequency range (usually the most important in the seismic design
of deep foundations), maximum pile bending strains at pile heads tend to increase
when piles are inclined parallel to the direction of the shaking; but tend to decrease
when the piles are inclined perpendicular to such direction.

4.8 Pile group configurations including inclined piles

Table 4.3 lists the values of the dimensionless parameters characterizing the set of
pile group configurations considered in this work to perform an analysis of the influence
of the rake angle of piles # on the dynamic behaviour of the structure they support, in
the frequency range of interest for seismic loading (wd/cs; < 0.5, according to Gazetas
et al. [79]). The dynamic response of several groups of 2 x 2 and 3 x 3 piles has been
studied. The criterion adopted for the choice of the different values of the pile spacing
ratio s/d consist in keeping the foundation halfwidth b constant for configurations with
different number of piles, as done for vertical pile groups in section 4.5. Thus, the results
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corresponding to different configurations are more comparable among each other. For
the purpose of facilitating the interpretation of the results, figure 4.32 depicts a sketch
of the different configurations considering d = cte for all cases. Four different rake angles
have been considered: § =0° (vertical piles), 10°, 20° and 30°. The results presented
hereinafter correspond to pile group configurations in which piles are inclined parallel
to the direction of excitation. It is worth noting that some vertical piles are included in
3 x 3 pile groups in order to maintain symmetry with respect to planes xz and yz. In the
light of previous studies [101], an intermediate value of the embedment ratio /b = 2 has
been chosen as representative in this work. In turn, three different values are chosen
for the pile slenderness ratio (L/d = 7.5, 15, and 30). It is assumed that £ = 0.05,
vs = 0.4, E,/Es = 10° and ps/p, = 0.7. All configurations follow the pattern represented
in figure 4.1 and correspond to the description exposed in section 4.4.

L/b L/d 2 x 2 3x3

7.5 ﬁ ﬁ

30

Ficure 4.32: Sketches of the different pile group configurations comprising inclined piles,
assuming the same diameter (d = cte) for all cases.
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TaBLE 4.3: Configurations of pile groups comprising inclined piles.

L/b L)d s/d

2x2 3x3
75  3.75 2.5
2 15 7.5 5)
30 15 10

4.9 Impedances and kinematic interaction factors for pile groups
comprising inclined elements

This section presents impedance functions and kinematic interaction factors corre-
sponding to the pile group configurations defined in section 4.8, and addresses an anal-
ysis of the main trends observed in the obtained results. The configurations analysed
in this section consist of square pile groups comprising inclined elements embedded in a
viscoelastic homogeneous half-space.

Figures 4.33 and 4.34 provide dynamic stiffness coefficients k;; corresponding to dif-
ferent 2 x 2 and 3 x 3 pile group configurations, respectively. On the other hand, fig-
ures 4.35 and 4.36 depict the corresponding damping coefficients c;; for the same con-
figurations. In all these figures, each column presents results for a different value of
the pile slenderness ratio: L/d = 7.5 (left column), L/d = 15 (central column) and
L/d = 30 (right column). In turn, the different rows present the stiffness values of the
soil-foundation systems in the horizontal, rocking, and cross-coupled horizontal-rocking
vibration modes, respectively. Finally, in each plot, the results for the different values
of the rake angle considered in this study (6 =0° (vertical piles), 10°, 20° and 30°) are
represented with solid lines of different colors. Dashed lines to be read on right axis
provide a zoomed view in those cases in which it is necessary. All plots are presented as
a function of the dimensionless frequency wd/c;.

Focusing firstly on the dynamic stiffness, the following aspects are worthy of com-
ment. In general, the horizontal stiffness increases significantly with the rake angle
in all the frequency range under investigation due to the contribution of the pile axial
stiffness to withstand the lateral loads. However, when analysing, in figure 4.34, the
3 x 3 pile group configuration with a slenderness ratio L/d = 7.5 (s/d = 2.5) it can be
observed that this trend is reversed for wd/cs; > 0.3, which implies that the horizontal
stiffness decreases as the rake angle grows. It is worth noting that when wd/c, ~ 0.3
the variation of 6 has no influence on the horizontal stiffness. A similar effect can be
observed in the case of the 3 x 3 pile group with L/d = 15 (s/d = 5). In this case, there
is a mid-frequency range in which lower values of the horizontal stiffness are reached
when inclining piles 10° or 20°. The group effect associated to the horizontal vibration
is not significantly modified when inclining the piles, although the peak moves slightly
to lower frequencies.
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F1curke 4.33: Dynamic stiffness of different 2 x 2 pile groups. E,/E,; = 1000 and &, = 0.05.
L/d(s/d) = 7.5(3.75),15(7.5),30(15). Solid lines to be read on left axis. Dashed lines to
be read on right axis provide a zoomed view.
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F1GUrE 4.34: Dynamic stiffness functions of different 3 x 3 pile groups. E,/E; = 1000 and
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Similar to what happens with the stiffness functions, horizontal damping coefficients
increase also with rake angle (even doubling for # = 30° in some cases), in all the fre-
quency range under investigation (see figures 4.35 and 4.36). This conclusion is applica-
ble to both 2 x 2 and 3 x 3 pile groups and to the s/d values considered in this study.

