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Resumen

El aumento de la población envejecida conlleva más personas con enfermedades no transmisi-
bles asociadas al envejecimiento, como es la demencia, siendo la Enfermedad de Alzheimer
(EA) su forma más prevalente. El estado cognitivo en el Deterioro Cognitivo Leve (DCL)
está entre la EA y el cerebro sano [Petersen, 2004]. Afecta también a la memoria del paciente,
pero no a sus actividades diarias.

Ambas enfermedades constituyen el mayor reto sociosanitario al que se enfrentan nuestras
sociedades, siendo su diagnóstico y manejo, un problema complejo de la medicina cĺınica.
De hecho, actualmente el diagnóstico ante mortem de la EA no es posible, considerándose
únicamente el post mortem como certero. Como dichos diagnósticos carecen de fiabilidad y
certeza, investigadores de muy diversos campos han trabajado conjuntamente para tratarlo.
Una de las posibilidades ha sido el uso de herramientas de diagnóstico asistidas por com-
putador, o Computer-Aided Diagnosis (CAD). Dentro de ellas ha emergido la alternativa
basada en métodos computacionales, esencialmente los métodos de computación inteligente.
Y es en esta ĺınea donde hemos desarrollado esta tesis doctoral, la cual pretende alcanzar
los siguientes objetivos espećıficos, que pueden considerarse objetivos SMART (espećıficos,
medibles, asignables, realistas y relacionados con el tiempo), y que podrán desembocar en
posibles productos de transferencia tecnológica en el ámbito de la salud. Estos objetivos son
los siguientes:

1) Sistema de ayuda al diagnóstico de DCL basado en computación inteligente.
Incluye la caracterización del DCL, importante por ser una enfermedad dif́ıcil de diferenciar
de la EA debido a la similitud de sus śıntomas. Este sistema facilitaŕıa el diagnóstico
diferencial del DCL, especialmente relevante en Atención Primaria, ya que es donde los
pacientes o sus familiares acuden inicialmente. Para ello, consideramos necesario un
clasificador multiclase capaz de diferenciar a los sujetos sanos de los afectados por DCL.
Entre las múltiples opciones posibles, consideramos que dicho clasificador podŕıa basarse
en una Red Neuronal Artificial (RNA) h́ıbrida y ontogénica.

2) Sistema de ayuda al diagnóstico de EA basado en computación inteligente.
Tanto éste como el anterior son objetivos de gran interés cĺınico, ya que permitiŕıan
identificar los criterios diagnósticos representativos de ambas neuropatoloǵıas, aunque
este es especialmente deseable dado que la EA es la demencia más extendida. Al igual
que el anterior, ambos objetivos generan conocimiento no solo a nivel cĺınico, sino también
computacional. En este caso, la razón es que dicho sistema posiblemente se base en nuevos
modelos de arquitecturas neuronales con capacidad para trabajar con datos faltantes y
desequilibrados, y clasificación multiclase (EA vs. DCL vs. sanos). Esto coincide con
lo indicado por investigadores del ámbito biológico/cĺınico especialistas en este campo
[Petersen, 2004; Hampel et al., 2011]. Para ello, consideramos viable el uso de la fusión
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2 RESUMEN

de datos y las arquitecturas neuronales. Se desarrollarán nuevas arquitecturas neuronales
para mejorar el rendimiento de los sistemas actuales de aprendizaje automático.

3) Diseño y desarrollo de nuevas arquitecturas neuronales capaces de cumplir los requisitos y
abordar las tareas descritas en los objetivos anteriores.
Estas nuevas propuestas provendrán fundamentalmente de mejoras en arquitecturas
neuronales paradigmáticas. Deben ser capaces de impulsar el desarrollo de sistemas
inteligentes adecuados para el diagnóstico de DCL y EA. Estos sistemas no sólo deben ser
precisos y fiables, sino también fáciles de usar, accesibles y rápidos en el ámbito cĺınico, lo
que permitirá avances en la medicina traslacional.

4) Encontrar un conjunto de criterios de diagnóstico que sean suficientes y apropiados para
el diagnóstico diferencial de EA, DCL y cerebros envejecidos sanos.
Actualmente no existe un conjunto de criterios espećıficos (NINCDS-ADRDA, CAMDEX,
DSM-IV y ICD-10) que hayan sido ampliamente verificados, adoleciendo de baja sensibili-
dad y especificidad en general. A menudo se afirma que la EA sólo puede diagnosticarse
con total fiabilidad en la autopsia, considerándose el diagnóstico ante mortem como posible
como mucho [McKhann et al., 1984]. Se realizará un estudio tanto de los biomarcadores
que han comenzado a mostrar resultados prometedores en la última década como de las
diversas formas de combinarlos.

5) Hacia una solución de e-Salud para el diagnóstico de la EA y el DCL.
Integrará los sistemas mencionados anteriormente basados en computación inteligente. La
solución de e-Salud contará con un perfil para Atención Primaria y otro para Atención
Especializada, por lo que constituye un objetivo de gran interés cĺınico y sociosanitario.
Además de facilitar el acceso a una atención médica adecuada, diagnóstico, tratamiento y
seguimiento a cualquier paciente afectado por estas enfermedades, sin depender en parte
de la disponibilidad horaria y geográfica de un especialista,
La incorporación de sistemas de personalización, participación y capacidades de intercon-
sulta completará esta solución de e-Salud.
Dispondrá de funcionalidades que agilizarán y harán fiable la gestión del médico (proceso
de diagnóstico).

En esta tesis proponemos dos nuevas arquitecturas neuronales h́ıbridas, la Modular
Hybrid Growing Neural Gas (MyGNG) y la Supervised Reconfigurable Growing Neural
Gas (SupeRGNG), ambas basadas en la también red neuronal artificial ontogenética Growing
Neural Gas (GNG).

La MyGNG que hemos usado en esta tesis es una versión mejorada y más simple de la
descrita en [Sosa-Marrero et al., 2021], y fue introducida en [Cabrera-León et al., 2024b].
La conforman dos módulos, Figure 1: el primero está construido con una red ontogénica
no supervisada y autoorganizada desarrollada por Fritzke, la GNG [Fritzke, 1995]; mientras
que el segundo, está basado en una RNA supervisada muy popular, el perceptrón monocapa
[Rosenblatt, 1961; Widrow and Lehr, 1990].

MyGNG está organizada jerárquicamente a propósito: primero se realiza un clusterizado
de los datos de entrada y luego se realiza el etiquetado. En otros modelos este clusterizado no
existe y la ventaja que proporciona es que se proyectan los datos de entrada en un espacio con
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Figure 1: Estructura de la Modular Hybrid Growing Neural Gas, donde 𝑥𝑖 es la 𝑖-ésima
componente del vector de entrada; 𝑤𝑙𝑖, los pesos de la neurona 𝑙𝑖; y 𝑢𝑙, una neurona/unidad
del módulo GNG

más dimensiones mientras se preserva su topoloǵıa para facilitar la clasificación hecha luego
en el módulo de etiquetado [Cabrera-León et al., 2024b]. Menos tiempo de entrenamiento y
mayor rendimiento son esperados al hacer eso, como ocurre en otras redes h́ıbridas como es
la Counterpropagation Network [Cabrera-León et al., 2018a].

Estos dos módulos aprenden secuencialmente. Esto es, se hace en cascada: el segundo
módulo (llamado “Supervisado” en Figure 1) usa para entrenar las etiquetas de los datos
y la salida del primer módulo (denominado “GNG”) después de que éste haya entrenado.
En esta figura los colores indican los dos procesos relacionados con la bioloǵıa que ocurren:
neurogénesis y apoptosis neuronal. En azul las neuronas que se adaptan; en verde, las nuevas
(creadas entre la neurona con el mayor error y su vecina con mayor error); y en rojo, las que
van a ser borradas (son las que se quedan sin conexiones).

En [Fritzke, 1995, 1997b] describen cómo entrena la GNG. Empieza con 2 neuronas, se
adapta, se encoge y crece, consiguiendo un aprendizaje topológico.

La adaptación de los pesos sigue la Equation 1 donde 𝜀𝑏 y 𝜀𝑛 son los ratios de aprendizaje
de la ganadora y sus vecinas, respectivamente [Fritzke, 1995],

Δ𝑤𝑠1 = 𝜀𝑏(𝜉 − 𝑤𝑠1)
(1)

Δ𝑤𝑛 = 𝜀𝑛(𝜉 − 𝑤𝑛) para toda vecina directa 𝑛 de 𝑠1

Las regiones con mayor error se eligen en base a una variable local de error en cada
neurona. La neurogénesis ocurre en esa zona y con una cierta frecuencia 𝜆, y dicho error se
reduce tras cada inserción en una proporción 𝛽.
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Cambios en las conexiones alterna la topoloǵıa de la red, ya sea creando nuevas o borrando
las que sean más antiguas que 𝑎𝑚𝑎𝑥, lo que puede provocar apoptosis neuronal si la neurona
se queda aislada.

Un perceptrón monocapa, supervisado, aprende según la “regla del perceptrón”, Equa-
tion 2, que indica como sus pesos se actualizan [Widrow and Lehr, 1990]. En esta ecuación,
𝑥(𝑘) es una entrada; 𝜔(𝑘), pesos; 𝜌, ratio de aprendizaje; y 𝑒(𝑘) = 𝑑(𝑘) − 𝑦(𝑘) =
𝑑(𝑘) − sgn[𝜔𝑇 (𝑘) · 𝑥(𝑘)], siendo sgn la función signo; 𝑑(𝑘), la salida deseada para una
entrada 𝑥(𝑘); y 𝑦(𝑘), la salida obtenida dada esa entrada.

𝜔(𝑘 + 1) = 𝜔(𝑘) + 𝜌 · 𝑒(𝑘)
2 · 𝑥(𝑘) (2)

La SupeRGNG, como su nombre indica, posee un mecanismo de reconfiguración de natu-
raleza supervisada, cuyo propósito es refinar los clústeres obtenido de manera no supervisada y
que puede dividirse en dos procesos, que se realizan con la misma frecuencia y secuencialmente:
desconexión de neurona con etiquetas diferentes pero que fueron erróneamente conectadas,
y reconexión, en el cual una nueva conexión une neuronas con misma etiqueta pero que
estuvieran erróneamente separadas. Además, posee un mecanismo de parada temprana que
acorta el tiempo de entrenamiento y evita la posibilidad de sobreajuste. Al contrario que
en [Cabrera-León et al., 2023], donde ambos procesos se haćıan cuando el aprendizaje de
la GNG terminaba, en esta versión de SupeRGNG se pueden llevar a cabo dinámicamente,
tras cualquier epoch inicial (𝜂) y con la frecuencia deseada (𝜄, en iteraciones) tras esa epoch
𝜂, siendo ambos valores elegidos por el usuario.

En Figure 2 se observa la estructura, destacando la neurona central que fue etiquetada
erróneamente y que pasará a reconfigurarse.
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Figure 2: Topoloǵıa de la Supervised Reconfigurable Growing Neural Gas. En rojo, neuronas
que van a morir; verde, nuevas; negro y ĺınea discontinua, desconexiones no supervisadas;
en rojo y ĺınea discontinua, desconexiones supervisadas, y en verde y ĺınea discontinua,
reconecciomes supervisadas.

El aprendizaje de la SupeRGNG es similar al de la GNG pero, aparte de guardar las
etiquetas de los datos, se realiza la reconfiguración cuando indique 𝜂 y 𝜄. Consiste en 4
pasos: 1) asignar una clase a cada clúster/componente conectada, 2) localizar todas las
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Table 1: Comparativa entre la SupeRGNG y métodos de aprendizaje
automático neuronales y no neuronales populares (CN vs EA).

Dataset Método Accu Sens Spec AUC CUI+ CUI-

“Invasivo”,
Con AGE,
2PC, Max-
AbsScaler,
NCA
identity

DT 0.99 0.99 0.99 0.99 0.98 0.98
RF 0.99 0.99 0.99 0.99 0.98 0.98
NB 0.99 0.99 0.99 0.99 0.99 0.99
SVM 1 1 1 1 1 1
MLP 0.97 0.95 0.98 0.97 0.96 0.95
CPN 1 1 1 1 1 1
ResNet-18 0.99 1 0.99 1 0.98 0.99
ResNet-50 0.99 1 0.99 1 0.98 0.99
ParallelNet 0.99 0.99 0.99 0.99 0.98 0.99
SupeRGNG 1 1 1 1 1 1

“Invasivo”,
Sin AGE,
2PC, Max-
AbsScaler,
NCA
identity

DT 0.99 0.99 0.99 1 0.98 0.98
RF 1 1 1 1 0.99 0.99
NB 1 1 1 1 1 1
SVM 1 1 1 1 1 1
MLP 0.94 0.88 0.99 0.93 0.97 0.90
CPN 1 1 1 1 1 1
ResNet-18 0.99 1 0.97 1 0.98 0.99
ResNet-50 0.99 0.99 0.99 1 0.98 0.99
ParallelNet 0.99 0.99 0.99 0.99 0.98 0.98
SupeRGNG 1 1 1 1 1 1

“Invasivo”,
Con AGE,
2PC, Ro-
bustScaler,
NCA
identity

DT 0.99 0.99 0.99 0.99 0.98 0.98
RF 0.99 0.99 0.99 0.99 0.98 0.98
NB 0.99 0.99 0.99 0.99 0.99 0.99
SVM 1 1 1 1 0.99 0.99
MLP 1 1 1 1 0.99 0.99
CPN 1 1 1 1 1 1
ResNet-18 0.99 1 0.99 1 0.99 0.99
ResNet-50 0.99 1 0.99 1 0.99 0.99
ParallelNet 0.99 1 0.99 0.99 0.99 0.99
SupeRGNG 1 1 1 1 1 1

“No-
invasivo”,
Con AGE,
2PC, Ro-
bustScaler,
NCA
identity

DT 1 1 1 1 0.99 0.99
RF 0.99 0.99 0.99 1 0.99 0.99
NB 0.99 0.99 0.99 0.99 0.98 0.98
SVM 1 1 1 1 1 1
MLP 0.98 0.99 0.96 0.98 0.91 0.96
CPN 1 1 1 1 1 1
ResNet-18 0.84 0.73 0.93 0.90 0.64 0.76
ResNet-50 0.85 0.76 0.92 0.90 0.67 0.77
ParallelNet 0.66 0.21 1 0.71 0.27 0.63
SupeRGNG 1 1 1 1 1 1

Acrónimos: Accu (accuracy), AUC (Area Under the Curve), CUI (Clinical Utility
Index), DT (Decision Tree), MLP (Multilayer Perceptron), MyGNG (Modular
Hybrid Growing Neural Gas), NB (Näıve Bayes), RF (Random Forest), Sens
(sensitivity), Spec (specificity), SupeRGNG (Supervised Reconfigurable Growing
Neural Gas), SVM (Support Vector Machine).
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Table 2: Comparativa entre la SupeRGNG y métodos de aprendizaje au-
tomático neuronales y no neuronales populares (CN vs DCL).

Dataset Método Accu Sens Spec AUC CUI+ CUI-

6 componentes
proyectadas,
RobustScaler,
t-SNE con
perplexity=100

DT 0.74 0.74 0.74 0.73 0.54 0.54
NB 0.79 0.79 0.79 0.75 0.62 0.62
RF 0.80 0.80 0.80 0.74 0.65 0.65
SVM 0.84 0.84 0.84 0.79 0.71 0.71
MLP 0.79 0.79 0.79 0.77 0.63 0.63
CPN 0.86 0.91 0.76 0.91 0.80 0.63
ResNet-18 0.83 0.88 0.74 0.87 0.75 0.58
ResNet-50 0.83 0.89 0.74 0.88 0.76 0.59
ResNet-101 0.83 0.89 0.72 0.87 0.75 0.57
ParallelNet 0.82 0.89 0.70 0.87 0.75 0.55
SupeRGNG 0.86 0.86 0.86 0.88 0.74 0.74

Acrónimos: Accu (accuracy), AUC (Area Under the Curve), CUI (Clinical Utility
Index), DT (Decision Tree), MLP (Multilayer Perceptron), MyGNG (Modular Hybrid
Growing Neural Gas), NB (Näıve Bayes), RF (Random Forest), Sens (sensitivity),
Spec (specificity), SupeRGNG (Supervised Reconfigurable Growing Neural Gas), SVM
(Support Vector Machine).

y bajo coste. Estas caracteŕısticas las hacen especialmente interesantes para la Atención
Primaria.

En comparación con otras soluciones de aprendizaje automático, SupeRGNG se comportó
de forma similar, obteniendo mejores resultados en la mayoŕıa de las métricas, excepto
en AUC. Al comparar estos valores con la arquitectura h́ıbrida CPN, la diferencia no es
estad́ısticamente significativa. Los valores de sensibilidad con CPN fueron los mejores, aunque
presentaron una especificidad mucho menor y un CUI-. Los mejores valores de CUI+ de
SupeRGNG podŕıan indicar que esta red es una buena opción para la medicina traslacional.

La mayoŕıa de las arquitecturas comparadas arrojaron buenos resultados, siendo la
SupeRGNG la que presentó valores buenos, aunque equilibrados, en los pares sensibilidad-
especificidad y CUI+-CUI-. La sensibilidad, AUC y CUI+ en CPN y Deep Neural Networks
(DNNs) fueron superiores o ligeramente superiores a las de la SupeRGNG. Sin embargo, sus
valores de especificidad y CUI- fueron bastante inferiores, en el caso de ParallelNet hasta
0,16 y 0,19 menos, respectivamente. Esto confirma que las arquitecturas ontogenéticas como
la propuesta son buenas soluciones computacionales para distinguir a los sujetos con DCL de
aquellos cognitivamente normales.

Por otro lado, considerando que solo se ha propuesto un conjunto de caracteŕısticas y se
han obtenido buenos resultados, se puede concluir que el conjunto de caracteŕısticas propuesto
(es decir, ABETA, AGE, MMBALLDL, MMDAY, NPIL y MMYEAR) puede recomendarse
a los médicos como los criterios cĺınicos óptimos para la tarea de clasificación del DCL-CN.
Dado que incluye ABETA, que requiere la realización de una extracción invasiva de ĺıquido
cefalorraqúıdeo, no se recomienda para Atención Primaria.

El modelo SupeRGNG superó a los demás modelos por un amplio margen, logrando
el mismo rendimiento que la variante anterior [Cabrera-León et al., 2023], seguido del
MyGNG. El Multilayer Perceptron (MLP) y las DNNs no mostraron un buen rendimiento,
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Table 3: Comparativa entre la SupeRGNG, la MyGNG y métodos de aprendizaje
automático neuronales y no neuronales populares (DCL vs EA).

Dataset Método Accu Sens Spec AUC CUI+ CUI-

2PC,
Unscaled,
PCA

DT 0.91 0.91 0.91 0.92 0.83 0.83
NB 0.91 0.91 0.91 0.92 0.83 0.83
RF 0.90 0.90 0.90 0.92 0.81 0.81
SVM 0.94 0.94 0.94 0.94 0.88 0.88
MLP 0.89 0.89 0.89 0.90 0.79 0.79
CPN 0.87 0.87 0.87 0.96 0.64 0.82
ResNet-18 0.90 0.77 0.96 0.94 0.68 0.86
ResNet-50 0.89 0.80 0.93 0.94 0.66 0.85
ResNet-101 0.90 0.73 0.97 0.95 0.67 0.87
ParallelNet 0.89 0.73 0.96 0.95 0.65 0.85
MyGNG 0.93 0.97 0.83 0.96 N/A N/A

SupeRGNG 0.98 0.98 0.98 0.97 0.96 0.96
Acrónimos: Accu (accuracy), AUC (Area Under the Curve), CUI (Clinical Utility Index),
DT (Decision Tree), MLP (Multilayer Perceptron), MyGNG (Modular Hybrid Growing
Neural Gas), N/A (Not Available), NB (Näıve Bayes), RF (Random Forest), Sens (sensi-
tivity), Spec (specificity), SupeRGNG (Supervised Reconfigurable Growing Neural Gas),
SVM (Support Vector Machine).

especialmente en cuanto a la sensibilidad del último. Esto confirma que las arquitecturas
ontogenéticas como la propuesta son buenas soluciones computacionales para distinguir entre
sujetos con DCL y con EA.

Por otro lado, considerando que solo se ha propuesto un conjunto de caracteŕısticas y
que se han obtenido muy buenos resultados, se puede concluir que el conjunto de carac-
teŕısticas propuesto (es decir, MMSCORE, MMDATE, MMBALLDL, ADAS Q7, MMYEAR
y FAQSHOP) puede recomendarse a los profesionales como los criterios cĺınicos óptimos
para la tarea de clasificación de DCL-EA. Otra ventaja de este conjunto de caracteŕısticas
es que sólo se incluyen funciones económicas, no invasivas y fáciles de obtener, lo que hace
interesante su aplicación incluso en Atención Primaria.

En los dos escenarios analizados, el método SupeRGNG mostró un buen rendimiento,
superando a los métodos de aprendizaje automático. Si bien sus valores de AUC fueron
similares o ligeramente superiores a los de los métodos CPN y los cuatro métodos de Deep
Learning (DL), los valores del resto de las métricas no lo fueron. Por el contrario, el método
MyGNG fue superado por redes profundas y CPN, pero obtuvo resultados de rendimiento
similares a los de los clasificadores de aprendizaje automático más populares.

Además, el conjunto de caracteŕısticas propuesto (es decir, VENTRICLES, ABETA,
FAQTOTAL, MMSCORE y AGE) ha demostrado ser un buen conjunto de caracteŕısticas
para el problema de clasificación CN-DCL-EA. Por lo tanto, es adecuado para su presentación
a médicos con fines diagnósticos, aunque la presencia de ABETA hace que este conjunto no
sea el más recomendable para Atención Primaria.

Tanto la MyGNG como la SupeRGNG han demostrado obtener muy buenos resultados
diagnosticando EA y DCL, superando a algoritmos de aprendizaje automático populares
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Table 4: Comparativa entre la SupeRGNG, la MyGNG y métodos de
aprendizaje automático neuronales y no neuronales populares (CN vs DCL
vs EA).

Dataset Método Accu Sens Spec AUC CUI+ CUI-

Con AGE,
3PC, Stan-
dardScaler,
NCA
identity

DT 0.86 0.86 0.86 0.90 0.73 0.73
NB 0.87 0.87 0.87 0.88 0.76 0.76
RF 0.88 0.88 0.88 0.89 0.77 0.77
SVM 0.88 0.88 0.88 0.90 0.77 0.77
MLP 0.71 0.71 0.71 0.75 0.51 0.51
CPN 0.93 0.93 0.93 0.95 0.88 0.88
ResNet-18 0.91 0.91 0.91 0.94 0.85 0.85
ResNet-50 0.91 0.91 0.91 0.94 0.85 0.85
ResNet-101 0.91 0.91 0.91 0.93 0.85 0.85
ParallelNet 0.92 0.92 0.92 0.94 0.86 0.86
MyGNG 0.83 0.89 0.78 0.83 N/A N/A
SupeRGNG 0.88 0.88 0.88 0.95 0.77 0.77

Con AGE,
4PC, Ro-
bustScaler,
NCA
identity

DT 0.86 0.86 0.86 0.86 0.74 0.74
NB 0.86 0.86 0.86 0.89 0.74 0.74
RF 0.88 0.88 0.88 0.91 0.77 0.77
SVM 0.87 0.87 0.87 0.90 0.76 0.76
MLP 0.70 0.70 0.70 0.53 0.50 0.50
CPN 0.93 0.93 0.93 0.94 0.88 0.88
ResNet-18 0.92 0.92 0.92 0.94 0.86 0.86
ResNet-50 0.91 0.91 0.91 0.93 0.85 0.85
ResNet-101 0.91 0.91 0.91 0.94 0.84 0.84
ParallelNet 0.91 0.91 0.91 0.94 0.85 0.85
MyGNG 0.86 0.89 0.79 0.83 N/A N/A
SupeRGNG 0.89 0.89 0.89 0.94 0.79 0.79

Acrónimos: Accu (accuracy), AUC (Area Under the Curve), CUI (Clinical Utility
Index), DT (Decision Tree), MLP (Multilayer Perceptron), MyGNG (Modular
Hybrid Growing Neural Gas), NB (Näıve Bayes), RF (Random Forest), Sens
(sensitivity), Spec (specificity), SupeRGNG (Supervised Reconfigurable Growing
Neural Gas), SVM (Support Vector Machine).
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y a técnicas de aprendizaje profundo. Se han obtenido, también, conjuntos de criterios
diagnósticos óptimos para las tareas de clasificación tratadas, lo que posibilitará a los cĺınicos
establecer un protocolo de criterios diagnósticos estándar en el diagnóstico de la EA.

Su integración en un entorno cĺınico virtual de ayuda al diagnóstico nos permitirá proponer
una solución de e-Salud que dará lugar al diagnóstico universal en el ámbito de las demencias
y de las patoloǵıas neuropsicológicas en general. Ello supondrá una mejora en la calidad de
vida del paciente por la posibilidad de acceder a un diagnóstico, la rapidez del mismo, aśı
como su fiabilidad. Entre las posibles soluciones se encuentra Clinical Virtual Environment
to aid diagnosis and prognosis of Alzheimer’s Disease and other dementias (EDEVITALZH).

Considerando todo lo anterior, los sistemas inteligentes desarrollados para cumplir con los
objetivos primero y segundo de esta tesis doctoral pueden utilizarse como motores de detección
inteligente en un esquema único o múltiple en el módulo de diagnóstico de EDEVITALZH
(Figure 3). De esta forma, se proporciona una solución completa de e-Salud en los campos
de Atención Primaria, Neuroloǵıa y Gerontoloǵıa, capaz de abordar todas las etapas de la
enfermedad en el continuo de la EA.

Podemos concluir, en general, que las contribuciones principales de esta tesis doctoral son
sus objetivos en śı, que han sido completamente cubiertos. De los desarrollos de esta tesis se
obtienen las siguientes conclusiones, exponiéndose también las principales aportaciones:

1. La capacidad de las arquitecturas ontogénicas, como el SupeRGNG, para abordar
problemas complejos del mundo real, como el diagnóstico diferencial de la EA en
sus etapas iniciales, en comparación con las arquitecturas profundas, los ensembles
neuronales y otros enfoques tradicionales de aprendizaje automático.

2. La posibilidad de obtener diagnósticos de alta precisión utilizando criterios cĺınicos
multimodales, no invasivos y de uso apropiado en Atención Primaria.

3. La posibilidad de lograr un diagnóstico universal tanto en Atención Primaria como
especializada (neuroloǵıa y geriatŕıa).

4. Se ha creado un conjunto de datos integrando datos longitudinales de diferentes modali-
dades, como pruebas neuropsicológicas, datos demográficos, biomuestras, genética, neu-
roimagen cuantitativa y ĺıquido cefalorraqúıdeo. Estos datos se extrajeron de múltiples
archivos de la base de datos Alzheimer’s Disease Neuroimaging Initiative (ADNI), e
incluyen datos de sujetos cognitivamente normales (CN), con DCL y con EA.

5. Se han propuesto dos sistemas inteligentes para el diagnóstico de todas las etapas del
continuo de la EA, basados en dos arquitecturas neuronales novedosas. Además, se ha
demostrado que las RNAs son buenos enfoques para problemas complejos, y las dos que
se desarrollaron, también con conjuntos de datos no balanceados, una caracteŕıstica
frecuente en medicina.

6. Se ha propuesto una nueva RNA ontogenética h́ıbrida, la MyGNG. Consta de dos
módulos: una GNG — no supervisada — para la clusterización de los datos de entrada,
seguido de un perceptrón monocapa — supervisado — para mejorar la clusterización.
Entre sus principales caracteŕısticas, se incluye un módulo basado en perceptrón,
posterior a la GNG, cuyo propósito es mejorar la agrupación realizada por la GNG.
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Figure 3: Ejemplo de un multi-esquema basado en SupeRGNG funcionando como motor de
detección inteligente en el módulo de diagnóstico de EDEVITALZH.
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7. Se ha desarrollado una novedosa RNA ontogénica supervisada, la SupeRGNG. Sus
principales caracteŕısticas son la desconexión y reconexión dinámica de lo clústeres, lo
que mejora la clusterización realizada por la GNG en la que se basa. Estos procedimien-
tos se pueden realizar de forma dinámica, permitiendo al usuario elegir cuándo iniciarlos
y con qué frecuencia ejecutarlos. Al igual que otras RNAs, se incluyó un mecanismo de
detención temprana para acortar el tiempo de entrenamiento. La SupeRGNG funciona
de forma fiable con conjuntos de datos extremadamente desequilibrados (hasta un 90%)
y con conjuntos de datos no gaussianos y no linealmente separables. Además, es capaz
de producir muy buenos resultados de rendimiento con conjuntos de datos con una alta
superposición de clases.

8. Los resultados de rendimiento con MyGNG y SupeRGNG en varios problemas de clasifi-
cación binaria relacionados con el diagnóstico de las diferentes etapas del continuo de la
EA (CN vs. DCL, CN vs. EA y DCL vs. EA) fueron excepcionales, especialmente con
SupeRGNG. SupeRGNG superó al resto de clasificadores de aprendizaje automático,
incluyendo a una Convolutional Neural Network (CNN) paralela y a varias variantes
de Residual Network (ResNet).

9. Los resultados de rendimiento con MyGNG en el problema multiclase CN vs. DCL vs.
EA fueron similares a los de los modelos de aprendizaje automático más populares.

10. Los resultados de rendimiento con SupeRGNG en la tarea de clasificación CN vs. DCL
vs. EA fueron similares a los de ResNets y una CNN paralela, y superiores a los de los
restantes modelos de aprendizaje automático más usados.

11. Para cada tarea de clasificación binaria y multiclase que los médicos e investigadores
consideraron de interés, se obtuvo el conjunto mı́nimo y óptimo de criterios diagnósticos,
el cual puede considerarse suficiente y apropiado para el diagnóstico diferencial de la
EA, el DCL y el envejecimiento cerebral sano.

12. Los dos métodos de computación neuronal desarrollados pueden integrarse en una
solución de e-Salud en forma de sistemas inteligentes para facilitar el diagnóstico
de la EA. Pueden utilizarse en prácticamente cualquier solución de e-Salud. De
hecho, pueden utilizarse como motores de detección en el módulo de diagnóstico de
EDEVITALZH. De esta manera, pueden proporcionar una solución completa de e-
Salud en los ámbitos de la Atención Primaria, la Neuroloǵıa y la Gerontoloǵıa, que es
capaz de abordar todas las etapas en el continuo de la EA. Además, EDEVITALZH
es accesible de forma segura con dispositivos económicos, en cualquier momento y
desde cualquier lugar, lo que permite a diferentes profesionales cĺınicos e investigadores
colaborar e intercambiar información. Todo esto indica que nuestra propuesta es capaz
de proporcionar un diagnóstico universal de la demencia cortical.



Abstract

The elderly population in developed countries has grown in the last decades. This has also
entailed an increased prevalence of aging diseases such as strokes, cancers and dementia.
Many types of dementia have been stated, being Alzheimer’s Disease (AD) the most common
one. Mild Cognitive Impairment (MCI) was considered a prodromal stage of AD, which is
the most common dementia, albeit now AD is seen as a continuum. Machine Learning (ML)
methods started to being used in the last decades for the detection or prognosis of both
MCI and AD. Artificial Neural Networks (ANNs) is a family of ML algorithms inspired by
biological neural networks, mainly human brain and neurons.

Increasing aging population involves more presence of non-communicable, geriatric and
chronic diseases. An example of such illnesses is dementia, being AD its more representative
example: around 70% of the cases [Zhu and Sano, 2006].

AD is a neurodegenerative disorder that affects memory and later the rest of cognitive
areas [McKhann et al., 1984], producing dependence and disability states. Hence, patients
with AD have a high social-economic costs for health systems, e.g. annually more than
28,000e per patient in the Canary Islands (Spain) [Lopez-Bastida et al., 2006]. Every 5 − 10
years a person gets older, the probability of having AD doubles [Zhu and Sano, 2006]. In
AD we can distinguish between Early Onset AD and Late Onset AD, which depends on the
patient’s age: less than 65, or more or equal 65, respectively. Late Onset AD is the most
common one, with 95% of the cases. AD develops steadily and slowly, over years, unlike
other dementia. Consequently, some stages have been stated [Reitz and Mayeux, 2014],
especially when distinguishing non-clearly normal aging from non-exactly dementia [Scinto
and Daffner, 2000]: “benign senescent forgetfulness”, “age-associated memory impairment”,
“pathological aging”, “cognitive impairment, no dementia”, and “Mild Cognitive Impairment”.
McKhann et al. [McKhann et al., 2011] wrote that AD dementia is a continuum, and Dubois
at al. [Dubois et al., 2016] added to this that it cannot be separated in the 3 different
clinically-defined stages. More recently, Jack at al. [Jack et al., 2018] defined AD as a set of
neuropathological changes, hence not defined by clinical symptoms but in vivo by biomarkers
and postmortem by autopsies.

MCI is a construct with memory complaints between Cognitively Normal (CN) and AD
subjects. It was considered a prodromal stage of AD [Petersen, 2004], but after new findings,
it started to be seen as a precursor of any dementia, or even reversible to cognitively healthy
state [Reitz and Mayeux, 2014]. Patients with MCI have a probability of annually converting
to dementia of 5 − 10% [Mitchell and Shiri-Feshki, 2009] or 5 − 20% [Schott and Petersen,
2015], much higher than the 1 − 2% incidence in CN [Schott and Petersen, 2015]. Based on
the severity of the symptoms, MCI is divided into Early Mild Cognitive Impairment (EMCI)
and Late Mild Cognitive Impairment (LMCI).

As both AD and MCI were deemed to be related, many diagnostic methods have been used
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for both. A wide selection of medical examinations, such as neuroimaging, neuropsychological
scales and biomarkers, have been developed for this purpose [Cabrera-León et al., 2024a].
Recently, they have been used with a vast variety of computational solutions, from Support
Vector Machines (SVMs) [Arimura et al., 2008; Vemuri et al., 2008; Magnin et al., 2009] to
Artificial Neural Networks and Deep Learning [Liu et al., 2018a; Litjens et al., 2017; Ning
et al., 2018; Senanayake et al., 2018]. More often than not, such solutions lack applicability
in primary care, mostly because they require expensive or uncomfortable procedures, such
as neuroimaging and Cerebrospinal Fluid (CSF) [Arimura et al., 2008], respectively. The
importance of including the detection and diagnosis of cognitive impairments in Primary
Care is based on two facts [Alberca Serrano and López-Pousa, 2011]: the longitudinal
characteristic of Primary Care (which facilitates longitudinal studies), and the continuous
growth of the elderly population (which increments the prevalence and incidence of cognitive
disorders). However, there are several barriers that have to be dealt with in Primary Care
[Alberca Serrano and López-Pousa, 2011]. Low confidence in diagnosis and lack of time per
patient are the most common ones.

