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Abstract—The aim of this work is to study several strategies
for the preservation of flow discontinuities in variational optical
flow methods. We analyze the combination of robust functionals
and diffusion tensors in the smoothness assumption. Our study
includes the use of tensors based on decreasing functions, which
has shown to provide good results. However, it presents several
limitations and usually does not perform better than other basic
approaches. It typically introduces instabilities in the computed
motion fields in the form of independent blobs of vectors with
large magnitude.

We propose two alternatives to overcome these drawbacks:
first, a simple approach that combines the decreasing function
with a minimum isotropic smoothing; second, a method that looks
for the best parameter configuration that preserves the important
motion contours and avoid instabilities. It relies on the input
images and the regularization parameter. It is fully automatic,
providing a near-optimal value for many sequences, as shown in
the experiments. Both proposals allow to detect the contours of
the motion field and produce more stable solutions for a large
range of parameters. In the experimental results, we present a
detailed study and comparison of the different strategies.

Index Terms—Optical Flow, Discontinuity-preserving, Matrix-
value Diffusion.

I. INTRODUCTION

THE preservation of motion discontinuities is a traditional
problem in variational optical flow methods, for which a

reliable solution does not exist yet.
After the seminal work of Horn and Schunck [1], many

works have emerged to solve this problem. Earlier solutions
rely on directional information [2], [3] to steer the regular-
ization according to image structures. In this line, and more
recently, some methods, [4]–[6], combine diffusion tensors
with robust functionals in order to avoid oversegmenting the
flow field. It is also typical the use of anisotropic diffusion,
[7]–[11], to reduce the effect of outliers and produce sharp
motion edges.

Another alternative is to mitigate the diffusion at image
contours by means of exponential functions [12]. This strategy
is simple to implement, and it is currently used in many
works in combination with robust functionals [13]. Other
smoothing strategies include bilateral filtering [14] or non-
local regularizations, like in [15] and [16].

All of these strategies present different difficulties to deal
with motion contours. In many cases, it is challenging to chose
the correct parameters that provide the best results.
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Fig. 1. Instability problem. Top row: sequence of a moving taxi and the
solution obtained with the Brox et al. [10] method. Bottom row: instabilities
appearing in discontinuity-preserving methods due to a wrong parameter
setting (with the color scheme used to represent the motion fields in the
upper-right corner) and an example of well-preserved discontinuities in the
optical flow.

In this work, we analyze the behavior of several regular-
ization strategies. In particular, we are interested in the com-
bination of robust functionals and diffusion tensors, including
the use of decreasing functions. The main benefits of these
approaches are well known: they create piecewise-continuous
motion fields, dealing with outliers and textured areas.

One of the problems of using decreasing functions, in the
smoothness process, is that they easily introduce instabilities
in the computed flow fields [17]. Figure 1 depicts an example
of this situation. We observe blobs around the object contours
in the bottom left image. The last image shows a good example
when the parameter is correctly chosen.

However, most of the methods assign an empirical value
to the parameters. Unfortunately, the configuration that better
preserves discontinuities are prone to produce instabilities.
These appear because the smoothness process is canceled at
high image gradients.

We propose two mechanisms for avoiding these instabilities,
which also facilitate the parameter choice. Our first approach
ensures a minimum isotropic regularization. This is simply
achieved by using a small constant in addition to the decreas-
ing function. A similar idea was introduced in [18] but, in that
case, the regularization was carried out for each component of
the optical flow independently. This strategy allows to respect
the motion discontinuities and is much more stable than the
basic scheme.

The second approach automatically computes a parameter
value that avoids stopping the diffusion. It is calculated from
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the gradient of the image and the regularization parameter. The
benefit is that it is automatically adapted to the image range,
at the same time that it preserves the motion contours with
high accuracy.

We also analyze a scheme similar to the robust diffusion
tensors proposed in [5] or [6]. The diffusion across image
contours is controlled with a robust decreasing function and
maintained along the isocontours of the objects. In this case,
the method is very stable with respect to the anisotropic
parameter.

This work follows our previous conference articles [17],
[19]. The new contributions are, on the one hand, the compar-
ison of all the strategies together, including the new method
based on the robust diffusion tensor. This covers a represen-
tative set of discontinuity-preserving diffusion classes. On the
other hand, we have also improved our proposal in [19], with
a more reliable way of estimating the decreasing parameter.
This allows detecting motion discontinuities in a more robust
way. Other contributions are the extensive validation and
justification of these approaches in the theoretical framework
and experiments. We have also extended our method to mul-
tichannel images.

In Sec. III, we introduce the energy model and the different
regularization strategies used in our study. Our energy func-
tional derives from the Brox et al. [10] method and introduces
a diffusion tensor. We explain each proposal in detail. The
experimental results, in Sec. IV, deepen in the study of the
different methods and the new proposals. Finally, a summary
of the main ideas and conclusions in Sec. V.

II. RELATED WORK

Many ideas for preserving the optical flow contours come
from the field of image denoising and regularization. For
instance, Perona and Malik [20] proposed an anisotropic model
for regularizing an image while preserving its discontinuities.
On the other hand, Rudin, Osher and Sethian [21] proposed
to minimize the Total Variation (TV) of an image with an
attachment to the original image. This leads to a diffusion
equation that reduces the image noise, yielding sharp edges.
Some improvements on the Perona–Malik model are given in
Black et al. [22]. This establishes the relation between this
type of anisotropic diffusion processes, robust statistics and
the minimization of energy functionals.