Although it has been shown that the rocking impedance of a single inclined pile is
independent of the rake angle [49], the rocking impedance of pile groups is highly de-
pendent on 6 since, in this case, rocking and vertical modes are coupled in each pile. Due
to the decrease in vertical stiffness of individual inclined piles with respect to the vertical
case, rocking stiffness coefficients of pile groups decrease with rake angle for mid-to-low
frequencies. Exceptionally, in those cases with little spacing between adjacent piles (left
column in figures 4.33 and 4.34), the pile-soil-pile interaction effect takes predominance
over that of inclination and the vertical impedance of each pile increases with the rake
angle since the distance between the pile tips widens with depth. On the other hand, it
can be observed that for mid-to high frequencies greater values of the rocking stiffness
can be reached by inclining piles. In general, the increment or decrease of stiffness with
the rake angle is, mainly for L/d = 30, extraordinary dependent on wd/c;.

A very important influence of pile inclination can be appreciated in the horizontal-
rocking cross-coupled impedance. Both dynamic stiffness and damping functions sig-
nificantly increases with rake angle for all the configurations under investigation. It is
worth mentioning that not only their magnitude may change, but also their sign may
even change for different rake angles leading to significant differences in the dynamic
behaviour of the superstructure.

Figures 4.37 and 4.38 provide the kinematic interaction factors of 2 x 2 and 3 x 3 pile
group configurations, respectively. In these figures, each column depicts results for a
different value of the pile slenderness ratio: L/d = 7.5 (left column), L/d = 15 (central
column) and L/d = 30 (right column). The real part and magnitude of translational and
rotational kinematic interaction factors for vertically-incident shear waves are plotted in
the upper and the lower parts of the figures, respectively.

Translational kinematic interaction factors I, show that batter piles allow the foun-
dation to filter part of the seismic input motion even at very low frequencies. Such fil-
tering can reach 20% for 6 = 20°, and 40% for § = 30°.

The rotational kinematic interaction factors I, show a consistent and significant in-
crease in the rotational input motion to the superstructure for increasing rake angles.
This increase is really significant when comparing rake angles 6 > 20° with the vertical
case, in which the magnitude of I, can be multiplied by a factor of 30 (low frequency of
2 x 2 case).

The effects of inclining piles on the kinematic interaction factors of pile foundations
were discussed in greater detail in section 4.7.

In short, it is shown that, apart from the well known larger horizontal stiffness, in-
clined piles provide a significantly larger capacity to dissipate energy and to filter the
horizontal input motion to the superstructure when the direction of the excitation coin-
cides with that of the inclination of the piles, which might make them useful for non-
slender structures. On the other hand, the larger rotational input motions and rocking
damping but smaller rocking stiffness makes it difficult to make a general prediction of
the seismic response of slender structures, which will be studied in detail in chapter 6.
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Ficure 4.37: Kinematic interaction factors of different 2 x 2 pile groups. E,/E; = 1000
and & = 0.05. L/d (s/d) = 7.5(3.75), 15(7.5), 30(15).
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Ficure 4.38: Kinematic interaction factors of different 3 x 3 pile groups. E,/E; = 1000
and & = 0.05. L/d (s/d) = 7.5(2.5),15(5), 30(10).
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5.1 Introduction

This chapter addresses an analysis of the dynamic response of linear shear structures
supported on square groups of vertical piles embedded in a homogeneous, viscoelastic
and isotropic half-space and subjected to vertically-incident S waves. A detailed descrip-
tion of the problem can be found in section 2.3. The procedure proposed in chapter 2 is
used herein to study the influence of SSI on the response of pile-supported structures,
in terms of maximum shear force at the base of the structure per effective earthquake
force unit Q,, and effective system period 7/7 and damping £. These two last param-
eters represent the dynamic characteristics of an equivalent viscously damped SDOF
system [7,12—-14,21]. This equivalent system reproduce, as accurately as possible, the
coupled system response within the range where the peak response occurs. The cor-
responding foundation horizontal displacement and rocking, as well as the kinematic
interaction factors, will also be shown for different cases. Even though it is not a com-
prehensive analysis, several interesting conclusions can be drawn from studying how
the SSI effects, that affect the system dynamic behaviour, are influenced by the vari-
ation of parameters such as the foundation-structure mass ratio m,/m, the structural
slenderness ratio i /b, the wave parameter o, the spacing between adjacent piles s/d, the
embedment ratio L/b, the pile slenderness ratio L/d, the number of piles, the pile-soil
Young’s modulus ratio E,/E;, the fixed-base structure damping ratio { and the mass
density ratio 5. Moreover, the influence of considering or not the cross-coupled impe-
dances and the kinematic interaction factors is also studied for the configurations of pile
foundations under investigation.

Firstly, the cases under investigation are defined in section 5.2. In sections 5.3 to 5.12
several parametric analyses are performed, in order to determine the influence on the
system dynamic response of the main parameters of the problem. Figures that allow
comparing results obtained for several pile group configurations are provided. In order
to facilitate the comprehension of these results, each one of these figures is followed by
sketches corresponding to the pile group configurations considered in each case. Finally,
the conclusions that can be drawn from these analyses are given in section 5.13.

5.2 Configurations under investigation

The dynamic response of structures supported on several groups of 2 x 2, 3 x 3 and
4 x 4 piles is studied in this chapter. Four different values of the structural slender-
ness ratio (h/b = 1,2,5,10) have been considered. The geometrical characteristics, as
well as the material properties, of the pile group configurations considered in the anal-
yses addressed in this chapter were already defined in section 4.5. The values of the
dimensionless parameters that define the geometry of these configurations are listed in
table 5.1.