Taking these issues into account, in this thesis we propose the development of two novel
neural architectures, the Modular Hybrid Growing Neural Gas (MyGNG) and the Supervised
Reconfigurable Growing Neural Gas (SupeRGNG). Both ANNs are ontogenic as they are
based on the Growing Neural Gas (GNG). They can tackle both the barriers that models
may have when working in primary care (they are fast and provide good performance) and
perform well with high unbalanced datasets, as is common with disease-related ones.

This doctoral thesis aims to meet the following specific goals, which can be considered
SMART (specific, measurable, actionable, realizable, and time-bound1 objectives, and that
could lead to potential technology transfer products in the health field. These objectives are
the following:

1) Diagnostic aid system of MCI based on intelligent computing.
Including the characterization of MCI, which is important in that it is an ailment difficult
to differentiate from AD due to its similar symptoms. This system would help in the
differential diagnosis of MCI, which is especially relevant in Primary Care, since it is
where patients or their relatives go initially. To achieve this, we consider necessary a
multiclass classifier capable of differentiating healthy subjects from those affected with
MCI. Among the many possible options, we consider that such a classifier could be based
on hybrid and ontogenic ANNs.

2) Diagnostic aid system of AD based on intelligent computing.
Both this and the previous one are objectives of high clinical interest since they would
allow identifying the diagnostic criteria representative of both neuropathologies, although
this one is particularly desirable to satisfy since AD is the most widespread dementia. As
in the previous one, both objectives generate knowledge not only at the clinical level but
also computationally. In this case, the reason for this is that such a system is possibly
based on new models of neural architectures with the ability to work with missing and
unbalanced data, and multiclass classification (AD vs. MCI vs. healthy). This is in
line with what has been indicated by researchers in the biological/clinical field who are

1Other meanings of the acronym have been proposed such as “specific, measurable, assignable, realistic
and time-related”).



15

specialists in this field [Petersen, 2004; Hampel et al., 2011]. For this purpose, we consider
the usage of data fusion and neural architectures feasible. New neural architectures will
be developed to improve the performance of current Machine Learning systems.

3) Design and development of new neural architectures able to both fulfill the requirements
and tackle the tasks described in previous goals.
These new proposals will essentially come from improvements in paradigmatic neural
architectures. They must be capable of advancing the development of intelligent systems
suitable for the diagnosis of MCI and AD. These systems must not only be accurate
and reliable, but also user-friendly, accessible, and fast in the clinical setting, providing
advances in translational medicine.

4) Finding a set of diagnostic criteria that is sufficient and appropriate for the differential
diagnosis of AD, MCI and healthy aging brains.
Currently there is no set of specific criteria (NINCDS-ADRDA, CAMDEX, DSM-IV and
ICD-10) that have been extensively verified, suffering from low sensitivity and specificity
in general. It is often stated that AD can only be diagnosed with complete reliability at
postmortem, with diagnosis at antemortem being considered possible at best [McKhann
et al., 1984]. A study of both the biomarkers that have begun to show promising results
over the past decade and the various ways of combining them would be carried out.

5) Towards an e-Health solution for the diagnosis of AD and MCI.
It will integrate the above systems based on intelligent computing. The e-Health solution
will have a profile for primary care and another for specialized care, which is why it is an
objective of great clinical and socio-healthcare interest. In addition to facilitating access
to adequate medical care, diagnosis, treatment and follow-up to any patient affected
by these diseases, partly ignoring the time and geographical availability of a specialist.
The incorporation of customization, participation, and inter-consultation capabilities will
complete this eHealth solution. It will have functionalities that will speed up and make
the physician’s management (diagnosis process) reliable.

This PhD thesis is organized as follows. In chapter 1 we have briefly introduced the topics
of this thesis, showing how it is structured, and will continue indicating the goals, explaining
several aspects of dementia of the Alzheimer type and a milder stage, and reviewing the
state of the art in diagnosis and prognosis of these diseases. In chapter 2 we describe ANNs,
their characteristics and biological inspiration, and explain some paradigmatic models. In
chapter 3, for each ANN developed, the Supervised Reconfigurable Growing Neural Gas
and the Modular Hybrid Growing Neural Gas, a formal description and an analysis of its
hyperparameters with synthetic datasets are included. In chapter 4 applications of both ANNs
with real data are shown, with a description of each dataset used according to the classification
task tackled, results yielded, a comparative with other Machine Learning algorithms, and
finishing describing the integration of the ANNs developed in an e-Health solution is proposed,
including the description of an example of such solution, Clinical Virtual Environment to
aid diagnosis and prognosis of Alzheimer’s Disease and other dementias (EDEVITALZH).
The conclusions emanated from this research and several future works that can be derived
from it are exposed in chapter 5. Finally, the appendices contain a list of acronyms in
Appendix A, some recommendations from other authors on the values of Growing Neural
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Gas hyperparameters in Appendix B, and a summary on statistical significance and how to
choose the most appropriate statistical test Appendix C. After the appendices comes the
bibliography used followed by two lists of publications and communications related to this
thesis in which the PhD candidate has participated.



Chapter 1

Introduction and Background

1.1 Introduction
Dementia and other chronic diseases have become more prevalent with the increasing number
of older adults. Alzheimer’s Disease (AD), as the most common type of dementia, flourishes
too. Seen as a prelude of AD, Mild Cognitive Impairment (MCI) began to be studied,
despite being a construct and, due to being characterized by a cognitive degradation between
Cognitively Normal (CN) and AD, a severity stage more challenging to differentiate.

Diagnosis and prognosis of AD and MCI are very complex due to the lack of specific
biomarkers and the similarities between both or with other diseases. Neural computation
methods have been used to tackle these difficulties, generally with very good performance
results because some of them are able to work with data with noise, missing values and even
in an unsupervised fashion. Inspired by their biological counterparts, many Artificial Neural
Networks (ANNs) have been proposed for many different tasks, being dementia ones just
one of the fields where they have been used.

Our research has been principally focused on the proposal of original and effective solutions
for the diagnosis of AD and MCI. Both models, the Supervised Reconfigurable Growing
Neural Gas and the Modular Hybrid Growing Neural Gas, belong to the family of supervised
and ontogenic shallow ANNs. Furthermore, finding an adequate yet reduced set of features
for each classification task that was considered relevant for medics was another of our goals.
Confirming the possibility of including any of theses models into an e-Health solution was
our last objective.

1.2 Alzheimer’s Disease and Mild Cognitive Impair-
ment

Albeit memory impairment is the main problem brought by AD, suffering it does not
necessarily mean that a person has AD or even any type of non-AD dementia such as
Frontotemporal dementia, Vascular dementia, Parkinson’s Disease Dementia and Dementia
with Lewy bodies, among others1. Indeed, many health problems also affect memory, thinking
and other cognitive processes [Ronson, 2011]: depression, alcoholism, vitamin B12 deficit,

1Several tables and figures about the characteristics of different types of dementia can be found in [Korolev,
2014].
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Figure 1.1: Hypothetical model of the decline in cognitive function along the AD continuum
compared to normal aging. Source: Sperling et al. [2011]

stroke, delirium. . . Even worse, the recently recognized disease entity Limbic-predominant
Age-related TDP-43 Encephalopathy is characterized by very similar symptoms, culminates
with dementia and can only be diagnosed with certainty at autopsy [Nelson et al., 2019].
For this reason, a differential diagnosis is required, and it is still a problem to deal with
[Bagyinszky et al., 2014]. The main difference with most of these health problems is that the
cognitive function in AD impairs gradually, Figure 1.1.

MCI is a construct that is characterized by an intermediate cognitive impairment: between
CN and AD subjects [Petersen, 2004]. Unlike in AD, the impairment in MCI patients does
not affect their routine daily activities [Petersen, 2004; McKhann et al., 2011]. Several
divisions have been proposed for MCI subjects [Cabrera-León et al., 2024a]: “reverters”
(between consecutive visits their cognitive state improve, and so does their diagnostic label),
“converters” (the opposite, as those that go from MCI to AD, which some researchers label as
progressive Mild Cognitive Impairment (pMCI)), Early Mild Cognitive Impairment (EMCI),
Late Mild Cognitive Impairment (LMCI), amnestic Mild Cognitive Impairment (aMCI),
nonamnestic Mild Cognitive Impairment (naMCI), single-domain characteristics, and multi-
domain characteristics.

It should be noted that AD diagnosis is a difficult task not only because other diseases
having similar symptoms [Cabrera-León et al., 2024a], but also the severity of AD symptoms
may vary seasonally: they are likely to be most pronounced during winter and early spring
[Lim et al., 2018]. This is rarely taken into account, especially in longitudinal studies, and
may be responsible of some “reverters” and “converters” cases. In order to reduce this
complexity, solutions need to be sought. The use of Computer-Aided Diagnosis tools is one of
them. They have been widely used to assist clinicians not only in the diagnosis or prognosis
of these diseases but also with interpreting clinical criteria, especially neuroimaging.
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1.2.1 Causes, risk factors and protective factors

The exact causes of AD are still unknown [Alberca Serrano and López-Pousa, 2011], although
certain genes are considered to be involved in a small percentage of cases [Reitz and Mayeux,
2014]. Many hypotheses have tried to explain the origin of AD and how it gradually develops
over time, usually with the goal of its early detection.

Some of the hypotheses that try to explain AD are:
• Amyloid hypothesis: after Amyloid Precursor Protein (APP) gets broken down,

molecules of the Amyloid beta (A𝛽) peptide are generated as a residue. Deposits
of A𝛽 outside the cells form insoluble amyloid plaques [Mudher and Lovestone, 2002;
Lewis and Trempe, 2014]. Senile plaques, as they are also called, may have different
types [Scinto and Daffner, 2000]. These plaques negatively affect the functions of tissues
and organs, although this disruption is not well known. On the other hand, after just
one night of sleep deprivation, A𝛽 significantly accumulates in right hippocampus and
thalamus, regions associated with AD [Shokri-Kojori et al., 2018]. Several neuroimaging
methods prepared to detect amyloid, and concentrations of Cerebrospinal Fluid (CSF)
A𝛽42 or the CSF A𝛽42/40 ratio are commonly used by researchers and medics [Jack
et al., 2018].

• Tau hypothesis: in normal conditions, the tau (an abbeviation of tubulin associated unit)
proteins are in charge of stabilizing the microtubules of cells, and are quite numerous in
the neurons of the central nervous system, especially in the cerebral cortex. They are
located in the cytoplasm of a cell [Scinto and Daffner, 2000]. Hyperphosphorylated tau
proteins are not able to stabilize the microtubules correctly and start to get in pairs,
which later forms neurofibrillary tangles (NFTs) inside the neurons. The neuron’s
cytoskeleton gets destroyed when the microtubules disintegrate due to the NFTs. After
this, synapses start to malfunction and, at a later stage, neurons die [Mudher and
Lovestone, 2002]. Usually, total tau and hyperphosphorylated tau concentrations in
CSF and some neuroimaging techniques able to detect tau are used in dementia research
[Jack et al., 2018].

• Cholinergic hypothesis: low acetylcholine synthesis. Abnormal cholinergic values may
facilitate the deposition of neuritic plaques, and changes in behavior and cognition
[Terry and Buccafusco, 2003].

• Genetic: many genes seem to increase the risk of developing AD, especially the Early
Onset AD [Reitz and Mayeux, 2014; Scinto and Daffner, 2000], a type of AD that affects
individuals before the age of 65. Simultaneous presence of Apolipoprotein E (APOE)
𝜀4 and a variant of RNF219 genes in subjects with MCI or AD produced lower scores
in some neuropsychiatric scales [Mosca et al., 2018].

Apart from lower brain volume due to having less neurons in several places of their brain,
each neuron of a subject with AD usually has less number of dendrites, and many of these
neurons have alterations in their mitochondria and fragmentations in their Golgi complexes
[Baloyannis et al., 2019].

More recently, it was found that subjects with AD had more human herpesvirus 6A and
human herpesvirus 7 than CN subjects, although causality could not be concluded [Readhead
et al., 2018]. Regulatory relationships between APP processing genes and quantity of these
viruses were observed.

Nowadays, these are considered some of the risk factors for the development of AD
[Baumgart et al., 2015; Reiss et al., 2022; Reitz and Mayeux, 2014; Scinto and Daffner, 2000]:
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• Age: AD is more common in people older than 64. Every 5–10 years a person gets
older, the probability of having AD doubles [Zhu and Sano, 2006].

• Trisomy 21, commonly known as Down syndrome.
• Head injury, especially traumatic brain injury.
• Family history: genetics (hereditary) and environmental factors may affect same family

members.
• Environmental factors: Killin et al. [2016] grouped them in six categories (air quality,

toxic heavy metals, other metals, other trace elements, occupational-related exposures,
and miscellaneous environmental factors). Moderate evidence was found for air pollution,
aluminum, silicon, selenium, pesticides, vitamin D deficiency, and electric and magnetic
fields [Killin et al., 2016].

• Genetics: many researchers affirm that having two APOE 𝜀4 alleles is a genetic risk
factor not only for AD but also for other health problems such as stroke, sleep apnea
and Parkinson’s disease [Mahley et al., 2006; Mosca et al., 2018; Reitz and Mayeux,
2014]. Conversely, two APOE 𝜀2 alleles or one 𝜀2 and one 𝜀3 is beneficial, protecting
from cognitive decline and neurodegeneration [Mahley et al., 2006; Wu and Zhao, 2016].
For instance, a person carrying two 𝜀4 is almost 15 times more likely to develop AD,
whereas people who carry two 𝜀2 are 40% less prone to have it [Wu and Zhao, 2016].
Moreover, half of subjects with AD have at least an 𝜀4 allele, while it is only present
in 20% of the general population [Wu and Zhao, 2016].

• Race: albeit the reason for this is still not well known, Hispanic/Latinos are up to 1.5x
times more likely to have any type of dementia compared with non-Hispanic white
older adults, whereas in the case of Black/African-American individuals, it is twice as
likely as non-Hispanic white ones [Alzheimer’s Association, 2025].

• Vascular problems: includes elevated blood pressure [Mantzavinos and Alexiou, 2017],
and cerebrovascular diseases. More related to Vascular dementia (VaD) than with AD
though.

• Patients with higher levels of LDL cholesterol (“bad”) have a greater risk of early
development of AD [Wingo et al., 2019], whereas no link with HDL cholesterol (“good”)
was found.

• Type 2 diabetes: it doubles the risk of AD. It can also increase the conversion risk
from amnestic MCI to AD [Cooper et al., 2015].

• Female gender: more females suffer from AD and have a higher risk to develop it,
although this gender bias is still not well understood. There seems to be a significant
interaction between APOE 𝜀2 and sex, a protective role exclusively in males [Wu and
Zhao, 2016]. On the other hand, females with APOE 𝜀4 have much more risk conversion
from both CN to MCI and MCI to AD than males [Wu and Zhao, 2016].

• Mid-life obesity.
• Sleep apnea.
• Poor diet, as inadequate amounts and forms of nutrients may affect health. Nutritional

deficits, such as low levels of some vitamins (B12, B3 and B1) and glucose, are frequent
in subjects with dementia, albeit this relationship, from a practical point of view,
should be considered bidirectional [Alberca Serrano and López-Pousa, 2011].

• Lack of exercise.
• Infection of the brain, such as meningitis and syphilis.
• Depression is associated with a higher risk of dementia and AD [Santabárbara et al.,

2019].
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A systematic review and meta-analysis mentioned that different levels of evidence were
found regarding risk factors and interventions [Yu et al., 2020]. These authors found that there
is strong evidence with the following risk factors: hyperhomocysteinaemia, diabetes, poor
Body Mass Index management, hypertension in midlife, orthostatic hypotension, reduced
education, head trauma, stress, less cognitive activity, and depression.

On the other hand, some protective factors are [Reitz and Mayeux, 2014]: Mediterranean
diet [Cooper et al., 2015], physical exercise, and frequent intellectual activities. Caloric
restriction mitigates pathologic aging of the brain and reduces age-related memory problems
[Mart́ı-Nicolovius and Arévalo-Garćıa, 2018]. High folate, a.k.a. folic acid or vitamin B9,
levels are beneficial too, as there is lower conversion from any type of MCI to any kind of
dementia [Cooper et al., 2015]. Vitamin E may hamper functional decline produced by AD,
albeit not preventing conversion from MCI to dementia nor improving cognitive functions in
both types of patients. [Farina et al., 2017].

AD is still an incurable and unstoppable illness [Lewis and Trempe, 2014]. Many
researchers and pharmacological companies have investigated and tried to discover efficient
medicines intended if not to cure, to stop or slow down dementia progression. One of the
goals of finding these medications is the reduction of the economic impact of dementia
if the patient does not progress to more severe stages of the disease. In the majority of
pharmaeconomic studies, this economic impact was reduced after administration of some
medicine as there were lower direct medical costs (e.g. hospitalization, medication, medics,
nurses, adult daycare, home health aides...) and cost of caregiver time [Zhu and Sano, 2006].
Another reason for early diagnosis of AD is the more impact that treatments may achieve
[Scinto and Daffner, 2000].

1.3 Criteria for the diagnosis and staging of Alzheimer’s
Disease

For years, the most used diagnostic criteria for AD was proposed by National Institute of
Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) in 1984 [McKhann et al., 1984], Table 1.1. It
was necessarily updated in 2007 and 2011 after new findings, especially those obtained with
functional neuroimaging techniques and genetics, were made [Dubois et al., 2007; McKhann
et al., 2011], Table 1.2 and Table 1.3.

Another prevailing diagnostic criteria was the Diagnostic and Statistical Manual of Mental
Disorders (DSM)-IV-TR, a “text revision” of the DSM-IV [Pichot and López-Ibor Aliño,
1998]. It was published in 2000 by the American Psychiatric Association (APA) [Aliño et al.,
2008]. In the most recent version, DSM-5 (2013), dementia started to be called “major
neurocognitive disorder”, whereas early stages of cognitive impairment, “mild neurocognitive
disorder” [Alzheimer’s Australia, 2017], a term equivalent to both prodromal AD and MCI,
Table 1.4.

Unlike the previous ones, which are intended for clinical care, there are other diagnostic
criteria that are recommended in research and clinical trials, such as International Working
Group-1 (IWG-1), International Working Group-2 (IWG-2), and National Institute on Aging
and Alzheimer’s Association (NIA-AA) [Vos et al., 2015].

The NIA-AA Research Framework seems to be the most periodically updated one [Cum-
mings, 2018; Jack et al., 2018]. It recommends the use of both neurodegeneration and amyloid
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Table 1.1: NINCDS-ADRDA (1984) diagnostic criteria for AD (based on [McKhann et al.,
1984]).

Definite AD Clinical criteria for probable AD
+ Brain autopsy or biopsy

Probable AD

Clinical examinations.
+ Deficiencies in ≥ 2 areas of cognition.
+ Gradual deterioration of memory and other cognitive functions.
+ Consciousness not altered or lost.
+ Patient is from 40 to 90 years old, commonly > 65.
+ No other cognitive-affecting disease or disorder.
Supported by:
Gradual deterioration of specific cognitive functions.
+ Daily living activities affected and behavior changes.
+ Similar problems in other family members.
+ Laboratory results: normal CSF, normal EEG of brain activity, and cerebral
atrophy in serial CT scans.
After excluding other diseases:

• Stagnation of illness progression.
• Normal CT results for patient’s age.
• Depression, sexual disorders, weight loss, insomnia, physical and verbal

outbursts, hallucinations...
• Seizures (in advanced AD).
• Neurological abnormalities (in advanced AD) such as gait alteration,

myoclonus, and increased muscle tone.

Unlikely or uncertain Probable AD if:
Abrupt onset.
+ Early in the course of the disease: seizures, sensory loss, loss of coordination,
or gait alteration.

Possible AD

Dementia syndrome, no other disorders that produce dementia, and variations
in clinical course, onset and presentation.
When there is another brain or systemic disorder that usually produces dementia
but which is not considered to be the cause.
In research, when there is a severe and progressive cognitive decline and other
cause is unknown.
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Table 1.2: NINCDS-ADRDA (2007) diagnostic criteria for AD (based on [Dubois et al.,
2007]).

Definite AD

Clinical evidence.
+ Brain autopsy or biopsy.
Clinical evidence.
+ Genetic evidence (mutations in chromosomes 1, 14 or 21).

Probable AD

A plus ≥ 1 supportive features B, C, D, or E:

A. Early, significant and gradual memory impairment over ≥ 6 months, re-
ported by patient or informants, which can be later confirmed with tests.
Other cognitive changes can be present too.

B. Medial temporal lobe atrophy: volume reduction of hippocampus, entorhinal
cortex and amygdala.

C. Abnormal CSF, such as low A𝛽1–42, high total tau or high phospo-tau
concentrations.

D. Lower glucose metabolism in bilateral temporal parietal regions, or amyloid
presence stated by ligands.

E. Family members with AD autosomal dominant mutation.

Exclusion criteria

Medical history: sudden outset, early seizures, prompt gait alteration, or early
changes in behavior.
Clinical features: sensory loss, or extrapyramidal side effects.
Other medical disorders that may affect cognitive functions such as depression,
non-AD dementia, infections, toxics, and cerebrovascular disease.

markers in clinical settings, with whom prognosis is the most accurate [Vos et al., 2015].
Three biomarker classes2 are included in this framework:

• Amyloid (A): obtained via amyloid Positron Emission Tomography (PET), CSF A𝛽42,
or A𝛽42/40 ratio.

• Tau (T): from tau PET, or CSF phosphorylated tau.
• Neurodegeneration (N): indicated by Fluorodeoxyglucose-Positron Emission Tomogra-

phy (FDG-PET), CSF total tau or Magnetic Resonance Imaging (MRI).
• Cognitive symptoms (C): after results from objective cognitive tests.
For these biomarker classes it has appeared a special nomenclature: AT(N)(C) “biomarker

profile” [Jack et al., 2018], albeit it is most commonly seen as AT(N). The different combina-
tions of these biomarker classes, whether it happens or not (binary), give all the eight possible
categories that indicate presence of AD, non-AD dementia or healthy subjects, Table 1.5.
The reason why neurodegeneration and cognitive symptoms are inside parenthesis in the
AT(N)(C) profile is that, unlike amyloid and tau, they are not specific to AD [Jack et al.,
2018]. In fact and according to Table 1.5, the presence of amyloid is enough to indicate
AD continuum, no tau or neuronal injuries required. Presence of AD is indicated by the
existence of at least tau or neural damage (or both), given abnormal amyloid quantities were
detected too.

On the other hand, according to the NINCDS-ADRDA diagnostic criteria, several cogni-
tive domains, also called areas of cognition, can be negatively affected in AD [McKhann et al.,
1984]: time and place orientation, memory, language skills, praxis (motor abilities), attention,

2Cognitive symptoms is not considered a biomarker class.
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Table 1.3: NINCDS-ADRDA (2011) diagnostic criteria for all-cause dementia and AD (based
on [McKhann et al., 2011]).

All-cause dementia

Daily activities interfered.
Functional decline over time.
No other major psychiatric disorder
Cognitive impairment in ≥ 2 of these domains:

a. Remember new information.
b. Judgment, reasoning and complex activities.
c. Visuospatial abilities.
d. Language.
e. Changes in behavior.

Probable AD dementia

Previous for all-cause dementia plus the next ones:

A. Gradual appearance.
B. Unambiguous worsening over time.
C. Most relevant cognitive deficits occur in more than one of the cognitive

domains: amnestic, language, visuospatial, or executive presentations.
D. More certainty if:

a. Documented decline on successive evaluations.
b. Genetic mutation.
c. Biomarker evidence of the AD pathophysiological process: A𝛽 protein

deposition (low A𝛽42 and positive PET amyloid imaging), and neuronal
injury (high CSF tau, reduced FDG uptake on PET in temporo-parietal
cortex; and extreme atrophy on sMRI in medial, basal, and lateral
temporal lobe, and medial parietal cortex)

E. Unlikely probable AD dementia if there is:
a. Cerebrovascular disease related to the onset of cognitive decline.
b. Features from other dementia.
c. Evidence for other neurological disease, or treatment that affects cogni-

tion.

Possible AD dementia Atypical: sudden onset, progressive decline not enough documented...
Evidence of the characteristics that reduce the likeliness of probable AD,
previously mentioned.

Proved AD dementia Previous cognitive and clinical criteria are met.
+ Demonstrated via neuropathological examination (autopsy or biopsy).

Unlikely AD dementia
Criteria for AD dementia was not met.
Sufficient evidence for other diseases that may overlap with AD, or both A𝛽
and neural degeneration biomarkers are negative.

Table 1.4: DSM-5 (2013) criteria for MCI and dementia (differences in bold) (based on
[Alzheimer’s Australia, 2017]).

Mild neurocognitive disorder
Modest cognitive decline change in ≥ 1 cognitive
domains.
+ Daily living activities unaffected.
+ No other mental disorder.

Major neurocognitive disorder
Significant cognitive decline change in ≥ 1 cogni-
tive domains.
+ Daily living activities affected.
+ No other mental disorder.
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Table 1.5: NIA-AA (2018) Research Framework (based on [Cummings, 2018; Jack et al.,
2018]).

Amyloid Tau Neural damage AT(N) profiles Biomarker category
Negative Negative Negative A-T-(N)- CN
Positive Negative Negative A+T-(N)- AD pathologic change

A
D

co
nt

in
uu

m

Positive Positive Negative A+T+(N)- AD
Positive Positive Positive A+T+(N)+ AD, or AD and other

brain disorders
Positive Negative Positive A+T-(N)+ AD and concomitant

suspected non-AD
pathologic change

Negative Positive Negative A-T+(N)-
Non-AD pathologic changeNegative Negative Positive A-T-(N)+

Negative Positive Positive A-T+(N)+

visual perception, problem-solving skills, and social function (activities of daily living). These
cognitive domains are similar to those indicated in DSM-5 [Alzheimer’s Australia, 2017]:
complex attention, executive function, learning and memory, language, perceptual-motor
function, and social cognition.

As observed, language is one of the cognitive domains frequently damaged by AD. Indeed,
language differences among individuals in the AD spectrum have been detected in a big
cohort of participants from distinct classes [Liampas et al., 2022].

1.3.1 Clinical diagnostic techniques
In spite of being more difficult, and frequently having lower accuracy [Galasko et al., 1998],
the earlier AD is diagnosed, the better [Scinto and Daffner, 2000]. Also, the sooner some
therapies and treatments are applied to an AD patient, the most effective they are [Bagyinszky
et al., 2014; Scinto and Daffner, 2000].

A biomarker is any measurable characteristic or substance that allows the diagnosis or
prognosis of an illness. A biomarker is deemed clinically valuable in this field if it provides
values of sensitivity, specificity, precision, and Negative Predictive Value above 90% [Huynh
and Mohan, 2017]. A proposal of how AD biomarkers progressively become abnormal is the
following one, supported by the Alzheimer’s Disease Neuroimaging Initiative: lower A𝛽 →
higher tau → lower glucose metabolism (damaged neurons) → damage to brain structure
→ cognitive impairment. Significantly lower A𝛽 and higher tau concentrations in CSF in
AD patients compared with CN subjects were experimentally confirmed by Galasko at al.
[Galasko et al., 1998]. However, Furcila et al. [Furcila et al., 2018] declared: “the disease
course of AD is highly variable, and neuropathological changes are not homogeneous”, and
also that “AD is not a unique entity even within the same neuropathological stage, since the
microanatomical/neurochemical changes that occur in the hippocampus greatly vary from
one patient to another”. According to this, choosing values related to the hippocampus may
not be an optimal option due to its variability within the same disease stage. Nevertheless,
it should be noticed that a little number of patients was used in [Furcila et al., 2018], so
generalization is not recommended and more research should be made to confirm or not
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those points.
Most current diagnostic techniques are slow (neuropsychological tests), costly (brain

imaging), or risky and invasive (CSF) [Laske et al., 2015]. Researchers are looking for novel
diagnostic tests which should be characterized by a low price, being little to non-invasive,
and with whom results can be obtained quickly. Potential biomarkers that have been tested
more recently almost always comply with the previous conditions [Bagyinszky et al., 2014;
Scinto and Daffner, 2000]. Some of them are obtained from the patient’s genome [Huynh
and Mohan, 2017], blood [DeMarshall et al., 2016; Huynh and Mohan, 2017], urine, serum,
saliva, skin, and pupillary response. Other potential biomarkers include vascular disorders,
protein dysfunctions, metal ions, and oxidative stress [Mantzavinos and Alexiou, 2017].

Several biomarkers have been proposed in the last decades for the early diagnosis of AD
[Budelier and Bateman, 2020; Frisoni et al., 2017; Laske et al., 2015; Reitz and Mayeux,
2014], which will be described below. In Table 1.6 certain relevant characteristics of the most
popular diagnostic tools are summarized.

Table 1.6: Characteristics of the most used diagnostic tools for AD diagnosis and prognosis.

Diagnostic tool Invasiveness Monetary cost Temporal cost Required knowledge Diagnostic precision
EEG Low-High Medium High Medium Medium
fNIRS Low Low-High High Medium Medium
MRI Low-Medium Medium-High High High Medium-High
PET Medium High High High Medium-High
SPECT Medium Medium-High Medium-High High Medium-High
B Low Low Medium Medium-High Medium
CSF High Medium Medium High High
HG/M/S None-Low Low-Medium High Medium-High Medium
NT None-Low Low Low-Medium Low Medium
OCTA Low Medium-High Medium-High High Medium-High

Abbreviations: B = Blood; CSF = Cerebrospinal Fluid; EEG = Electroencephalography; fNIRS =
Functional Near-Infrared Spectroscopy; HG/M/S = Human gait, movements or speech; MRI =
Magnetic Resonance Imaging; NT = Neuropsychological tests; OCTA = Optical Coherence
Tomography Angiography; PET = Positron Emission Tomography; SPECT = Single-Photon
Emission Computed Tomography

1.3.1.1 Cerebrospinal Fluid

Cerebrospinal Fluid is a colorless biofluid in the brain and spinal cord. It is obtained via
lumbar puncture, a quite invasive method where a needle is inserted between certain lumbar
vertebrae. Several biomarkers of interest for dementia diagnosis can be found in CSF, usually
A𝛽42, the ratio A𝛽42/40, total tau, and hyperphosphorylated tau. Combining CSF with
neuroimaging — or, in general, with more than one biomarker — suggests better classification
accuracy [Lista et al., 2014]. CSF is useful for the differential diagnosis of dementia between
autopsy-confirmed AD and non-AD [Niemantsverdriet et al., 2018].

1.3.1.2 Transcranial Magnetic Stimulation

Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation method that
allows not only the detection of early synaptic impairment and pathophysiological changes
in cortical circuits, but also the prediction of AD progression [Lazzaro, 2018; Motta et al.,
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2018]. Motta et al. found that long-term potentiation (LTP)-like cortical plasticity was a
significant predictor of AD progression and cognitive decline while an excellent method for
AD detection, achieving Area Under the Curve (AUC) values of 0.9 in the latter task [Motta
et al., 2018].

1.3.1.3 Neuropsychological tests

There are many neuropsychological tests that cover different domains:
• Functional domain refers to how well the patient is able to do daily-living activities

and how independent the patient is doing them. Examples of such activities are
showering, shopping, dressing, and using public transport. Functional Activities
Questionnaire (FAQ) is a test specialized in this domain [Pfeffer et al., 1982; Teng
et al., 2010]. Others are Katz’s index [Katz et al., 1963], Barthel’s index [Mahoney and
Barthel, 1965], and Lawton-Brody’s index [Lawton and Brody, 1969].

• Cognitive domain includes language, recall, orientation, calculation, and attention,
among others. Memory in general is analyzed. Examples of tests specialized in this
domain are: Cognitive Change Index (CCI) [Rattanabannakit et al., 2016], Mini-
Mental State Examination (MMSE) [Folstein et al., 1975], Montreal Cognitive Assess-
ment (MoCA) [Nasreddine et al., 2005], Rey Auditory Verbal Learning Test (RAVLT)
[Rosenberg et al., 1984], Wechsler Memory Scale (WMS) [Wechsler, 1945]...

• Behavioral domain stands for changes in mood and conduct. Depression, aggressiveness,
or anxiety are some of the elements that are included in this group. Geriatric Depression
Scale (GDS) is specialized in depression detection in geriatric environments [Yesavage
and Sheikh, 1986]. Neuropsychiatric Inventory (NPI) is able to detect 10 different
behavioral problems [Cummings et al., 1994; Cummings, 1997]. A shorter variant,
Neuropsychiatric Inventory-Questionnaire (NPI-Q), also exists and was validated in
[Kaufer et al., 2000].

Some neuropsychological assessments are prepared to test multiple domains: cognitive
and functional, with Cognitive-Functional Composite (CFC) [Jutten et al., 2018] or Everyday
Cognition (ECog) [Farias et al., 2008]; and cognitive and behavioral, with Alzheimer’s
Disease Assessment Scale (ADAS) [Rosen et al., 1984]. Special mention is Clinical Dementia
Rating (CDR), another multiple domain — cognitive and functional — neuropsychological
test, used for staging dementia [Hughes et al., 1982]. Values go from 0 for CN subjects to
3 for those with severe dementia. A variant exists called Clinical Dementia Rating Scale
Sum of Boxes (CDR-SB), which seems to be useful for early stages [Cedarbaum et al., 2013].
Combined with hippocampal volume, CDR-SB was able to predict MCI to AD conversion
[Borgio et al., 2012].

Multiple-domain amnestic MCI subtype can be detected with a set of neuropsycholog-
ical tests, unlike single-domain amnestic and non-amnestic MCI subtypes [Klekociuk and
Summers, 2014].

In moderate to severe AD patients, results obtained with neuroimaging and neuropsy-
chological tests in autopsy-confirmed AD patients were similar to those which where just
clinically diagnosed with AD [Fearing et al., 2007].