A review on different strategies for diffusion filtering in
image regularization and restoration is in [23], [24]. The author
introduces the theory underlying the use of diffusion tensors
in image filtering, e.g., the structure tensor [25]. Another
source of inspiration, for discontinuity-preserving in optical
flow, is related with bilateral filtering, introduced by Tomasi
and Manduchi [26]. In this case, the idea is to regularize an
image using the information of the pixels that are near the
actual position and have similar intensities or colors.

In the field of motion estimation, one of the former ap-
proaches to deal with discontinuities is due to Nagel and
Enkelmann [2]. In this case, the regularization process is
steered by a diffusion tensor that depends on the image
gradient. Proesmans et al. [7] introduced the Perona–Malik

[20] anisotropic scheme in the estimation of optical flow. In
a similar way, Black and Anandan [8], [27] used this type
of anisotropic regularization, establishing the relation with
robust statistics. They also extended the use of these type
of functionals to the whole energy terms, turning the method
more robust against outliers. They showed that this strategy
deals with image noise at the same time that it preserves
flow edges. On another hand, a TV scheme, like in [21], was
introduced in optical flow by Cohen [9].

The method by Alvarez et al. [12] introduced a decreasing
function to inhibit the smoothing at image contours. More
recently, several methods use this kind of mitigating strategy in
combination with robustification functionals, such as in [28],
[29]. These type of smoothing strategies are the main focus
of our study.

The use of continuous L1 functionals was generalized
in [10]. On the other hand, non-continuous L1 functionals
have also been used in Zach et al. [11] relying on a dual
formulation, which yields a very efficient numerical scheme.
Although these approaches are similar, they provide very
different results, as can be seen in the online works [30] and
[31], respectively.

Some examples in the use of diffusion tensors with robustifi-
cation functions are given in [6], [32]. In this case, the authors
introduce a motion tensor in the data term and a regularization
tensor in the smoothness term, which are designed in a similar
way. These take into account not only the variation of image
intensities but also the variation of image gradients. It uses a
quadratic penalizer for the diffusion along the contours, while
a Perona-Malik diffusivity is used for mitigating the diffusion
across flow edges. A similar strategy has also been used in [5],
using the robust Huber norm.

The idea of bilateral filtering has been introduced in optical
flow by Yoon and Kweon [33] and Xiao et al. [14]. In this
case, the authors propose to regularize the flow field depending
on the proximity and similarity of the intensities and flow
values. In fact, this has to be seen as an extended trilinear
filtering. Bilateral filtering has been used more recently, in
combination with a TV-L1 approach, in [15]. Bilateral filtering
is very similar to using decreasing functions based on the
image gradient. The main difference is the use of non-local
information.

Additionally, the use of weighted median filters [34], as a
post-processing step, allows to preserve fine motion details.
However, it is very slow and is somehow redundant with
respect to the regularization process.

There exist other strategies for improving the flow discon-
tinuities. For instance, some authors propose to compute the
optical flow at the same time that the objects or the motion
are segmented [35]–[37]. The segmentation provides more
information about the edges.

III. THEORETICAL FRAMEWORK

Given two multi-channel images, Ic1 , I
c
2 : Ω ⊂ R2 → Rc,

{Ic}c=1,...,C and C the number of channels, the optical flow,
w = (u(x), v(x))T , puts in correspondence the pixels of the
first image with the pixels of the second, with x = (x, y)T ∈
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Ω. Functions u(x) and v(x) are the horizontal and vertical
displacements, respectively.

Variational optical flow techniques rely on a global energy
functional. Standard approaches typically include an attach-
ment, A, and a regularization term, R, as follows:

E(w) =

∫
Ω

A (I1, I2,∇I1,∇I2,w)dx

+ α

∫
Ω

R (∇I1,∇u,∇v)dx. (1)

In our case, the attachment term reads as

A (I1, I2,∇I1,∇I2 , w) := Ψ

(
C∑
c=1

(Ic2(x + w)− Ic1(x))
2

)

+ γΨ

(
C∑
c=1

|∇Ic2(x + w)−∇Ic1(x)|2
)
,

(2)

with Ψ(s2) =
√
s2 + ε2 and ε := 0.001 a small constant.

The regularization term is responsible for the continuity of
the computed optical flow. In the next section we study several
strategies.

A. Regularization strategies

We compare six diffusion schemes: Brox et al. [10], Nagel-
Enkelmann [2], a robust anisotropic diffusion tensor (in the
same way as [5]) and three variants of R (∇I1,∇u,∇v) :=
Ψ
(
g(|∇I1|) ·

(
|∇u|2 + |∇v|2

))
.

Table I shows some well known regularisers in the
literature, their formulation and their main features.
In Zimmer et al. [6], the regulariser is decomposed
in eigenvalues (µ1, µ2) and eigenvectors (r1, r2) of
the following structure tensor: Rρ :=

∑3
c=1Kρ ∗[

θc0
(
∇2I

c∇T2 Ic
)

+ γ
(
θcx
(
∇2I

c
x∇T2 Icx

)
+ θcy

(
∇2I

c
y∇T2 Icy

))]
.

1) Brox approach:

R (∇u,∇v) := Ψ
(
|∇u|2 + |∇v|2

)
.