Unless otherwise specified, for the results presented in this chapter, it is assumed
that 6 = 0.15; my/m = 0; 0 < 1/0 < 0.5; £ = 0.05; £&s = 0.05 and vs = 0.4. These values
are representative for typical buildings and soils [14,122]. Moreover, E,/E; = 10° or 10
and p,/p, = 0.7.
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TaBLE 5.1: Vertical pile group configurations.

L/b L/d s/d

2x2 3x3 4x4

7.5 7.5 5 3.75

15 15 10 7.5

7.5  3.75 2.5 1.875

2 15 7.5 5 3.75
30 15 10 7.5

15 3.75 2.5 1.875

30 7.5 ) 3.75

The range of values used in this study for 1/0 encompasses most real cases as can
be seen in Stewart et al. [122], where empirical results for SSI effects are provided for
57 building sites that cover a wide range of real structural and geotechnical conditions.
Most of those cases show values of 1 /0 between 0 and 0.3.

The impedance functions and the kinematic interaction factors corresponding to all
the pile group configurations involved in this study were computed by using a BEM-
FEM methodology outlined in section 3.5. Their values were represented and analysed
in section 4.6.

As explained in section 2.6, piles have been modelled by equivalent solid piles al-
though the values obtained for impedances and kinematic interaction factors are also
used herein to represent the dynamic behaviour of pile group configurations consisting
of hollow piles. The accuracy of this simplification of the pile section geometry was as-
sessed in section 2.6 in terms of impedances and kinematic interaction factors. However,
given that these values are used in this section to determine the dynamic response of
the superstructure, it is worth analysing how the simplification consisting in assuming
a solid circular pile cross-section affects the dynamic behaviour of the superstructure in
terms of effective system period 7/7 and maximum shear force at the base of the struc-
ture per effective earthquake force unit Q,,. The mean percentage error in terms of T'/T
and @,,, yielding from modelling a hollow pile with v = 0.9 by an equivalent solid pile,
is always below 5% for all the configurations analysed in section 2.6 when considering a
range for the wave parameter such that 0 < 1/0 < 0.5.

5.3 Influence of foundation-structure mass ratio

The assumption consisting in neglecting the foundation mass m, is extensively adopted
by many authors (see, for instance, [6,7,9,11,13,14]). For the purpose of evaluating how
this simplification affects the dynamic response of the superstructure, figure 5.1 depicts,
for five different values of the foundation-structure mass ratio (m,/m = 0, 0.25, 0.50, 0.75
and 1), the maximum shear force at the base of the structure per effective earthquake
force unit ), corresponding to several linear shear structures supported on 4 x 4 verti-
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cal pile groups with embedment ratio L /b = 2. Each column shows results for structural
slenderness ratios h/b = 1, 2, 5 and 10, respectively. In turn, each row represents re-
sults corresponding to pile slenderness ratios L/d = 7.5, 15 and 30. Sketches of these
pile group configurations, considering d = cte, are depicted in figure 5.2. All plots are
presented as a function of 1/0, being o the wave parameter.

In all the configurations studied in this work, the relative error in terms of (),,, com-
mitted by assuming m,/m = 0 when m,/m = 0.5, reaches a maximum value of 8%. How-
ever, the mean relative error is always below 5%. Thus, the variation of the foundation-
structure mass ratio m,/m in the range between 0 and 0.5 does not yield significant
differences in terms of Q,,,. This conclusion support the simplification usually assumed.

=
=4
ﬂ‘

h/b=2 h/b=5 h/b=10

m,/m=0.00 L/d=7.5
/m=0.25
/m=0.50

m,

15 m,

aaq
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m/m=0.75
my/m=1.00

<

" Lid=15

" Lid=30

1/o /o /o /o

Ficure 5.1: Influence of the foundation-structure mass ratio m,/m. Maximum structural
response value Q,, for 4 x 4 pile groups with L/b =2 and E,/Es; = 103 and & = 0.05.
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L/b L/d

30

Ficure 5.2: Sketches of the pile group configurations corresponding to the cases analysed
in figure 5.1 when considering d = cte.

5.4 Influence of cross-coupled impedances

All the results presented in this work are obtained considering all the elements of
the matrix of impedances. Although many authors neglect the cross-coupled stiffness
and damping terms [7,8,12,13], this is not acceptable for pile foundations, not even for
certain configurations of embedded foundations. Therefore, a comparative analysis to
determine the influence of cross-coupled impedances on the system dynamic response
has been addressed.

Figures 5.3, 5.5 and 5.7 show the extent to which neglecting the cross-coupled impe-
dances influences the dynamic response of the system. At the same time, these figures
allow analysing how this influence is affected by the variation of the main parameters of
the problem. In turn, figures 5.4, 5.6 and 5.8 provide, respectively, sketches of the pile
group configurations considered in each case. Results obtained neglecting cross-coupled
impedances, as well as those computed taking them into account, are represented in
terms of T, € and Q,,. These figures show that the influence of considering cross-coupled
impedances generally decreases as h/b or o grows. Likewise, as shown in figure 5.3, this
influence becomes more remarkable as L/d decrease. On the other hand, in figure 5.5, a
greater influence is observed for increasing values of L /b. Finally, figure 5.7 depicts how
the size of the pile group modifies the influence of the cross-coupled impedances on the
system dynamic response. It can be seen that this influence slightly decreases for those
configurations with a greater number of piles.