Regarding the validation of neuropsychological scales, only Wechsler Adult Intelligence
Scales and MMSE were reported to be valid in up to 80% of the European countries included
in [Maruta et al., 2011]. As only a few scales were available in all countries, these authors
concluded that the use of these scales require more consensus in order to facilitate both the
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Figure 1.2: Differences in the physiological structure of the brain and neurons of a) a
Cognitively Normal individual, and b) a patient with Alzheimer’s Disease. Source: Breijyeh
and Karaman [2020]

creation of international cooperative studies and the harmonization of the data gathered
[Maruta et al., 2011].

1.3.1.4 Neuroimaging

As it can be seen in Figure 1.2 and Figure 1.3, the brain of a CN subject is different from
that of a patient with MCI and AD: there is a gradual atrophy of the brain [Johnson et al.,
2012], especially shrinkage of both hippocampus and cerebral cortex, and enlargement of
ventricles. This brain volume loss can be explained by the neural apoptosis implied by some
of the hypotheses on the origin of AD, subsection 1.2.1: high proliferation of abnormal A𝛽
and tau. Henceforth, the use of neuroimaging, i.e. images of the brain, is useful for the in
vivo detection of AD and other dementia [Barkhof et al., 2011]. It is less invasive than brain
biopsies, mostly made in autopsies though, which has been considered the only certain way
to confirm the presence of definite AD [McKhann et al., 1984; Fearing et al., 2007], Table 1.1
and Table 1.2.

Neither the volume of the whole brain nor that of some of its parts are the same in every
person of the same age and sex, so using only the values of volumes without taking into
accounts those factors might be inadequate. Several normalization techniques can be used to
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Figure 1.3: Comparison between the MRI images of the brains of a Cognitively Normal
person (left), a Mild Cognitive Impairment subject (middle) and an Alzheimer’s Disease
individual (right). Source: Chandra et al. [2019]

counter this. For example, using the Intracranial Volume (ICV) to adjust for different head
sizes is safe [Jenkins et al., 2000], or care has to be taken [Voevodskaya et al., 2014].

Neuroimaging has played different roles in the last four decades and each technique has
its own advantages and disadvantages [Johnson et al., 2012]. There is an abundant quantity
of neuroimaging techniques, which have been widely used not only in the diagnosis and
prognosis of AD [Barkhof et al., 2011; Frisoni et al., 2010; Frizzell et al., 2022; Suárez-Araujo
et al., 2024] but also of other diseases [Litjens et al., 2017; Zhang et al., 2021]:

1.3.1.4.1 Computed Tomography Computed Tomography (CT) is based on X-rays
technology taken from many angles so it provides cross-sectional images (that is, that looks
like “virtual slices”) of the body. Radiation exposure and contrast reaction are the main
inconveniences of this technology.

Other types of CT are [Davison and O’Brien, 2013]:
• Positron Emission Tomography is based on nuclear technology as the system detects

a radionuclide ligand, paragraph 1.3.1.4.5, previously administered to the patient. It
allows observing metabolic activity of parts of the body. It is, by far,the most popular
CT technique [Mathotaarachchi et al., 2017; Nakamura et al., 2018b; Palmqvist et al.,
2015; Zhou et al., 2014].

• Single-Photon Emission Computed Tomography (SPECT) is based on gamma rays and
provides 3D and cross-sectional images. It requires that a gamma-emitting radioligand
is given to the patient [Livieratos, 2012]. Sensitivity and specificity values of SPECT
lower than PET were reported in [Davison and O’Brien, 2013]

1.3.1.4.2 Brain signals: Electroencephalography and Magnetoencephalogra-
phy While being probably the simplest and more inexpensive neuroimaging technique,
Electroencephalography (EEG) is still useful in differential diagnosis of dementia, and from
other diseases [Ronson, 2011]. It monitors electrical activity of the brain according to different
cerebral signals measured from diverse parts of the scalp. EEG is commonly applied with
multiple non-invasive electrodes placed on the scalp [McBride et al., 2014], albeit invasive ones
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exist too. It is prone to artifacts (wrong signals) from both non-cerebral or environmental
origins. Unlike other methods, EEG can be used while performing other activities due to its
more portable nature. However, it is generally used while the patient is in a resting state
[Cassani et al., 2018].

Magnetoencephalography (MEG) maps brain activity by recording magnetic fields, which
are naturally generated by electrical currents in the brain, with magnetometers. Due to the
low values of these magnetic fields, MEG needs to be measured in magnetically shielded
rooms in order to avoid interferences from, among others, the Earth’s magnetic field [Alberdi
et al., 2016]. This technique provides better spatial resolution and is more sensitive to
superficial cortical activity than EEG. MEG is not dependent on head geometry, unlike
EEG. Lower results due to its reduced discriminative potential might be the reason for its
low popularity compared to EEG [Alberdi et al., 2016].

Several MEG signatures can be useful as unique biomarkers for the predementia stages
of AD [Nakamura et al., 2018a]. These authors found that increase in the alpha band power
in medial temporal regions was associated with A𝛽 deposition. Also, delta band power
augmentation in the same areas was correlated with decrease in glucose metabolism and
entorhinal atrophy, and related to AD progression. They observed that global theta power
increase was not specific to AD due to the fact that it also happened without A𝛽 deposition,
but with hippocampal atrophy and general cognitive decline.

1.3.1.4.3 Magnetic Resonance Imaging MRI is based on strong magnetic fields so
patients are not exposed to ionizing radiation. It is not recommended to be used by patients
with implants or non-removable internal metallic objects. This technology does not require
compounds, although some contrast agents are used in order to get better resolution. MRI
can be affected by visual artifacts, which can be produced by the patient, the device, or the
signal processing [Erasmus et al., 2004]. Therefore, some kind of standardized protocols are
required and similar equipments are recommended when data from different sites are used,
especially when MRI images are analyzed with automated software, which are less tolerant
to visual artifacts [Jack et al., 2008]. MRI techniques are usually divided into Structural
Magnetic Resonance Imaging (sMRI) and Functional Magnetic Resonance Imaging (fMRI),
whether they report the brain anatomical structures or activity, respectively. fMRI is based
on the blood flow as higher flow indicates that certain part is in use at that moment.

Arterial Spin Labeling (ASL) is a fMRI technique where magnetic spin of arterial blood
water is tracked and blood flow is measured. It does not need contrast agents as water is
used for that purpose.

On the other hand, quantitative MRI can be seen as a complementary way of using MRI
data where, apart from the “qualitative” visual-spatial information, each voxel of the image
comes with a value of certain physicochemical, pre-selected, parameter [Bonny, 2005].

MRI, especially the structural one, is the most common diagnostic tool in the last decade
[Cabrera-León et al., 2024c].

Diffusion Tensor Imaging (DTI) is a special kind of Diffusion-Weighted Magnetic Reso-
nance Imaging (DW-MRI), where white matter connectivity of the brain is mapped. DW-MRI
is based on the diffusion of water within tissues.

1.3.1.4.4 Functional Near-Infrared Spectroscopy Also known as “near-infrared imag-
ing” or “optical topography” [Ferrari and Quaresima, 2012], or even simply as “near-infrared
spectroscopy”, Functional Near-Infrared Spectroscopy (fNIRS) is a functional neuroimaging
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technique that uses near-infrared light to roughly calculate cortical hemodynamic activity
produced by neural activity. This is done by quantifying changes in the concentrations of
both deoxyhemoglobin and oxyhemoglobin. fNIRS is only able to gauge shallow cortical
regions, although deep brain structures are possible on babies [Ferrari and Quaresima, 2012].
It is as non-invasive as EEG, and its cost of the equipment and portability depends on the
fNIRS technology [Ferrari and Quaresima, 2012]. fNIRS has similar or slightly worse spatial
resolution than EEG, whereas its temporal one is worse [Takeda et al., 2015].

Not as many researches were found that used fNIRS [Zhang et al., 2023a; Park, 2024;
Yang et al., 2019, 2020]. As in some variants of EEG, fNIRS can be used while the patient
performs different mental tasks [Yang et al., 2019, 2020]. In the former work they discovered
that some subregions instead of the whole prefrontal cortex allowed Convolutional Neural
Networks (CNNs) to achieve better performance values.

1.3.1.4.5 Compounds for neuroimaging methods In order to ease or even to allow
that some receptor (that is, a particular substance, cell type, or protein, among others, that
wants to be detected) become visible to a neuroimaging technology, a compound may be
required. The way a compound achieves this is by pairing (also called, sticking or binding)
to the receptor, hence called “ligand”. Several compounds exist nowadays:

• Fluorodeoxyglucose (FDG) is an analog of glucose that is used as a tracer in PET
scans. Concentrations of FDG indicate metabolic process in certain parts of the body
while those parts are consuming glucose.

• Pittsburgh compound B (PiB) is a radioligand analog of thioflavin. It binds well with
A𝛽 plaques, and it is used in PET.

• Florbetapir F 18 amyloid (AV-45) is a PET scanning radiopharmaceutical compound.

1.3.1.5 Human posture, gait and body parts movement

Some illnesses, such as AD, Parkinson’s Disease (PD), stroke, and cerebral palsy, negatively
affect the ability of the patients to keep certain posture and to control their body parts
[Cabrera-León et al., 2024a]. In extreme cases, these diseases even impede it.

Individuals with greater cognitive impairment are characterized with slower gaits [Laske
et al., 2015]. These authors recommended to analyze gait while the subject is performing
another cognitive or motor task due to the fact that gait problems might be easier to detect
as they tend to stay unnoticed when only one task is done [Laske et al., 2015]. In [Gillain
et al., 2016] gait speed and variability were considered as possible markers of MCI patients
converting to AD. The latter metric may be a better predictor of cognitive decline in CN
subjects [Byun et al., 2018].

Many families of sensors and methodologies have been used to analyze human posture,
gait and movements [Wong et al., 2007], among others photogrammetry, video analysis,
eye trackers, accelerometers and gyroscopes. Thanks to the availability of smartphones
and webcams, these methodologies have become more popular [Cabrera-León et al., 2024a],
albeit more specialized equipment and controlled environments might be required for some
experiments. Teaching the caregivers or the patients might also be needed when these devices
are going to be used at home or in other unsupervised environments [Cabrera-León et al.,
2024a].
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1.3.1.6 Speech

As cognition gets impaired by AD, so does language [Pulido et al., 2020]. Therefore,
writing and speech are negatively affected so the patients cannot communicate with or even
understand others [Cabrera-León et al., 2024a].

Speech impairment increases gradually with the stage of AD [Cabrera-León et al., 2024a]:
• Early: bad word recalling, poor verbal fluency, and common use of word fillers.
• Moderate: impossibility to follow a conversation, word repetition, and incorrect use of

words.
• Severe: incoherent speech, repeating other people, and use of unrevealed or illogical

words or sentences.
Different characteristics of writing and speech can help in the diagnosis of AD and MCI

[Gosztolya et al., 2019]. Bigger phonation and reading times are brought along by cognitive
decline [Ivanova et al., 2022]. The quantities of voice breaks and periods of voice can help
differentiate between individuals with AD, those with MCI and those with CN [Meilán et al.,
2014].

Therefore, speech may be considered an early indicator of AD. After being analyzed with
Machine Learning (ML) techniques during the last decade, it has been concluded that speech
may be useful as a fast, cheap and non-invasive complementary diagnostic method [Pulido
et al., 2020].

1.3.1.7 Blood

Blood-based biomarkers for AD are one of the most recent diagnostic tools [Cabrera-León
et al., 2024a], and they have lower cost and are less invasive than CSF for obtaining APOE
and serum A𝛽. Their use in a primary care setting was recommended in [Leuzy et al., 2022],
where different mixes of blood biomarkers were also advised depending on the AD stage. For
preclinical cases, A𝛽42/40 or glial fibrillary acidic protein combined with plasma P-tau217.
For prodromal ones, cognitive scales and plasma P-tau217. The latter alone can be used for
patients with AD dementia.

1.4 Prevalence and costs of dementia
Patients with dementia, including AD, have high socioeconomic costs for health systems. For
example, annually the cost of each demented patient is more than 28,000 e in the Canary
Islands (Spain) [Lopez-Bastida et al., 2006], ranging between 27,000 e and 37,000 e in all
Spain [Prieto Jurczynska et al., 2011], where around 87% of these direct and indirect costs
are borne by the families of these patients. However, this cost changes depending on the
severity level of the disease, going from more than 18,000 e in mild stages to more than
52,000 e in severe ones [Prieto Jurczynska et al., 2011].

The incidence of AD grows with age, even doubling every 5 to 10 years [Zhu and Sano,
2006]. Also, its prevalence raises exponentially with age: almost 50% in individuals older
than 84 years old, whereas 3% in those between 65 and 74 [Zhu and Sano, 2006]. It was
also found that prevalence and incidence rates increase with age in the European population
[Niu et al., 2017]. In 2010 in the Unites States 14.7% of people older than 70 years old had
dementia, and the cost of each of these people was up to $56,290 per year [Hurd et al., 2013].
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In 2015 the cost per person with dementia varied depending on the country where that
patient lived: $43,680 in G7 countries3, $20,187 in G20 countries4, and $6,757 in non-G7 and
non-G20 countries [Wimo et al., 2017].

Between 1995 and 2005, the prevalence of AD in Europe raised, unlike its incidence [Niu
et al., 2017]. Both the prevalence and the incidence of AD were greater in women (7.13% and
13.25 per 1000 person-years) than in men (3.31% and 7.02 per 1000 person-years). In 2018
around 5.7 million US inhabitants had Alzheimer’s dementia [Alzheimer’s Association, 2018].

Besides, dementia brings along high burdens to both the physical and mental health of
caregivers [Prieto Jurczynska et al., 2011]: stress, insomnia, anxiety, depression, feeling of
social isolation, higher intake of psychotropic medicines, and worse self-perceived health
status.

According to Nichols et al. [2022], in 2019 there were 57.4 million people with dementia
globally and they estimated that in 2050 there will be 152.8 million cases, over 2.66 times
more. In Spain these quantities are 826,686, 1,516,523 and 1.83, respectively. Sex prevalence
will remain stable, with more women with dementia as currently occurs: a female-to-male
ratio of 1.69. This increase in people with dementia will not be the same in all regions
[Nichols et al., 2022]: the largest percentage changes in the number of projected dementia
will be in north Africa and the Middle East and eastern sub-Saharan Africa, whereas the
smallest in high-income Asia Pacific and western Europe. Such changes can be attributed to
population growth (especially in sub-Saharan Africa) and population aging (notably in east
Asia).

1.5 Neural computing methods for detecting Alzheimer’s
Disease and Mild Cognitive Impairment

—

1.5.1 History and recent advances
ANNs have been widely applied in very different fields such as spam filtering [Cabrera-León
et al., 2018c,b] and chemicals detection [Garćıa Báez et al., 2011]. Regarding the topics of this
thesis, in the last 30 years, ANNs have been used in the analysis, diagnosis, early detection
and outcome prediction of many psychiatric disorders and health problems such as dementia,
AD, myocardial infarction, appendicitis, several types of tumors, and diabetes [Galletly et al.,
1996]. Examples of early researches on the diagnosis of dementia with ANNs are the following.
In the case of dementia, Mulsant and Servan-Schreiber [Mulsant and Servan-Schreiber, 1988]
implemented a connectionist neural network with 2 hidden layers which, in spite of being able
to request more information about a particular attribute of a patient, could only correctly
classify 61% of the cases. One of the first cases where neuroimaging was used together with
an ANN for the CN-AD classification problem was one work of Kippenhan at al. [Kippenhan

3The Group of Seven (G7) is formed by the seven countries with the largest economies in the world:
Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States.

4The Group of Twenty (G20) is composed of governments and central banks of the countries with the
most industrialized or developing economies in the world: Argentina, Australia, Brazil, Canada, China, the
European Union, France, Germany, India, Indonesia, Italy, Japan, Mexico, Russia, Saudi Arabia, South
Africa, South Korea, Turkey, the United Kingdom, and the United States.
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et al., 1992]. Their backpropagation ANN achieved up to 0.85 AUC whereas 0.89 a human
expert. An incremental learning, unsupervised multilayer neural network was another pioneer
in terms of using neuroimaging and an ANN [Chan et al., 1993]. It used cerebral blood flow
obtained via SPECT and had problems distinguishing CN from AD.

In the recent years, more complex ANNs have appeared, although, apart from Deep
Learning (DL) techniques with neuroimaging, they have not become preponderant. Thanks
to the availability of accessible datasets, such as Alzheimer’s Disease Neuroimaging Initiative
(ADNI)5 and Open Access Series of Imaging Studies (OASIS)6, more researchers have become
interested in AD, and the reproducibility of their experiments is far easier than before, when
private datasets were common.

In Table 1.7, Table 1.8, Table 1.9 and Table 1.10 we can see examples of other authors’
works, the characteristics of the system and the results obtained, grouped by the type of
model: CNNs, other DL methods and shallow ANNs, respectively.

5http://adni.loni.usc.edu/
6https://www.oasis-brains.org/

http://adni.loni.usc.edu/
https://www.oasis-brains.org/
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Table 1.7: Characteristics and results of Deep Learning methods of the CNN family for detecting AD and MCI.

Method Dataset Nº of subjects Features Best results Research

CNN

ADNI

100 CN, 76 pMCI,
128 sMCI, 93 AD

MRI, PET. 0.96 AUC, 0.93 A in CN-AD; 0.88 AUC,
0.83 A in CN-pMCI

[Liu et al.,
2018a]

229 CN, 167
pMCI, 236 sMCI,
198 AD

MRI, PET. 0.93 AUC in CN-AD; 0.73 AUC in s-MCI-
pMCI; 0.76 AUC in MCI-NC

[Li et al.,
2014]

161 CN, 193 MCI,
161 AD

MRI, up to
35 neuropsy-
chological test
scores

< 0.75 A in CN-MCI; > 0.75 A in AD-
MCI; < 0.8 A in CN-AD

[Senanayake
et al.,
2018]

61 CN, 77 EMCI,
43 LMCI, 50 AD

MRI 0.66 AUC, 0.64 A in AD-EMCI; 0.61
AUC, 0.62 A in AD-LMCI; 0.88 AUC,
0.79 A in CN-AD; 0.47 AUC, 0.56 A in
LMCI-EMCI; 0.67 AUC, 0.63 A in CN-
LMCI; 0.57 AUC, 0.54 A in CN-EMCI

[Korolev
et al.,
2017]

OASIS 74 MRI 0.75 A [Alkabawi
et al.,
2017]

CADDementia,
ADNI

70 CN, 70 MCI, 70
AD.

sMRI. 0.948 A in AD-MCI-CN; 0.957 A in
(AD+MCI)-CN; 0.993 A in AD-CN; 1 A
in AD-MCI; 0.942 A in MCI-CN

[Hosseini-
Asl et al.,
2018]

CNN+CAE ADNI 229 CN, 199 AD MRI 0.93 AUC, 0.88 A, 0.91 Se, 0.84 Sp in CN-
AD

[Li et al.,
2017]

CNN+MNLR Chinese dataset 120 CN, 120 MCI,
110 AD

ASL (fMRI) Median of diagnostic errors of DL ap-
proach is less than other ML methods’

[Huang
et al.,
2017]

A = Accuracy; ASL = Arterial Spin Labeling; CAE = Convolutional Autoencoder; DL = Deep Learning; fMRI = Functional MRI; MNLR =
Multi-Nominal Logistic Regression; MRI = Magnetic Resonance Imaging; pMCI = MCI converters; Se = Sensitivity; sMCI = MCI
non-converters; sMRI = Structural MRI; Sp = Specificity
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Table 1.8: Characteristics and results of Deep Learning methods other than CNNs for detecting AD and MCI.

Method Dataset Nº of subjects Features Best results Research

SAE

Sydney Mem-
ory and Aging
Study

505 CN, 332 MCI Up to 35 neu-
ropsychological
test scores

0.85 A, 0.89 AUC in CN-MCI [Senanayake
et al.,
2017]

ADNI, CADDe-
mentia

171 CN, 232 MCI,
101 AD

sMRI Up to 0.58 A in CN-MCI-AD [Dolph
et al.,
2017]

ADNI

52 CN, 43 pMCI,
56 sMCI, 43 AD.

MRI, PET,
CSF, MMSE,
ADASCog

0.9 A in CN-AD; 0.74 A in MCI-CN; 0.6
A in pMCI-sMCI

[Suk and
Shen,
2013]

77 CN, 67 pMCI,
102 sMCI, 65 AD.

MRI 0.88 A, 0.89 Se, 0.87 Sp in CN-AD; 0.77
A, 0.74 Se, 0.78 Sp in MCI-CN

[Liu et al.,
2014]

RNN
TADPOLE
(ADNI)

N/A ADASCog13,
ventricles vol-
ume

0.86 AUC [Nguyen
et al.,
2018]

MLP+RNN ADNI 229 CN, 198 AD. sMRI 0.9 A, 0.87 Se, 0.93 Sp in CN-AD [Cui et al.,
2018]

A = Accuracy; ADAS = Alzheimer’s Disease Assessment Scale; ADNI = Alzheimer’s Disease Neuroimaging Initiative; CSF = Cerebrospinal
Fluid; MMSE = Mini-Mental State Examination; MRI = Magnetic Resonance Imaging; PET = Positron Emission Tomography; pMCI = MCI
converters; RNN = Recurrent Neural Network; SAE = Stacked Autoencoder; Se = Sensitivity; sMCI = MCI non-converters; sMRI = Structural
MRI; Sp = Specificity
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Table 1.9: Characteristics and results of shallow neural computing methods for detecting AD and MCI (Table 1 of 2).

Method Dataset Nº of subjects Features Best results Research

HUMANN-S

Private 267 consultations
on 30 patients

MMSE, FAST, Katz’s
index, Barthel’s index,
and Lawton-Brody’s
index

0.87 Se, 0.93 Sp with AD [Garćıa Báez
et al., 2010]

0.88 Se, 0.82 Sp with mild CI;
0.97 Se, 0.96 Sp with severe CI

[Garćıa Báez
et al., 2009]

0.96 Se, 0.93 Sp with AD [Garćıa Báez
et al., 2012]

Ensembles of
HUMANN-S

0.97 Se, 0.9 Sp with AD [Garćıa Báez
et al., 2010]

0.78 Se, 1 Sp with mild CI; 1 Se,
0.99 Sp with severe CI

[Garćıa Báez
et al., 2009]

0.97 Se, 0.9 Sp with AD [Garćıa Báez
et al., 2012]

CPN ADNI

166 CN, 159 EMCI,
137 LMCI.

Age, years of education,
FAQ, MoCA, NPI

0.657AUC, 0.545 A in CN-
EMCI-LMCI

[Cabrera-León
et al., 2018a]

203 CN, 128 MCI. Age, years of education,
FAQ, MMSE, GDS

0.88 AUC, 0.88 A, 0.8 Se, 0.94
Sp in CN-MCI

[Garćıa Báez
et al., 2015]

0.95 AUC, 0.87 A, 0.9 Se, 0.85
Sp in CN-MCI

[Suárez Araujo
et al., 2017]

A = Accuracy; EMCI = Early Mild Cognitive Impairment; FAQ = Functional Activities Questionnaire; FAST = Functional Assessment Staging scale; GDS = Geriatric Depression

Scale; HUMANN = Hybrid Unsupervised Modular Adaptive Neural Network; LMCI = Late Mild Cognitive Impairment; MMSE = Mini-Mental State Examination; MoCA = Montreal

Cognitive Assessment; NPI = Neuropsychiatric Inventory; P = Precision; Se = Sensitivity; Sp = Specificity
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Table 1.10: Characteristics and results of shallow neural computing methods for detecting AD and MCI (Table 2 of 2).

Method Dataset Nº of subjects Features Best results Research
Linear feed-
forward

AlzBiomarker 35 CN, 45 AD From CSF: albumin ratio,
A𝛽40, A𝛽42, Total tau, tau-
phospho

0.955 Se, 0.91 Sp in CN-
AD

[Aljović et al.,
2016]

ANN, DT,
NB, UCS

“nep499”
(Rdatasets)

242 CN, 257 AD 8 SNP, APOE 1 P, 0 FPR, 1 TPR [Salazar et al.,
2018]

BP-ANN

Chinese
dataset

60 CN, 60 AD Age, Activities of Daily
Living, aluminium, creati-
nine, 5-hydroxytryptamine,
dopamine

0.93 AUC, 0.925 A, 0.9
Se, 0.95 Sp

[Tang et al.,
2013]

OASIS 135 CN, 69 very mild
AD, 29 mild AD, 2
moderate AD.

MRI (hippocampus), age,
gender, education, socio-
economic status, MMSE

0.87 A [Raut and
Dalal, 2017]

2-hidden lay-
ers ANN

ADNI 225 CN, 358 MCI, 138
AD

MRI (volumes of 16 ROIs),
SNP

0.992 AUC in CN-AD;
0.835 AUC in MCI to
AD conversion

[Ning et al.,
2018]

RF, NB,
MLP, k-NN,
BP-ANN...

Private 40 CN, 40 Late Onset
AD

30 biochemical and genetic
biomarkers

0.94 A in CN-AD [Coppedè et al.,
2013]

A = Accuracy; AUC = Area Under the Curve; BP-ANN = Backpropagation Artificial Neural Network; CI = Cognitive Impairment; CSF = Cerebrospinal Fluid; FPR = False Positive
Rate; k-NN = k-Nearest Neighbors; MLP = Multilayer Perceptron; MMSE = Mini-Mental State Examination; MRI = Magnetic Resonance Imaging; NB = NB; Open Access Series of
Imaging Studies = OASIS; P = Precision; RF = Random Forest; ROI = Region of Interest; Se = Sensitivity; SNP = Single Nucleotide Polymorphism; Sp = Specificity; TPR = True
Positive Rate; UCS = Supervised Classifier System
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1.5.2 Surveys, overviews and reviews

Several similar surveys, overviews and reviews exist in the literature, mainly related with AD
diagnosis. The number of such review-like articles has increased greatly in the last decade, even
doubling each year between 2021 and 2023. Those that included works related with prognosis
and longitudinal studies were uncommon [Cassani et al., 2018; Liu et al., 2018b; Jo et al.,
2019; Arya et al., 2023; Khaliq et al., 2023]. It was rare to find reviews that analyzed a very
limited number of articles [Bevilacqua et al., 2023; Crary, 2023]. Different types of analysis
were carried out by some researchers: bibliometrically [Liu et al., 2023], bibliographically
[Wu et al., 2023], or with visibility graphs [Sulaimany and Safahi, 2023]. The extended
study in [Tsoi et al., 2023] studied applications of Artificial Intelligence (AI) for cognitive
screening and training, dementia diagnosis and prognosis, and care and treatment. The
main differences between reviews were related to the illnesses, modalities and computational
methods that were analyzed.

According to illnesses, reviews where solely AD-related works were included were extremely
common [Alberdi et al., 2016; Rathore et al., 2017; Cassani et al., 2018; Liu et al., 2018b;
Jo et al., 2019; Pulido et al., 2020; Logan et al., 2021; Zeng et al., 2021; Zhao et al., 2021;
Frizzell et al., 2022; Gao and Lima, 2022; Mirzaei and Adeli, 2022; Qu et al., 2022; Saleem
et al., 2022; Shastry et al., 2022; Zhang et al., 2023c; Cabrera-León et al., 2024c; Malik et al.,
2024; Ozkan et al., 2024; Suárez-Araujo et al., 2024; Vimbi et al., 2024]. Diagnosis and
prognosis of MCI was found in [Liu et al., 2023], whereas prediction of MCI conversion in
[Arya et al., 2023]. Few of them also studied non-AD dementia works [Zheng et al., 2015;
Battineni et al., 2022; Li et al., 2022], and some focused on AD and PD [Alfalahi et al., 2023;
Khaliq et al., 2023]. Reviews where several illnesses were analyzed were also found [Litjens
et al., 2017; Goceri and Goceri, 2017; Noor et al., 2020; Zhang et al., 2020, 2021; Ardalan and
Subbian, 2022; Iqbal et al., 2024], including cognitive impairment detection [Fei et al., 2017;
Pellegrini et al., 2018; Bevilacqua et al., 2023], different neurological disorders [Zhang et al.,
2023b], several degenerative nerve diseases [Bhachawat et al., 2023], or neurodegenerative
neuropathologies [Crary, 2023]. Sulaimany and Safahi [Sulaimany and Safahi, 2023], by
means of visibility graphs, wrote a scope review in neuroscience in general.

Regarding modalities, the majority only discussed works that used neuroimaging [Rathore
et al., 2017; Pellegrini et al., 2018; Jo et al., 2019; Zhang et al., 2020; Logan et al., 2021;
Zeng et al., 2021; Ardalan and Subbian, 2022; Mirzaei and Adeli, 2022; Aberathne et al.,
2023; Arya et al., 2023; Zhao et al., 2023; Ozkan et al., 2024]. Medical imaging, which also
includes neuroimaging, were reviewed by fewer authors [Zheng et al., 2015; Litjens et al.,
2017; Goceri and Goceri, 2017; Gao and Lima, 2022], some even with radiomics from medical
images [Bevilacqua et al., 2023]. In [Liu et al., 2018b] multimodality imaging were studied.
Multimodality articles where neuroimaging together with other modalities were analyzed in
[Mirzaei and Adeli, 2022], whereas multimodality of any type in [Alberdi et al., 2016; Elazab
et al., 2024; Suárez-Araujo et al., 2024]. Few reviews focused solely on MRI [Noor et al.,
2020; Zhang et al., 2021; Frizzell et al., 2022] or sMRI [Zhao et al., 2021]. Works based on
non-neuroimaging techniques were reviewed in [Cabrera-León et al., 2024a]. EEG works were
collated in [Cassani et al., 2018; Liu et al., 2023]. Articles about automatic speech analysis
for AD were reviewed in [Pulido et al., 2020]. Assessment of spontaneous speech was studied
in [Parsapoor, 2023; Qi et al., 2023], and also of language disorders in [Parsapoor, 2023].
Works that extracted data from wearables or sensors were studied in [Alfalahi et al., 2023].
Researches that used data from non-invasive and portable techniques were summarized in
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[Zhang et al., 2023c].
Finally, many reviews only included studies based on deep neural architectures [Litjens

et al., 2017; Goceri and Goceri, 2017; Jo et al., 2019; Noor et al., 2020; Zhang et al., 2020;
Logan et al., 2021; Gao and Lima, 2022; Saleem et al., 2022; Iqbal et al., 2024]. However, many
others preferred wider families, whether AI [Liu et al., 2018b; Zhao et al., 2021; Zhang et al.,
2021; Battineni et al., 2022; Frizzell et al., 2022; Li et al., 2022; Aberathne et al., 2023; Tsoi
et al., 2023; Zhang et al., 2023c], ML [Zheng et al., 2015; Alberdi et al., 2016; Cassani et al.,
2018; Pellegrini et al., 2018; Ardalan and Subbian, 2022; Mirzaei and Adeli, 2022; Arya et al.,
2023; Bhachawat et al., 2023; Khaliq et al., 2023; Parsapoor, 2023; Zhao et al., 2023; Elazab
et al., 2024; Malik et al., 2024], or ANNs [Cabrera-León et al., 2024a; Suárez-Araujo et al.,
2024]. On the contrary, other authors narrowed the analysis to specific neural methods, such
as Generative Adversarial Network (GAN)-based DL methods [Qu et al., 2022], Graph Neural
Networks (GNNs) [Zhang et al., 2023b], or Local Interpretable Model-agnostic Explanations
(LIME) and SHapley Additive exPlanations (SHAP) frameworks [Vimbi et al., 2024]. Others
took different approaches, such as comparing Deep Neural Networks (DNNs) with other ML
or DL modular systems [Shastry et al., 2022], or studying the importance of transfer learning
to DNNs [Ardalan and Subbian, 2022].

Among the most recent reviews, two that we have authored, whether published or under
review, will be summarized in the next two subsections [Cabrera-León et al., 2024a, 2025].
Researches included in any of them made use of ANNs, DNNs, a combination of any of them
or with other ML models. Works were grouped into neuroimaging and non-neuroimaging
because, in a prospective bibliography collation, it was found that the popularity of the neural
computation methods, the databases used and use of multimodality varied a lot depending
on these families of modalities.

1.5.2.1 State of the art of works based on non-neuroimaging techniques

In [Cabrera-León et al., 2024a] 42 works based on non-neuroimaging techniques were reviewed.
They were extracted from the PubMed database and a selection criteria was required to be
complied for the articles to be included.

Figure 1.4 shows that the number of cross-sectional studies on this topic that fulfill the
selection criteria has almost multiplied by 5 in the last two years. There has been almost
the same number of studies based on deep and shallow ANNs in the last two years. Genes
or blood have become more frequently used by ANN-based methods in that period of time.
Conversely, in the last decade modalities being used have changed, with novel ones appearing
while others stayed with a similar level.

In Figure 1.5 how frequent the different classification tasks have been in the selected cross-
sectional studies is shown. Almost 54% correspond to the CN-AD and CN-MCI classification
tasks. Multimodality, with almost 32% of the cross-sectional studies, was more common for
tackling binary classification problems or with shallow ANNs. Of the selected studies based
on DNNs, none tackled MCI-AD.

Private databases were the most popular (over 52% of the times a database was used),
followed by far by Gene Expression Omnibus (GEO) (almost 15%) and ADReSS (over 12%),
Figure 1.9. ADNI and Pitt Corpus follow them with above 7% each. Reasons for such results
might be derived from the characteristics of public and private databases: lower number of
participants but more specific biomarkers and clinical criteria in the latter.

Cross-sectional studies were five times more common than longitudinal ones, and it
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drastically increased in the last two years, Figure 1.4.
The quantity of works using shallow ANNs was similar to those using DNNs with all

modalities but those labeled as “Others” (mainly related with speech and eye). Only
DNNs, principally Recurrent Neural Networks (RNNs), were used in longitudinal studies.
Transformers were common due to the usage of textual information and Natural Language
Processing. CNNs were not as popular as with neuroimaging, subsubsection 1.5.2.2, yet they
were used with gait and neuropsychological tests, or as modular approaches, combined with
others.

Transfer learning, as a way to reduce training time by pretraining with a dataset different
to the wanted one, was scarcely used, possibly as CNNs were not so frequent.