The Brox method proposes a robustification variant of the
Horn-Schunck regulariser. The Total Variation function creates
piecewise and continuous motion regions, but, at the same
time, it creates rounded and dislocated contours.

In Fig. 2 we can see the effect of robustification and how the
diffusion process is cut off with respect to the Horn-Schunck
flow field.

2) Regularization with decreasing scalar functions (DF):

R (∇I1,∇u,∇v) := Ψ
(
e−λ|∇I1| ·

(
|∇u|2 + |∇v|2

))
.

This approach combines Total Variation and a decreasing
function for mitigating the regularization at object contours.

We can increase the smoothing strength, in order to obtain
more continuous flows, at the same time that it respects motion
edges. Nevertheless, this decreasing function may cancel the
smoothing term, creating instabilities in the flow field [17].

3) Regularization with decreasing scalar functions and con-
stant diffusion (DF-β):

R (∇I1,∇u,∇v) := Ψ
(

(e−λ|∇I1| + β) ·
(
|∇u|2 + |∇v|2

))
.

One way to overcome the instabilities that may generate
the DF strategy, is to introduce a constant β, to ensure a
minimum diffusion. As a consequence, the smoothness term
is not completely canceled. A deeper study of this approach
is realized in [17], where an empirical value for this constant
was established as β = 0.001. We use this setting in our tests.

4) Regularization with automatic setup of decreasing scalar
functions (DF-Auto):

R (∇I1,∇u,∇v) := Ψ
(
e−λπ|∇I1| ·

(
|∇u|2 + |∇v|2

))
.

This is the second mechanism to improve the DF stability.
This scheme differs from DF in that the value of the parameter
λauto is automatically computed. The idea is to adapt its value
when we detect a possible instability.

The minimization of (1), with the regularisers proposed in
this work, provides a solution in the form

0 =∂uA− α div (Ψ′ · ∇u) ,

0 =∂vA− α div (Ψ′ · ∇v) .

The instability normally arises when α·Ψ′ ∼= 0. The amount
of diffusivity is, thus, given by

α ·Ψ′ =
α · e−λ|∇I1|√

e−λ|∇I1| · (|∇u|2 + |∇v|2) + ε2
.

This situation can be easily detected by checking if the
numerator is close to zero. Then, one way to avoid instabilities
is to ensure the following condition:

αe−λ|∇I1| ≥ ξ > 0, (3)

with ξ a small constant to avoid the cancelation of the diver-
gence term. In our experiments, we fix its value to ξ := 0.05.
Therefore, we may calculate λ at the beginning of the process,
to ensure this condition. Note that the gradient of the image
is a function of x. Then, from (3) we deduce a value of λ for
each position as

λ(x) :=
− ln(ξ) + ln(α)

|∇I1(x)|
,

with |∇I1(x)| = max
c
{|∇Ic1(x)|}.

When the magnitude of the gradient is close to zero, λ tends
to ∞. In this way, the pixels located in homogeneous regions
are considered as image edges. Thus, it is necessary to define
a threshold that discriminates when a pixel belongs to an edge
or not.

We propose to calculate λπ in each pixel as

λπ = min{λΩ, λ},

with

λΩ :=
− ln(ξ) + ln(α)

f(∇I1)
, (4)
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TABLE I
SUMMARY OF REGULARIZATION STRATEGIES. I, THE IDENTITY MATRIX. g(·) A DECREASING FUNCTION. n = ∇I1

|∇I1|
AND n⊥ ITS ORTHONORMAL

VECTOR. ROBUSTIFICATION CAN BE APPLIED TO ’all’ OR ONLY n,n⊥ DIRECTIONS. R IS THE REGULARISER.

Method Rotationally
Invariant

Robustification Norm R (∇I1,∇u,∇v)

Horn-Schunck [1] X - L2 |∇u|2 + |∇v|2

Zach et al. [11] - - L1 |∇u|+ |∇v|

Alvarez et al. [12] X - L2 g(|∇I1|) ·
(
|∇u|2 + |∇v|2

)
Brox et al. [10] X all L1 Ψ

(
|∇u|2 + |∇v|2

)
Xu et al. [29] - all L1 g(|∇I1|) · (|∇u|+ |∇v|)

Nagel-Enkelmann [2] X - L2 ∇uTZ∇uT +∇vTZ∇vT , Z =
∇I⊥1 ∇I

⊥T
1 +β2I

|∇I1|2+2β2

Sánchez et al. [38] X all L1 Ψ
(
∇uTZ∇uT +∇vTZ∇vT

)
Werlberger et al. [5] - all Huber-L1

∣∣(g(|∇I1|2)nnT + n⊥n⊥T
)
∇u

∣∣
ε

+
∣∣(g(|∇I1|2)nnT + n⊥n⊥T

)
∇v

∣∣
ε

Zimmer et al. [6] X n L1 Ψ
(
u2r1 + v2r1

)
+ (u2r2 + v2r2 ), (r1, r2) eigenvalues of a structure tensor

I1 I2 Ground truth

Horn-Schunck [1] Nagel-Enkelmann [2] Alvarez et al. [3]

N
on

-R
ob

us
t.

R
ob

us
t.