In a significant number of cases, the system damping ¢ decreases when consider-
ing the cross-coupled impedances, which implies that the system dynamic response is
subestimated when neglecting them. On the other hand, the system natural period 7
increases, in all cases, when the cross-coupled impedances are taken into account.

For the configurations studied herein, the relative error in terms of (),,, committed
by neglecting the cross-coupled impedances, reaches a maximum value of 40%. However,
the mean relative error is below 16%.
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Ficure 5.3: Influence of the cross-coupled impedances. Effective period T/T, damping
ratio ¢ and maximum structural response value @), for a 2 x 2 pile group with L/b = 2,
E,/Es = 10 and & = 0.05.
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T

Ficurk 5.4: Sketches of the pile group configurations corresponding to the cases analysed
in figure 5.3 when considering d = cte.
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Ficure 5.5: Influence of the cross-coupled impedances. Effective period T/T, damping
ratio £ and maximum structural response value @Q,, for a 2 x 2 pile group with L/d = 15,
E,/Es =10% and & = 0.05.
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Ficure 5.6: Sketches of the pile group configurations corresponding to the cases analysed
in figure 5.5 when considering d = cte.
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Ficure 5.7: Influence of the cross-coupled impedances. Effective period T/T, damping
ratio £ and maximum structural response value @, for pile groups with L/d = 15,L/b =
2, E,/Es = 103 and &5 = 0.05.
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Ficure 5.8: Sketches of the pile group configurations corresponding to the cases analysed
in figure 5.7 when considering d = cte.
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5.5 Influence of structural slenderness ratio and wave parameter

The influence of the structural slenderness ratio /b and the wave parameter o is
examined from figures 5.9, 5.12, 5.14 and 5.17. Figures 5.12 to 5.17 will also be used for
comparative analyses in next sections. First, figure 5.9 shows the system effective period
T/T for structures with h/b = 1, 2, 5 and 10, and several pile configurations. Sketches
of the configurations whose results are represented in the left column are depicted in
figure 5.10. In turn, figure 5.11 provides sketches for those considered in the right col-
umn. On the other hand, figures 5.12, 5.14 and 5.17 depict results in terms of effective
period T/T and damping ¢ and maximum shear force at the base of the structure per
effective earthquake force unit (), for several pile group configurations whose sketches
are provided in figures 5.13, 5.15 and 5.18, respectivelly. All plots are presented as a
function of 1/0 being o the wave parameter.

As expected, the system effective period T/T increases for decreasing values of o,
which implies lower soil stiffness. Generally, lower values of 7 /b lead to a reduction of
T/T. However, this trend can change for h/b < 1 (see figure 5.9). In all cases, SSI im-
plies an increase of the system period (I > 7). On the contrary, the value of the effective
damping ratio £ can be greater or lower than that corresponding to the fixed-base struc-
ture depending mainly on /b (see figures 5.12, 5.14 or 5.17). For buildings with h/b < 5,
it increases with 1/0 and shows values over the fixed-base structural damping ratio. By
contrast, for buildings with ~2/b > 5 it is almost independent of 1 /0 so it stands at around
the fixed-base structural damping ratio. Similar conclusions have been extracted from
studies in the same line for structures founded on shallow [7] and embedded founda-
tions [14].

Again from figures 5.12, 5.14 or 5.17, it should be noted that, for short and squat
buildings with h/b < 2, the value of @Q,, decreases as 1/c increases. However, for high
buildings with 4/b > 3, Q,, is moderately dependent on 1/0 and it can reach values
over that corresponding to fixed-base condition. Furthermore, the maximum value of
Qnm occurs for greater values of 1/0 (in most cases between 0.1 and 0.3), as /b increases.
Indeed, in the cases analysed in this work, the maximum value obtained for @,, when
considering SSI effects is 67% greater than that corresponding to fixed-base condition.
This is the case of the maximum value of @Q,,, reached for a superstructure with /b = 10
supported on a 4 x 4 pile group with embedment ratio L./b = 4 and pile slenderness ratio
L/d =15 (see figure 5.12).

The foundation horizontal displacement expressed as |w2u¢ /iy, | (see figures 5.14 and
5.17) increases with 1/ for all cases under study. Its dependence on the structural
slenderness ratio h/b is related with the configuration corresponding to each particular
case. Besides, the foundation rocking expressed as |w2h¢¢ /iy, | increases with 1/, being
this effect more pronounced for greater values of the ratio //b.

146 SS| effects on the dynamic response of piled structures | SIANI University Institute



Seismic behaviour of structures supported on vertical pile groups

; 4x4;s/d=3.75 L/b=4 ; L/d=15
L/b=1 2x2
S 2
1
&
= 2
1
=
1; 2 r 7

1

00 01 02 03 04
1/o 1/o

Ficure 5.9: Influence of the structural slenderness ratio h/b. Effective period 7/T for a

4 x 4 pile group with s/d = 3.75 (left column) and for a pile group with L/b =4, L/d = 15
(right column). E,/E; = 10° and & = 0.05.
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Ficure 5.10: Sketches of the pile group configurations corresponding to the cases ana-
lysed in the left column in figure 5.9 when considering d = cte.