Many different clinical criteria were used, including novel ones: human gait, speech and
blood biomarkers. Using more than one modalities was common in cross-sectional studies.
All studies in [Cabrera-León et al., 2024a] but two longitudinal ones used neuropsychological
scales.

Binary classification tasks were more prevalent, especially CN-AD, CN-MCI and nonAD-
AD, than multiclass ones (principally CN-MCI-AD).

More than half of the cross-sectional studies used private databases, whereas a similar
ratio with ADNI in longitudinal studies. Private databases were more prevalent when DNNs
were used, whereas ADNI with neuropsychological scales and shallow ANNs.

Most researches worked with highly imbalanced datasets, and only undersampling tech-
niques were used in a few of them to correct this.

Unlike in [Cabrera-León et al., 2025], data augmentation techniques were not used to
increase the input data by fabricating new samples.

Imputation methods were rarely mentioned in the selected works in [Cabrera-León et al.,
2024a], whether because it was non existent or the incomplete samples were just discarded.
When used, they were based on changing the missing value with a meaningful value for the
class of that incomplete sample.

Different performance metrics were used and almost all research works report values for
more than one. In terms of performance metrics, DNNs performed as good as shallow ANNs.
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1.5.2.2 State of the art of works based on neuroimaging techniques

In [Cabrera-León et al., 2025], 224 works based on neuroimaging techniques were reviewed.
They were extracted from the PubMed database and needed to comply with a selection
criteria.

In Figure 1.7 how the number of cross-sectional studies on this topic that fulfill the
selection criteria has increased yearly throughout the last decade is shown this increasing
trend can be expected for the whole year. The number of articles based on shallow ANNs
and neuroimaging has stagnated, probably due to the superb performance of DNNs with
this type of input data, whose high popularity can also be seen in this figure. Modular
approaches became more common than CNNs during 2023. In 2024, modular approaches,
neural ensembles and those based on other DNNs have become similarly popular.

Figure 1.8 shows how common the different classification tasks have been in the selected
cross-sectional studies. Almost 54% correspond to the CN-AD and CN-MCI classification
tasks. The CNN family has been the most frequently used neural method, followed by
modular approaches, in all but one classification task.

Databases are sometimes not used alone but in combination with other private or non-
private databases, mostly to check generalizability of the results or to cover each other
shortcomings. In Figure 1.9 in the selected cross-sectional literature ADNI was the most
popular database as it was used in almost 65.7% of the times that a database was utilized,
followed by far by the heterogeneous group of private databases (above 11.5%) and OASIS
(almost 7%). In the last two years, the Kaggle dataset has increased its popularity from
the 11th to the 4th position. The reasons for these results might be deduced from the
aforementioned characteristics of public and private databases. On the other hand, almost
89.66% of the prognosis or longitudinal studies used data from ADNI.

A lot less studies made use of shallow ANNs with neuroimaging data than with deeper
ones, which can be explained by the superior results of the latter seen in the last decade.
Shallow monolithic ANNs appeared in less than 1 out of 10 studies, being the most common
ones Multilayer Perceptrons (MLPs) and Extreme Learning Machines (ELMs). A variant
of a Wavelet Neural Network (WNN) yielded superb results in several classification tasks,
sometimes outperforming the previous ones in some tasks. Use of MRI alone was higher than
for the other modalities, and multimodality was more uncommon than with DL models. The
ADNI database, being the most popular, allowed working on any of the tasks studied, which
also occurred with the DNNs. As it currently lacks EEG data, other databases were utilized
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Figure 1.8: Quantity of cross-sectional studies that used neuroimaging data per classification
task, grouped by neural family. Source: Cabrera-León et al. [2025]
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when using this modality. The number of patients when EEG data, and private databases in
particular, were used is several orders of magnitude lower than in any other case.

More than 4 of 10 cross-sectional studies used a monolithic model of the CNN family.
More powerful CNN variants have started being used, some of which can overshadow the
popular “vanilla CNN” ones such as Residual Network (ResNet) and Visual Geometry
Group (VGG). Examples of models, whether pretrained via transfer learning or trained from
scratch, were found, the latter being the most common, although authors that tested both
almost always recommended the former. sMRI was preferred for any classification task, but
several combinations of modalities were also tested. In one of the studies using EEG data,
a CNN underperformed some simpler ML models, something deemed atypical considering
the good results CNNs provide. This could be explained by the low number of samples used
for training, as DNNs require lots of training samples and much more than the ML models.
In the last two years, the use of Graph Convolutional Networks (GCNs) in this field has
increased, including in modular approaches, as its ability to work with graph-structured data
has proven useful for functional neuroimaging.

Among the other DNNs not belonging to the CNN family, which were scarcer, no significant
differences were found between the performance of the models in this heterogeneous group.
In the last two years, the usage of transformers has increased, probably due to their good
performance with non-neuroimaging and the development of Vision Transformer (ViT) that
is capable of using neuroimaging. Compared to CNNs, modalities did differ within the
non-CNN family because those unrelated to sMRI were slightly more frequently used. Usage
of fMRI with Long Short-Term Memory (LSTM) was found in several research and tackling
different tasks. Similarly with multimodal data where fMRI was included.

The group of modular methods is the most heterogeneous of those tested, in both models
and features. Generally, one of the modules is a CNN that works directly with the raw
neuroimaging data, followed by another model, including non-neural ones such as Support
Vector Machine (SVM) and Random Forest (RF), for classification purposes. When a module
is located before the CNN, it is used for preprocessing the data or for data augmentation,
such as in all the examples related to GANs. Several of these works were aimed to analyze
the data augmentation power of such networks, including some cross-modality examples
(that is, fabricating data for a modality different to the one the input data provided to the
GAN belong to). The performance of modular approaches is often high and on par to that
from monolithic CNNs.

Neural ensembles were mostly built with CNNs and used sMRI data. As it happened with
modular approaches regarding CNNs, they yielded similarly good results despite the increased
model complexity and training time required. A fusion of several SVMs outperformed an
ensemble of CNNs in the deemed most difficult classification task.

Regarding longitudinal or prognosis studies, half of them used a monolithic model from
the CNN family, also achieving the best results in any of the tasks dealt with. None was
based on shallow ANNs. ADNI was the most popular database, especially in the tabulated
state-of-the-art studies. Multimodality was more common in the prognosis or conversion
prediction than in the classification tasks that made use of longitudinal data, which might
be explained by its increased difficulty. MRI was the most frequently used and was able to
tackle any of the classification tasks.

Barely any of the studies included in this review mentioned using techniques to handle
missing data, in spite of being quite common in clinical settings. Of the three approaches
commonly used to tackle this issue, filling empty values with plausible yet fabricated ones
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obtained with imputation methods is generally considered the most optimal one as it did not
decrease the quantity of data to work with. However, as the new values are not real, special
caution should be taken when inferences based on these fabricated data are made.

Similarly, works in this review rarely used class balancing techniques, even though datasets
with evident unbalanced classes were being utilized. Among the reasons for this scarcity,
even though they were not clearly stated, might be the probable usage of the following
methods to deal with this issue: using robust models, setting class weights, and changing
the loss function. Another possibility is that the ample use of DNNs working with raw data
in a way akin to brute force frequently brings along simple or no preprocessing steps, one
of them being the balancing of the classes. Fabricating samples of the minority classes via
oversampling methods has the same inconvenience as when using imputation techniques to
handle missing data. Conversely, deleting samples of the majority classes via undersampling
methods diminishes the number of data available to train with, similar to what occurs when
discarding samples with missing values when tackling this problem.

Regarding datasets, in cross-sectional studies ADNI was used almost 6 times more
frequently than the one in the second position, the private one. Kaggle being the fourth more
used dataset might be explained by the popularity of Kaggle’s competitions, and the free
access and easier availability of this dataset as no data use agreement is needed. However, it
should be noted that, unlike ADNI and OASIS, we consider that the Kaggle dataset should
be considered inadequate for publication as it lacks information on data origin, who and how
the labeling of the images was done, demographics, or the data preprocessing that was used.
In prognosis and longitudinal studies almost all researchers made use of ADNI due to the
high number of visits with multimodal data available.

CN-AD was the most common classification task and, due to being the easiest one,
also the one where the best performance values were obtained. This happened with all
the model families in the cross-sectional studies discussed. On the other hand, in a few
cases the number of studies where a particular neural network family was used to tackle
certain classification task was scarce. For example, a single study was found for nonAD-AD
with shallow ANNs [Ruiz-Gómez et al., 2018], MCI severity levels with neural ensembles
[Kiran et al., 2024], nonAD-AD with neural ensembles [Battineni et al., 2020], and CN-MCI
with CNNs and using longitudinal data [Pena et al., 2019]. Low performance results might
explain this unpopularity in all but the last two cases, where values above 0.97 and 0.84 were
yielded, respectively. The latter two cases might be explained by the low complexity of those
classification tasks when, respectively, an overpowered neural method or data from many
visits are utilized. This can be inferred because both tasks have been efficiently dealt with
by using less complex techniques and cross-sectional data.

Finally, it is interesting to note that, although in recent studies, essentially at a clinical
level, the latest advances point towards a treatment of an AD continuum [Jack Jr. et al.,
2024], in computational studies and specifically in all those analyzed in this review, the use
of the conceptual construct MCI and its different levels, such as EMCI and LMCI, continues
to dominate. The fact that most accessible data are built within the latter framework might
explain its ample usage, since the idea of the AD continuum still needs stabilization and
more generation of data.



Chapter 2

Neural Computing and Theoretical
Foundations

In this chapter we will describe the computational basis of this PhD thesis, neural computation
methods. Later, we will explain some theoretical foundations on these preprocessing steps:
feature ranking, data scaling, and data projection. Finally, we will expose some metrics that
can be used to evaluate a model.

2.1 Neural computation

2.1.1 Artificial Neural Networks
Several complex problems are extremely difficult or even impossible to be formulated as
algorithms, often because they involve many subtle factors [Kriesel, 2007]. Humans tend
to solve such problems by learning and estimating outcomes. For this reason, as computers
cannot do that on their own, they require methods that have the capability to learn, without
needing to explicitly program the problem. One of such methods is the neural computation
family. Any system where the information is processed by networks of neurons — Artificial
Neural Networks (ANNs) — belongs to the family of neural computation methods. It is a
huge family1 of Machine Learning (ML) techniques. ANNs are inspired by biological neural
networks, principally the human brain, the cells that form it (neurons have been the most
studied cells), and the interconnections between neurons [Fiesler and Beale, 1997; Kriesel,
2007; Hagan et al., 2014; Shalev-Shwartz and Ben-David, 2014].

As it happens with other ML approaches, ANNs can work as individual classifiers or
the decisions of several of them or together with non-neural methods can be combined.
Depending on the way they are combined and the classifiers that are used, many terms have
been coined to differentiate them: “modular networks”, “mix of classifiers”, “ensembles”,
“committees”, etc [Hastie et al., 2009; Polikar, 2006].

2.1.1.1 Biological inspiration

Neural computation is a discipline inspired by the Biological Neural Networks (BNNs) of the
Central Nervous System (CNS) of animals and, particularly, of the human brain [Kohonen,

1http://www.asimovinstitute.org/neural-network-zoo/
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1988; Basogain Olabe, 1998; Gabrielsson and Gabrielsson, 2006]. Mainly, researchers of
several fields (including but not limited to engineering, philosophy, physiology and psychology)
have focused on the analysis of the composition and behavior of the BNNs, the fundamental
units that constitute them (the biological neuron), and the interconnection between those
units (synapse). For his researches on these topics, the Spanish scientist and Nobel prize
winner Santiago Ramón y Cajal is considered the father of modern neuroscience [Santiago
Ramón y Cajal, 1917].

ANNs has been defined as networks of simple, normally adaptive, elements, which are
massively connected in parallel and hierarchically organized, that try to interact with the
real world in the same way as the biological CNS does [Kohonen, 1988]. They exhibit
characteristics common to the brain [Jain et al., 1996; Basogain Olabe, 1998]:

• Learn: acquire knowledge based on experience and practice. ANNs are able to adapt
their behaviors based on the environment, learning by adapting their synaptic weights
[Rumelhart et al., 1986].

• Generalize: abstract what is common and essential to many things in order to form a
general concept that encompass all of them. ANNs are partially tolerant to faults (due
to redundancy), and to noises, distortions and incompleteness in the inputs.

• Abstraction: separate characteristics of an object by means of an intellectual operation
in order to analyze it in isolation. Some ANNs are able to extract information that is
implicit in the data.

A typical biological neuron, a.k.a. nerve cell2, can be principally divided in the next three
parts [Kriesel, 2007], Figure 2.1:

• Dendrites: extensions that transmits impulses received from adjacent neurons to the
soma. Their quantity is variable and they are structured heterogeneously depending
on the type of neuron. They can be seen as the inputs in the artificial neurons.

• Soma: a.k.a. cell body, perikaryon, or neurocyton; contains the cell nucleus surrounded
by the cytoplasm. It synthesizes neurotransmitters and other molecules. It acts as the
threshold and the sum of the inputs found in the artificial neurons.

• Axon: extensions where the electrical impulses or action potentials from the cell body
to the next neuron. It can be seen as the output of artificial neurons.

In Figure 2.1 there is a depiction of the anatomy of a biological neuron with its main
parts, whereas the basic structure of a chemical synapse between two neurons is in Fig-
ure 2.2. Connections between biological neurons can be electrical or chemical [Kriesel, 2007;
Cabrera León, 2015]. The electrical synapse is bidirectional, less complex, faster, strong,
direct and non-adjustable, whereas the chemical one is more diverse thanks to the variety
of neurotransmitters that exist. Electrical activity in the axon of the presynaptic neuron
produces the release of neurotransmitters, which were loaded in secretory vesicles, into
the synaptic cleft. Then, the neurotransmitters arrive to receptors in the dendrite of the
postsynaptic neuron, where they may start an electrical response or a secondary messenger

2Different types of biological neurons exist, and there are several ways of classifying them too. Similarly,
many different cell types can be found in the nervous system other than neurons such as glias.
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Soma

Figure 2.1: Anatomy of a biological neuron. Based on National Institutes of Health [2025]

pathway that may either excite or inhibit the postsynaptic neuron and are later transported
to its nucleus. Chemical synapses are very adjustable due to the, generally, short live of
the neurotransmitters and their heterogeneity, hence requiring specific receptors, Figure 2.2.
Apart from its lower speed, connections being one-way is another disadvantage of the chemical
synapse.

In general, the artificial neurons in ANNs can be schematically represented by Figure 2.3,
where its counterparts in the biological neurons are also indicated.

A comparison between the characteristics of ANNs and BNNs has been made [Jain
et al., 1996; Kriesel, 2007; Gabrielsson and Gabrielsson, 2006; Eluyode and Akomolafe, 2013;
Cabrera León, 2015], Table 2.1. Furthermore, a comparison between the properties of the
original Von Neumann computer, which is the base of all contemporary computers, and the
BNNs has been made too [Jain et al., 1996; Cabrera León, 2015], Table 2.2. It can be seen
that all current supercomputers made use of characteristics that are common in BNNs such
as parallel an distributed computing, distributed and integrated memory (cache memory),
and the high number of processors (although several orders of magnitude lower than the
quantity of neurons in the brain).

2.1.1.2 Characteristics

A general framework that can be used to model or characterize an ANN is made up of these
eight major aspects [Hecht-Nielsen, 1990; Rumelhart et al., 1986; Cabrera León, 2015]:

• A set of processing units and their local memories. They can be hidden or output
units3.

• A state of activation of each processing unit in a particular moment. It can be continuous
or discrete, and limited or not to a certain range.

• An output function for each processing unit. It is frequently a threshold function.

• A pattern of connectivity among the processing units, where each connection has a
synaptic weight that indicates its strength.

3Although input units are often conveniently depicted in the bibliography, they are not considered neurons
per se as they do not process the input nor have bias.
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Figure 2.2: Basic structure of a typical chemical synapse between two biological neurons.

Figure 2.3: Scheme of an artificial neuron with its counterparts in the biological neuron.
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Table 2.1: Comparison of Biological Neural Networks and Artificial Neural Networks.

Characteristics Biological Neural Networks Artificial Neural Networks

Connections
Excitatory and inhibitory Excitatory and inhibitory
Electrical and chemical Only electrical
Random and great quantity (each
neuron may have 103 − 104)

Precisely specified (several orders of
magnitude lower)

Processing Highly parallelized Highly parallelized
1014 synapses 108 transistors

Network size 1011 neurons 102 − 104 neurons
Processing
speed

Several milliseconds + delays for
chemical stabilization (refractory pe-
riod)

Several nanoseconds

Information
storage

In the synapses In the weights matrix

Parts Dendrites, cell body and axon Input, node and output
Signals Frequency modulated (pulses) Amplitude modulated (numerical)
Learning Based on past events, adjusting

synaptic connections
Based on past events, adjusting
weights

Computation
style

Parallel & distributed Parallel & distributed

Table 2.2: Comparison of Biological Neural Networks and the original Von Neumann
computer.

Characteristics Biological Neural Networks Original Von Neumann computer

Processor
Simple Complex
Low speed High speed
High number (1011) One or a few

Memory
Integrated Separated from the processor
Distributed Localized
Addressable by content Not addressable by content

Computation
Distributed Centralized
Parallel Sequential
Self-learning Stored programs

Reliability Robust Very vulnerable

Relevant attributes Perceptual problems Numerical and symbolic manipulations
Based on knowledge Based on memory

Working environment Poorly defined Well-defined
No restrictions Well-delimited
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• A propagation rule or network function, that is used to distribute the activity patterns
through the network of connectivities.

• An activation rule for combining the inputs to a processing unit with the current state
of the unit, producing a new level of activation for this unit.

• A learning rule that can be used to change the patterns of connectivity based on
experience. Such changes may be produced by the creation, modification (through the
synaptic weights) or loss of synaptic connections.

• A representation of the environment where the system must operate. Both a local and
global information environment exist.

Following the previous framework, any ANN can be characterized by these levels [Jain
et al., 1996; Garćıa Báez, 2005; Cabrera León, 2015]:

Topology : a.k.a. the interconnection model, it indicates the structure of the network, how
the neurons are interconnected [Miikkulainen, 2010]. This can be formally described
by an oriented graph, where its nodes corresponds to the neurons or processing units,
whereas the edges, to the communication channels between neurons. A floating point
value is associated to each edge and it indicates the weight of the connection. The
communication scheme between neurons can be hierarchical (connections only exist
between consecutive layers) or non-hierarchical (connections may exist between non-
consecutive layers). Most ANNs have a layered structure, ranging from 1 (monolayer)
to multiple layers (multilayer), where each layer normally has a different use:

• Input layer: usually not considered when counting the number of layers as neurons
in this one do not compute or process the information they receive. However, there
are some architectures where this does not hold and the information is indeed
processed by them.

• Hidden layers: ranging from 1 to more than one. In the latter case, these ANNs
belong to the Deep Learning (DL) family, hence called Deep Neural Networks
(DNNs). These layers are packed between the rest of type of layers, connecting
both and sometimes between neurons in the same layer.

• Output layer: gives the network output, may have connection with any other
layer, including itself.

The flow of information through these layers may be: feedforward (from input to output
layers), recurrent (backward connections exist), or lateral connections (between neurons
in the same layer).
The connections between layers may be: fully connected (all neurons are connected to
the neurons of other layer), partially connected (some neurons are not fully connected),
and one-to-one (in layers with the same shape and size, one neuron in a layer is
connected to only one in the other layer).

Neurodynamics : indicates the way the information is processed locally, by the neurons.
It is mathematically expressed by the propagation function, the activation function,
and the output function.
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These functions may be time-continuous or discrete, and, in the latter case, changes
to the neurons’ output values can be made asynchronously or synchronously, and
between all or part of the neurons. The most common asynchronous method is called
“random”, where a random unit is chosen and its output is calculated. Another popular
method is based on following the topological order, where all the calculations are made
synchronously layer after layer, from the input to the output.

Learning : is the process whereby the network improves his performance in a certain task
over time by the use of the input data. This concept is related to the “plasticity-stability”
dilemma: the system should be sufficiently adaptable in order to learn new knowledge
(plasticity) and, at the same time, it should not forget what was already learned
(stability) [Gabrielsson and Gabrielsson, 2006]. In ANNs the learning process can be
divided into two phases or operating modes: the loading mode, when the learning
is done due to weights of the connections being updated based on the information
extracted from the input data, and recovery mode, when answers for presumably
unknown input samples are obtained based on the stored knowledge.
According to how the learning process is guided, several paradigms can be found:

• Supervised learning, when each sample of input pattern comes along with the
label or expected output. Several groups exist:

– By error correction: weights are updated so that the error (which can be local
to the neuron or global to the network) is reduced. Perceptron, Learning
Vector Quantization (LVQ) and Support Vector Machine (SVM) are some of
the most popular examples.

– Reinforcement: instead of the correct output, an evaluation (reward or pun-
ishment) of the network output is provided to the network when it guesses or
fails, respectively.

– Stochastic: random changes to the weights, based on some stochastic acti-
vation function or stochastic weights, and evaluating their effects according
to the desired output and some probability distribution (through the use of
energy functions as representatives of the stability of the network). One of
the most popular examples of stochastic learning is the Boltzmann machines.

• Semi-supervised learning, when the network is trained with not all but a small
quantity of expected outputs, so most input data have none [Chapelle et al., 2006;
Zhu, 2005, 2011].

• Unsupervised learning, when no labels at all are presented to the network during
the training phase. The learner is frequently meant to find some hidden patterns
in the data. They can be divided into:

– Hebbian: based on the observations made by the Canadian psychologist
Donald O. Hebb, who said: “Let us assume that the persistence or repetition
of a reverberatory activity (or “trace”) tends to induce lasting cellular changes
that add to its stability. [...] When an axon of cell A is near enough to excite
a cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased” [Hebb, 1949]. This theory
is also called “Hebb’s rule”, “Hebb’s postulate”, or “cell assembly theory”,
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and it can be summarized by the sentence from US neurobiologist Carla J.
Shatz “cells that fire together, wire together” [Schatz, 1992].

– Competitive: all neurons in the network compete to get activated. Two
approaches are commonly found: “winner-takes-all” (a.k.a. hard competitive
learning), where only one (or also a few around it) neuron, which is called
the Best Matching Unit (BMU), activates for a specific input sample, and
“winner-takes-most” (a.k.a. soft competitive learning), where the synaptic
weights adapt regardless of the topological structure of the neurons in the
network, but depending on the relative distances of the neurons in the input
space [Martinetz and Schulten, 1991]. The most famous representative of the
“winner-takes-all” family is the Self-Organizing Map (SOM) [Haykin, 1999;
Kohonen, 2001; Haykin, 2009]. On the other hand, some “winner-takes-most”
methods are the Neural Gas (NG) [Martinetz and Schulten, 1991] and its
variants, such as the Growing Neural Gas (GNG) [Fritzke, 1995], which are
much more flexible than the SOM. The “winner-take-all” approaches may
bring along two problems [Fritzke, 1997a]: the appearance of “dead neurons”
(units that are never BMU for any input, so their positions are never updated),
and that different random initializations may give very different results. A
possible solution to the latter is “winner-takes-most”, reducing the risk of the
system not being able to get out of a poor starting local minimum due to
suboptimal initialization values [Fritzke, 1997a].

In general, training ANNs, which is the process in which network learning happens,
is not straightforward. Also, it has some issues [Hastie et al., 2009]: suboptimal weights
initialization, overfitting (which can be solved by early stopping the training or other
regularization methods), scaling of the inputs is often needed, wrong number of hidden layers
and neurons (more of them allow the network to adapt better to the input data), and multiple
local error minima (might require several runs with random configurations of parameters).

Additionally, considering the many software solutions for training ANNs and DNNs,
researchers need to carefully select and analyze them in terms of characteristics and quality
[Hastie et al., 2009].

2.1.2 Some models
We need to define some common notation useful to describe some models which are similar
to those developed in this PhD, which can be found below.

2.1.2.1 Common notation

Based on [Fritzke, 1997a; Hagan et al., 2014; Shalev-Shwartz and Ben-David, 2014] the
following common notation can be defined:

• Domain set: a.k.a. input space; it is the set of samples that we want to label or
cluster. It is usually dependent on the problem that is assessed, belonging to a specific
problem domain. It may follow some probabilistic distribution or, according to [Fritzke,
1995], input signals may obey some unknown probability density function. It will be
represented by 𝒳 := {x𝑖 | ∀𝑖 ∈ {1, . . . , 𝑙}, x𝑖 ∈ R𝑛, 𝑛 ∈ N}.

• Labels set: only used in supervised learning, it is the set of expected outputs for a
given domain set. In general, it can be represented by 𝒴 := {y𝑖 | ∀𝑖 ∈ {1, . . . , 𝑙}, y𝑖 ∈
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R𝑚, 𝑚 ∈ N ∪ {0}, |𝒴| ≥ 0}. The number of classes 𝑚 in a learning problem is given
by the quantity of unique elements in this set: 2 for binary tasks, whereas values of at
least 3 for multiclass tasks. In this work, the labels set will be represented by a set of
values from N and 𝑚 = 2 or 𝑚 = 3.

• Training data: in supervised learning, it is a, normally finite, sequence of pairs 𝑆 :=
((x𝑖, y𝑖) | ∀𝑖 ∈ {1, . . . , 𝑘}, 𝑘 ≤ 𝑙, x𝑖 ∈ 𝒳 , y𝑖 ∈ 𝒴), whereas only input data but no
labels are provided in the unsupervised case. Together with validation and testing ones,
they form the input data that a learner works with.

• Learner: a.k.a. classifier or predictor; refers to any method that requires to output
a prediction rule 𝑝 : 𝒳 → 𝒴 and can be used to predict the label or cluster of new
samples. ANNs are a type of learner, inspired by BNNs, that are composed of units
and connections between them.

• Unit: a.k.a. vertex, neuron or node; it is the basic component of an ANN and is inspired
by the biological neuron. Each of the 𝑁 units in an ANN 𝑢 ∈ 𝒰 | 𝒰 := {𝑢1, . . . , 𝑢𝑁},
has an associated reference vector 𝜔 ∈ R𝑛. This 𝜔, also called weight or prototype
vector, represents, biologically speaking, the strength of the synapse. Fritzke [1995]
indicates that “reference vectors can be regarded as positions in input space of the
corresponding units”. However, in other ANNs these weights are associated not to the
units but to the connections between the input layer and those units, and they indicate
the strength of the connections, which is deemed more plausible biologically speaking.
As different types of ANNs exist, units may also have associated other parameters such
as error and label.

• Connection: a.k.a. edge, link or synapse; represents that there is a direct path between
two units, that is, with no other neurons in between. Units may have connections with
themselves or, more frequently, to other neurons in the same or different layers. It can
be represented by the tuple 𝑙 := (𝑢, 𝑣) ∈ 𝒞, where 𝑢, 𝑣 are the pair of units that are
being connected; and 𝒞, the set of all connections. As different types of ANNs exist,
connections may have other parameters too such as weight and activation status.

2.1.2.2 Simple competitive algorithm

Neurons in the simple competitive learning algorithm compete for the right to respond to
certain input data. Over time each neuron will specialize in a set of patterns. Unlike the
more complex competitive approaches that will be shown later, this one lacks the concept of
“neighborhood”, where close neurons respond to similar input samples.

Its main basic parts are: all neurons have the same characteristics and only differ in their
– often random – weights, they respond differently to input patterns; the “strength” of each
neuron is limited; the competitive mechanism only allow that one neuron (or a small group
of them) responds, the so-called BMU.

The competition is generally defined by calculating a similarity measure (e.g. Euclidean
distance) between an input sample x and the weights 𝜔 of each neuron. The BMU is the
most similar one, so its output is activated, whereas the outputs of the rest are deactivated.

2.1.2.3 Self-Organizing Map

Teuvo Kohonen’s SOM, a.k.a. Self-Organizing Feature Map (SOFM) [Kohonen, 2001], is a
paradigmatic unsupervised and competitive ANN. SOM quantifies the input space in different



56 CHAPTER 2. NEURAL METHODS. THEORETICAL FOUNDATIONS

regions represented by a specific number of output neurons, a.k.a. detectors. SOMs might be
used as a visualization tool of high-dimensional data by projections over lower-dimensional
maps [Rojas, 1996], most frequently a 2D grid. During this projection process, Kohonen
maps try to extract the features of the input space preserving its topological properties.

SOM structure is made of an input layer fully interconnected, by excitatory connections,
with the neurons in the Kohonen layer. A neighborhood relationship between these neurons
exists, which is normally defined by a rectangular or hexagonal lattice, and is based on the
distance between the neurons on the grid. Lattice shape enforces neighborhood topology,
that is, the number of neighbors a neuron has [Westerlund, 2005; Cabrera León, 2015]: at
distance 1, 6 for hexagonal, and 4 or 8 for square. Their neurodynamics is simplified by
computing the least distance between the inputs 𝑥 and a model [Kohonen, 2001]. This model
is a parametric real vector that can be seen as the weight vector 𝑤 in this neural architecture.
The winning neuron, a.k.a. BMU, is the one with the minimum distance value to a specific
input sample.

The learning process belongs to a winner-take-all, unsupervised and competitive training
paradigm. The main variations are seen in the modification of the synaptic weights, which not
only affects the winning neuron but also, to a lesser extent, the set of neurons in the winners’
neighborhood 𝑁 , Equation 2.1. During the training period, the neighborhood relationship
between nodes decreases both in time and distance (commonly following a Gaussian function),
and the learning rate 𝛼 decreases with time.

Δ𝑙𝑖 =
⎧⎨⎩ 𝛼(𝑥𝑖 − 𝑤𝑙𝑖) if 𝑖 ∈ 𝑁(𝑎𝑟𝑔𝑚𝑖𝑛

𝑘
{𝑛𝑒𝑡𝑘(𝑥)})

0 otherwise
(2.1)

The total number of neurons and the connections (unweighted) between each neuron and
its neighbors do not change throughout the learning process, unlike the weight vectors of the
neurons. Optimal initial and final values of the time-dependent parameters are key for a
good convergence of the SOM.

Kohonen’s SOM has been used as a basis for more complex neural architectures such as
the Counterpropagation Network (CPN) [Hecht-Nielsen, 1987; Freeman and Skapura, 1991],
and has inspired the development of many other ANNs, some of them described below.

2.1.2.4 Neural Gas and Competitive Hebbian Learning

Introduced by Martinetz and Schulten a decade after the appearance of the Kohonen’s SOM
[Martinetz and Schulten, 1991], the name of the NG was coined due to its neurons occupying
the whole input space, akin to how gases behave inside a container.

The NG follows a straightforward algorithm [Fritzke, 1997a]. In each iteration 𝑡 a new
input sample 𝑥 is selected and the distances between 𝑥 and all 𝑁 neurons are calculated and
sorted in increasing order. The feature vectors 𝜔𝑖 of these neurons are updated according to
Equation 2.2, where 𝜖 is the learning rate, 𝜆 is the neighborhood range, i = 1, . . . , N, and k
= 0, . . . , N-1.

𝜔𝑡+1
𝑖𝑘

= 𝜔𝑡
𝑖𝑘

+ 𝜖 · 𝑒−𝑘/𝜆 · (𝑥 − 𝜔𝑡
𝑖𝑘

) (2.2)

Both the number of neurons to be adapted 𝜆 and the the strength of the adaptation 𝜖
decrease after each iteration so that the algorithm converges before the maximum number
of iterations 𝑡𝑚𝑎𝑥 is reached. Initial and final values of these time-dependent parameters
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𝜆𝑖, 𝜖𝑖, 𝜆𝑓 , 𝜖𝑓 require to be selected appropriately for a fast and optimal convergence after
enough iterations [Fritzke, 1997a].

Compared to the SOM, in the NG there is no underlying graph so all points can move freely
without the bonds that bind them together. Compared to the GNG, subsubsection 2.1.2.5,
the NG does not change its size. That is, not only no new neurons are created as all
exists from the beginning, but also no neurons can be deleted. Additionally, the concept of
“connections between neurons” does not exist.

On the other hand, Competitive Hebbian Learning (CHL) [Martinetz, 1993] is rarely
used on its own but in conjunction with other methods such as the NG [Fritzke, 1997a].
Fritzke described the CHL as having a zero learning rate because the feature vectors are
not modified i.e. the neurons have fixed positions, so the network does not adapt. Instead,
it creates neighborhood edges between neurons, and Martinetz proved that the generated
graph preserves the topology in an optimal way. The CHL algorithm is also easy: given
𝑁 disconnected neurons with random feature vectors associated 𝜔 and an empty set of
connections 𝒞, for each input sample 𝑥 it finds the two closest neurons 𝑐 and 𝑐2 according to
a given distance metric, and creates a connection between them if it did not exist (also adds
it to 𝒞). This process is repeated until the maximum number of input samples have been
used.

Finally, the combination of NG and CHL was developed in order to make a more powerful
method [Fritzke, 1997a]. Each connection between neurons has the 𝑎𝑔𝑒 property so that
unnecessary ones are detected and marked for removal. Initially, all 𝑁 neurons are randomly
positioned in the input space and are completely disconnected. As in the NG, in each
iteration the distances between it and every neuron are sorted, and their weights are updated
in the same way. A connection between the two closest neurons 𝑐 and 𝑐2 is created if it
did not exist, and, in any case, its 𝑎𝑔𝑒 is set to 0. All connections emanating from 𝑐 have
their age incremented. If the age of a connection becomes larger than the maximal age
𝑇 (𝑡) = 𝑇𝑖(𝑇𝑓/𝑇𝑖)𝑡/𝑡𝑚𝑎𝑥 , it is removed. The whole learning algorithm iterates for the maximum
number of adaptation steps 𝑡𝑚𝑎𝑥.

Similar to in NG, initial and final values of the time-dependent parameters 𝜆𝑖, 𝜖𝑖, 𝑇𝑖, 𝜆𝑓 , 𝜖𝑓 , 𝑇𝑓

require to be selected appropriately for a fast and optimal convergence after enough iterations
[Fritzke, 1997a].

2.1.2.5 Growing Neural Gas

A GNG is an ANN that follows unsupervised learning [Fritzke, 1995, 1997a,b]. Fritzke [1997b]
described the GNG both as an incremental variant of NG [Martinetz and Schulten, 1991]
and CHL [Martinetz, 1993], and as a variant of the Growing Cell Structures (GCS) [Fritzke,
1994] without the strict topological constraints.