Brox et al. [10] RADT DF [17]

Fig. 2. Top row: two frames of the Shaman 2 sequence and its ground truth. Middle row: the flow fields obtained with the Horn-Schunck, Nagel-Enkelmann
and Alvarez methods. Bottom row: the solutions given by the Brox, a robust diffusion tensor and DF methods. We see how robustification techniques reduce
the influence of outliers and their combination with decreasing functions allows to obtain piecewise-smooth flow fields.

where f(∇I1) is a statistical function of the image gradients.
One possible alternative is

f1(∇I1) = τ ·max
x∈Ω
{|∇I1(x)|},

with τ ∈ (0, 1]. Another alternative is to rely on the histogram
of the gradient as

f2(∇I1) = |∇I1(x′)|,
with

τ :=

x′∑
x:=0
H (|∇I1(x)|)∑

x∈Ω

H (|∇I1(x)|)
,

with H (|∇I1(x)|) the histogram of the gradient and τ ∈
(0, 1].

In both cases, τ determines the conservative behavior of
λΩ. The first alternative, with τ := 1, was used in [19]. It
prevents the occurrence of instabilities, however, it restricts
the detection of less prominent motion contours. Varying the
value of τ allows to detect more discontinuities. Nevertheless,
it is difficult to fix a good parameter for all types of sequences,
as we can see on the left graphic in Fig. 3.

For the second alternative, we see on the right graphic in
Fig. 3 that the evolution with respect to τ converges and the
best results are bounded between 0.9 and 0.95 for all the
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Fig. 3. Average End Point Error (EPE) evolution with respect to τ using
the two strategies proposed for λ estimation, f1(∇I1) and f2(∇I1). We see
the evolution of the EPE error for several sequences. For the first proposal,
we see that the results are very stable. However, the second proposal is more
interesting, since the best τ is bounded between 0.9 and 0.95.

sequences. In this sense, τ can be considered as a constant
and we fix its value to τ := 0.94 in our experiments. Since
this strategy is more robust, due to the use of the histogram,
and less dependent on τ , this is the best of the two alternatives.
Therefore, we will use f2(∇I1) in the experiments.

Other approaches can be used, such as statistics based on
the the average or median values of the image gradients.

We must note that the value of the regularization parameter
α is influenced by the decreasing function and, therefore, by
the λ parameter. Thus, the automatic estimation of λ offers
an indirect benefit, which is a joint normalization with the
smoothness weight. In this sense, λ is adapted to the α value:
when it is small, the value of λ will be also small. Even, if
α is smaller than 1, the value of λ will become negative and
the exponential will turn increasing, which avoids canceling
the regularization term.

5) Robust anisotropic diffusion tensor (RADT):

R (∇I1,∇u,∇v) := Φ
((

nT∇u
)2

+
(
nT∇v

)2)
+
(
n⊥∇u

)2
+
(
n⊥∇v

)2
with Φ(s2) = 1

λ2 log
(
1 + λ2s2

)
.

This diffusion tensor resembles a robustification variant of
the Nagel-Enkelmann operator, with decreasing functions to
mitigate the diffusion across the boundaries of the objects. The
diffusion is performed unconditionally along the isocontours
while in the gradient direction it is modulated by a robustifi-
cation function.

The behavior of the diffusion tensors is depicted in Fig. 2.
We see how robustification techniques reduce the influence of
noise and allow to obtain piecewise-smooth flow fields.

The solution given by the Nagel-Enkelmann method im-
proves the Horn-Schunck solution at the edges, as can be seen
in the head of the girl.

Both, Brox and Nagel-Enkelmann methods, obtain
piecewise-smooth motion fields. However, the Nagel-
Enkelmann method cannot preserve discontinuities when the
gradient of the image is small, as we see in the beard and the
eyebrow. The Brox method detects both of them, although it
does not distinguish the hair tufts. The Total Variation tends
to smooth the flow destroying details. It also creates rounded
shapes in high curvature boundaries.

The flow fields obtained by the Alvarez and DF methods are
very similar. The most significant difference between them is
the magnitude of the flow, especially in the eyebrow and beard.
Furthermore, the robustification has allowed to detect discon-
tinuities with small image gradients. In the DF approach, we
see sharp discontinuities but small artifacts close to the old
man ear.

The solution obtained by RADT identifies the main objects
in the scene. However, it suffers the limitations of Nagel-
Enkelmann and the motion edges are not so clear as in the
Brox or DF flow fields. The discontinuities are not clearly
preserved due to the small gradients.

B. Minimizing the energy functional

The minimum of the energy functional (1) can be found
by solving the associated Euler-Lagrange equations. The data
term is given in (2) and the smoothing term is adapted to
the diffusion tensors presented in table II. Then, the Euler-
Lagrange equations are given by

0 = Ψ′B ·

(
C∑
c=1

Ic2(x + w)− Ic1(x)

)
· Ic2,x(x + w)

+ γΨ′G ·

(
C∑
c=1

(
Ic2,x(x + w)− Ic1,x(x)

)
· Ic2,xx(x + w)

+

C∑
c=1

(
Ic2,y(x + w)− Ic1,y(x)

)
· Ic2,xy(x + w)

)
− α div (D (∇I1,∇u,∇v) · ∇u) ,

0 = Ψ′B ·

(
C∑
c=1

Ic2(x + w)− Ic1(x)

)
· Ic2,y(x + w)

+ γΨ′G ·

(
C∑
c=1

(
Ic2,x(x + w)− Ic1,x(x)

)
· Ic2,xy(x + w)

+

C∑
c=1

(
Ic2,y(x + w)− Ic1,y(x)

)
· Ic2,yy(x + w)

)
− α div(D (∇I1,∇u,∇v) · ∇v), (5)

with Ψ′(s2) = 1
2
√
s2+ε2

. In order to simplify these equations,
we have used the following notation:

Ψ′B :=Ψ′

(
C∑
c=1

(Ic2(x + w)− Ic1(x))
2

)
,

Ψ′G :=Ψ′

(
C∑
c=1

|∇Ic2(x + w)−∇Ic1(x)|2
)
, (6)

and D (∇I1,∇u,∇v) the diffusion tensors shown in Table II.
In order to solve this system, we discretize the equations

using centered finite differences. Then, the system of equations
is solved by means of an iterative approximation, such as the
SOR method. Due to the nonlinear nature of these formulas,
the resolution of these equations requires two fixed point
iterations, in order to converge to a steady state. The warpings
of I2 are approximated using Taylor expansions.