L/b L/d 2 x 2 3x3 4 x4

Ficure 5.11: Sketches of the pile group configurations corresponding to the cases ana-
lysed in the right column in figure 5.9 when considering d = cte.
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5.6 Influence of kinematic interaction factors

Figure 5.12 shows the extent to which kinematic interaction influences the dynamic
characteristics of the system. To this end, this figure depicts T, £ and Q,, functions in-
volving total soil-structure interaction (both kinematic and inertial interaction) or only
inertial interaction for different pile groups (2 x 2, 3 x 3 and 4 x 4) with the same pile
slenderness (L/d) and mechanical properties (£,/E;). Sketches of these pile group con-
figurations are provided in figure 5.13. Kinematic interaction is also assessed in this
case through the function |/, + (h/b)1,]|.

Obviously, as the natural frequency of the system does not depend on the excita-
tion, the system effective period is insensitive to kinematic interaction. However, in
most cases, the effective damping decreases when these factors are taken into account
(|Iy + (h/b)1,| > 1). On the contrary, this trend could be reversed for non-slender struc-
tures (h/b < 1) on soft soils (1/0 > 0.2) G.e. |I, + (h/b)I,| < 1) which implies that
greater values of ¢ can be reached when considering kinematic interaction. This effect
becomes more noticeable as the group size increases (stiffer foundation). Consequently,
the results obtained without considering the kinematic interaction effects are not on the
side of safety except for those corresponding to non-slender structures 4/b < 1. Similar
conclusions were drawn by Avilés and Pérez-Rocha [14] for embedded foundations.

It should be noted that, for those cases where the kinematic interaction effects are
relevant, their influence becomes more noticeable as the wave parameter o decreases.
With respect to the damping ratio, the influence of the kinematic interaction effects de-
creases and even disappears for decreasing values of foundation stiffness, and the same
happens for increasing values of the slenderness ratio of the structure h/b.

The relative error, in terms of maximum shear force at the base of the structure
Qm, committed by ignoring the kinematic interaction factors, reaches a 55% for the most
unfavourable configuration of those analysed. This occurs for non-slender structures
h/b = 1 in which the maximum structural response value is below that corresponding
to the fixed-base condition. However, the relative error is below 10% for buildings with
h/b = 10.
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Ficure 5.12: Influence of the kinematic interaction and the size of the pile group. Effec-
tive period 7'/T, damping ratio £, maximum structural response value ),,, and kinematic
interaction factor |I,, + (h/b)1,| for pile groups with L/b = 4, L/d = 15, E,,/E; = 10% and
&s = 0.05.

L/b L/d 2 x 2 3x3 4 x4

Ficure 5.13: Sketches of the pile group configurations corresponding to the cases ana-
lysed in figure 5.12 when considering d = cte.
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5.7 Influence of pile slenderness ratio

As shown in figure 5.14, for piled foundations with the same embedment ratio L /b,
increasing values of L/d (more slender piles) imply a reduction of the effective length of
piles, and consequently a diminution of the system stiffness, which results in an increase
of the effective period. This effect increases as the soil stiffness decreases (lower values
of o). These differences are smaller for short and squat structures (lower values of /b);
although this trend is even reversed for very low values of this parameter. In order to
illustrate this effect, figure 5.16 shows results in terms of effective period 7/T for the
same pile groups configurations considered in figure 5.14 but considering a superstruc-
ture with a slenderness ratio 2/b = 0.6. In this case, it can be observed that, for values
of the wave parameter such that 1/ > 0.25, the values of T/T reached for L/d = 7.5 are
greater than those obtained for L/d = 15.

In regard to the damping ratio, generally, the increase of L/d reduces the system
damping. This effect becomes less appreciable for slender structures (greater values of
h/b). It should be noted that for 4/b > 5 the system damping ¢ is close to the structural
damping ¢ and it is not too sensitive to L/d variations. Furthermore, it can be seen
that there are not significant differences between the results for the damping ratio for
L/d="7.5and L/d = 15, respectively.

The results for the system maximum response Q,,, are affected by the trends explained
above regarding the damping ratio £. Thus, it should be noticed that when h/b < 2,
Qm reaches greater values for L/d = 30 than for lower values of L/d; and there are
not significant differences between the results obtained for ./d = 7.5 and L/d = 15,
respectively. However, a change of trend can be observed when //b > 5, which consists in
an increment of the system maximum response corresponding to the configuration with
L/d = 7.5 with respect to that obtained when considering L/b = 15 or even L/b = 30.
This is the case of slender structures with /b = 10 when considering 1/0 > 0.2.

Concerning the foundation horizontal displacement and rocking, it can be seen that
both increase for greater values of the pile slenderness ratio L/d.
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Ficure 5.14: Influence of the pile slenderness ratio L/d. Effective period T/T, damping
ratio £, maximum structural response value (),, and maximum relative values of the

2

foundation horizontal displacement |w2u¢ /i, | and rocking |w2het /iig, | for a 2 x 2 pile

group with L/b =2, E,/E; = 10° and & = 0.05.
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L/b L/d
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Ficure 5.15: Sketches of the pile group configurations corresponding to the cases ana-
lysed in figures 5.14 and 5.16 when considering d = cte.