Fiesler and Beale [1997] defined an “ontogenic neural network” as an ANN where not
only their interconnection strengths change according to a predetermined learning rule but
also the ANN automatically adapts its topology (i.e. the number of layers and number of
neurons per layer) to the problem. Henceforth, the GNG and most of its variants can be
considered “ontogenic neural networks”. Due to these properties, ontogenetic ANNs are good
for clustering, vector quantization and data visualization [Fritzke, 1997b; Cabrera-León et al.,
2023, 2024b].

In Figure 2.4 the topology of the original GNG is shown, where red neurons indicate
dead neurons that are going to be deleted; a green neuron, a new one that is inserted in
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regions where the error was the highest; dashed edges, connections that are eliminated both
when there is a dead neuron or when a new neuron is added; and, dotted edges, connections
that are created during the insertion of a new neuron. As an example of a wrong behavior
there is the red-blue unit located in the middle, which represents a neuron that belongs to
the light blue cluster but was erroneously assigned to the dark blue one.

... ul ...

... xi ...x1 x2 x3 xn

GNG layer

Input layer

wli

Figure 2.4: Topology of the original Growing Neural Gas.

A GNG 𝑔 can be formally described by the tuple 𝑔 := (𝒰 , 𝒞, 𝜃), where 𝒰 is the set of
units (a.k.a. vertices, nodes or neurons); 𝒞, the set of connections (a.k.a. edges or links);
and 𝜃, the set of hyperparameters [Fritzke, 1995; Kerdels, 2016]. If we ignore 𝜃, a GNG,
according to graph theory, can be considered a simple, normally disconnected, graph: an
undirected graph without loops nor multiple edges [Clark and Allan Holton, 1991; Rosen,
2004]. That is, a GNG may be seen as a set of disjoint subgraphs or connected components,
Equation 3.4, whose connections do not have orientations. Therefore, a connected graph
consists of a single connected component. As each subgraph is a graph, it has a similar
formal description. Based on [Clark and Allan Holton, 1991], 𝑠𝑔 := (𝒰𝑠𝑔 , 𝒞𝑠𝑔 , 𝜃) is a subgraph
of the graph 𝑔 if 𝒰𝑠𝑔 ⊆ 𝒰 and 𝒞𝑠𝑔 ⊆ 𝒞.

In the GNG, a neuron 𝑢 ∈ 𝒰 has associated a reference vector 𝜔, which relates inputs
x with 𝑢, and an accumulated error 𝑒 ∈ R. For the sake of convenience, for unit 𝑢 we will
define 𝜔𝑢 and 𝑒𝑢 as synonyms of the previous elements, respectively.

In the GNG, a connection 𝑙 ∈ 𝒞 can be depicted by the tuple 𝑙 := (𝑢, 𝑣), where 𝑢, 𝑣 ∈ 𝒰 are
the pair of units that are being connected. As we can see from this first formula, connections
in a GNG are unweighted, unlike in other ANNs, and are used to define the topological
structure of the network. Each connection has an age associated 𝑎𝑔𝑒(𝑢,𝑣) ∈ N ∪ {0}.

Unlike in a NG and a SOM, the parameters in a GNG are constant over time. This set
of hyperparameters is comprised of 𝜃 := {𝜀𝑐, 𝜀𝑛, 𝑑, 𝛽, 𝜆, 𝑎𝑚𝑎𝑥, 𝜍, 𝑒𝑝𝑜𝑐ℎ𝑠}, where:

• 𝜀𝑐 is the step or learning rate for the winner neuron, a.k.a. BMU, 𝑐.

• 𝜀𝑛 is the step or learning rate for the neighbors of the winner neuron, Equation 2.7.

• 𝑑 is the decaying parameter that ensures that the errors of all neurons will be reduced
over time.

• 𝛽 is another decaying parameter but this one is only applied to the two largest
accumulated errors, after the insertion of a new neuron.

• 𝜆 indicates the number of iterations or training steps before a new neuron is created.
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• 𝑎𝑚𝑎𝑥, is the maximum age of a connection, which will imply deleting it when reached.

• 𝜍 is the largest size of the network, i.e. its maximum number of units4.

• 𝑒𝑝𝑜𝑐ℎ𝑠 5 are the number of times the model has trained with the full input set. For
example, training for one epoch implies that each sample in the training dataset has
been used once by the model.

In the next paragraphs we are going to describe the GNG, its neuron model, its network
topology (including both the network framework and the interconnection structure), and its
learning algorithm. It should be noted that, for the learning algorithm, we will be following
the step order indicated in [Fritzke, 1995, 1997a; Kerdels, 2016], which is different to the
one found in [Fritzke, 1997b]. However, after comparing them manually, this alteration
apparently does not produce substantial changes in the final results.

Neuron model:

• Propagation function: either based on distance measures — usually the Euclidean
distance, Equation 2.3 — or based on the dot product, Equation 2.4. Hence, in
such cases the network input of neuron 𝑢, 𝑛𝑒𝑡𝑢, can be defined as:

𝑛𝑒𝑡𝑢(x) := 𝑓𝑝𝑟𝑜𝑝(. . . 𝑥𝑖 . . . , . . . 𝜔𝑢 . . . )
𝑛𝑒𝑡𝑢(x) := ‖x − 𝜔𝑢‖

𝑛𝑒𝑡𝑢(x) :=
√︃∑︁

𝑖

(𝑥𝑖 − 𝜔𝑖𝑢)2 (2.3)

𝑛𝑒𝑡𝑢(x) :=
∑︁

𝑖

𝑥𝑖 · 𝜔𝑖𝑢 (2.4)

where x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R𝑛 are the components of the input vector; and
𝜔𝑢 = (𝜔1𝑢, 𝜔2𝑢, . . . , 𝜔𝑛𝑢) ∈ R𝑛, the associated reference vector of neuron 𝑢.

• Activation function: it corresponds to a competitive-like one, in this case the
minimum, so the activation function of neuron 𝑢, 𝑎𝑢, is given by:

𝑎𝑢 := 𝑓𝑎𝑐𝑡 (𝑛𝑒𝑡𝑢 (x)) :=

⎧⎪⎨⎪⎩
1 if 𝑢 = arg min

𝑘 ∈ 𝒰
(𝑛𝑒𝑡𝑘 (x))

0 otherwise
(2.5)

• Output function: identity/linear function.

𝑓𝑜𝑢𝑡 (𝑎𝑢) := 𝑎𝑢 (2.6)

Network topology: unlike with the SOM but similar to the NG, there is no grid structure
in the GNG.

4This parameter is optional because another stopping criterion can be used in the learning algorithm.
5Other formal definitions of GNG and variants did not mention 𝑒𝑝𝑜𝑐ℎ𝑠, despite having used it in the

algorithm [Fritzke, 1995; Kerdels, 2016].
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• A single layer of neurons6, starting from 2 neurons and growing to the maximum
indicated size7.

• All neurons in the input layer are connected to the neurons in the main layer.
• The neurons in the main layer are partially interconnected.
• Neighborhood, unlike in other ANNs, is not related to the distance between neurons

but to the existence of a connection between them. Hence, this “topological
neighborhood” of neuron 𝑢, 𝒩 (𝑢), is related to the “lateral connections update”,
Equation 2.12, and is defined as:

𝒩 (𝑢) := {𝑘 ∈ 𝒰 | ∃(𝑢, 𝑘) ∈ 𝒞} (2.7)

• A list of nearest neurons to an input x is calculated in each training step, albeit
only the first and second positions, which refers to the BMU 𝑐 and second BMU
𝑐2, are necessary in GNG:

𝑐 := arg min
𝑢 ∈ 𝒰

(𝑛𝑒𝑡𝑢 (x)) (2.8)

𝑐2 := arg min
𝑢 ∈ 𝒰−{𝑐}

(𝑛𝑒𝑡𝑢 (x)) (2.9)

• Connection senescence: only the connections emanating from the current winner
neuron 𝑐 age after every training step, although the age of the connection between
𝑐 and its nearest neighbor is refreshed (i.e., age reset to 0).

𝑎𝑔𝑒(𝑢,𝑙) := 𝑎𝑔𝑒(𝑙,𝑢) :=

⎧⎪⎪⎨⎪⎪⎩
𝑎𝑔𝑒(𝑢,𝑙) + 1 if 𝑢 = 𝑐, 𝑙 ∈ 𝒩 (𝑢) − {𝑐2}
0 if 𝑢 = 𝑐, 𝑙 = 𝑐2

𝑎𝑔𝑒(𝑢,𝑙) otherwise
(2.10)

• Neural apoptosis: the death of a neuron happens when there are no connections
emanating from it (that is, it has no neighbors), which happens due to the
aforementioned “connection senescence”, Equation 2.10.

𝒰 := 𝒰 − {𝑟}, if 𝒩 (𝑟) = ∅, ∀𝑟 | 𝑟 ∈ 𝒰 (2.11)

• Lateral connections update is an unsupervised process based on Hebbian competi-
tive learning. A connection is deleted when its age reaches the value indicated by
the hyperparameter 𝑎𝑚𝑎𝑥.

𝒞 := 𝒞 ∪ {(𝑐, 𝑐2)}
𝒞 := 𝒞 − {(𝑢, 𝑙)}, if 𝑎𝑔𝑒(𝑢,𝑙) > 𝑎𝑚𝑎𝑥, ∀(𝑢, 𝑙) ∈ 𝒞

(2.12)

where 𝑎𝑚𝑎𝑥 is the maximum age of a connection before deletion; 𝑎𝑔𝑒(𝑢,𝑙), the
current age of the connection between neurons 𝑢 and 𝑙; 𝑐, the BMU; and 𝑐2, the
second BMU8.

6We are not counting the input layer, which also exists, as it commonly occurs in the majority of ANNs.
7See footnote 4.
8In the original article, [Fritzke, 1995], 𝑐 and 𝑐2 are called 𝑠1 and 𝑠2, respectively.
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• Weight update, due to being a competitive ANN, is different in the winner neuron
𝑐 and its direct topological neighbors in the graph, 𝒩 (𝑐). The weight update Δ𝜔𝑢

is defined as:

Δ𝜔𝑢 :=

⎧⎪⎪⎨⎪⎪⎩
𝜀𝑐 · (x − 𝜔𝑢) if 𝑢 = 𝑐

𝜀𝑛 · (x − 𝜔𝑢) if 𝑢 ∈ 𝒩 (𝑐)
0 otherwise

(2.13)

where 𝜀𝑐 is the learning rate of the winner neuron and 𝜀𝑛 is the learning rate of its
direct topological neighbors, being recommended that 𝜀𝑛 < 𝜀𝑐 in order to avoid
slow and erratic training.

• Error update: each neuron has a local error variable related to the distance between
the input x and the winner neuron 𝑐. During the adaptation, accumulating the
squared distances to this error helps to identify neurons situated in areas of the
input space where the error in the mapping is high. In such areas new neurons
are inserted in order to reduce the error.

Δ 𝑒𝑐 := 𝑛𝑒𝑡2
𝑐(x) (2.14)

Considering the decaying hyperparameter 𝑑 ∈ (0, 1), the error for neuron 𝑢, 𝑒𝑢, is
updated at the end of each iteration according to the next formula, a decaying
process that affects every neuron 𝑢 ∈ 𝒰 :

Δ 𝑒𝑢 := 𝑑 · 𝑒𝑢 (2.15)

• Neurogenesis: a new neuron is created when the current training step is a multiple
of the hyperparameter 𝜆. Given the existing neurons 𝑞 (which has the largest
accumulated error of all units) and 𝑓 (which has the largest accumulated error of
all units among the neighbors of 𝑞), the new neuron 𝑟 will be situated between
them, connected to them, the old connections deleted, the error of both 𝑞 and 𝑓
reduced by the decaying hyperparameter 𝛽 ∈ (0, 1) (typically 𝛽 < 𝑑), and 𝑟 will
hold the new error of 𝑞.

𝒰 := 𝒰 ∪ {𝑟}, if ∃𝑞 | 𝑞 := arg max
𝑘∈ 𝒰

(𝑒𝑘) ∧ ∃𝑓 | 𝑓 := arg max
𝑘∈ 𝒩 (𝑞)

(𝑒𝑘)

𝜔𝑟 := 0.5 · (𝜔𝑞 + 𝜔𝑓 )
𝒞 := 𝒞 ∪ {(𝑟, 𝑞), (𝑟, 𝑓)} − {(𝑞, 𝑓)}

𝑎𝑔𝑒(𝑟,𝑞) := 0; 𝑎𝑔𝑒(𝑟,𝑓) := 0
𝑒𝑞 := 𝛽 · 𝑒𝑞 ; 𝑒𝑓 := 𝛽 · 𝑒𝑓 ; 𝑒𝑟 := 𝑒𝑞

(2.16)

where 𝑒𝑘 returns the accumulated error 𝑒 of the unit 𝑘; and 𝑎𝑔𝑒(𝑢, 𝑙) returns the
age of the connection between neurons 𝑢 and 𝑙 .

Learning algorithm: a GNG is initialized with two units with prototype vectors 𝜔, usually
randomly, chosen from the training data, and their accumulated error variables 𝑒
are set to 0. The set of connections 𝒞 is initially empty9. Then, the GNG grows by

9A few implementations have been found where there is a connection between both initial units from Step
1. The behavior of these implementation is identical to the one described here.
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processing samples extracted from the training data10. The learning algorithm of the
GNG comprises the next 11 steps:

Step 1: Start with two units, 𝑈 := {𝑎, 𝑏} | 𝑒𝑎 := 0, 𝑒𝑏 := 0, and 𝜔𝑎 and 𝜔𝑏 are reference
vectors usually randomly chosen from the input data. 𝒞 := ∅

Step 2: Iterate through the training data 𝑆.
Step 3: Find the nearest unit 𝑐 and the second nearest unit 𝑐2, Equation 2.8 and

Equation 2.9, respectively. They are also called BMU and second BMU.
Step 4: Increment the age of all edges emanating from 𝑐, Equation 2.10.
Step 5: Add the squared distance between the observation and the associated reference

vector of 𝑐 to the accumulated error of 𝑐, Equation 2.14.
Step 6: Move 𝑐 and its direct topological neighbors towards the observation by the

fractions 𝜀𝑐 and 𝜀𝑛, respectively, of the total distance, Equation 2.13.
Step 7: If there is a connection between 𝑐 and 𝑐2, set the age of this connection to zero,

Equation 2.10. If this connection does not exist, create it, Equation 2.12.
Step 8: Remove connections with an age larger than 𝑎𝑚𝑎𝑥, Equation 2.12. If this results

in units having no emanating connections, remove them as well, Equation 2.11.
Step 9: If the number of steps so far is an integer multiple of parameter 𝜆, insert a

new unit, Equation 2.16:
a) Determine the unit 𝑞 with the maximum accumulated error.
b) Insert a new unit 𝑟 halfway between 𝑞 and its neighbor 𝑓 with the largest

error variable.
c) Insert edges connecting the new unit 𝑟 with 𝑞 and 𝑓 , and remove the original

edge between 𝑞 and 𝑓 .
d) Decrease the error variables of 𝑞 and 𝑓 by multiplying them with the

constant 𝛽. Initialize the error variable of 𝑟 with the new value of the error
variable of 𝑞.

Step 10: Decrease the error variables of all neurons by multiplying them with a constant
𝑑, Equation 2.15.

Step 11: Go to Step 2 if a stopping criterion (e.g.: network size 𝜍 , performance metric,
etc) is not yet fulfilled.

The GNG will gradually approximate the structure of the input data manifold [Fiesler
and Beale, 1997], after repeating this learning algorithm enough times with all the available
training data (the so-called “epochs”).

Some advantages of the GNG compared to the NG and CHL combination of Martinetz
and Schulten are [Fritzke, 1997b]: the network size and the total number of adaptation steps
do not need to be predefined, all hyperparameters are constant, and the growth process
can be stopped when some performance criterion has been met. Also, GNG is capable of
continuous learning i.e. there is no need to train the network from the beginning if new input

10In [Fritzke, 1995, 1997a,b; Kerdels, 2016] 𝑝(𝜉) represents a continuous probability density function that
generates the input samples; and 𝜉, an input sample. Fritzke [1997b] also indicates that such input samples
may also be obtained from a finite training dataset 𝒟 := {𝜉1, . . . , 𝜉𝑀 }, 𝜉𝑖 ∈ R𝑛, which is similar to the
nomenclature we preferred to use.
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data are available. All intermediate stages of the network properly describe the underlying
distribution due to the fractal-like growth of the network, and the resolution of these stages
depends on the current number of neurons in the network [Fritzke, 1997b].

2.1.3 About Deep Learning
DL is a huge family of ANNs where many hidden layers exist within a network. They used
to have high computation cost and training time, and many techniques have been developed
to diminish them [Cabrera-León et al., 2024a, 2025].

Some examples of DNNs are: Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), Autoencoders (AEs) and transformers. Only the first one will be described
below as some models of this family were used in this thesis for comparisons purposes.

The first series of CNN architectures was developed in 1998 by Yann LeCun, one of the
most influential scientists in the field of artificial intelligence [LeCun et al., 2015]. Years later,
the emergence of the massive ImageNet dataset enabled the enormous advances in computer
vision of recent decades, with the development of new architectures such as ResNet, which
we used in our study.

The operation of the CNN architecture covers three key concepts: local receptive fields,
shared weights and biases, and activation and pooling. First, in a typical ANN, each neuron
in the input layer is connected to a neuron in the hidden layer. However, in a CNN, only a
small region of input layer neurons connects to hidden layer neurons. This region is known as
the local receptive fields. These fields are translated through an image using convolution to
create a feature map from the input layer to the hidden layer, hence the name. Second, in a
CNN, the weight and bias values are the same for all hidden neurons in a given layer, meaning
that all hidden neurons are detecting the same feature in different regions of the image. Third,
activation applies a transformation to the output of each neuron using activation functions
(i.e., ReLU), taking the value and mapping it to the highest positive value, except when the
output is negative, which maps it to 0. Finally, by applying pooling, it is possible to further
transform the output of the activation step. This involves reducing the dimensionality of
the feature map by condensing the output of small regions of neurons into a single output,
which in turn reduces the number of parameters the model needs to learn. In short, the
structure of a CNN can be summarized as an input layer, hidden layers (convolutional and
pooling layers), and finally, the classification layer (fully connected layers, or FCLs, and
softMax). These networks are very robust to translations, rotations, and scaling of the input
data [Cabrera-León et al., 2024a], making them very useful for image and video recognition.

Many variants of CNN exist nowadays [LeCun et al., 2015], each with its own number
of layers, quantity of parameters and properties: LeNet, GoogLeNet, DenseNet, Residual
Network (ResNet), Visual Geometry Group (VGG)...

2.1.3.1 DeepInsight and ParallelNet

The purpose of the DeepInsight methodology is to transform a non-image sample into image
format (element preparation) and then introduce it into the CNN architecture for feature
extraction (training) and finally carry out the prediction and classification process [Sharma
et al., 2019].

Non-linear dimensionality reduction techniques, such as t-distributed stochastic neighbor
embedding (t-SNE) or Kernel Principal Component Analysis (PCA), are applied to the
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training set to obtain a 2D plane. Once the feature positions on the Cartesian plane (2D
plane) have been defined, the convex hull algorithm is used to find the smallest rectangle
that contains all the points. Next, a rotation is performed to fit the rectangle to the network
input (90º with the horizontal and vertical) and the Cartesian coordinates are transformed
into pixels. Finally, once all the features are located in the pixels, the feature values are
mapped based on their location. If more than one matches, an average is calculated and they
are placed in the same location. This means that the size of the pixel grid must be adjusted
to the number of features to avoid resolution issues. In this way, a single image (or feature
vector) is generated for each sample, which will be provided to the CNN architecture for
model training and predictions.

It is important to note that the feature values must be normalized before applying the
transformation to the images. To achieve this, a normalization process called “Norm 1” was
carried out. With this method, each feature is normalized with its minimum and maximum
value (independent features), resulting in features with values between 0 and 1. If any value
of the different features is less than 0 or greater than 1 after normalization, it will be grouped
between 0 and 1 to maintain consistency.

Although the DeepInsight pipeline admits the use of different CNNs pre-trained with
ImageNet, ParallelNet was the one used in [Sharma et al., 2019]. In this parallel CNN
architecture different filter (kernel) sizes can be used effectively to train the model. Each
of its 4 parallel layers consists of: a 2D convolution layer, a batch normalization layer (to
avoid overfitting during training), a ReLU activation layer, and a max pooling layer. The
output of the 4 convolution layers is combined and fed into a fully connected layer. Finally,
a softmax layer provides the output as class labels.

2.2 Feature ranking
Datasets from real life experiments are almost always characterized by numerous features
(a.k.a. variables or predictors) that are barely of interest for most classification tasks.
Therefore, methods for dimensionality reduction have been implemented, which involve
feature selection and feature projection. The latter is described in section 2.4.

Feature ranking, a.k.a. feature selection, involves choosing a subset of features considered
relevant for the desired task. This concept assumes that any data contain irrelevant or
redundant features that can be discarded with reduced or no loss of information. Although
its not originally intended, there are feature extraction methods, which involve creating
new features from functions of the original ones, where the fabricated features are preferred
to the original ones as they allow using less features and these might be more relevant or
non-redundant.

There are three main groups of feature selection algorithms:

• Wrapper methods, which use a predictive model to rank feature subsets. They imply
training a model and testing it with a hold-out subset, so they are extremely slow but
provides the best feature set for that specific model. Ranking of the feature set is given
by the error rate of the model in that test set.

• Filter methods use an indirect metric to rank the feature set. This metric must be
fast to calculate and able to rank conveniently the feature set, such as inter-class and
intra-class distances and mutual information. They are a lot faster than wrappers and
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more easily expose the relationship between features, but the ranking is not specific for
the model that will be used.

• Embedded methods perform feature selection while building the model. In terms of
computation complexity, they lie between wrappers and filters.

Although most learning algorithms need the feature selection to be performed externally,
several of them, such as Decision Trees (DTs), Random Forests (RFs) and Extreme Gradient
Boosting (XGBoost), are able to do this on their own, internally, as part of their normal
functioning.

In the experiments with real data in this PhD thesis two feature ranking techniques were
evaluated:

• Fast Correlation-Based Filter (FCBF) is a hybrid filter and wrap feature selection
method developed by Yu and Liu [Yu and Liu, 2003]. It uses symmetric uncertainty
to determine the correlation between features and categories as well as to highlight
redundancy between the features. FCBF obtains an initial ranking of relevant features
that is then cleaned of those that are inter-correlated and do not provide more or
different information from that given by the other features initially considered relevant.
As a result, calculation efficiency, and therefore speed, is enhanced, which improves
the recognition rate. Furthermore, these authors concluded that FCBF demonstrated
promising results, achieving the highest level of dimensionality reduction and, hence, a
great ability to identify redundant characteristics to address complex and multi-category
situations [Yu and Liu, 2003].

• XGBoost [Chen and Guestrin, 2016] is a scalable tree ensemble method mostly used
for classification that, as a byproduct, also generates a ranking of features. Unlike
FCBF, redundant features are never discarded internally, which results in rankings
including more than one feature providing similar information. Hence, the feature
ranking provided by XGBoost was considered of lower quality, so the one done with
FCBF was preferred.

2.3 Data scaling
Also called data normalization, the goal of data scaling methods is to normalize the range of
the features of the data as they tend to vary widely, which may impair the performance of
some ML algorithms (e.g. those that used Euclidean distance). It is recommended to use
scaling methods so that coefficients are penalized correctly when regularization is used as
part of the loss function. It is also expected that gradient descent converges faster with
scaled data.

Many scaling methods exist but only those that were analyzed in the experiments in
chapter 4 are briefly explained [Pedregosa et al., 2011]11:

• “Standard”, a.k.a. Z-score, probably the most popular one, consists of removing the
mean and scaling to unit variance.

11The names of the scaling methods used by the tool that was used for data scaling, “scikit-learn”, have
been preserved for convenience, and other names were included when possible.
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• “Robust”, similar to the “Standard” one but using the median and the quantile range
(such as the Interquartile Range) instead. Both the median and the Interquartile Range
are robust to outliers, unlike the mean and the variance.

• “MaxAbs”, where each feature is scaled and translated individually so the maximal
absolute value of each one will be 1.0. Sparsity is kept as the data are not centered or
shifted.

• “MinMax”, a.k.a. rescalling, where each feature is scaled and translated individually so
it lies between the given range, such as between 0 and 1 or -1 and 1.

• “Normalizer”, where each sample with one or more non-zero component is rescaled
independently so that its L1 or L2 norm equals 1.

• “Yeo-Johnson PowerTransformer”, power transformers are a family of parametric,
monotonic transformations that are applied featurewise to make data more Gaussian-
like. Other power transforms exist too: Box-Cox and uniform output.

2.4 Data projection
The main purpose of using data projection techniques is to reduce the dimensionality of the
original data while retaining the maximum quantity of information.

Many projection methods exist but only those that were found optimal in any of the
experiments in chapter 4 are briefly explained:

• PCA Jolliffe and Cadima [2016] is an unsupervised dimensionality reduction method,
which allows to reduce the size of a dataset by projecting the data to a low-dimensional
space that contains most of the original variance. This method produces a series of
principal components from a multivariate random data by computing the eigenvectors
of its covariance matrix corresponding to the largest eigenvalues, and the projection
of the data over the eigenvectors. Sosa-Marrero et al. [2021]. PCA has been widely
employed for data processing in many fields Garćıa Báez et al. [2007]; Jolliffe and
Cadima [2016].

• Kernel PCA [Schölkopf et al., 1998a] is an extension of PCAs where the linear kernel
used in the latter is substituted by a non-linear one, allowing to compute principal
components in high-dimensional feature spaces. This process is similar to the usage of
non-linear kernels in the originally linear SVM [Vapnik, 1999].

• Neighborhood Component Analysis (NCA) is a supervised method aimed to find the
best input data projection or linear transformation for a stochastic nearest neighbors
rule to yield the best classification accuracy in the transformed space, without assuming
that the data have a parametric structure in the low dimensional representation
Goldberger et al. [2004].

• t-SNE is a statistical method and non-linear dimension reduction method for high-
dimensional data visualization [van der Maaten and Hinton, 2008]. By giving each data
point a location in a 2D or 3D map, it allows visualizing high-dimensional data. Distant
data points in the original space are modeled by distant ones in the low-dimensional
space with high probability.
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2.5 Model evaluation metrics
Several ways of evaluating and comparing models have been developed in the last decades
[Sokolova et al., 2006; Cabrera León, 2015]. They can be grouped according to its purpose:
performance measures, clustering quality metrics, time measurements, and computational
costs and resources requirements. A subset of the most convenient ones was selected for the
experiments performed in this thesis.

2.5.1 Performance measures
This huge set of metrics measures in different ways how well a model behaves in a specific
problem, frequently by assessing different characteristics of the model [Swets, 1988; Bradley,
1997; Sokolova et al., 2006; Akobeng, 2007c,b,a; Powers, 2011]. For simplicity reasons, only
performance metrics for binary classifiers will be exposed below, albeit multiclass versions of
them may exist too:

• True Positives (TP) are the number of samples that present the condition that were
correctly classified as having the condition.

• True Negatives (TN) are the quantity of samples that do not present the condition
that were correctly classified as not having the condition.

• False Positives (FP), a.k.a. Type I error, are the number of samples that do not have
the condition that were incorrectly classified as having the condition.

• False Negatives (FN), a.k.a. Type II error, are the quantity of samples that have the
condition that were incorrectly classified as not having the condition.

• Confusion matrix, a.k.a. contingency table, is a tabulated representation of the
performance of a model, where rows represent the predicted or diagnosed classes, and
columns, the real classes or conditions 12. It shows TP, TN, FP and FN in a more
meaningful way. The confusion matrix of a model with the best performance must
simultaneously fulfill the next two conditions: maximum main diagonal and minimum
secondary diagonal. This can be written with the following equations, where 𝑁 is the
number of patterns or input vectors: 𝑇𝑃 + 𝑇𝑁 = 𝑁 and 𝐹𝑃 + 𝐹𝑁 = 0.

Condition
Positive Negative Total

Prediction Positive 𝑇𝑃 𝐹𝑃 𝑇𝑃 + 𝐹𝑃
Negative 𝐹𝑁 𝑇𝑁 𝐹𝑁 + 𝑇𝑁

Total 𝑇𝑃 + 𝐹𝑁 𝐹𝑃 + 𝑇𝑁 𝑁

• Precision, a.k.a. Positive Predictive Value (PPV), is the proportion of samples that
truly have the condition from among those that the model indicated that have the
condition, Equation 2.17.

Precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.17)

12Some authors use a transposed version of this matrix. Both can be used interchangeably as they are
equally valid.



68 CHAPTER 2. NEURAL METHODS. THEORETICAL FOUNDATIONS

• Sensitivity, a.k.a. recall or True Positive Rate (TPR), indicates how well the model
performs with samples that have the condition. In other words, it is the ratio of samples
that the model indicated that have the condition from among those that truly have it,
Equation 2.18. A high sensitivity brings along a low ratio of FN.

Sensitivity = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.18)

• Specificity, a.k.a. True Negative Rate (TNR), indicates how well the model performs
with samples that do not have the condition. That is, it is the ratio of samples that
the model indicated that do not have the condition from among those that truly do
not have it, Equation 2.19. A high specificity brings along a low ratio of FP.

Specificity = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(2.19)

• Accuracy indicates the proportion of samples that were correctly identified from among
all, Equation 2.20. Metz [1978]; Provost et al. [1997] do not recommend using accuracy,
especially if the class distribution and error costs are unknown, preferring Receiver
Operating Characteristic (ROC) curves in these cases.

Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.20)

• Balanced accuracy was developed to deal with imbalanced datasets. It is defined as
the arithmetic mean of the recall obtained on each class, which can be simplified in
binary classification as the half of the sum of sensitivity and specificity, Equation 2.21.

Balanced accuracy =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
2 (2.21)

• Error rate is the proportion of samples that were incorrectly identified from among all
that were used, Equation 2.22.

Error rate = 𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.22)

• F-score, a.k.a. F1 score, F-measure, Sørensen–Dice coefficient or Dice similarity
coefficient, indicates how accurate a classification was done by tanking into account
both precision and recall. The nearest to 1 is the value of this metric, the better the
model has performed. Powers [2011] recommends only using it in conjunction with
other metrics as this one ignores the TN, Equation 2.23.

F-score = 2 · Precision · Sensitivity
Precision + Sensitivity = 2 · 𝑇𝑃

2 · 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(2.23)
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• ROC curves indicate graphically the performance of a classifier, where the X axis is
the False Positive Rate (FPR) or 1 - specificity, and the Y axis is the sensitivity [Metz,
1978; Bradley, 1997; Duda et al., 2001; Forcada, 2003; Fan et al., 2006; Brown and
Davis, 2006; Akobeng, 2007a; Slaby, 2007b,a; Lobo et al., 2008; Airola et al., 2010;
López et al., 2012; Kumar and Indrayan, 2011; Garćıa Abad, 2012; Navan, 2014; Tape
and University of Nebraska Medical Center, 2014; Systat Software, 2017]. A ROC
curve is able to encapsulate all the information of a confusion matrix as FN are the
complement of TP, and TN are the complement of FP [Swets, 1988]. A single number,
Area Under the Curve (AUC), might be used to summarize a ROC curve, although
with limitations. AUC is a metric that is strongly related to the mathematical concept
called integral, and one of the simplest ways of calculating it is by means of trapezoidal
integration [Bradley, 1997]. AUC ranges between 0 and 1, where 1 is the best value
and is obtained by the gold standard test. A model is said to be better13 than other if
its ROC curve passes nearer to the position (0, 1), the so-called “perfect classification
point”. In this point, where the AUC achieves the maximum value, the quantity of
both FN and FP is 0, so 100% sensitivity and 100% specificity, respectively [Zweig and
Campbell, 1993; Akobeng, 2007a]. Provost et al. [1997] indicate that ROC curves are
independent to both the class distribution and error costs.

• Clinical Utility Index (CUI) measures the clinical value of a diagnostic test considering
both occurrence and accuracy of the test [Mitchell, 2008; Mitchell et al., 2009; Mitchell,
2009]. As both sensitivity and specificity are deemed crucial in clinical settings, two
variants of the CUI exists, respectively for rule-in and rule-out accuracy, Equation 2.24:
CUI+, which is calculated as the product of positive predictive value and sensitivity,
and CUI-, as the product of specificity and negative predictive value. Adapted from
Landis and Koch [1977], Mitchell [2009] proposed an interpretation for the CUI values:
0.0-0.2, minimal; 0.21-0.4, slight; 0.41-0.6, fair; 0.61-0.8, good; 0.81-0.92, excellent; and
0.93-1, near perfect.

CUI+ = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
* 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
CUI− = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
* 𝑇𝑁

𝑇𝑁 + 𝐹𝑁
(2.24)

• Matthews Correlation Coefficient (MCC), a.k.a. phi coefficient or mean square con-
tingency coefficient, is considered a balanced metric that can be reliably used when
the classes are of very different sizes, unlike accuracy. A MCC value of +1 means
a perfect prediction; 0, an average random prediction; and -1, an inverse prediction,
Equation 2.25.

MCC = 𝑇𝑃 · 𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁√︁
(𝑇𝑃 + 𝐹𝑃 ) · (𝑇𝑃 + 𝐹𝑁) · (𝑇𝑁 + 𝐹𝑃 ) · (𝑇𝑁 + 𝐹𝑁)

(2.25)

In Table 2.3 the optimal, worst and interval of values for each of the mentioned performance
measurements have been summarized.

13This relationship can also be referred as “dominance”, i.e. “a classifier dominates other [...]” [Slaby,
2007b].
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Table 2.3: Interval, worst and optimal values for the described performance metrics.

Performance metric Interval Worst value Optimal value
Precision [0, 1] 0 1
Sensitivity [0, 1] 0 1
Specificity [0, 1] 0 1
Accuracy [0, 1] 0 1
Balanced accuracy [0, 1] 0 1
Error rate [0, 1] 1 0
F-score [0, 1] 0 1
Area Under the Curve [0, 1] 0 1
Clinical Utility Index [0, 1] 0 1
Matthews Correlation Coefficient [-1, 1] -1 or 0 1

2.5.2 Clustering quality metrics
Clustering methods divide an input dataset into a number of groups, the so-called “clusters”
[Rosenberg and Hirschberg, 2007]. The main goal of clustering algorithms is to simultaneously
achieve high intra-cluster similarity (all samples in the same cluster as similar) and low
inter-cluster similarity (samples from distinct clusters are different). Almost always this
process is carried out in an unsupervised way, that is, the algorithm ignores the objective
labels. For this reason, the performance measures exposed in subsection 2.5.1 are not useful.
Unlike them, clustering quality measurements do not require the desired output labels to
be calculated or even to exist at all. However, for testing purposes some target groups may
be defined, which are commonly called “labels” due to its similarity with those found in
classification problems.