These equations are embedded in a multiscale strategy
that allows to recover large displacements. Starting from the
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TABLE II
THE REGULARISERS ANALYZED AND THEIR DIFFUSION TENSORS, D. I REPRESENTS THE IDENTITY MATRIX. n = ∇I1

|∇I1|
AND n⊥ ITS ORTHONORMAL

VECTOR. Ψ(s2) =
√
s2 + ε2 , Ψ′(s2) = 1

2
√
s2+ε2

, Φ(s2) = 1
λ2 log

(
1 + λ2s2

)
AND Φ′(s2) = 1

1+λ2·s2 .

Method Z R (∇I1,∇u,∇v) D (∇I1,∇u,∇v)

Brox 1

Ψ
(
Z ·

(
|∇u|2 + |∇v|2

))
Z ·Ψ′

(
Z ·

(
|∇u|2 + |∇v|2

))
· I

DF e−λ|∇I1|

DF-β e−λ|∇I1| + β

DF-Auto e−λπ|∇I1|

RADT - Φ
((

nT∇u
)2

+
(
nT∇v

)2)
+

(
n⊥∇u

)2
+

(
n⊥∇v

)2
Φ′

((
nT∇u

)2
+

(
nT∇v

)2)
+ n⊥n⊥T

coarsest scales, we obtain a solution to the above system, and
then upgrade the value of the optical flow for the next finer
scale. We use motion increments, wk+1 = wk + dwk, so
that, in each scale, we compute each increment, dwk, and the
final optical flow is obtained as an accumulative value for all
increments. Details on the discretization of this scheme are
given in [10] or, more extensively, in [30].

IV. EXPERIMENTAL RESULTS

In order to demonstrate the hypotheses of our work, we
first analyzed the stability properties of each method. For this,
we selected representative sequences from several datasets
and studied the behavior of the methods with respect to the
discontinuity parameter λ (Sect. IV-A).

Then, we compared the methods and showed some visual
results where the differences and features of each one are
clearly noticeable (Sect. IV-B). This helps understand that
the effect of instabilities is not accidental but it appears very
frequently.

Finally, in Sect. IV-C, we carried out an extensive numer-
ical evaluation of the methods using the test and evaluation
sequences from the MPI-Sintel [39] and Middlebury [40]
benchmark databases, which allows us to show the results in
a more general setting.

The parameters were set according to [19] except for α, γ
and λ that were adapted in each experiment. The motion fields
are represented using the color scheme shown in Fig. 1. The
color represents the motion orientation while the intensity its
magnitude.

A. Analysis of the methods stability

In this section, we compare the average End-Point Error
(EPE) evolution with respect to λ. Figure 4 shows the results
for several sequences from the MPI-Sintel and Middlebury
datasets.

In these graphics, the error evolution of the DF method
is depicted with a blue line. We observe that it consistently
improves the Brox approach (λ := 0). The improvement is
remarkable in the graphics of Shaman 2, Bamboo 1, Urban3
or RubberWhale.

However, we see that the DF method is very unstable. The
errors increase very fast once the best solution is achieved.

From this point, the blobs seen in Fig. 1 begin to appear. For
Shaman 2, this strategy provides more stable results for a large
range of λ values. This sequence is very interesting because it
presents very bright and dark areas. This circumstance allows
increasing the parameter and still yielding good solutions.

In contrast, the DF-β approach (violet line) is much more
stable, presenting a smoother evolution. This is due to the
small constant (β) that prevents the regularization to get
canceled. In this sense, even with an extreme parameter,
its effects over the optical flow are quite similar. For most
of the sequences, it improves the results when DF strongly
deteriorates the solutions.

On the other hand, the DF-Auto proposal (red line) offers
results close to the best solutions obtained with the other expo-
nential schemes. This method controls the diffusion locally for
every pixel. This provides an efficient parameter that adapts
to homogeneous and discontinuous regions.

DF and DF-β use a unique parameter value for the whole
image. Thus, the control of the diffusion only depends on
the gradient strength. Interestingly, the DF-Auto strategy ad-
justs λ for being less incisive in areas with low gradients
and strengthen the decreasing function in zones with strong
variations.

Finally, the RADT error evolution is depicted with a green
line. In this case, we have used a range for λ ∈ [0, 50] and we
have normalized the results between [0, 1] to fit into the graph-
ics. Note that, when λ := 0, the regularization becomes the
Horn-Schunck approach. This is the reason why the starting
error is usually bigger than the other strategies. However, this
scheme is the most stable: the best errors remain almost con-
stant for large values of λ. This is reasonable, because, unlike
the other schemes, there always exists a regularization along
the isocontours of the objects. For a sufficiently large value of
λ, the robustification function cancels the regularization across
the borders of the object. Then, the results only depend on the
isocontour smoothing, which is always the same regardless of
λ.