1/o

Ficure 5.16: Influence of the pile slenderness ratio L/d. Effective period 7/T for 2 x 2
pile groups with L/b =2, E,/E; = 103 and &, = 0.05. h/b = 0.6.
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5.8 Influence of embedment ratio

As shown in figure 5.17, for piled foundations with the same spacing between adjacent
piles s/d, keeping the foundation half-width b constant, decreasing values of L/b reduce
the length of piles L (see figure 5.18), and consequently the system stiffness, which results
in an increase of the effective period. This effect is less appreciable for low values of /b;
and this trend is reversed for very low values of this parameter. In order to illustrate
this effect, figure 5.19 shows results in terms of effective period 7'/T for the same pile
groups configurations considered in figure 5.17 but considering a superstructure with a
slenderness ratio 7/b = 0.6. In this case, it can be observed that 7'/T reaches values for
L/b = 2 greater than those obtained for L/b = 1.

In regard to the effective damping ratio, although it is not affected by L /b variations
for 1/0 < 0.2,1in all cases, the decrease of L /b results in a reduction of the system damping
for higher values of 1/0. This effect is more remarkable as /b decreases. It should be
noted that for h/b > 5 the system damping ¢ is close to the structural damping ¢, and it
is not sensitive to L/b variations.

Regarding the effect of the embedment ratio on the maximum structural response
Qm, the same figure shows that it experiences an increase for decreasing values of the
embedment ratio L/b. Generally, this effect is more remarkable for /b = 2 and 5; how-
ever, a change of trend can be observed between the results corresponding to h/b = 5
and h/b = 10, respectively, where this effect is not so appreciable. Something similar
occurs with the foundation horizontal displacement expressed as |w2u¢ /iig4,|. The foun-
dation rocking |w2h¢C /iig, |, on the other hand, grows for decreasing values of L/b, being
this effect more noticeable as h/b increases.
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Ficure 5.17: Influence of the embedment ratio L/b. Effective period 7/T", damping ratio &,
maximum structural response value @),,, and maximum relative values of the foundation
horizontal displacement |w2u¢/ii 4, | and rocking |w2het /iy, | for a 4 x 4 pile group with

s/d = 3.75, E,/Es = 103 and & = 0.05.
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Ficure 5.18: Sketches of the pile group configurations corresponding to the cases ana-
lysed in figures 5.17 and 5.19 when considering d = cte.
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Ficure 5.19: Influence of the embedment ratio L/b. Effective period T/T for 4 x 4 pile
groups with s/d = 3.75, E,/E; = 103 and & = 0.05. h/b = 0.6.
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5.9 Influence of pile group size

As shown in figure 5.12, for piled foundations with high i /b and the same embedment
ratio L/b and pile slenderness ratio L/d, fewer piles lead to a reduction of the system
stiffness, which results in an increase of the effective period. However, the magnitude of
this trend decreases for decreasing values of /b, and tends to be the opposite for non-
slender structures. On the other hand, a larger pile group leads to greater values of
the system effective damping and, consequently, smaller maxima @,, in the response,
when h/b < 5, while no clear trends are observed for higher slendernesses. For high
buildings (h/b = 5 and 10) the value obtained for @,, when considering SSI exceeds
that corresponding to fixed-base condition. Also, the maximum value of (),, occurs for
1/o0 = 0.2 when h/b = 5 and increases with 1/¢ for 2 /b = 10, approaching (in the depicted
range) an asymptotic value that increases with the number of piles.

Regarding the foundation horizontal displacement and rocking, both increase for
smaller pile groups, being this effect more remarkable for slender structures as shown
in figure 5.20.
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Ficure 5.20: Influence of the kinematic interaction and the size of the pile group. Max-
imum relative values of the foundation horizontal displacement |w2u¢ /ii 4, | and rocking
|w2 hept /iig,| for pile groups with L/b =4, L/d = 15, E,/Es; = 10° and & = 0.05.
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Fiaure 5.21: Sketches of the pile group configurations corresponding to the cases ana-
lysed in figure 5.20 when considering d = cte.

5.10 Influence of pile-soil Young's modulus ratio

The variations of the pile-soil Young’s modulus ratio E,/ E affect the impedance func-
tions and kinematic interaction factors of the soil-foundation system. Consequently, SSI
effects on the system dynamic response are also influenced by these variations. In order
to analyse this influence, figure 5.22 depicts in columns the dynamic response corre-
sponding to structures with slenderness ratios h/b = 1, 2, 5 and 10, respectively, sup-
ported on square groups of 2 x 2 vertical piles embedded in a homogeneous, viscoelastic
and isotropic half-space such that £,/E; = 100 or 1000. Each plot area shows results for
three different values of the pile slenderness ratio: L/d = 7.5, 15 and 30. All plots are
presented as a function of 1/0, being o the wave parameter. Results is terms of effec-
tive period 7/T, damping ¢ and maximum shear force at the base of the structure per
effective earthquake force unit ),, are depicted in the upper, central and lower part of
this figure, respectively. In turn, figure 5.23 provides sketches of the different pile group
configurations considered in figure 5.22.