Several clustering quality measures have been proposed [Rosenberg and Hirschberg, 2007]:

• Purity is the percentage of the total number of samples that were classified correctly.
It ranges between 0 and 1. Purity is calculated by assigning the most frequent class
to each cluster and summing the number of correct class labels in each cluster and
dividing it by the quantity of samples, as indicated in Equation 2.26, where 𝑁 is the
number of samples; 𝑘, the number of clusters; 𝑐𝑖, a cluster in the set 𝐶 of all clusters;
and 𝑡𝑗, the classification which has the maximum count for cluster 𝑐𝑖. High purity
is straightforward to obtain when the number of clusters is large, as it will be the
maximum value, 1, if each sample gets its own cluster [Rosenberg and Hirschberg, 2007].
For this reason, better use it together with other metrics.

Purity = 1
𝑁

𝑘∑︁
𝑖=1

𝑚𝑎𝑥𝑗 | 𝑐𝑖 ∩ 𝑡𝑗 | (2.26)

• Completeness criteria is achieved when all members of a given class are assigned to the
same cluster. It is symmetrical to homogeneity [Rosenberg and Hirschberg, 2007].

• Homogeneity criteria is satisfied when a clustering method is able to make that each
cluster contains only members of a single class.
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• V-measure, or validity-measure, is the harmonic mean of homogeneity and completeness
[Rosenberg and Hirschberg, 2007]. It is safer to use an adjusted index if the sample
size is small or the number of clusters is big.

• Adjusted Rand Index, as it can be inferred from the name, is the Rand Index adjusted
for chance. The Rand Index calculates the similarity of two clusterings by counting
all pairs of samples that are assigned in the same or different clusters in the predicted
and true clusterings. A score of 0 indicates random labeling, whereas -0.5 is used for
especially discordant clusterings.

• Normalized Mutual Information, as indicated by its denomination, is a normalization
of the Mutual Information score in order to be between 0 and 1, respectively no mutual
information and perfect correlation. This measure is not adjusted for chance.

• Silhouette is the mean of the Silhouette Coefficient for each sample. The silhouette for
each sample is calculated combining the mean distance between a sample and all other
points in the same class, and the mean distance between a sample and all other points
in the next nearest cluster. Silhouette ranges between -1 and 1, respectively incorrect
clustering and highly dense clustering. A score near 0 indicates overlapping clusters.
Knowing the ground truth labels is not required.

• Davies-Bouldin Index is calculated by averaging the “similarity” between clusters,
where similarity stands for the comparison of the distance between clusters with their
size. Knowing the ground truth labels is not needed. Davies Bouldin Index can be
used to determine the number of optimal clusters.

• Fowlkes-Mallows Index is the geometric mean of the pairwise precision and sensitivity.

• Caliński-Harabasz Index, a.k.a. Variance Ratio Criterion, is the ratio of the sum of
between-clusters dispersion and of inter-cluster dispersion for all clusters. Dispersion
is defined as the sum of distances squared. Knowing the ground truth labels is not
required.

An important property that some clustering quality measurements have is “symmetry”:
changing one of the arguments does not modify the obtained value for that metric. This
way, this symmetric metric can be used to measure the consensus between two independent
labeling strategies over the same dataset.

In Table 2.4 the optimal, worst and interval of values and the symmetry property
compliance for each of the indicated clustering quality measurements have been gathered.

It should be noted that various clustering quality metrics are affected by the number of
clusters and the number of samples. Non-adjusted measures show a dependency between
both terms, sometimes greatly increasing the closer the number of clusters is to the quantity
of samples. Therefore, given a certain value of overlapping subsamples of the dataset, only
adjusted measures can be used confidently as a consensus index to check the average stability
of clustering techniques.

2.5.3 Time measurements
Training and running times are the most commonly calculated time-related metrics. Training
time indicates the time used by the model during the training phase. It is generally used as
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Table 2.4: Interval, worst and optimal values for the described clustering quality metrics.
Also, their compliance with the “symmetry” property.

Performance metric Interval Worst value Optimal value Is symmetric?
Purity [0, 1] 0 1
Completeness [0, 1] 0 1 ✗

Homogeneity [0, 1] 0 1 ✗

V-measure [0, 1] 0 1 ✓

Adjusted Rand Index [-0.5, 1] -0.5 1 ✓

Normalized Mutual Infor-
mation

[0, 1] 0 1 ✓

Silhouette [-1, 1] -1 1
Davies Bouldin Index [0, ∞) Higher 0
Fowlkes-Mallows Index [0, 1] 0 1
Calinski-Harabasz Index None Lower Higher

a discriminant metric between models whose values of certain performance and clustering
quality metrics are similar for the same task. Models of very different nature may have very
distinct training times. For example, lazy learners normally train almost immediately; some
shallow ANNs may take minutes, while some DL techniques spend even weeks.

Running time indicates the time spent by the model when using unseen data, during the
testing of the model. It is almost never reported, as it will be our case, as more often than
not it is in the few seconds range or even less. However, it may be minutes in the case of
lazy learners, several times larger than their training times.

Several approaches have been followed to reduce these times, especially the training one,
subsection 2.5.4. Another one quite popular with DNNs is by using “transfer learning”, as
opposed to the commonly used “training from scratch”. In “transfer learning” the weights of
a DNN, which was previously trained with another dataset, are used as the initial weights of
the desired DNN that will work in a different but normally related issue. The main difficulty
and risk of “transfer learning” is to mistakenly consider both datasets as similar or related,
because this may cause the DNN to learn things that are not relevant to the actual problem
to be addressed.

2.5.4 Computational costs and resources requirements
Not as popular as the previous model evaluation metrics, this group mainly comprises Central
Processing Unit (CPU) load and characteristics, and disk and memory space.

Most DNNs have extremely high computational costs, especially compared to most ANNs,
for three reasons: number of hyperparameters for each neuron and synapse (in the order
of millions in many CNN variants), quantity of layers, and number of neurons per layer.
Configuring and fine-tuning such high quantity of hyperparameters is quite time-consuming
and complex unless the user has experience or a good technical background.

On the other hand, it is generally considered mandatory the usage of multi-threading
or multi-core CPUs, multiprocessing systems and even Graphics Processing Units (GPUs)
during the training phase in order to reduce the training times to far more acceptable
long levels, in some cases from weeks to days or hours. Similarly, the introduction of Field
Programmable Gate Arrayss (FPGAs) and other over-specialized hardware as accelerators for
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DNNs [Mittal, 2020] may decrease the power consumption and training times even further.
Requirements of memory and disk space have increased in the last decades as DNNs

became more prevalent, the ample usage of heavily parallelized High-Performance Computing
(HPC) systems, and the popularity of computer vision.





Chapter 3

Description and analysis of two novel
ontogenic neural architectures:
Modular Hybrid Growing Neural Gas
and Supervised Reconfigurable
Growing Neural Gas

In this chapter, two novel architectures are described, which are extensions of the ontogenetic
and unsupervised Artificial Neural Network (ANN) called Growing Neural Gas (GNG)
[Fritzke, 1995], already described in subsubsection 2.1.2.5. On the one hand, we describe the
Modular Hybrid Growing Neural Gas (MyGNG), its formal definition, and analyze its main
hyperparameters with a synthetic and a real datasets. On the other hand, we describe the
Supervised Reconfigurable Growing Neural Gas (SupeRGNG), including its formal definition
and biological plausibility. After that, several synthetic datasets will be used to analyze the
SupeRGNG, and the recommended values of some of its hyperparameters for datasets with
particular characteristics are exposed. In this document the relevance of a hyperparameter
is defined by how it influences both the behavior and the classification performance of the
ANN, in out case whether the MyGNG or the SupeRGNG.

3.1 Description of the Modular Hybrid Growing Neural
Gas

MyGNG is a hybrid ontogenic neural architecture that is an improved yet simpler version of
the one first described in [Sosa-Marrero et al., 2021]. The current version was introduced in
[Cabrera-León et al., 2024b]. Two modules can be found in the MyGNG, Figure 3.1. The
first module is built with an unsupervised, self-organizing and ontogenetic model, Fritzke’s
GNG [Fritzke, 1995]. The second module was based on the perceptron, a popular supervised
neural architecture [Rosenblatt, 1961; Widrow and Lehr, 1990].

MyGNG is hierarchically organized the way it is on purpose: first the data clustering
and later the data labeling. Clustering, which other models do not do, is aimed to simplify
the input data by projecting it to a space with more dimensions while maintaining its
topology to facilitate the classification done later by the labeling module [Cabrera-León
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Figure 3.1: Structure of the Modular Hybrid Growing Neural Gas, where 𝑥𝑖 is the 𝑖-th
component of the input vector; 𝑤𝑙𝑖, the weight of neuron 𝑙𝑖; and 𝑢𝑙, a neuron/unit of the
GNG module.

et al., 2024b]. Apart from the expected increased performance compared to the perceptron,
it may also decrease training times, as it also occurs in other hybrid architectures such as
the Counterpropagation Network [Hecht-Nielsen, 1987; Cabrera-León et al., 2018a].

These two modules learn sequentially. That is, the training of the MyGNG is done in
cascade: the second module (named “Supervised” in Figure 3.1) uses for its training the
labels of the data and the output of the first module (named “GNG”) after this one has been
trained.

In Figure 3.1 the structure of this improved MyGNG is depicted, with the input layer and
its two sequential modules. As in Figure 2.4 and subsubsection 2.1.2.5, colors of the neurons
indicate where two biologically-related processes have happened (blue is the base one, and it
is used for neurons that are adapting to the input data): neurogenesis and neural apoptosis.
Green neurons represent new neurons, that is, they have been recently created (that is,
neurogenesis) where the GNG algorithm considered more convenient (that is, between the
neuron with the greatest error and its neighbor with the greatest error). These green neurons
require that the old connections are deleted (red lines) and new connections are created
(green dashed lines). Conversely, red neurons are those that have been removed (that is,
neural apoptosis), which occur after all connections to them have been deleted.

The main difference between the improved MyGNG presented in this work and the
original one in [Sosa-Marrero et al., 2021] is how the “Supervised module” is built, which will
be explained later in Equation 3.2. This module has now less complexity as it is based on a
perceptron instead of the complex “Supervised module” of the original MyGNG, which made
use of neural neighborhoods [Sosa-Marrero et al., 2021]. These neural neighborhoods are
unnecessary and, hence, not used in the improved MyGNG introduced in the current work.
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Regarding the first module of the MyGNG presented in this work, in [Fritzke, 1995, 1997b]
the GNG is described as a self-organization map based on a dynamic graph of connected
neurons. Starting from a low number of interconnected neurons, this graph will adapt, shrink
and grow, hence producing topological learning that will allow clustering the input space.
This generation and continuous update of the graph is made by a competitive learning
algorithm [Kamimura, 2010], where the winner neuron1 𝑠1 is the one whose weights (𝜔) are
the most similar to the input vector 𝜉 . Equation 3.1), where 𝜀𝑏 and 𝜀𝑛 are the learning rates
for the winner and its neighbors, respectively [Fritzke, 1995], indicates that the adjustment
of the winner neuron and its direct topological neighbors defines the adaptation process.

Δ𝑤𝑠1 = 𝜀𝑏(𝜉 − 𝑤𝑠1)
(3.1)

Δ𝑤𝑛 = 𝜀𝑛(𝜉 − 𝑤𝑛) for all direct neighbor 𝑛 of 𝑠1

It should be noted that only the GNG equations that have been considered the most
relevant are explained in this work. For the full list of equations, we recommend consulting
subsubsection 2.1.2.5 and Fritzke’s cited works [Fritzke, 1995, 1997b]. These most relevant
parts are related to the two processes that make GNG stand out from other ontogenic neural
architectures: neurogenesis and neural apoptosis.

A local error variable is calculated for the winner neuron in each iteration, Equation 2.15.
This error is related to the neurogenesis (that is, the creation of a neuron) process because it
allows identifying regions where the input signals are not sufficiently correctly represented.
That is, a new neuron needs to be inserted between the unit 𝑞 with the maximum error and
its neighbor 𝑓 in the graph that has the highest error, Equation 2.16. An insertion occurs
every 𝜆 adaptation steps. Error variables of these units 𝑞 and 𝑓 are reduced in proportion to
the parameter 𝛽.

Altering connections modifies the network topology. A new connection is created on each
adaptation step between the winner and the second winner neurons. Conversely, a connection
is removed when the value of its age property is above the 𝑎𝑚𝑎𝑥 parameter. Neural apoptosis
(that is, the deletion of a neuron) occurs when it becomes isolated after all the connections
to that neuron got erased.

The responsible of the hybrid character of this MyGNG is the addition of a monolayer-
perceptron-based output module (supervised learning) after the GNG-based one (unsupervised
learning). The learning process of the perceptron is given by the “Perceptron rule” shown
in (3.2), which indicates how the weights are updated [Widrow and Lehr, 1990]. In this
equation, 𝑥(𝑘) is an input; 𝜔(𝑘), weights; 𝜌, the learning rate; and 𝑒(𝑘) = 𝑑(𝑘) − 𝑦(𝑘) =
𝑑(𝑘) − sgn[𝜔𝑇 (𝑘) · 𝑥(𝑘)], being sgn the sign function; 𝑑(𝑘), the desired output value of the
perceptron for the input 𝑥(𝑘); and 𝑦(𝑘), the obtained output value of the perceptron for that
input.

𝜔(𝑘 + 1) = 𝜔(𝑘) + 𝜌 · 𝑒(𝑘)
2 · 𝑥(𝑘) (3.2)

The following algorithm describes how the MyGNG works, where the parts regarding the
GNG were loosely based on Fritzke’s GNG algorithm [Fritzke, 1995]:

1In this work, 𝑠𝑖 indicates the neuron with the i-th minimum Euclidean distance between the input vector
and the neuron’s weights vector.



78 CHAPTER 3. MYGNG & SUPERGNG. DESCRIPTION & ANALYSIS

1. Create two neurons, 𝑎 and 𝑏, with weights 𝜔𝑎 and 𝜔𝑏, respectively.

2. Extract a sample 𝜉 from the input space or, alternatively, generate an input signal
according to the probability density function 𝑃 (𝜉).

3. Find 𝑠1 and 𝑠2, the two neurons that are the nearest to the input sample.

4. All connections to 𝑠1 have their 𝑎𝑔𝑒 property incremented.

5. Increment the local error variable of 𝑠1. These errors are used later to find where to
insert a new neuron.

6. Move 𝑠1 closer to 𝜉 (3.1). Similarly, move all the direct neighbors of 𝑠1 but by a lesser
amount.

7. The age of the connection between 𝑠1 and 𝑠2 is reset to 0. Create it if it did not exist.

8. Neural apoptosis: after removing all connections whose 𝑎𝑔𝑒 is greater than 𝑎𝑚𝑎𝑥, delete
all neurons without connections.

9. Neurogenesis: every 𝜆 iterations, insert a new neuron between the neuron with the
largest error and its direct neighbor with the largest error. The connection between
the erroneous neurons is deleted, and two new connections are created: between each
of them and the new one. The error of the erroneous neurons is diminished.

10. Decrease all error variables.

11. Go to Step 2 if the stopping criterion (for example, epochs, performance metric, size of
the network. . . ) of the GNG is not met yet. In our case, it is the epochs or number of
times all the input samples are used for training the GNG.

12. Obtain an output from the GNG and the associated class label (that is, the expected
output of the perceptron).

13. Update the weights of the perceptron (3.2).

14. Go to Step 12 if the stopping criterion of the perceptron is still not met. In our case, it
is the epochs used for training the perceptron.

3.2 Behavior of the Modular Hybrid Growing Neural
Gas with overlapping data

3.2.1 Datasets for the study of Modular Hybrid Growing Neural
Gas

Two datasets were used to study the MyGNG. On the first hand, the “blobs” dataset
comprises three isotropic Gaussian 2D blobs of samples, each one belonging to a different
class and with the same number of samples per class. The “make blobs” function found at
scikit-learn was used to create the blobs [Pedregosa et al., 2011]. The samples were generated
with the density function shown in Equation 3.8, where 𝑖 is the dimension, 1 or 2, which
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corresponds to the X and Y axis; 𝜇𝑖, the mean of the class in the 𝑖-th dimension; and 𝜎𝑖, the
standard deviation of the class in the 𝑖-th dimension. The purpose of using this dataset was
to check the behavior of the network with increasing levels of overlapping. Unlike with the
SupeRGNG subsubsection 3.5.1.3, instead of varying the distances by moving the centers 𝜇
of one of the clusters and keeping the same standard deviation 𝜎 of the three clusters to vary
the overlapping, the centers were the same but the values of the standard deviation of the
clusters were varied. Solely three variants were used, with values of 𝜎 = {0.5, 1.0, 1.5}.

On the other hand, the famous real dataset “iris” [Fisher, 1936; Anderson, 1936] was used
to emulate the behavior of the MyGNG with different levels of overlapping between three
classes of flowers: “setosa”, “versicolor” and “virginica”. Fifty samples of each class exists.

Depictions of both datasets are shown in subfigures a) in Figure 3.2, Figure 3.3, Figure 3.4,
and Figure 3.5.

3.2.2 Analysis of the behavior of the MyGNG with overlapping
data

The hyperparameters of the MyGNG includes those of the networks its modules are built
from: GNG and single-layer perceptron. The hyperparameters of the GNG can be grouped
according to its functionality: neuron movement (𝜀𝑏, 𝜀𝑛), error decreasing (𝛽, 𝑑), and network
growing (𝜆, 𝑎𝑚𝑎𝑥). Conversely, in the perceptron the learning rate 𝜌 is the hyperparameter
that can be analyzed2.

There is no stopping criteria defined for the GNG algorithm by Fritzke [1995], although
this author mentioned performance metrics or size of the network as possible. The latter
have been used in the MyGNG.

The optimal set of features for “blobs” that was found using grid search was: 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 =
125, 𝑎𝑚𝑎𝑥 = 5, 𝜆 = 25, 𝜀𝑏 = 0.65, 𝜀𝑛 = 0.0125, 𝛽 = 0.7, 𝑑 = 0.16, 𝑒𝑝𝑜𝑐ℎ𝑠 = 10, 𝜌 =
0.01, 𝑒𝑝𝑜𝑐ℎ𝑠 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 = 25. In Figure 3.2, Figure 3.3 and Figure 3.4 scatterplots of
the original dataset and the correctly classified samples and missclassifications (“OK” and
“NOk” in the subfigures b), respectively) in the three different overlapping levels in the “blobs”
dataset are depicted, together with the three binary Receiver Operating Characteristic (ROC)
curves. The ROC curves show the classification degradation with increasing levels of overlap-
ping. As expected, the greater the overlapping, the lower the performance of the MyGNG.
In the most extreme case when 𝜎 has the greatest value, the class situated in the middle is
barely correctly classified so the Area Under the Curve (AUC) is not good, subfigures b) and
d) in Figure 3.4, respectively.

The famous real dataset “iris” was also used to emulate the behavior of the MyGNG
with two overlapped classes. The optimal set of features using the same approach was:
𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 = 75, 𝑎𝑚𝑎𝑥 = 5, 𝜆 = 25, 𝜀𝑏 = 0.75, 𝜀𝑛 = 0.01, 𝛽 = 0.7, 𝑑 = 0.16, 𝑒𝑝𝑜𝑐ℎ𝑠 = 10, 𝜌 =
0.01, 𝑒𝑝𝑜𝑐ℎ𝑠 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 = 25 As shown in Figure 3.5, the “setosa” class is far from the others,
so the AUC in such case was 1, whereas with the rest of classes lower yet still good values
were yielded. As with “blobs”, errors were situated in the border of the overlapped classes,
where the most difficult samples to classify are located. In Table 3.1, the performance of
MyGNG with “iris” is shown.

2There is a parameter used as epochs in the perceptron, 𝑒𝑝𝑜𝑐ℎ𝑠 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛, but it was given a fixed value.
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Figure 3.2: Example of the behavior of the MyGNG with the “blobs” dataset with 𝜎 = 0.5.
a) Scatterplot of the dataset, b) Scatterplot of the correct and wrong classifications (per
class), c) ROC curve and AUC of the first class vs the rest, d) ROC curve and AUC of the
second class vs the rest, e) ROC curve and AUC of the third class vs the rest.

Table 3.1: Performance results of the MyGNG with the “iris” dataset.

One vs Rest Accuracy Sensitivity Specificity Precision AUC
setosa vs Rest 0.9974 0.9847 0.9874 0.9923 1
versicolor vs Rest 0.9782 0.9651 0.9742 0.9623 0.9955
virginica vs Rest 0.9691 0.9513 0.9454 0.9736 0.9851
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Figure 3.3: Example of the behavior of the MyGNG with the “blobs” dataset with 𝜎 = 1.0.
a) Scatterplot of the dataset, b) Scatterplot of the correct and wrong classifications (per
class), c) ROC curve and AUC of the first class vs the rest, d) ROC curve and AUC of the
second class vs the rest, e) ROC curve and AUC of the third class vs the rest.
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Figure 3.4: Example of the behavior of the MyGNG with the “blobs” dataset with 𝜎 = 1.5.
a) Scatterplot of the dataset, b) Scatterplot of the correct and wrong classifications (per
class), c) ROC curve and AUC of the first class vs the rest, d) ROC curve and AUC of the
second class vs the rest, e) ROC curve and AUC of the third class vs the rest.
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Figure 3.5: Example of the behavior of the MyGNG with the “iris” dataset. a) Scatterplot
of the dataset, b) Scatterplot of the correct and wrong classifications (per class), c) ROC
curve and AUC of the “setosa” class vs the rest, d) ROC curve and AUC of the “versicolor”
class vs the rest, e) ROC curve and AUC of the “virginica” class vs the rest.



84 CHAPTER 3. MYGNG & SUPERGNG. DESCRIPTION & ANALYSIS

3.3 Description of the Supervised Reconfigurable Grow-
ing Neural Gas

As deduced from its name, the SupeRGNG is based on the GNG and includes several
mechanisms regarding its reconfigurable capability that require the labels associated to
the input data (supervised learning). Additionally, it includes early stopping, a supervised
mechanism aimed to shorten the training time, which can also be found in other ANNs, which
stops training when no further improvements in a performance metric is found for a certain
period. As a regularization mechanism, early stopping aims to minimize the generalization
error by preventing overfitting, a risk common to supervised approaches.

The reconfigurable characteristic, whose goal is to refine the clusters that were obtained
in an unsupervised way by the GNG, can be divided in two processes, which are performed
with the same frequency and sequentially in the next order:

1. Disconnection, where neurons with dissimilar labels that were erroneously connected,
became disconnected. That is, the interclass boundaries are made.

2. Reconnection, where a new connection between clusters with identical labels that
were mistakenly separated is created in order to unite them. That is, the intraclass
connections are made.

The previous supervised procedures can be carried out dynamically after any training
epoch and with the desired frequency of iterations after that epoch, being both values defined
by the user. Conversely, in our previous variant of SupeRGNG, which also had no early
stopping, the reconfigurable capability was only done after the unsupervised learning of the
original GNG finished [Cabrera-León et al., 2023]. Disconnections and reconnections in both
variants are carried out with the same frequency, and one after the other.

In Figure 3.6 the topology of the SupeRGNG is shown, where red neurons indicate dead
neurons that are going to be deleted; green neurons, new ones that are inserted in regions
where the error was the highest; dotted-dashed edges, connections that are eliminated both
when there is a dead neuron or when a new neuron is added; and, dotted edges, connections
that are created during the insertion of a new neuron. The main difference with Figure 2.4
is related to what to do with the red-blue unit located in the middle, which represents a
neuron that belongs to the light blue cluster but was erroneously assigned to the dark blue
one. Whilst in the GNG the topology would remain unchanged, in the SupeRGNG edges
connected to that neuron will be corrected, whether through deletion (red, dotted line) or
creation (green, dotted line).

3.3.1 Model definition
Both the original GNG and the SupeRGNG have quite similar neuron models, network
topologies and learning algorithms, subsubsection 2.1.2.5.

On this basis, a SupeRGNG 𝑔 can also be formally described by the tuple 𝑔 := (𝒰 , 𝒞, 𝜃),
where 𝒰 is the set of units (a.k.a. vertices, nodes or neurons); 𝒞, the set of connections (a.k.a.
edges or links); and 𝜃, the set of hyperparameters [Fritzke, 1995; Kerdels, 2016]. It can also
be seen as a set of connected components within a simple, normally disconnected, graph: an
undirected graph without loops nor multiple edges [Clark and Allan Holton, 1991; Rosen,
2004].
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Figure 3.6: Topology of our SupeRGNG, showing examples of dead neurons (red), new
neurons (green), unsupervised disconnections (black, dotted lines), supervised disconnections
(red, dotted lines), and supervised reconnections (green, dotted lines).

A neuron 𝑢 ∈ 𝒰 of a SupeRGNG has associated a reference vector 𝜔, which relates inputs
x ∈ R𝑛, 𝑛 ∈ N with 𝑢, an accumulated error 𝑒 ∈ R, and, in contrast to the neuron of the
original GNG, subsubsection 2.1.2.5, the label that most frequently was assigned to this unit
during training 𝑦 ∈ R. For the sake of convenience, for unit 𝑢 we will define 𝜔𝑢, 𝑒𝑢 and 𝑦𝑢

as synonyms of the previous elements, respectively.
A connection 𝑙 ∈ 𝒞 can be depicted by the tuple 𝑙 := (𝑢, 𝑣), where 𝑢, 𝑣 ∈ 𝒰 are the

pair of units that are being connected. As in GNG and unlike in other ANNs, connections
in SupeRGNG are unweighted and they are used to define the topological structure of the
network. Each connection has an age associated 𝑎𝑔𝑒(𝑢,𝑣) ∈ N ∪ {0}.

The set of hyperparameters in the SupeRGNG extends those found in the GNG. The
common hyperparameters are also constant over time, and have the same meaning and use sub-
subsection 2.1.2.5. This extended set is comprised of 𝜃 := {𝜀𝑐, 𝜀𝑛, 𝑑, 𝛽, 𝜆, 𝑎𝑚𝑎𝑥, 𝜍, 𝑒𝑝𝑜𝑐ℎ𝑠, 𝜂, 𝜄},
and the new ones are:

• 𝜂, which indicates from which epoch the interclass boundaries (disconnection process)
and the intraclass connections (reconnection process) begin to be made.

• 𝜄, which specifies how often (in number of iterations) the disconnections and reconnec-
tions will be made after the initial 𝜂 epochs.

In the next paragraphs we describe the SupeRGNG, its neuron model, its network
topology (including both the network framework and the interconnection structure), and its
learning algorithm.

Neuron model: as inferred from the definition of a unit above, the neuron model in the
SupeRGNG only differs from that in the GNG in that there is a label saved in each
neuron. This added property does not modify the formal definitions of the propagation,
activation and output functions.

Network topology: there is no grid structure in this supervised version of GNG.
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• Identical number of layers and layer connections as in the GNG:
– A single layer of neurons3, starting from 2 neurons and growing to the

maximum indicated size4.
– All neurons in the input layer are connected to the neurons in the main layer.
– The neurons in the main layer are partially interconnected.

• The topological neighborhood is the same as in the regular GNG, Equation 2.7.
• The positions of the first and second neurons are identically calculated, Equa-

tion 2.8 and Equation 2.9.
• Connection senescence: as in the GNG, connections emanating from the current

winner neuron 𝑐 age after every training step, although the age of the connection
between 𝑐 and its nearest neighbor is refreshed (i.e., age reset to 0), Equation 2.10.

• Neural apoptosis: the death of a neuron happens when there are no connections
emanating from it (that is, it has no neighbors), which happens due to the
aforementioned “connection senescence”, Equation 2.10.

• Lateral connections update follows the same Hebbian competitive learning as the
GNG, Equation 2.12. A connection is deleted when its age reaches the value
indicated by the hyperparameter 𝑎𝑚𝑎𝑥. Additionally, connections in SupeRGNG
can also be deleted without taking into account its value of 𝑎𝑚𝑎𝑥 or created during
the disconnection and reconnection processes, respectively.

• Weight update, due to being a competitive ANN, is different in the winner neuron
𝑐 and its direct topological neighbors in the graph, 𝒩 (𝑐), Equation 2.13.

• Error update: each neuron has a local error variable related to the distance between
the input x and the winner neuron 𝑐, Equation 2.14. During the adaptation,
accumulating the squared distances to this error helps to identify neurons situated
in areas of the input space where the error in the mapping is high. In such areas
new neurons are inserted in order to reduce the error. Considering the decaying
hyperparameter 𝑑 ∈ (0, 1), the error for neuron 𝑢, 𝑒𝑢, is updated at the end of
each iteration according to Equation 2.15, a decaying process that affects every
neuron 𝑢 ∈ 𝒰 .

• Neurogenesis: a new neuron is created when the current training step is a multiple
of the hyperparameter 𝜆, Equation 2.16.

• Path: as this family of ANNs can be seen as simple graphs and not multigraphs
(i.e. without multiple connections between the same pair of endpoints) in graph
theory [Clark and Allan Holton, 1991; Rosen, 2004], the formal definition of a path
𝒫(𝑠, 𝑡) can be simplified as the sequence of vertices (that is, units) that connects
two of them 𝑠, 𝑡 ∈ 𝒰 :

𝒫(𝑠, 𝑡) := (𝑣0, . . . , 𝑣𝑘) | ∃(𝑣𝑖−1, 𝑣𝑖) ∈ 𝒞, 𝑖 = 1, 2, . . . , 𝑛,

𝑣𝑖 ∈ 𝒰 , 𝑣0 = 𝑠, 𝑣𝑘 = 𝑡
(3.3)

• Connected component: a subgraph in which each pair of units is connected with
each other via a path, and no path exists that connects any unit of this subgraph

3We are not counting the input layer, which also exists, as it commonly occurs in the majority of ANNs.
4See footnote 4 in page 59.
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to any unit in the rest of the graph. In our case, a connected component can be
considered a cluster. In graph theory, the connected components within a graph
are the set of disjoint connected subgraphs [Clark and Allan Holton, 1991; Rosen,
2004]. Based on [Clark and Allan Holton, 1991], we can define the connected
component 𝑠𝑔 of the graph 𝑔 as follows:

𝑠𝑔 := (𝒰𝑠𝑔 , 𝒞𝑠𝑔 , 𝜃), 𝑔 := (𝒰 , 𝒞, 𝜃) | 𝒰𝑠𝑔 ⊆ 𝒰 , 𝒞𝑠𝑔 ⊆ 𝒞 (3.4)

where 𝒰 is the set of units; 𝒞, the set of connections; and 𝜃, the set of hyperpa-
rameters.
On the other hand, each connected component has associated the most common,
according to the Simple Majority Voting (SMV) method, label associated with
the units that form it. This label 𝑦𝑠𝑔 can be calculated as the mode, the most
frequent value.

• Tuning inter-class boundaries: includes disconnections and reconnections, which
are performed after 𝜂 epochs has passed and, after that, with a frequency of 𝜄
iterations.
a) Assign a label to each cluster: As each cluster will correspond to a connected

component, this assignation is based on the SMV of the labels 𝑦𝑢 of each
neuron 𝑢 within the connected component.

b) Find the inter-class boundaries: there are connections between neurons (or
group of them, hence they can be called clusters) with different labels. That is,
check 𝑓𝑜𝑟𝑎𝑙𝑙𝑙 ∈ 𝐶𝐶1, 𝑚 ∈ 𝐶𝐶2 | 𝑦𝑙 ≠ 𝑦𝑚 ∧ ∃ (𝑙, 𝑚) ∈ 𝒞, where 𝐶𝐶1, 𝐶𝐶2 ⊂ 𝑔
are different connected components in the network graph 𝑔; 𝑦𝑙, 𝑦𝑚 ∈ 𝒴, the
labels associated with units 𝑙 and 𝑚, respectively; and 𝒞, the set of connections.

c) Separating clusters with different labels: after finding the inter-class boundaries,
disconnecting the neurons or clusters with different labels is straightforward.

∀(𝑙, 𝑚) ∈ 𝒞, 𝒞 := 𝒞 − {(𝑙, 𝑚)}, if 𝑦𝑙 ̸= 𝑦𝑚 ∧ 𝑙 ∈ 𝑠𝑔1 , 𝑚 ∈ 𝑠𝑔2 (3.5)

where 𝑠𝑔1 , 𝑠𝑔2 ⊂ 𝑔 are different connected components in the network graph
𝑔; 𝑦𝑙, 𝑦𝑚 ∈ 𝒴, the labels associated with units 𝑙 and 𝑚, respectively; (𝑙, 𝑚), a
connection between these units; and 𝒞, the set of connections.

d) Connecting clusters with the same labels: although random units could have
been chosen as connection points, the nearest neurons in each cluster were
finally selected because they were deemed more convenient. The nearest
neurons are those that had the minimum distance according to the definition
of distance that is used, such as Equation 2.3 or Equation 2.4.

∀(𝑙, 𝑚) /∈ 𝒞, 𝒞 := 𝒞 ∪ {(𝑙, 𝑚)}, 𝑎𝑔𝑒(𝑙, 𝑚) := 0,

if 𝑦𝑙 = 𝑦𝑚 ∧ 𝑙 ∈ 𝑠𝑔1 , 𝑚 ∈ 𝑠𝑔2 ∧ arg min
𝑙∈𝑠𝑔1 , 𝑚∈𝑠𝑔2

(𝑑(𝑙, 𝑚)) (3.6)

where 𝑠𝑔1 , 𝑠𝑔2 ⊂ 𝑔 are different connected components in the network graph
𝑔; 𝑦𝑙, 𝑦𝑚 ∈ 𝒴, the labels associated with units 𝑙 and 𝑚, respectively; (𝑙, 𝑚), a
connection between these units; 𝑎𝑔𝑒(𝑙,𝑚), the age of the connection between
these units, as in Equation 2.16; 𝑑(𝑙, 𝑚), the distance between them, such as
Equation 2.3 or Equation 2.4; and 𝒞, the set of connections.
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Learning algorithm:

• Early stopping5: if the disconnection or reconnection processes were active, the
early stopping process is launched. In other words, after the “warm-up period”,
where the model trains for 𝜂 epochs without the early stopping process getting
activated, the training stops when no improvements have occurred in the current
value 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 of the metric being monitored (default, AUC6) for the last 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒
consultationswith the validation set. Assuming that 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 is a metric where
higher values mean better, and it is checked after the “warm-up period” of 𝜂 epochs,
an improvement better than the desired minimum value 𝑑𝑒𝑙𝑡𝑎𝑚𝑖𝑛 has occurred
in the epoch 𝑒𝑝 in the window of consultations of size 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 is explained by
Equation 3.7. If there have not been any improvement during that window, the
state and performance results of the network from this “best epoch” are restored.

(𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑝 − 𝑑𝑒𝑙𝑡𝑎𝑚𝑖𝑛) > 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑏𝑒𝑠𝑡 𝑒𝑝𝑜𝑐ℎ (3.7)

Early stopping is the most popular regularization method in Deep Learning (DL)
because it is both simple and effective [Goodfellow et al., 2016], although its use
is not limited to Deep Neural Networks (DNNs) as it was already being used in
shallow ANNs before deep ones became popular [Zhang and Yu, 2005]. Early
stopping allows the network to not continue training when the monitored metric
has stopped improving for several epochs instead of training during the whole
number of epochs. Hence, its goal is to shorten the training time of the network
without impairing its classification performance. Early stopping is typically used
on a validation set, and is designed to make the algorithm halt as soon as overfitting
starts to happen [Zhang and Yu, 2005; Goodfellow et al., 2016]. Generally, early
stopping implies that every time lower validation set errors are obtained (which it
is expected to imply lower test set errors too), a copy of the model parameters
needs to be stored. So, when the training stops, these parameters are returned
instead of the latest ones [Goodfellow et al., 2016]. This extra space cost needed for
the copy is considered negligible, whereas the periodic evaluation of the validation
set during training might incur a significant cost [Goodfellow et al., 2016].

• Algorithm steps: a SupeRGNG is initialized with two units with prototype vectors
𝜔, usually randomly, chosen from the input data, and their accumulated error
variables 𝑒 are set to 0. The set of connections 𝒞 is initially empty. Then, the
SupeRGNG grows by processing samples extracted from the training data7. The
learning algorithm of the SupeRGNG comprises the next 12 steps, where Steps 1
to 10 and Step 13 are identical to those of the GNG:
Step 1: Start with two units, 𝑈 = 𝑎, 𝑏 | 𝑒𝑎 := 0, 𝑒𝑏 := 0, and 𝜔𝑎 and 𝜔𝑏 are

reference vectors usually randomly chosen from the input data. 𝒞 := ∅
5The early stopping in other models and implementations is not identical to the one presented here,

as, generally, the hyperparameters related to the “warm-up period” and the number of times without
improvements are both measured in epochs. Conversely, in SupeRGNG the former is in epochs as it is related
to 𝜂, whereas the latter is in number of consultations and it is related to 𝜄, which refers to iterations.

6As the greater the value of AUC is, the better it is considered, in Equation 3.7 there is a “>” symbol when
monitoring the metric. For other metrics, such as loss, the opposite happens, so a “<” is more appropriate.

7See footnote 10 in page 62.
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Step 2: Iterate through the training data 𝑆.
Step 3: Find the nearest unit 𝑐 and the second nearest unit 𝑐2, Equation 2.8

and Equation 2.9, respectively. They are also called Best Matching
Unit (BMU) and second BMU.

Step 4: Increment the age of all edges emanating from unit 𝑐, Equation 2.10.
Step 5: Add the squared distance between the observation and the associated

reference vector of 𝑐 to the accumulated error of 𝑐, Equation 2.14.
Step 6: Move 𝑐 and its direct topological neighbors towards the observation by

the fractions 𝜀𝑐 and 𝜀𝑛, respectively, of the total distance, Equation 2.13.
Step 7: If there is a connection between 𝑐 and 𝑐2, set the age of this connec-

tion to zero, Equation 2.10. If this connection does not exist, create it,
Equation 2.12.

Step 8: Remove connections with an age larger than 𝑎𝑚𝑎𝑥, Equation 2.12. If this
results in units having no emanating connections, remove them as well,
Equation 2.11.

Step 9: If the number of steps so far is an integer multiple of parameter 𝜆, insert
a new unit, Equation 2.16:
a) Determine the unit 𝑞 with the maximum accumulated error.
b) Insert a new unit 𝑟 halfway between 𝑞 and its neighbor 𝑓 with the

largest error variable. The label of 𝑟 is the same as that of the unit 𝑞.
c) Insert edges connecting the new unit 𝑟 with 𝑞 and 𝑓 , and remove the

original edge between 𝑞 and 𝑓 .
d) Decrease the error variables of 𝑞 and 𝑓 by multiplying them with the

constant 𝛽. Initialize the error variable of 𝑟 with the new value of the
error variable of 𝑞.

Step 10: Decrease the error variables of all neurons by multiplying them with a
constant 𝑑, Equation 2.15.

Step 11: If the number of epochs is at least 𝜂 and the current number of iterations
so far is a multiple of 𝜄, tune the inter-class boundaries.
a) Assign a label to each cluster.
b) Find the inter-class boundaries.
c) If labels of the neurons or clusters of neurons are different, delete the

edge even if the neurons involved in this connection become isolated
after the disconnection, as in the next substep they will be correctly
reconnected to the proper clusters, Equation 3.5.

d) Connect all clusters whose labels are the same and that were whether
erroneously separated or became disconnected in the previous substep,
Equation 3.6. The closest pair of neurons in these clusters are chosen
to take part in this new connection.

Step 12: Early stopping: if the network have been training for at least 𝜂 epochs
and the current number of iterations so far is a multiple of 𝜄 (as with the
previous disconnect and reconnect processes), the need to do the early
stopping process is checked.
(a) Calculate the current value of the 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 metric with the validation

set.
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(b) Increase the number of waiting consultations made.
(c) If the current value of 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 has improved to such an extent that

it is better than the one considered best so far (i.e. the difference
between both values is not less than 𝑑𝑒𝑙𝑡𝑎𝑚𝑖𝑛), update this best metric
value and save the current network if necessary. Continue with the
training process without doing the following steps of the early stopping
procedure.

(d) If the number of consultations of the 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 metric that has been
made is not less than 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 (no relevant improvements of 𝑚𝑜𝑛𝑖𝑡𝑜𝑟
have occurred in that period either), the training is marked to stop.

(e) If the early stopping needs to happen, finish training the network and
restore the performance values and network state from that so-called
“best epoch”.

Step 13: Go to Step 2 if a stopping criterion (in this case 𝑒𝑝𝑜𝑐ℎ𝑠, although other
possibilities exist, such as the network size 𝜍, and certain performance
metric) is not yet fulfilled.

3.4 Biological plausibility
One of the greatest challenges in the design and modeling of ANNs has been developing
neural architectures, and their associated learning mechanisms, that best reflect and represent
those found in existing biological systems [Garćıa Báez, 2005]. Most current ANN models
or architectures attempt to reflect a certain biological flavor, but the incorporation of the
main biological mechanisms responsible for the functioning of the biological neuron, and
therefore of the biological neural network, is highly complex and difficult to find. In this
sense, one of the most successful are the Adaptive Resonance Theory (ART) family of
architectures [Carpenter and Grossberg, 2003] and Hybrid Unsupervised Modular Adaptive
Neural Network (HUMANN) [Garćıa Báez, 2005; Garćıa Báez et al., 2010, 2012]. Among the
biologically implausible characteristics frequently found in ANNs, the most common ones are
simplifications, assumptions and limitations, which are introduced for better problem solving
and greater computational performance, which bring along a reduced biological inspiration
of those ANNs [da Silva and Rosa, 2013].

Structural and functional are the two main levels for defining a biological or artificial
system, and can be used to express its biological plausibility [Garćıa Báez, 2005].

GNG, MyGNG and SupeRGNG are characterized by several bio-inspired properties, as
stated by the names chosen for the functionalities in subsubsection 2.1.2.5 and subsection 3.3.1:

• Ontogeny, as these ANNs modify their interconnection strengths according to a prede-
termined learning rule, and adapt their topology to the problem [Fiesler and Beale,
1997].

• Connections aging and age resetting are similar to how telomerase works: cells can
divide (and, hence, live) for a given period of time (i.e. they reach the Hayflick limit,
which is approximately 50-70 cell divisions) after which they become senescent and no
more cell divisions happen [Siegel, 2008]. However, thanks to the enzyme telomerase,
the short bits of DNA known as telomeres that get shortened after each division are
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restored, so the cell can again divide. Telomerase activation can produce cancerous
growth, which imply that cells never die and they frequently divide. This can be
replicated in GNG and SupeRGNG by choosing some combinations of parameters,
mainly big values of 𝑎𝑚𝑎𝑥 and low values of 𝜆.

• Neural apoptosis, as neurons can die. In words of [Mazarakis et al., 1997], apoptosis
“is a well conserved and highly regulated mechanism of cell death for the removal of
unnecessary, surplus, aged or damaged cells”. It happens in any kind of biological
cells, not only neural ones. Although the final consequence is the same, the cell death,
apoptosis should not be confused with “necrosis” because important differences exist
[Bredesen, 1995].

• Neurogenesis, as new neurons can be created. As it occurs in mammals, this process
happens not only during embryonic and perinatal stages (in the first iterations or
epochs in our case) but also throughout life (during the network training in our case)
[Ming and Song, 2011].

• Topographic maps, which are also present in the Self-Organizing Map (SOM) and,
functionally, in the brain too [Kohonen, 2001], where similar patterns share near spacial
locations.

• Positive tropism, as the network moves toward any available input sample, trying to
cover all of them in order to better represent the input space. Among others, this
behavior is akin to that of Physarum polycephalum, a slime mold that, while in the
plasmodial stage, is able to move, by extending and developing pseudopods in a pulsatile
and rhythmic way8, towards attractants such as nutrients [Patino-Ramirez et al., 2019].

On the other hand, SupeRGNG has some specific bio-inspired characteristics:

• Boundary is defined in [Fagotto, 2014] as a “physical frontier that prevents mixing
between two cell populations [and that] generally corresponds to a sharp and smooth
delimitation”. Boundaries are necessary for tissue separation. During boundary
formation, cells typically rearrange, producing a straight boundary.

• Cell sorting refers to the process during which cells exchange neighbors in order to
increase the number of homotypic contacts while, at the same time, decrease the quantity
of heterotypic contacts [Fagotto, 2014]. Homotypic and heterotypic interactions occur
between cells of the same and different type, respectively [Fagotto, 2014].

• Negative tropism, such as the one found in the myxomycete Physarum polycephalum,
as this mold avoids moving toward repellents, that is, dangerous substances or stimulus
such as salts and light (a.k.a. aphototropism), respectively [Patino-Ramirez et al.,
2019].

• Shortest path problem, which have been solved by many organisms such as the Physarum
polycephalum, with its ability to find the minimum-length solution between two and
more points with nutrients in a labyrinth [Nakagaki et al., 2000]. In SupeRGNG the
shortest path needs to be found when the supervised reconnection of neurons process
occurs.

8Physarum polycephalum is able to move 1mm/s approximately, even up to few centimeters [Patino-Ramirez
et al., 2019], and to change directions every 100 seconds.
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• Autophagy, a.k.a. autophagocytosis, is a mechanism of the cell whereby defective or
superfluous components are removed. The main difference with apoptosis is that the
cell still exists after the autophagy mechanism because only some of the cell’s non-useful
organelles (parts of a cell) or unused proteins are eradicated [Mizushima and Komatsu,
2011]. In SupeRGNG a process akin to autophagy happens when unnecessary edges
between neighboring neurons are deleted.

• Adherens junctions is a type of cell junction where cadherins, a type of cell adhesion
molecule, from two proximal cells forms homophilic bindings between themselves when
their conformation changes from flexible to rigid after Ca2+ ions get into the calcium-
sensitive extracellular region. This results in cells of a similar type sticking together,
which can further lead to multiple cells assembling into tissues. Such adhesives forces
may even prevent tissues from dissociating into cells under external stress while easing
cell movement [Harris and Tepass, 2010]. In SupeRGNG a similar process occurs when
neurons with identical label connect if a connection between them does not exist.

3.5 Analysis and parametric study of the Supervised
Reconfigurable Growing Neural Gas

In order to check both the stability and performance of the SupeRGNG in different types of
problems, in the next subsections its behavior is described and analyzed by means of different
datasets. Three synthetic datasets have been used to study the capabilities of the SupeRGNG.
Hence, the purpose of each of them differs and is related to its main characteristic, which
will be used to title the next subsections. All but the first synthetic dataset, which is binary,
are multiclass.

The behavior of the SupeRGNG with these datasets has been studied according to the
values of the most important hyperparameters of the network, analyzing its influence in the
final classification results.

3.5.1 Datasets for the study of the SupeRGNG
In order to study the behavior and adaptation capability to different data of SupeRGNG
several synthetic data sets with dissimilar characteristics have been used, which will be
described below.

3.5.1.1 Non-Gaussian and non-linearly separable data

This dataset is made up of 1000 samples not generated with a Gaussian function and
that belong to two different classes, shaped as concentric squares that cannot be linearly
separated, so it is also known as “2 concentric squares”, Figure 3.7. Its Gaussian version
is called “bullseye”. The internal region is a square whose side measures 0.3, whereas the
external one is a band that is built by subtracting from a square with a side of 1.3 a concentric
square with a side of 1. As both classes have almost identical number of samples, the internal
square is much denser.

This dataset was used in order to check the capability of the SupeRGNG with non-
Gaussian data that cannot be separated with a linear hyperplane, where classes also have
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Figure 3.7: Non-Gaussian and non-linearly separable data, a.k.a. “pgb squares”.

different density and shape. These characteristics have proven to be problematic for certain
classification and clustering models, which make assumptions about some of these charac-
teristics, especially the last two, in the classes to be found. It has been used for a similar
purpose with HUMANN in [Garćıa Báez, 2005], and this author indicated that it was based
on a problem found at a previous edition of [Koutroumbas and Theodoridis, 2008]9.

3.5.1.2 Imbalanced data

This dataset consists of three isotropic Gaussian 2D blobs (i.e. round clouds) of samples,
each one belonging to a different class, and ensuring that they are linearly separable. The
“make blobs” function found at scikit-learn was used to create the blobs [Pedregosa et al.,
2011].

Unlike the second synthetic dataset used in [Garćıa Báez, 2005], where both the shape
and the density of the patterns change, only the latter varies in ours and this occurred for two
of the classes instead of just one. Also, each blob is isotropic and not elliptical. Conversely,
in both cases the quantity of classes, the number of dimensions and centers of the blobs are
the same, Table 3.2. Similarly occurred with the density function, Equation 3.8, where 𝑖 is
the dimension, 1 or 2, which corresponds to the X and Y axis; 𝜇𝑖, the mean of the class in
the 𝑖-th dimension; and 𝜎𝑖, the standard deviation of the class in the 𝑖-th dimension.

9In that reference, which is the fourth edition, it is the problem 12.5.
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a) Class ratio ±0%.

b) Class ratio ±90%.

Figure 3.8: Imbalanced data, also named “unbalanced blobs”. Extreme cases.
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𝑓(𝑥) = 1√︁
2𝜋𝜎2

𝑖

𝑒
− (𝑥𝑖−𝜇𝑖)2

2𝜎2
𝑖 (3.8)

Table 3.2: Values of the parameters that define the classes in the imbalanced dataset, showing
the six different variants.

Class 𝜇1 𝜇2 𝜎1 𝜎2 Number of samples
0 8 0 1 1 { 333, 499, 532, 566, 599, 632 }
1 0 0 1 1 333
2 0 8 1 1 { 333, 167, 134, 100, 67, 34 }

A total of six variants of this dataset have been analyzed, which were created by varying
the class ratio in each of the variants (i.e. the number of samples of two of the blobs
are different, one increasing in the same percentage as the other decreases), Table 3.2:
±0%, ±50%, ±60%, ±70%, ±80%, ±90%. The plots of the extreme cases can be seen in
Figure 3.8. Therefore, the purpose of this dataset is to analyze how well the SupeRGNG
works with different levels of class ratios.

3.5.1.3 Overlapping data

This dataset comprises three isotropic Gaussian 2D blobs of samples, each one belonging to
a different class and with the same number of samples per class. The “make blobs” function
found at scikit-learn was used to create the blobs [Pedregosa et al., 2011]. The samples were
generated with the density function shown in Equation 3.8, where 𝑖 is the dimension, 1 or 2,
which corresponds to the X and Y axis; 𝜇𝑖, the mean of the class in the 𝑖-th dimension; and
𝜎𝑖, the standard deviation of the class in the 𝑖-th dimension.

As inferred from Table 3.3, a total of six variants of this dataset have been analyzed,
which were created by varying the value of the mean of one of the blobs so that the distance
also changes and, consequently, the overlapping coefficient (OVL) of the samples of two of
the three classes too. The six overlapping percentages10 chosen to be studied are: 0%, 10%,
21%, 45%, 62%, 80%. The plots of the extreme cases and their areas of the Gaussian curves
intersections can be seen in Figure 3.9. Henceforth, the purpose of this dataset is to analyze
the performance of the SupeRGNG with dissimilar levels of class overlapping.

Table 3.3: Values of the parameters that define the classes in the overlapping dataset, showing
the six different variants.

Class 𝜇1 𝜇2 𝜎1 𝜎2 Number of samples
0 { 6, 3.25, 2.5, 1.5, 1, 0.5 } 0 1 1 333
1 0 0 1 1 333
2 0 8 1 1 333

10This OVL — or area between the two normal distributions that refers to each blob that overlaps —
was calculated with the “statistics” Python module, which references the methods presented in [Inman and
Bradley Jr, 1989].
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a) Overlapping 0%, maximum distance. b) Area of the Gaussian curves intersection when
overlapping is 0%.

c) Overlapping 80%, minimum distance. d) Area of the Gaussian curves intersection when
overlapping is 80%.

Figure 3.9: Overlapping data, also named “blobs”. Extreme cases and their areas of the
intersections of the Gaussian curves.
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3.5.2 Analysis of the hyperparameters of the SupeRGNG
The hyperparameters of the SupeRGNG includes those of the GNG and two related to
the disconnection and reconnection mechanisms. They can be grouped according to its
functionality: neuron movement (𝜀𝑏, 𝜀𝑛), error decreasing (𝛽, 𝑑), network growing (𝜆, 𝑎𝑚𝑎𝑥),
and reconfigurability (𝜂, 𝜄).

Using the synthetic datasets described in the previous subsection, the most relevant
hyperparameters of the SupeRGNG are studied, which were identified by means of both
initial experiments or searching the literature for similar studies on the GNG, Appendix B.
From this search we also obtained some recommended values, which were considered whether
as initial (for relevant hyperparameters) or as fixed values (for lesser ones, Table 3.4). A
value of 1000 was selected for 𝑒𝑝𝑜𝑐ℎ𝑠 because it was considered high enough for any network
to grow and learn taking into account the expected values of the other hyperparameters and
the size of the input data. For those related to early stopping, the metric being monitored
was AUC, a value of 0 was given to 𝑑𝑒𝑙𝑡𝑎𝑚𝑖𝑛 (which means that any beneficial change is
considered an improvement), and a 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 of 10 was considered adequate.

Table 3.4: Fixed values given to the hyperparameters of the SupeRGNG.

Hyperparameter 𝛽 𝑑 𝜀𝑐 𝜀𝑛 𝑒𝑝𝑜𝑐ℎ𝑠
Fixed value 0.5 0.99 0.2 0.06 1000

From these initial values for the relevant hyperparameters, the search for optimal values
was carried out by launching several tests with different sets or ranges of values. As each
synthetic dataset has different characteristics, these tests were not necessarily the same
in all cases, although, for convenience, the initial ones were identical. Conversely, some
hyperparameters had fixed values in every test, Table 3.4, which were mostly based on other
GNG-related researchers’ works, Appendix B.

All these tests were launched on DigitalOcean Paperspace, a High-Performance Computing
(HPC) cloud platform that can be used both as a Machine Learning (ML) environment or to
build virtual servers with different operating systems (OSes), disk spaces, Central Processing
Units (CPUs), Graphics Processing Units (GPUs) and multiGPUs in several geographical
locations11.

Filled contour maps are 2D visualization methods that were used to compare the behavior
of the hyperparameters. They provide the same information as a 3D surface plot but the do
nor require the third dimension nor modify elevation and azimuth angles to avoid hiding
parts of the graph. Similar to contour lines, they both represent points with the same value,
whether with a line (contour lines) or with the same color (filled contour maps). In geography
they are used to represent points of equal elevation with the same color.

Before we start the analysis, the concept of “Mix” should be defined. When the analysis is
not related to changes between different versions of the dataset, such as the class overlapping
and the class ratios, “Mix” means a set of configurations where all their hyperparameters but
two have fixed values. Otherwise, all hyperparameter but one (the other variable to analyze
is the class overlapping or the class ratios) are fixed.

Two types of metrics were collated from the tests conducted: one for performance (AUC,
how well it classifies) and four for dynamics (the ratio of created neurons, which means how

11More up-to-date information on the characteristics of DigitalOcean Paperspace can be found at https:
//docs.digitalocean.com/products/paperspace/.

https://docs.digitalocean.com/products/paperspace/
https://docs.digitalocean.com/products/paperspace/
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Table 3.5: Set of optimal configurations used in the non-Gaussian and non-linearly separable
dataset. The number of configurations in each of these tests was 750 in both.

Hyperparameter Values
𝜆 [10, 20, 30, 40, 50]
𝑎𝑚𝑎𝑥 [10, 20, 30, 40, 50]
max nodes [150, 450, 750]
𝜂 [10, 20, 30, 40, 50] [100, 200, 300, 400, 500]
𝜄 [400, 800]

fast it grows; the ratio of deleted neurons, how fast it shrinks; the ratio of deleted edges in a
supervised way, the frequency of the disconnection process; and the ratio of reconnections,
the frequency of the reconnection process).

The hyperparameters that were considered relevant and, therefore, their influence in the
classification performance and behavior of the SupeRGNG was studied, were: 𝜄, 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠,
𝜆, 𝑎𝑚𝑎𝑥, and 𝜂.

3.5.2.1 Hyperparameter 𝜄

The first hyperparameter that was studied was 𝜄 for two reasons: it is unique to the
SupeRGNG, and its impact in the performance of the network was estimated to be high
because, together with 𝜂, they control de frequency of the disconnection and reconnection
mechanisms.

Two values of 𝜄 were studied, 400 and 800. The latter was chosen based on the size of the
training data: the total number of samples was 999 or 1000 in the synthetic datasets. It must
have this value for the SupeRGNG to be able to apply the disconnection and reconnection
mechanism just after all the training samples have been used by the network, i.e. precisely
at the end of an epoch.

The values shown in Table 3.5 refers to the first two sets of values that were tested in
the three synthetic datasets, and configurations belonging to these two sets will be used
across page 97. It was found that the 1500 configurations achieved a value of AUC of 1
with both the non-Gaussian and non-linearly separable dataset, and with the imbalanced
dataset. The AUC values of a subset of these configurations is depicted in Figure 3.10, where
𝜆 = 10, 𝑎𝑚𝑎𝑥 = 10, 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 = 150.

From these two tests, apart from finding two sets of perfect configurations for both
the non-Gaussian and non-linearly separable dataset and all the different class ratios in
the imbalanced dataset, it was concluded that, in terms of performance, 𝜄 = 400 does not
provide an advantage in those datasets, so in following tests only 𝜄 = 800 was used. However,
the best configuration with 80% overlapping used 𝜄 = 400 and belonged to the second set:
𝜆 = 50, 𝑎𝑚𝑎𝑥 = 10, 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 = 750, 𝜂 = 400. So, for such type of datasets, 400 might be
better.

3.5.2.2 Hyperparameter 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠

Three values of 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 were studied in all the tests used in the three synthetic datasets,
which can be labeled as “low”, “medium” and “high” considering the size of the training
data: 150, 450 and 750.
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Figure 3.10: Example of several configurations with AUC=1 with the non-Gaussian and
non-linearly separable dataset.

Although with the non-Gaussian and non-linearly separable dataset no big differences
in performance or behavior were found, with the class overlapping dataset it was clearly
the opposite. In fact, the greater the class overlap, the greater the negative impact of using
smaller network sizes, Figure 3.11. Figure 3.12 also shows that bigger networks are better
with maximum ovelapping.

Additionally, a prospective study with a value way higher than the size of the training
dataset was studied with the 80% OVL data. It does not only confirmed that a value of
𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 close to the number of training samples is beneficial for datasets with heavily
overlapped classes but also showed that using more neurons than the size of the training
data, and even bigger than the input data, improved the classification performance close to
0.91 AUC, Figure 3.13.

3.5.2.3 Hyperparameter 𝜆

Hyperparameter 𝜆 governs the network growing rate, how frequent a new neuron is created.
As in the GNG, 𝜆 heavily affects the topology of the network, several sets of values were
tested. A longer range of values for 𝜆 were used in Table 3.6. Larger values of 𝜆 > 1700
damaged the performance of the network, Figure 3.14.

3.5.2.4 Hyperparameter 𝑎𝑚𝑎𝑥

Hyperparameter 𝑎𝑚𝑎𝑥 defines the apoptosis of connections and, as a byproduct, of neurons
too. Hyperparameters 𝑎 𝑚𝑎𝑥 and 𝜆 were now given larger values and ranges too, Table 3.7.
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Figure 3.11: Bigger networks are better with overlapping 80%.

Figure 3.12: Bigger networks are better with overlapping 80%.
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Figure 3.13: Example of a SupeRGNG network with more nodes than the training data (80%
overlapping).

Table 3.6: Configurations used in the non-Gaussian and non-linearly separable dataset. The
number of configurations in each of these tests was 750 in both.

Hyperparameter Values
𝜆 [100, 300, 500, 700, 900, 1100, 1300, 1500, 1700, 1900]
𝑎𝑚𝑎𝑥 [10, 20, 30, 40, 50]
max nodes [150, 450, 750]
𝜂 [10, 20, 30, 40, 50]
𝜄 [800]
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Figure 3.14: High 𝜆 might be suboptimal with the non-Gaussian and non-linearly separable
dataset.

Table 3.7: Configurations used in the non-Gaussian and non-linearly separable dataset. The
number of configurations in each of these tests were 1500 and 1500.

Hyperparameter Values
𝜆 [2100, 2300, 2500, 2700, 2900, 3100, 3300, 3500, 3700, 3900]
𝑎𝑚𝑎𝑥 [2100, 2300, 2500, 2700, 2900, 3100, 3300, 3500, 3700, 3900]
max nodes [150, 450, 750]
𝜂 [10, 20, 30, 40, 50] [100, 200, 300, 400, 500]
𝜄 [800]
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In Figure 3.15 it is depicted that combining a low 𝜂 = 10 with any high value of 𝑎𝑚𝑎𝑥

studied in Table 3.7 gives quite low AUC values, around 0.40.

Figure 3.15: Low 𝜂 might be suboptimal with the non-Gaussian and non-linearly separable
dataset.

In Figure 3.16 and related to the imbalanced dataset, it is seen that 𝑎𝑚𝑎𝑥 affects the ratio
of reconnections in the expected way: the greater it is, the less reconnections are needed to
be made as the connections were more durable.

3.5.2.5 Hyperparameter 𝜂

Hyperparameter 𝜂 controls the starting point of the disconnection and reconnection mecha-
nisms. Values from the second set of configurations in Table 3.7 demonstrated that medium
values of 𝜂 = {100, 200, 300} negatively impacted performance, Figure 3.17.

When conducting a study on the effects of overlapping in the hyperparameters, the most
common behavior looks like Figure 3.18: performance lowers if overlapping grows.

3.5.2.6 Hyperparameter 𝜂 combined with others

During previous tests it was noticed that the behavior of the SupeRGNG is impacted by 𝜆,
𝑎𝑚𝑎𝑥 and 𝜂 independently, so it was decided to study them combined.

With the non-Gaussian dataset, a set of configurations showed low performance when a
too low value of 𝜂 = 10 together with a very big 𝜆 ∈ {1700, 1900} were used Figure 3.19. This
behavior repeats for the three values of 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 that were used – 150, 450, 750 – when
𝑎𝑚𝑎𝑥 ∈ {30, 40}. Therefore, such ranges of values for these hyperparameters are discouraged.
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Figure 3.16: Ratio of reconnections changes with 𝑎𝑚𝑎𝑥 in the imbalanced dataset.

Figure 3.17: Medium 𝜂 might be suboptimal with the non-Gaussian and non-linearly separable
dataset.
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Figure 3.18: Low 𝜂 might be suboptimal with the non-Gaussian and non-linearly separable
dataset.

Figure 3.19: Low 𝜂 might be suboptimal with the non-Gaussian and non-linearly separable
dataset.
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Table 3.8: Recommended values for the hyperparameters of the SupeRGNG considering the
characteristics of the dataset used.

Characteristic of
the dataset

Value of the
characteristic

Recommendations Examples

Non-Gaussian and
non-linear separa-
bility

Do not combine small 𝜂
AND (high 𝜆 OR high
𝑎𝑚𝑎𝑥)

𝜂 < 30 AND
(𝜆 >= 1000 OR
𝑎𝑚𝑎𝑥 >= 1000)

Low-Medium values of 𝜂
are discouraged

10-300

Class imbalance Low
High

Overlapping Low
High High 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 For training sets of

size 800, 750-790.
1100 was even bet-
ter

3.5.2.7 Summary of the influence of the hyperparameters

A summary has been built after the analyses carried out in the previous subsubsections, where
adequate values for the hyperparameters of the SupeRGNG according to the characteristics
of the dataset used are exposed, Table 3.8.

It has been shown that the SupeRGNG performs extremely good with non-Gaussian and
non-linearly separable datasets and is extraordinarily robust to class imbalance (up to 90%),
achieving perfect values of AUC. Furthermore, the SupeRGNG is very good working with
different levels of overlapping classes, being able to tackle up to 80% yet yielding 0.8986
AUC.



Chapter 4

Applications of the Modular Hybrid
Growing Neural Gas and the
Supervised Reconfigurable Growing
Neural Gas in the detection of
Alzheimer’s Disease and Mild
Cognitive Impairment

In this chapter, on the one hand, applications of the Modular Hybrid Growing Neural
Gas (MyGNG) with real data, unlike with the Supervised Reconfigurable Growing Neural
Gas (SupeRGNG), were limited to one binary classification problem and a multiclass one:
distinguishing the two levels of neurodegeneration (MCI vs AD) and the possible three levels
in which usually the Alzheimer’s Disease (AD) continuum has been summarized (CN vs MCI
vs AD).

On the other hand, we will describe applications of the SupeRGNG in a real environment
(i.e. with non-synthetic datasets): in the detection of a family of degenerative nerve diseases
such as AD and Mild Cognitive Impairment (MCI). As this is a wide task, it has been
divided into several classification problems, as seen in the following sections. Both binary and
multiclass tasks were tackled, which, combined, cover all the AD continuum, from Cognitively
Normal (CN) subjects that do not have the disease (but probably present normal levels of
deterioration due to aging), to patients with increasing cognitive impairment, which can be
labeled whether as MCI or AD.

Furthermore, the chosen classification problems have been widely used by other researchers
[Cabrera-León et al., 2024a], so qualitative comparisons with those works were carried out.
Similarly, quantitative comparisons of both systems with other Machine Learning (ML)
classifiers have been conducted.

In each of these applications the intelligent system comprised of several stages, some of
which could be divided into steps. These stages follow the typical hybrid pipeline, where
non-neural methods are used for preprocessing whereas the processing is carried out by a
neural model, as it can be seen in Figure 4.1:

1. Input data, where we describe the input data that were used: original database and

107



108 CHAPTER 4. MYGNG & SUPERGNG. IN AD & MCI DIAGNOSIS

Input data

ADNI

Preprocessing

Imputation
Ranking
Scaling

Projection

Processing

SupeRGNG
MyGNG

Classification Results

Performance metrics

Figure 4.1: General diagram with the stages followed by the intelligent system in each
application.

statistical analysis of the features.

2. Preprocessing, which includes the imputation feature ranking, feature scaling, and data
projection that were applied.

3. Processing, where different configurations of the neural models are trained, in this case
the SupeRGNG and the MyGNG, in order to find the most appropriate combinations
of hyperparameters for each application. It includes the data partitioning techniques
used.

4. Results, where the classification performance is analyzed according to the metrics used
and discussed. Also, comparisons with other methodologies are exposed.

It should be noted that a common methodology was followed in all the applications. It
involved analyzing and finding the optimal combinations of scaling techniques (including the
unscaled case), projection methods (including the unprojected case), number of projected
components, and values of the hyperparameters of the networks implemented. The combi-
nations were considered optimal when all their values of performance metric were better,
prioritizing the Area Under the Curve (AUC) value for its robustness to imbalanced classes
but only if it ensured that the other performance metrics were also good, followed by the
other types of model evaluation metrics, section 2.5.

In each of the following classification problems the p-values of the features used were
calculated, taking into account the number of classes and other characteristics of the variables
to choose the most appropriate statistical test, Figure C.1. The next significance levels (a.k.a.
𝛼) were selected1: 0.0001, 0.001, 0.01, 0.05, 1. They corresponded, respectively, to the next
symbols used in several tables found in this chapter: “****”, “***”, “**”, “*”, “ns” (not
significant). These 𝛼 cutoff points were chosen for being the most popular in the majority
of fields, including the medical one where this work belong to. However, smaller values
are preferred in other fields: high-energy physics need p-values lower than 0.003 or even
0.00000032 [Gale et al., 2016].

Before expounding each of these applications the common information environment is
described. At the end of this chapter, a quantitative comparative study of our systems with
some popular ML and Deep Learning (DL) methods and a qualitative comparative study
with works by other authors are included, in both cases separated by classification task.

1As a reminder, if a p-value is less than 𝛼, it can be concluded that there is a statistically significant
difference between the two groups. Otherwise, it cannot be concluded that.