From these results, we may conclude the following: The
basic DF scheme turns unstable very fast from a given λ
value. The range of interest values is very small in practice.
The DF-β provides better stability results in general at the
same time that it preserves the accuracy of the basic method.
In some cases, it yields improved results. Due to its simplicity,
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Fig. 4. Average End Point Error (EPE) evolution with respect to λ for MPI-
Sintel and Middlebury sequences. The use of decreasing functions improves
the solutions obtained with the Brox approach (λ := 0). In general, the
DF method is very sensitive to λ, whereas the DF-β and RADT approaches
are more stable, requiring a minimum setup. The DF-Auto method is close to
the best result for most of the sequences.

this approach is preferable with respect to the DF technique.
The DF-Auto is very reliable and, in most cases, it provides
results which are near the best solutions. On the other hand,
the RADT method is very stable and does not produce insta-
bilities in general. This is a very interesting feature, however,
the accuracy is typically worse. The use of more advanced
techniques, like in [6], may turn this method more competitive.

B. Comparison of the methods

The first row of Figs. 5, 6, 7 and 8 show several sequences
and their EPE graphics with respect to λ. The second and third
rows show the different flow fields and the ground truth.

We observe that the Brox method does not usually detect
correct motion contours. The flow discontinuities are in gen-
eral not aligned with the object contours, as we can clearly
see in the Rectangles test. In this case, the method cannot
distinguish between the two rectangles. We also observe that
it has problems with the leafs in Grove2 and the hair tufts of

Original Image Stability analysis (EPE)
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 0.52  1

λ

 

 

 

 

 

Ground Truth Brox RADT

DF DF-β DF-Auto

Fig. 5. First row: The Rectangles sequence and its EPE graphic with respect
to λ. Second row: the ground truth and the solutions obtained with Brox and
RADT methods, respectively. Third row: DF, DF-β and DF-Auto solutions.
The DF detects the discontinuities but introduces some instabilities. The DF-
β and DF-Auto variants eliminate these instabilities but create slightly rounded
flows. The RADT approach creates straight edges but these are not so sharp.

the woman in Alley 1.
This situation is ameliorated with the other schemes, prin-

cipally in Fig. 5, where the other approaches achieve very
accurate edges.

These four figures are a good example of the high paramet-
ric dependence of the DF method. We observe that numerous
flow instabilities appear with this approach, while the others
provide a reasonable quality. In fact, the solution of our first
proposal is quite similar to the DF method, but with an
important reduction of blobs.

For comparing the stability of DF, DF-β and RADT, we
have intentionally taken a value of λ which is slightly bigger
than its optimal value. This is represented by the vertical lines
in the graphics and the X marks. Note that these points do
not always appear for the DF graphic because the error is
normally too big.

On the other hand, the RADT scheme offers good solutions.
Nevertheless, we observe that the diffusion is not completely
stopped at the object contours, especially at the skyline in the
Yosemite sequence; Fig. 6. This phenomenon is similar to the
Shaman 2 sequence, Fig. 2, where the small gradients do not
allow to steer the diffusion process conveniently. We can also
see a good result in Fig. 8. The method correctly detects the
woman arm and the apple in her hand.

Figure 7 offers an interesting issue that we must consider:
According to the graphic, the gain with respect to the Brox er-



8

Original Image Stability analysis (EPE)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.68  1

λ

 

 

 

 

 

Ground Truth Brox RADT

DF DF-β DF-Auto

Fig. 6. First row: Yosemite sequence and its EPE graphic with respect to
λ. Second row: the ground truth and the solutions obtained with Brox and
RADT methods, respectively. Third row: DF, DF-β and DF-Auto solutions.
The flow field obtained by Brox visually resembles the ground truth, except
in the skyline and the mountain discontinuities. The textures in the mountains
create slightly segmented flows in the other methods. DF also introduces
instabilities in high gradient regions. DF-β and DF-Auto eliminate these
instabilities. RADT provides a good flow except in the skyline.

ror is not remarkable using the other approaches. Nevertheless,
they show a better contour definition but with some small
instabilities. These failures worsen the average error of the
whole flow. For this reason, it is possible that a motion field,
with better edges, may present a similar error.

From these experiments, we may conclude that this type of
discontinuity-preserving strategies offers a precise definition of
motion contours only if the parameters are correctly chosen.
Otherwise, this strategy could provide poorest results than the
Brox approach and may turn unstable. Interestingly, our two
proposals yield good optical flows with more stable solutions
for a large range of parameters. These two features make both
proposals very interesting for real applications.

In summary, we observe the same behavior as in the previ-
ous section. From the Rectangles sequence we can appreciate
the limitations of the Brox method and the benefits of using
the other strategies. The motion contours are much better
preserved even though the EPE errors are not so different with
respect to Brox. The graphics show the instability problems
of the DF method and we can clearly see the blobs in the
flow images. This means that there is a correlation between
the choice of λ, the appearance of instabilities and the increase
of EPE errors. The RADT method preserves good motion
discontinuities but the flow field is smoother than DF-β and
DF-Auto. However, the latter still introduce some instabilities
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Fig. 7. First row: Grove2 sequence and its EPE graphic with respect to
λ. Second row: the ground truth and the solutions obtained with Brox and
RADT methods, respectively. Third row: DF, DF-β and DF-Auto solutions. In
constrast to the Brox method, the discontinuity-preserving strategies offer an
accurate flow at motion edges. In general, the behavior is similar to Yosemite
in Fig. 6.
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Fig. 8. First row: Alley 1 sequence and its EPE graphic with respect to
λ. Second row: the ground truth and the solutions obtained with Brox and
RADT methods, respectively. Third row: DF, DF-β and DF-Auto solutions.
The main differences are located in the woman arm and in the apple.

around the contours, probably at occluded regions, which are
not present at RADT.