Assuming constant properties for the material of piles, lower values of £,/ E; imply an
increase of the soil stiffness which leads to greater values of the system effective period
T /T and lower values of the effective damping ¢. Consequently, higher values of Q,, are
reached. This effect is more remarkable for greater values of the pile slenderness ratio
L/d and as 1/0 grows.
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Ficure 5.22: Influence of the pile-soil Young’s modulus ratio E,/ Es. Effective period T/T,
damping ratio £ and maximum structural response value @,, for 2 x 2 pile groups with
L/b=2,0=0.15,£ = 0.05 and & = 0.05.
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Ficure 5.23: Sketches of the pile group configurations corresponding to the cases ana-
lysed in figure 5.22 when considering d = cte.
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5.11 Influence of fixed-base structure damping ratio

Figure 5.24 shows how the variation of the fixed-base structure damping ratio influ-
ences the effects of SSI on the system dynamic response. It can be observed that this
parameter has no influence on the system effective period 7/7. However, as expected, it
affects the system effective damping &, that reaches greater values as ¢ increases. This
effect becomes more remarkable for greater values of the wave parameter o. By contrast,
its influence is negligible when 1/0 > 0.4. These variations of the system effective damp-
ing lead to increasing values of (),,, as the fixed-base structure damping ratio £ decreases.
Furthermore, greater values of the structural slenderness ratio h/b imply a wider range
of the parameter o where the variation of £ has a significant influence.

For the results provided in this work, it is assumed that £ = 0.05 because this value is
representative for typical buildings and it has been used in previous works (e.g. [7,14]).

h/b=1 h/b=2 h/b=5 h/b=10

T
(3]

0.35

0.05 [

25

20 1t 1t 1t

15 1t 1t 1t

00 01 02 03 04 05 01 02 03 04 05 01 02 03 04 05 01 02 03 04 05
1/o 1/o /o 1/o

Ficure 5.24: Influence of the fixed-base structure damping ratio §. Effective period T /T,
damping ratio £ and maximum structural response value @,,, for a 3 x 3 pile group with
L/d=30,L/b=2,8§=0.15, E,/Es; = 103 and & = 0.05.
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5.12 Influence of mass density ratio

With regard to the mass density ratio between structure and supporting soil ¢, it
should be mentioned that this is a parameter which has a relevant influence on the
system response. Figure 5.25 shows that the decrease of § implies an increase of the
system stiffness, which leads to lower values of effective period 7/T and damping ¢ and,
consequently, higher values of ),, are reached. The effects associated to SSI become
more remarkable as the structural slenderness ratio h/b increases. Nevertheless, as
mentioned before, the value considered herein (§ = 0.15) is representative for typical
buildings and soils and it has been adopted in previous works by other authors such as
Avilés and Pérez-Rocha [14] or Veletsos and Meek [7].
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Ficure 5.25: Influence of the mass density ratio between structure and supporting soil
J. Effective period 7'/T, damping ratio £ and maximum structural response value @, for
a 3 x 3 pile group with L/d =15, L/b =2, E,/E; = 10 and &, = 0.05.
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5.13 Conclusions

In this chapter, an analysis of the SSI effects on the period and damping of pile-
supported structures is accomplished. For this purpose, the simplified and stable pro-
cedure presented in chapter 2 has been used to determine the dynamic properties of a
SDOF system which reproduces, as accurately as possible, the coupled system response
within the range where the peak response occurs. The coupled-system response is ob-
tained by using a substructuring model in which the structure is considered as a SDOF
shear structure that represents, from a general point of view, one mode of vibration of
multi-storey buildings. Both, dynamic and kinematic interaction effects are included
in the analysis of this coupled system. Impedances and kinematic interaction factors
of the pile group configurations studied in this work, are calculated using a BEM-FEM
methodology outlined in section 3.5.

Results for 21 different configurations of pile groups are obtained in order to accom-
plish an analysis of the influence of the main parameters of the problem for these cases.
All the results obtained herein have a dimensionless character, thus their physical in-
terpretation must be carefully done and requires a specific data processing taking into
account the influence of every dimensionless parameter.

The conclusions extracted from the analysis are detailed in sections 5.4 to 5.12, and
they are consistent with those drawn in relevant literature for embedded foundations.
The main conclusions are summarised below:

¢ Piles configurations which imply stiffer foundations yield a reduction on the effec-
tive period of the coupled system: larger number of piles (figure 5.12) or embedment
ratio (Figure 5.17), and lower pile slenderness ratio (figure 5.14). The obtained re-
sults show that this conclusion is not applicable for short and squat buildings, case
in which the opposite occurs.

* The effective damping increases with the foundation stiffness (see figures 5.12, 5.14
and 5.17).

¢ Slender buildings as well as soft soils magnify the SSI effects for a particular con-
figuration. This trend can be reversed for very stiff foundations or very short and
squat buildings (see figure 5.9).

¢ The effective damping for slender buildings is close to that corresponding to fixed-
base condition or lower. For short or medium-height buildings (h/b < 5), the ef-
fective damping increases as o decreases and this effect becomes more relevant for
stiffer piles configurations (see e.g. figures 5.12 and 5.17).

* As the influence of the SSI effects increases, the maximum shear force at the base
of the structure remains lower than that corresponding to fixed-base condition for
buildings with 2/b < 2 in all configurations studied. For larger values of the struc-
tural slenderness ratio, the maximum shear force increases when these effects are
considered (see e.g. figure 5.14). Stiffer foundations yield lower shear forces if
h/b < 5 (see e.g. figure 5.12). However, for greater slenderness, the results show
variations in the trend that depend on the parameter analysed.