9

TABLE III
AVERAGE EPE FOR THE TEST SEQUENCES OF Middlebury AND Sintel

TRAINING DATASETS

λ Middlebury Sintel-final Sintel-clean
IPOL-Brox [30] - 0.326 7.823 5.062
DF 0.1 0.294 7.995 5.195
DF 0.3 0.326 9.048 6.312
DF 0.5 0.559 10.467 7.903
DF-β 0.1 0.295 8.035 5.190
DF-β 0.3 0.292 8.643 5.823
DF-β 0.5 0.312 9.194 6.405
DF-Auto - 0.298 8.429 5.929

TABLE IV
BEST AVERAGE EPE FOR THE EVALUATION SEQUENCES OF Middlebury

DATASET

Average EPE Rank
OFH [6] 0.360 41.0
EpicFlow [41] 0.3925 54.3
DF-β 0.4450 68.7
DF-Auto 0.4563 66.9
Brox [10] 0.5013 68.3
TV-L1-improved [42] 0.5438 62.7
LDOF [43] 0.5613 79.2

C. Numerical results

Next, we present numerical results using the complete
datasets of Middlebury and Sintel. Table III shows the average
EPE, using different λ values for DF and DF-β. We observe
that the best average error for Middlebury is achieved by DF-
β with λ = 0.3. Interestingly, the error does not strongly
varied for the other λ values. On the other hand, DF attains
its best result at λ = 0.1. However, the error considerably
increases for the other values. DF-Auto scheme obtains a good
solution close to the best error. This behavior is similar for
the exponential approaches using the Sintel dataset. However,
Brox presents better numerical errors despite of its worst
behaviour at motion contours (see Fig. 10).

In Table IV, we compare our strategies with some of the
methods presented in the Middlebury ranking. We have chosen
the techniques that are somehow related to our approaches.
However, note that these are usually much more complex and
it is difficult to draw clear conclusions. We see that the results
of DF-β and DF-Auto are better than Brox. In Figure 9, we
show the computed flows for three sequences. We observe that
the DF-Auto method preserves the contours of the moving
objects, even better than OFH and EpicFlow in many cases.
However, we see that the errors at the occlusions are bigger.
This is reasonable because the method does not include any
mechanism to deal with this problem.

In Tables V and VI, we show the errors for each sequence of
the test dataset of Sintel, which are published on the web page.
We compare with other related methods, such as EpicFlow,
LDOF, Horn and Schunck and IPOL-Brox. We observe that,
as in the previous table, the methods achieve similar results.
The proposed methods present competitive results despite of
their simplicity. We also notice that the DF scheme required
much more training to obtain a suitable configuration, whereas
DF-β and DF-Auto did not.

In Tables VII and VIII, we show the global errors. In

TABLE V
RESULTS BY SEQUENCE ON THE MPI Sintel Clean TEST SUBSET

Epic
Flow

LDOF HS IPOL-
Brox

DF DF-β DF-
Auto

P. Market 3 0.807 1.177 1.450 1.191 1.263 1.263 1.468
P. Shaman 1 0.501 1.612 1.895 1.857 1.649 1.651 1.581
Ambush 1 9.037 34.70 32.97 20.63 22.65 22.69 33.44
Ambush 3 5.657 8.960 10.60 9.233 9.391 9.325 9.880
Bamboo 3 1.030 1.036 1.339 1.106 1.237 1.228 1.344
Cave 3 5.075 7.550 12.41 8.635 8.923 8.929 11.40
Market 1 2.211 3.233 4.650 4.456 4.396 4.392 5.820
Market 4 22.05 38.43 42.94 37.99 38.18 38.06 40.79
Mountain 2 0.225 1.179 0.233 1.025 1.028 1.028 1.094
Temple 1 0.818 1.460 2.056 1.484 1.397 1.395 1.443
Tiger 0.630 1.254 1.064 0.954 1.101 1.097 1.134
Wall 4.330 5.372 6.950 6.554 6.419 6.418 6.375

TABLE VI
RESULTS BY SEQUENCE ON THE MPI Sintel Final TEST SUBSET

Epic
Flow

LDOF HS IPOL-
Brox

DF DF-β DF-
Auto

P. Market 3 1.290 2.832 2.118 2.057 2.003 2.002 2.080
P. Shaman 1 0.641 2.269 2.463 2.457 2.158 2.159 1.983
Ambush 1 35.18 44.96 40.55 44.92 43.59 43.69 45.50
Ambush 3 8.695 14.13 15.38 14.80 14.32 14.37 15.72
Bamboo 3 1.087 1.107 1.419 1.196 1.355 1.353 1.483
Cave 3 6.207 9.227 13.01 9.704 9.681 9.711 11.31
Market 1 3.150 4.179 5.397 4.809 4.758 4.753 5.401
Market 4 26.55 39.21 40.01 38.26 39.19 39.17 40.79
Mountain 2 1.646 1.618 1.544 1.691 1.767 1.766 1.905
Temple 1 1.295 1.606 2.069 1.741 1.846 1.841 1.909
Tiger 1.147 1.637 1.584 1.799 1.906 1.907 1.987
Wall 4.904 7.294 7.889 7.660 7.594 7.596 7.438

the Clean dataset, the IPOL-Brox method provides slightly
better results than the exponential strategies, whereas in the
Final set occurs the opposite. However, the differences are
not meaningful. DF-Auto results are slightly worse because of
the errors in a few sequences with very large displacements
and occlusions, like Ambush 1.

TABLE VII
RESULTS ON THE MPI Sintel Clean TEST SUBSET

Rank EPE
all

EPE
matched

EPE un-

matched

d0-
10

s40+

EpicFlow [41] 7 4.115 1.360 26.60 3.660 25.86
IPOL-Brox [30] 44 7.283 3.150 40.93 5.705 46.80
DF-β 46 7.391 3.153 41.89 5.492 47.84
DF 47 7.406 3.164 41.94 5.504 47.95
LDOF [43] 48 7.563 3.432 41.17 5.353 51.70
DF-Auto 53 8.480 3.945 45.40 6.445 56.78
HS [1] 55 8.739 4.525 43.03 7.542 58.24
AnisoHuber [5] 61 12.64 7.983 50.47 10.457 77.84

TABLE VIII
RESULTS ON THE MPI Sintel Final TEST SUBSET

Rank EPE
all

EPE
matched

EPE un-

matched

d0-10 s40+

EpicFlow [41] 9 6.285 3.060 32.56 5.205 38.02
LDOF [43] 46 9.116 5.037 42.34 6.849 57.30
DF 49 9.188 4.758 45.31 6.821 53.78
DF-β 50 9.196 4.765 45.33 6.829 53.88
IPOL-Brox [30] 51 9.198 4.869 44.48 6.856 53.96
HS [1] 53 9.610 5.419 43.73 7.950 58.27
DF-Auto 54 9.723 5.200 46.59 7.483 57.74
AnisoHuber [5] 60 11.93 7.323 49.37 9.464 74.80
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Figure 10 shows several optical flows. We see that DF-
Auto detects many details and contours in comparison with the
other methods. For instance, in the Wall sequence, it preserves
the details of the motion at the face and hair, and the flow
is not so regularized at the contours. In this case, EpicFlow
fails to detect the correct motion in two regions. In Perturbed
Shaman 1, EpicFlow provides good results at discontinuities.
DF-Auto also provides good results, better than LDOF and
IPOL-Brox. With Temple 1, it fails to detect the motion of the
little dragon. This is due to the problem of small structures
with large displacements, for which the pyramidal structure is
not suitable.

V. DISCUSSION

In this work, we studied several discontinuity-preserving
techniques in optical flow methods. Our study focused on the
use of decreasing functions and anisotropic diffusion tensors.
We analyzed the flow instability problems that arise when
decreasing functions are used in the regularization term. This
has led us to propose two efficient strategies to overcome this
situation.

In the experiments, we demonstrated the capabilities of
these strategies and the benefits and drawbacks with respect
to the Brox method. We showed their superior performance
at flow discontinuities. The experiments also showed that the
problem of instabilities is not anecdotal, since they usually
appear in any kind of sequence. The analysis of the error
evolution with respect to the discontinuity parameter demon-
strated that our proposals help to correct this problem. The
segmentation of the flow is better in general. The numerical
comparisons showed that the increase in accuracy is not so
relevant with respect to the Brox method. This is probably
due to the introduction of higher errors at occlusions.

Another advantage of these discontinuity-preserving strate-
gies is that they are very easy to implement. Our first proposal
has shown to be very stable, providing very competitive
solutions. Even, in many sequences, we have seen that it
consistently attains the best results. Nevertheless, it is still
necessary to choose the parameter.

The automatic approach computes the parameter that best
adapts to the varying range of image gradients. As we have
seen in the experiments, it provides solutions which are also
very competitive. Without any user intervention, it usually
obtains solutions which are close to the best results. Thus,
we may consider that this is the most reliable strategy.

One possible improvement is to combine both strategies. In
this case, we can choose a smaller τ in f(∇I1) (4), so that
we may detect more discontinuities. The use of β will still
ensure a good stability.

The use of robust anisotropic diffusion tensors, like in the
RADT method, also has an interesting behavior: It is very
stable and it hardly introduces any instability. This is due to the
fact that the regularization is always present in the isocontour
direction. It can also detect some details that the other methods
do not, such as in Alley 1 or Grove2. Its main drawbacks are
that the motion contours are typically smoother, the accuracy
is smaller than in the other strategies and it is a more complex
approach.

This kind of regularization schemes fails to detect all
the motion discontinuities if there exists a broad range of
image and flow gradients. In future works, we will investigate
more reliable ways of combining this information in order to
determine the correct flow discontinuities.
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Fig. 9. Comparison of flow fields obtained with OFH, EpicFlow, IPOL-Brox and DF-Auto methods using the Middlebury evaluation dataset.
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Fig. 10. Comparison of flow fields obtained with the Ground Truth, EpicFlow, LDOF, IPOL-Brox and DF-Auto methods using the Sintel Clean test dataset.
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