162 SS| effects on the dynamic response of piled structures | SIANI University Institute



Seismic behaviour of structures supported on vertical pile groups 5

¢ The foundation horizontal displacement and rocking increase for softer soils as well
as for more flexible geometric configurations (see e.g. figures 5.14 or 5.17).

* Lower values of the pile-soil Young’s modulus ratio E,/E; result in an increase
of the foundation stiffness which leads to lower values of the effective period and
greater values of the effective damping.

* Anincrease of the mass density ratio 6 implies greater values of the system effective
period and damping.

¢ The effective period is not affected by variations of the fixed-base structure damping
ratio £. However, the influence of this variation on the effective damping is more
important as the wave parameter increases.

¢ In a significant number of cases, the system dynamic response is subestimated
when neglecting the cross-coupled impedances.

¢ The results computed without considering the kinematic interaction effects are not
on the side of safety except for those corresponding to non-slender structures 7 /b <
1.

Results in terms of period 7/7 and damping ¢ for different pile configurations are

provided in ready-to-use graphs that can be used to build modified response spectra that
include SSI effects.
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6.1 Introduction

The procedure explained in section 2.9 is applied herein to clarify whether the use
of battered piles has a positive or a negative influence on the seismic response of the
superstructure. In this line, the dynamic response of linear shear structures founded
on square pile groups comprising inclined piles embedded in homogeneous viscoelastic
half-spaces and subjected to vertically incident S waves is evaluated. Such influence is
measured here in terms of the effective system period 7/7 and the maximum shear force
at the base of the structure per effective earthquake force unit Q,,, [7,114]. Moreover,
results in terms of effective period and damping are used to build modified response spec-
tra for different values of the rake angle. Results for different soil-foundation-structure
systems as that described in section 2.3, are studied in this chapter.

Firstly, the cases under investigation are defined in section 6.2. Then, in section 6.3,
the influence of the rake angle # on the system effective period 7//7 is studied. After-
wards, section 6.4 addresses an analysis on how the variation of the rake angle affects
the maximum shear force at the base of the structure per effective earthquake force unit
Q- The influence of inclining piles on the dynamic response of the superstructure is
analysed in section 6.5 from modified response spectra which consider SSI. Finally, the
main conclusions drawn from the analysis of the results obtained for the cases under
investigation are summarised in section 6.6.

6.2 Configurations under investigation
The square pile group configurations considered in the study addressed in this chap-
ter were defined in section 4.8. The dimensionless parameters characterizing the geom-

etry of these configurations are listed in table 6.1.

TasLE 6.1: Configurations of pile groups comprising inclined piles.

L/b LJd s/d

2x2 3x3
7.5  3.75 2.5
2 15 7.5 )
30 15 10

A boundary element (BEM)- finite element (FEM) coupling formulation [49,71,120],
outlined in section 3.5, has been used to obtain numerically impedances and kinematic
interaction factors for all the pile group configurations under investigation. The obtained
results are depicted and analysed in section 4.9.

As done in chapter 5 for the case of vertical piles, it is assumed that 6 = 0.15; m,/m =
0; 0 < 1/o < 0.5; h/b = 1,2,5,10; £ = 0.05; & = 0.05 and v; = 0.4. These values
are representative for typical buildings and soils [14, 122]. Moreover, E,/FE; = 103 and
ps/pp =0.7.

The range of values considered in this study for 1/0 covers most real cases as shown
by Stewart et al. [122], who provide empirical results for SSI effects for 57 building sites
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covering a wide range of real structural and geotechnical conditions. Most of those cases
show values of 1/0 between 0 and 0.3.

6.3 Influence of rake angle on the system effective period

Figures 6.1 and 6.2 present 7/T as a function of 1/o for different rake angles 6, which
illustrates the influence of the rake angle on the system effective period for the different
configurations of 2 x 2 and 3 x 3 pile groups under study. Discrete points to be read on
the right axis provide a zoomed view in those cases in which it is necessary.
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Ficure 6.1: Effective period 7/T for different 2 x 2 pile groups. E,/E; = 1000 and &, =
0.05. L/d(s/d) = 7.5(3.75),15(7.5),30(15). h/b = 1,2,5,10. Solid lines to be read on left
axis. Dotted lines to be read on right axis when a zoomed view is needed.

For short and squat buildings (h/b = 1), in which the horizontal displacement is the
controlling factor, the system period decreases for higher rake angles. This is because
an increment of the rake angle leads to an increase of the horizontal stiffness due to the
contribution of the pile axial stiffness to withstand the lateral loads. This effect can be
observed in figures 4.33 and 4.34 which depict, impedances of three different 2 x 2 and
3 x 3 pile groups, respectively, with L/d = 7.5, 15 and 30.

In the case of slender structures (h/b = 10), the effect of the rake angle on the sys-
tem period depends on the variation of the rocking stiffness as well. An increment of
the rake angle generally leads to a decrease of the rocking impedance (second row in fig-
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Ficure 6.2: Effective period 7/T for different 3 x 3 pile groups. E,/Es = 1000 and & =
0.05. L/d(s/d) = 7.5(2.5),15(5),30(10). h/b =1,2,5,10. Solid lines to be read on left axis.
Dotted lines to be read on right axis when a zoomed view is needed.

ure 4.33). This results from the fact 