2A p-value of 0.0000003 equates to about 1 in 3.5 million or saying that the strength of the data supporting
what is being checked is 5-sigma [Gale et al., 2016]. The latter value was used during the Higgs boson
discovery.



4.1. INFORMATION ENVIRONMENT 109

4.1 Information environment
Unlike in previous decades, where AD researchers required to build their own information
environment, nowadays there are many that can be accessed whether publicly or after asking
for an authorization or accepting their owner’s data usage agreement, Table 4.1. Using non-
private databases allow researchers other than their owners to access, generally multimodal,
data from multiple subjects possibly from different clinical sites [Cabrera-León et al., 2024a].

All the non-synthetic data used in this PhD thesis were collected from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database3 [University of Southern California, 2004].
Led by Principal Investigator Michael W. Weiner, MD, the ADNI started in 2003 as a
public-private partnership, which provides access to a huge database with many medical tests
collected over long periods of time from different patients [Alzheimer’s Disease Neuroimaging
Initiative (ADNI), 2013]. The main objective of ADNI has been to test whether Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), other biological markers,
and clinical and neuropsychological tests can be combined to measure the progression of MCI
and early AD [Cabrera-León et al., 2023]. Also, ADNI has been analyzing AD-related omics
and imaging [Yao et al., 2017]. That is, data from different modalities have been included
in this database. ADNI is a multi-site initiative, with over 50 clinical sites in the USA and
Canada.

ADNI comprises several studies carried out through the last two decades: ADNI1,
ADNIGO4, ADNI2 and ADNI3. In each of these studies different clinical criteria and
techniques have been used, discarding some of them while incorporating new ones, especially
some related with neuroimaging and genes, as knowledge about AD increases. On November
15, 2022 the ADNI4 study got into the recruitment phase and, since July 24, 2025 its status
changed to the active and not recruiting phase5. Its estimated completion date will be July
31, 2027. That is, ADNI4 data were not still available when the preliminary literature review
and the data acquisition stage were performed. For the ADNI4 study they are expecting
to enroll 750 new participants, while 750 will be rollover subjects from previous ADNI
studies. These participants will be studied for up to 5 years, and will be enrolled across
three cohorts: dementia, MCI and CN. These cohorts are not identical to those used in
the previous ADNI studies, which were more focused on predementia and MCI severity
levels, including a self-perceived state: CN, Significant Memory Concern (SMC), Early Mild
Cognitive Impairment (EMCI), MCI, Late Mild Cognitive Impairment (LMCI), and AD.
In Table 4.2 the number of participants for each of the previous cohorts and ADNI studies
whose data are currently available is shown, together with their starting date and duration.

A huge file combining multiple diagnostic labels, demographic data and multimodal
clinical criteria from several longitudinal visits was built by merging different files from ADNI.
This process was akin to the “ADNIMERGE” file already available but with much more
clinical criteria. Although in our file data from multiple time visits were collated, which
allows longitudinal studies to be performed, only data from the baseline were used in these
experiments. After merging the files, the total number of diagnostic criteria was 202.

3More up-to-date information can be found at www.adni-info.org.
4GO stands for “Grand Opportunities”.
5For the most up-to-date status see https://classic.clinicaltrials.gov/ct2/show/NCT05617014.

www.adni-info.org
https://classic.clinicaltrials.gov/ct2/show/NCT05617014
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Table 4.1: Non-private databases with Alzheimer’s Disease, Mild Cognitive Impairment and Cognitively Normal subjects.

Database Access Number of
subjects

Types of biomarkers Link

ADNI Auth 1833 D, NT, NI, G, BS, M/S. http://adni.loni.usc.edu/
ADReSS challenge Auth 156 D, NT, M/S. https://dementia.talkbank.org/
AIBL Auth 1000+ D, NT, NI, BS. https://aibl.csiro.au/
AlzBiomarker Auth N/A BS. https://www.alzforum.org/alzbiomarker
CADDementia Auth 354 D, NI. https://caddementia.grand-challenge.org/
DementiaBank & Pitt
corpus

Auth 473 D, NT, M/S. https://dementia.talkbank.org/

GEO Public N/A G. https://www.ncbi.nlm.nih.gov/geo/
Kaggle: Alzheimer’s
Dataset (4 class of
Images)

Public 6400 NI. https://www.kaggle.com/datasets/tourist55/
alzheimers-dataset-4-class-of-images/data

OASIS Auth 1098 D, NT, NI. https://www.oasis-brains.org
Rdatasets: apoeapoc Public 353 D, G. https:

//vincentarelbundock.github.io/Rdatasets/
Rdatasets: nep499 Public 499 D, G. https:

//vincentarelbundock.github.io/Rdatasets/
MAS Auth 1037 D, NT, NI, G, BS, M/S. https://cheba.unsw.edu.au/research-projects/

sydney-memory-and-ageing-study
TADPOLE Auth 1000 D, NT, NI, G, BS, M/S. https://tadpole.grand-challenge.org/

Abbreviations: Auth = Authorization; BS = Biospecimen or biosamples; D = Demographic; G = Genetic; M/S = Human gait, movements or
speech; N/A = Not Available; NT = Neuropsychological tests; NI = Neuroimaging

http://adni.loni.usc.edu/
https://dementia.talkbank.org/
https://aibl.csiro.au/
https://www.alzforum.org/alzbiomarker
https://caddementia.grand-challenge.org/
https://dementia.talkbank.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images/data
https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images/data
https://www.oasis-brains.org
https://vincentarelbundock.github.io/Rdatasets/
https://vincentarelbundock.github.io/Rdatasets/
https://vincentarelbundock.github.io/Rdatasets/
https://vincentarelbundock.github.io/Rdatasets/
https://cheba.unsw.edu.au/research-projects/sydney-memory-and-ageing-study
https://cheba.unsw.edu.au/research-projects/sydney-memory-and-ageing-study
https://tadpole.grand-challenge.org/
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Table 4.2: Starting date, duration and number of subjects per class in each of the currently
available ADNI studies.

ADNI1 ADNI GO ADNI2 ADNI3

Cohort
10/2004
(5 years)

09/2009
(2 years)

09/2011
(5 years)

09/2016
(5 years)

CN 200 5001 150 + 450-5002 135-500 + 295-3303

SMC 100
EMCI 200 150 + 2004

MCI 400 150-515 + 275-3205

LMCI 500 150
AD 200 mild 200 mild 85-185 + 130-1506

1“500 LMCI and Cognitively Normal subjects from ADNI1”. This
quantity is shared in the Table with the one indicated for LMCI.

2“150 Normal Controls (new), and 450-500 CN and MCI (rollover from
ADNI1; approximate)”

3“135-500 Normal Controls (new), and 295-330 Normal Controls (rollover
from ADNI2; approximate)”

4“150 EMCI (new) and 200 EMCI (rollover from ADNI GO; approxi-
mate)”.

5“150-515 Mild Cognitive Impairment (MCI) (new), and 275-320 Mild
Cognitive Impairment (MCI) (rollover from ADNI2; approximate)”.

6“85-185 Mild Alzheimers Disease dementia (AD) (new), and 130-150
Mild Alzheimers Disease dementia (AD) (rollover from ADNI2; ap-
proximate)”.

4.2 CN-AD
Among all the classification problems that we have worked with, CN-AD can be considered,
by far, the easiest one due to the fact that the characteristics of both kind of subjects are
much more different.

4.2.1 Input data and preprocessing
In this and the other classification tasks the same methodology for choosing the data
imputation and the feature ranking methods was followed.

Two approaches were followed to check how having missing values in the samples changed
the features being selected by the feature ranking methods: using the original non-imputed
data, or imputing data with the median value per class. The latter was preferred.

The large number of features in the original dataset, 202, was the main reason for
applying a feature ranking or selection method. For each of the three ADNI subsets6

analyzed - ADNI1, ADNI2 and ADNI3 - two very different techniques to rank the features
were compared: Fast Correlation-Based Filter (FCBF) [Yu and Liu, 2003] and Extreme

6ADNIGO was discarded as it only added EMCI subjects, the CN and AD participants were rollover
from ADNI1. At the time of data acquisition, ADNI4 data were not available.
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Figure 4.2: FCBF ranking of the features used in the non-invasive approach, CN-AD
classification task, ADNI1 phase.

Gradient Boosting (XGBoost) [Chen and Guestrin, 2016], already described in section 2.2.
The former was preferred because, generally, it allows having a reduced final set of relevant
features with good correlation to the classes but low or no redundancy between the relevant
features. The latter had a complementary role.

Data from 379 subjects - 212 CN and 167 AD - that started participating since the ADNI1
phase were used.

Two different sets of features were analyzed, which were chosen by a different methodology:

• The “invasive” approach Table 4.3, which contains the same multimodal features
used in the CN-MCI-AD classification task, subsection 4.5.1, and in [Cabrera-León
et al., 2024b]. This feature set was built from an initial set based on the FCBF score
and several refining steps which involved adding and deleting features based on data
visualization techniques and feature statistics [Cabrera-León et al., 2024b]. It contains
two features that can be considered invasive, hence the name given to this feature
set: ABETA (as its name indicates, refers to the Amyloid beta (A𝛽) obtained with
Cerebrospinal Fluid (CSF)), and VENTRICLES (a Quantitative Magnetic Resonance
Imaging (qMRI) measurement of the sum of the volumes of the ventricles).

• The “non-invasive” approach Table 4.4, which includes the age of the patient and
several neuropsychological items and a single total score. All these features but the
age were selected based on the FCBF score, Figure 4.2.
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Table 4.3: Characteristics of the subjects in the CN-AD classi-
fication problem, “invasive” approach.

AD CN
Number of subjects 167 212
VENTRICLES: mean 50941.89 35555.30
VENTRICLES: StD 26395.31 20383.57
VENTRICLES: interval [9166 - 147064] [5834 - 118875]
VENTRICLES: p-value 1.0427e-08 ****
ABETA: mean 627.94 1254.76
ABETA: StD 266.75 447.83
ABETA: interval [265.6 - 2568.0] [200.0 - 3592.0]
ABETA: p-value 1.8514e-42 ****
FAQTOTAL: mean 12.86 0.14
FAQTOTAL: StD 6.75 0.61
FAQTOTAL: interval [0 - 30] [0 - 6]
FAQTOTAL: p-value 1.8102e-80 ****
MMSCORE: mean 23.34 29.12
MMSCORE: StD 2.03 0.95
MMSCORE: interval [18 - 27] [26 - 30]
MMSCORE: p-value 4.7072e-65 ****
AGE: mean 75.55 75.96
AGE: StD 7.42 4.98
AGE: interval [55.1 - 90.9] [59.9 - 89.6]
AGE: p-value 0.4388 ns

Acronyms: ns (not significant), StD (Standard Deviation).
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Table 4.4: Characteristics of the subjects in the CN-
AD classification problem, “non-invasive” approach.

AD CN
Number of subjects 167 212
FAQREM: mean 3.62 0.12
FAQREM: StD 1.36 0.62
FAQREM: interval [0 - 5] [0 - 4]
FAQREM: p-value 1.1064e-77 ****
FAQFORM: mean 3.60 0.12
FAQFORM: StD 1.59 0.54
FAQFORM: interval [0 - 5] [0 - 5]
FAQFORM: p-value 3.5384e-71 ****
FAQTRAVL: mean 3.11 0.03
FAQTRAVL: StD 1.92 0.29
FAQTRAVL: interval [0 - 5] [0 - 3]
FAQTRAVL: p-value 5.3548e-61 ****
MMSCORE: mean 23.34 29.12
MMSCORE: StD 2.03 0.95
MMSCORE: interval [18 - 27] [26 - 30]
MMSCORE: p-value 4.7072e-65 ****
MMFLAGDL: mean 1.84 1.13
MMFLAGDL: StD 0.36 0.34
MMFLAGDL: interval [1 - 2] [1 - 2]
MMFLAGDL: p-value 3.0753e-47 ****
AGE: mean 75.55 75.96
AGE: StD 7.42 4.98
AGE: interval [55.1 - 90.9] [59.9 - 89.6]
AGE: p-value 0.4388 ns

Acronyms: ns (not significant), StD (Standard Deviation).
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As what was done with the data imputation and feature ranking methods, in this and the
rest of classification tasks it was required to analyze several scaling techniques, projection
methods and number of projected components. The next scaling techniques were studied,
section 2.3: Unscaled, Standard, Robust, MaxAbs, MinMax, Normalizer, and Yeo-Johnson
Power transformer. Regarding projection methods, this set was analyzed, albeit only the
winner ones were explained in section 2.4: Unprojected, Principal Component Analysis
(PCA), Incremental PCA, FastICA, Kernel PCA with linear, Radial Basis Function (RBF),
polynomial, sigmoid or cosine kernels, Neighborhood Component Analysis (NCA), Factor
Analysis, t-distributed stochastic neighbor embedding (t-SNE), dictionary learning, and
Linear Discriminant Analysis.

Choosing the most adequate combinations of them involved mixing the rates given by
data visualization techniques and clustering quality metrics. Scatter plots of the scaled
and projected data together with an enhanced version of box-and-whisker plots called
“boxenplots”7 [Hofmann et al., 2017] of each selected feature were used for data visualization.
Clustering quality metrics were limited to silhouette [Rousseeuw, 1987], Davies-Bouldin
[Davies and Bouldin, 1979] and Caliński-Harabasz [Caliński and Harabasz, 1974], which were
used for other purposes in [Pellicer Sarmiento, 2024]. Both silhouette and Davies-Bouldin
are recommended for optimizing feature selection in unsupervised clustering tasks [McCrory
and Thomas, 2025]. On the other hand, statistical tests were used to discard non-significant
features, although this was deemed secondary, non-mandatory.

Four different preprocessed datasets were selected according to their scatter plots and
boxenplots, Figure 4.3 and Figure 4.4. Data in all of them were projected to two projection
components with NCA [Goldberger et al., 2004] and the parameter regarding the initialization
of the linear transformation set to a value of “identity” (that is, the identity matrix was
truncated to the first number of projection components rows). Three of the four made use
of the “invasive” approach, and only one used the “non-invasive” features. The other main
differences were the addition of the age of the subject in one case, and the use of whether
the “MaxAbs” or the “Robust” scaling methods, already described in section 2.3, each one
used by half of the preprocessed datasets. Figure 4.3 and Figure 4.4 show that the four
preprocessed datasets can be considered linearly separable.

The relation between each component and the features is shown in Figure 4.5 and
Figure 4.5. The “non-invasive” approach differs as MMSCORE is the only feature with a
negative relation in both components, whereas the rest are all positive. In the approaches
that are the most similar and which only different in using or not AGE, the relation is
identical in the non-AGE features.

4.2.2 Processing and results with the SupeRGNG
Data partitioning, or splitting, is key for the reliable evaluation of a model as it is recommended
that no samples provided to the model during its training are found in the data used for
testing it. That is, data partitioning is used for model validation. The Stratified K-Folds
cross-validation method, with 5 folds as it kept the same 80-20 training-test subsets proportion
used in [Sosa-Marrero et al., 2021; Cabrera-León et al., 2023, 2024b], was used for data
partitioning in all the applications but MCI-AD. Using it allowed making a quantitative

7Due to choosing the value “area” for the “width method” parameter in the implementation of the
boxenplots of the “seaborn” Python library used, the width of each letter value box represents the density of
data points in that box [Waskom, 2021].
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a) “Invasive” features, with AGE, 2 projec-
tion components, MaxAbsScaler, Neighbor-
hoodCA identity.

b) “Invasive” features, without AGE, 2 pro-
jection components, MaxAbsScaler, Neigh-
borhoodCA identity.

c) “Invasive” features, with AGE, 2 projec-
tion components, RobustScaler, Neighbor-
hoodCA identity.

d) “Non-invasive” features, with AGE, 2PC,
RobustScaler, NeighborhoodCA identity.

Figure 4.3: Scatter plots of the four preprocessed datasets for the CN-AD classification task.
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a) “Invasive” features, with AGE, 2 projection components, MaxAbsScaler, Neigh-
borhoodCA identity.

b) “Invasive” features, without AGE, 2 projection components, MaxAbsScaler,
NeighborhoodCA identity.

c) “Invasive” features, with AGE, 2 projection components, RobustScaler, Neighbor-
hoodCA identity.

d) “Non-invasive” features, with AGE, 2 projection components, RobustScaler,
NeighborhoodCA identity.

Figure 4.4: Boxenplots of the four preprocessed datasets for the CN-AD classification task.
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a) “Invasive” features, with AGE, 2 projection components, MaxAbsScaler, NeighborhoodCA
identity.

b) “Invasive” features, without AGE, 2 projection components, MaxAbsScaler, NeighborhoodCA
identity.

Figure 4.5: Relations between each projected component and the real features of the first
two of four preprocessed datasets for the CN-AD classification task.
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c) “Invasive” features, with AGE, 2 projection components, RobustScaler, NeighborhoodCA
identity.

d) “Non-invasive” features, with AGE, 2 projection components, RobustScaler, NeighborhoodCA
identity.

Figure 4.5: Relations between each projected component and the real features of the last
two of four preprocessed datasets for the CN-AD classification task.
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Table 4.5: Set of 225 configurations that was tested in all the datasets used in the CN-AD
classification task.

Hyperparameter Values
𝜆 [100, 500, 900]
𝑎𝑚𝑎𝑥 [100, 500, 900]
max nodes [50, 100, 150, 200, 250]
𝜂 [25, 50, 75, 100, 125]
𝜄 [303]

comparison with all the classification tasks tackled by the intelligent system to aid in AD
diagnosis made with the MyGNG [Cabrera-León et al., 2024b]. Cross-validation refers to
using different portions of the data to train and test a model in each fold so that a more
accurate assessment of the generalization power of the model with unseen data can be inferred.
Compared with the normal K-Folds, the main advantage of the Stratified K-Folds is that it
keeps the same proportion of samples for each class in all the folds.

The same methodology to analyze and select the most optimal network configurations
was followed in all the classification tasks. As choosing an optimal set of hyperparameters is
a difficult task [Hastie et al., 2009], a comprehensive approach was followed. A grid search
starting with values considered good during the study of hyperparameters of the SupeRGNG
found in the previous section was the initial step. Grid searches were then carried out with
increasingly refined values chosen from the best candidates from previous searches. After
several searches have already been conducted and no further performance improvement could
be obtained if there was still room for improvement (that is, the perfect value of the metric
AUC was not obtained yet), the searching process was stopped.

The same set of SupeRGNG configurations was tested with the four preprocessed datasets,
whose values of the hyperparameters8 are shown in Table 4.5. The value of 𝜄 was calculated as
the 80% of the total number of patients so that the disconnection and reconnection processes
in the SupeRGNG were carried out just after a full epoch ended. The value of 80% equals
the data partitioning percentage that was used for training. The values of 𝜄 in the other
classification tasks were calculated the same way, and they differed because of the sizes of
the input data.

No further sets of configurations were tested as several configurations in this set already
obtained perfect performance values in all the four preprocessed datasets: after unifying the
values of the 5 folds, a maximum value of 1 in AUC and the rest of performance metrics, and
a mean of 1 and standard deviation of 0. Six configurations achieved the perfect performance,
which where characterized by the next values of the hyperparameters: 𝜆 = 100, 𝑎𝑚𝑎𝑥 =
{100, 500, 900}, 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 = 100, 𝜂 = {100, 125}, in all the four preprocessed datasets,
Table 4.6. It was noticed that values of 𝜂 ≤ 75 did not allow to obtain perfect performance
in any of them.

Considering the good values, the only difference between the 4 preprocessed datasets was
the quantity of configurations that yielded the perfect values. The least number was with
the non-invasive one, followed by the one that did not use AGE. This might be explained by
both datasets having the least inter-class distances, Figure 4.3, an expected result, which

8As already indicated, fixed values were used for certain hyperparameters of the SupeRGNG, which were
indicated in Table 3.4.
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Table 4.6: Best configurations in the CN-AD classification task.

Configuration 𝜆 𝑎𝑚𝑎𝑥 max nodes 𝜂
config8 100 100 100 100
config9 100 100 100 125
config33 100 500 100 100
config34 100 500 100 125
config58 100 900 100 100
config59 100 900 100 125

Configuration Accu Sens Spec Prec AUC CUI+ CUI-
config8 1 1 1 1 1 1 1
config9 1 1 1 1 1 1 1
config33 1 1 1 1 1 1 1
config34 1 1 1 1 1 1 1
config58 1 1 1 1 1 1 1
config59 1 1 1 1 1 1 1

points out the necessity to always tune appropriately the hyperparameters.

4.3 CN-MCI
As indicated above, the same methodologies were followed to choose the input data, prepro-
cessing and processing.

4.3.1 Input data and preprocessing

Data from 585 subjects - 212 CN and 373 MCI - that started participating since the ADNI1
phase were used.

The set of features shown in Table 4.7 was analyzed, which was built based on their
FCBF scores, Figure 4.6. It includes a biomarker obtained via CSF, ABETA, which was also
used in the “invasive” approach in CN-AD and in CN-MCI-AD, the age of the participant,
3 items of the Mini-Mental State Examination (MMSE) neuropsychological scale, and a
subscore of Neuropsychiatric Inventory (NPI).

Among all the scaling and projection methods, two combinations were selected a priori:
Robust scaler and t-SNE [Hinton and Roweis, 2002; van der Maaten and Hinton, 2008]
for data projection, and Unscaled data and Kernel PCA [Schölkopf et al., 1998b] with a
RBF kernel, Figure 4.7. t-SNE has a parameter called “perplexity” which is similar to the
number of nearest neighbors that is used in other manifold learning algorithms. Among
the possible values of perplexity, 100 yielded the best scatter plots and boxenplots although
it was slower. These plots looked more promising than those from the other combination
of scaling and projection methods that was considered a good candidate: Unscaled data
and Kernel PCA [Schölkopf et al., 1998b] with a RBF kernel. In both cases 6 projected
components were deemed better, Figure 4.8 and Figure 4.9. However, after analyzing the
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Table 4.7: Characteristics of the subjects in the CN-MCI
classification problem.

MCI CN
Number of subjects 373 212
ABETA: mean 725.24 1254.76
ABETA: StD 328.29 447.83
ABETA: interval [210.9 - 2809.0] [200.0 - 3592.0]
ABETA: p-value 2.8213e-45 ****
AGE: mean 74.96 75.96
AGE: StD 7.42 4.98
AGE: interval [55.2 - 89.3] [59.9 - 89.6]
AGE: p-value 0.2204 ns
MMBALLDL: mean 1.24 1.03
MMBALLDL: StD 0.42 0.18
MMBALLDL: interval [1 - 2] [1 - 2]
MMBALLDL: p-value 3.1878e-12 ****
MMDAY: mean 1.11 1
MMDAY: StD 0.31 0.07
MMDAY: interval [1 - 2] [1 - 2]
MMDAY: p-value 2.3008e-07 ****
NPIL: mean 0.11 0
NPIL: StD 0.31 0.07
NPIL: interval [0 - 1] [0 - 1]
NPIL: p-value 2.3008e-07 ****
MMYEAR: mean 1.03 1
MMYEAR: StD 0.16 0
MMYEAR: interval [1 - 2] [1 - 1]
MMYEAR: p-value 0.0164 *

Acronyms: ns (not significant), StD (Standard Deviation).
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Figure 4.6: FCBF ranking of the features used in the CN-MCI classification task, ADNI1
phase.

scatterplots and boxenplots, only the one that used the Robust scaling method and the
t-SNE for data projection was finally studied.

4.3.2 Processing and results with the SupeRGNG

Several sets of configurations with different values of the hyperparameters were tested,
Table 4.8. The value of 𝜄 was set to 468, that is, the 80% of the size of the input data that was
used for training. The search process started with the first set and, after choosing the best
network configuration, it continues by building a new set of features where configurations
have values close to the one considered the best. This was done iteratively until no further
improvements was found. In some cases, the second or third configurations were also tried.
At the end, the optimal configurations of each set were compared and analyzed.

There were two configurations that achieved similarly good performance results, Table 4.9.
The Receiver Operating Characteristic (ROC) curves of both are shown in Figure 4.10. It
should be mentioned that “config248” yielded almost the same performance with just 𝜂 = 75
as “config714” did with 380. That is, “config248” was trained for 5 folds in 1min 50s (mean
time per fold was 22s aprox.) and always early stopped before epoch 90, whereas the latter,
7min 26s (mean time per fold was 1min 29s aprox.) and before epoch 409. This is an example
of how metrics other than performance ones, section 2.5, should also be taken into account
when comparing models.
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a) 6 projection components, Unscaled, KernelPCA with “rbf” kernel.

b) 6 projection components, RobustScaler, T-SNE with perplexity=100.

Figure 4.7: Scatter plots of the two preprocessed datasets used for the CN-MCI classification
task.
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Figure 4.8: Boxenplots of the preprocessed dataset used for the CN-MCI classification task
(6 projection components, RobustScaler, t-SNE with perplexity=100).
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Figure 4.9: Boxenplot of the first preprocessed dataset for the CN-MCI classification task: 6
projection components, Unscaled, KernelPCA with “rbf” kernel.
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Table 4.8: Sets of configurations that were tested in the dataset used in the CN-MCI
classification task. The number of configurations in each of these tests was: 4536, 2205, 1890,
1225 and 1050.

Hyperparameter Values
𝜆 [25, 50, 75, 100, 125, 150, 175, 200]
𝑎𝑚𝑎𝑥 [25, 50, 75, 100, 125, 150, 175, 200]
max nodes [40, 90, 140, 190, 240, 290, 340]
𝜂 [75, 125, 175, 225, 275, 325, 375, 425]
𝜄 [468]
𝜆 [130, 135, 140, 145, 150, 155, 160, 165, 170]
𝑎𝑚𝑎𝑥 [60, 65, 70, 75, 80, 85, 90]
max nodes [60, 70, 80, 90, 100, 110, 120]
𝜂 [355, 365, 375, 385, 395]
𝜄 [468]
𝜆 [130, 135, 140, 145, 150, 155, 160, 165, 170]
𝑎𝑚𝑎𝑥 [60, 65, 70, 75, 80, 85, 90]
max nodes [40, 50, 85, 95, 200, 250]
𝜂 [355, 365, 375, 385, 395]
𝜄 [468]
𝜆 [133, 135, 137, 140, 143, 145, 147]
𝑎𝑚𝑎𝑥 [88, 90, 92, 94, 96, 98, 100]
max nodes [180, 190, 200, 210, 220]
𝜂 [370, 373, 375, 377, 380]
𝜄 [468]
𝜆 [130, 131, 132, 133, 134, 135]
𝑎𝑚𝑎𝑥 [90, 91, 92, 93, 94]
max nodes [212, 215, 218, 220, 222, 225, 237]
𝜂 [375, 376, 377, 378, 379]
𝜄 [468]

Table 4.9: Best configurations in the CN-MCI classification task.

Configuration 𝜆 𝑎𝑚𝑎𝑥 max nodes 𝜂
config714 143 88 200 380
config248 25 125 190 75

Configuration Accu Sens Spec Prec AUC CUI+ CUI-
config714 0.86 0.86 0.86 0.86 0.88 0.74 0.74
config248 0.85 0.85 0.85 0.85 0.88 0.73 0.73
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Figure 4.10: ROC curves of the best SupeRGNG configurations for the CN-MCI classification
task (6 projection components, RobustScaler, t-SNE with perplexity=100).



4.4. MCI-AD 129

MCI

AD

Figure 4.11: Scatterplot of the dataset used for MCI-AD: Unscaled and PCA with 2 projected
components.

4.4 MCI-AD
In order to compare the previous version of the SupeRGNG, where the disconnection and
reconnection mechanisms were only performed when the Growing Neural Gas (GNG) layer
finished clustering at the end of the epochs, the same dataset and preprocessing were used
[Cabrera-León et al., 2023]. Also, the data partitioning was different to the one used in
[Cabrera-León et al., 2024b].

4.4.1 Input data and preprocessing
Data from 495 subjects — 345 MCI and 150 AD — that belonged to the ADNI2 phase were
used. A different ADNI subset was used because the selected one showed less number of
missing values in the originally non-imputed data so the FCBF ranking of the imputed data
was considered more realistic. The characteristics of the subject in this dataset can be seen
in Table 4.10 and a scatterplot in Figure 4.11.

For the same reason explained in the first paragraph of this subsection, the same data
preprocessing as the study in [Cabrera-León et al., 2023] was used: FCBF feature ranking,
PCA with 2 projected components, and the data was not scaled. This is different to the one
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Table 4.10: Characteristics of the subjects in the MCI-AD classi-
fication problem: a demographic feature, and the six attributes
used by the model as input, sorted according to their FCBF
score.

AD MCI
Number of subjects 150 345
AGE: mean 74.67 71.56
AGE: StD 8.18 7.38
AGE: interval [55.6 - 90.3] [55.0 - 91.4]
AGE: p-value 0.3305 ns
MMSCORE: mean 23.07 27.98
MMSCORE: StD 2.08 1.74
MMSCORE: interval [19 - 26] [24 - 30]
MMSCORE: p-value 1.9637e-54 ****
MMDATE: mean 1.6 1.08
MMDATE: StD 0.49 0.26
MMDATE: interval [1 - 2] [1 - 2]
MMDATE: p-value 9.3794e-35 ****
MMBALLDL: mean 1.67 1.14
MMBALLDL: StD 0.47 0.35
MMBALLDL: interval [1 - 2] [1 - 2]
MMBALLDL: p-value 1.4736e-31 ****
ADAS Q7: mean 2.4 0.43
ADAS Q7: StD 1.75 0.85
ADAS Q7: interval [0 - 7] [0 - 8]
ADAS Q7: p-value 1.1044e-31 ****
MMYEAR: mean 1.27 1.0
MMYEAR: StD 0.44 0.05
MMYEAR: interval [1 - 2] [1 - 2]
MMYEAR: p-value 9.3548e-22 ****
FAQSHOP: mean 2.79 0.5
FAQSHOP: StD 1.82 1.14
FAQSHOP: interval [0 - 5] [0 - 5]
FAQSHOP: p-value 3.1878e-12 ****
Acronyms: ns (not significant), StD (Standard Deviation).
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Figure 4.12: Ranking of features according to the FCBF method for MCI and AD subjects
from ADNI2.

used in [Cabrera-León et al., 2024b]. The ranking of the features is shown in Figure 4.12,
and those with the highest score (in red) were selected.

4.4.2 Processing and results with the MyGNG

Partitioning of the data was done according to the training-test method9, using 80% for
training the models and the remaining 20% for testing them. This same proportion was used
in [Sosa-Marrero et al., 2021; Cabrera-León et al., 2023, 2024b].

The values of the hyperparameters of the GNG that were considered appropriate were
those found after the search stated in subsection 3.2.2: 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 = 100, 𝑎𝑚𝑎𝑥 = 5, 𝜆 =
25, 𝜀𝑏 = 0.9, 𝜀𝑛 = 0.01, 𝛽 = 0.7, 𝑑 = 0.18, 𝑒𝑝𝑜𝑐ℎ𝑠 = 7. Albeit 𝜌 does not affect the numerical
stability of the learning algorithm of the perceptron, it does affect the convergence [Widrow
and Lehr, 1990]. In this case, these values were assigned: 𝜌 = 0.01, 𝑒𝑝𝑜𝑐ℎ𝑠 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 = 50.

The ROC curve of the best MyGNG configuration is shown in Figure 4.13, which yielded
0.9292 accuracy, 0.9710 sensitivity, 0.8333 specificity, 0.9305 precision and 0.963 AUC.

9It can be referred as the “hold-out method” [Arlot and Celisse, 2010], which can be considered the
simplest form of cross-validation method, with only 1 split of the data.
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Figure 4.13: ROC curve of the best MyGNG configuration for the MCI-AD classification
task (2 projection components, Unscaled, PCA).
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Table 4.11: Initial sets of configurations that were tested in the MCI-AD classification task.
The number of configurations in each of these tests was: 1715, 1715 and 1715.

Hyperparameter Values
𝜆 [635, 640, 645, 650, 655, 660, 665]
𝑎𝑚𝑎𝑥 [140, 145, 150, 155, 160, 165, 170]
max nodes [35, 40, 45, 50, 55, 60, 65]
𝜂 [10, 20, 30, 40, 50] [100, 200, 300, 400, 500] [600, 700, 800, 900, 950]
𝜄 [396]

Table 4.12: Sets of configurations that were tested in the MCI-AD classification task. The
number of configurations in each of these tests was: 1715, 1715 and 1715.

Hyperparameter Values
𝜆 [1070, 1075, 1080, 1085, 1090, 1095, 1100]
𝑎𝑚𝑎𝑥 [845, 850, 855, 860, 865, 870, 875]
max nodes [35, 40, 45, 50, 55, 60, 65]
𝜂 [10, 20, 30, 40, 50] [100, 200, 300, 400, 500] [600, 700, 800, 900, 950]
𝜄 [396]

4.4.3 Processing and results with the SupeRGNG
As with the MyGNG, data partitioning was 80% for training and 20% for testing.

The optimal set of hyperparameters stated in [Cabrera-León et al., 2023] was used to
define the initial values around which the grid search started, Table 4.11. However, more
experiments were carried out not only because there are more hyperparameters in this version
of the SupeRGNG but also in order to try to improve the performance values, Table 4.12.

Results from the latter set induced a new seed of values for several hyperparameters, so
closer values to the optimal one in that set were then explored. With the new set, Table 4.13,
several SupeRGNG configurations yielded results equivalent to the ones reported as optimal
in [Cabrera-León et al., 2023]. The ROC curves of the two best configurations are depicted
in Figure 4.14, and the values of the performance metrics in Table 4.14.

4.5 CN-MCI-AD
Unlike the previous ones, this is the only multiclass task that was tackled in this work, where
the model should be able to distinguish CN, MCI and AD subjects. As already mentioned

Table 4.13: Set of configurations that was tested in the MCI-AD classification task. The
number of configurations was 5760.

Hyperparameter Values
𝜆 [1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089]
𝑎𝑚𝑎𝑥 [856, 857, 859, 860, 861, 862, 863, 864, 866]
max nodes [41, 42, 43, 44, 45, 46, 47, 48, 49, 50]
𝜂 [485, 490, 495, 500, 505, 510, 515]
𝜄 [396]
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Table 4.14: Best configurations in the MCI-AD classification task.

Configuration 𝜆 𝑎𝑚𝑎𝑥 max nodes 𝜂
config2866 1085 860 50 500
config5459 1089 861 50 515

Configuration Accu Sens Spec Prec AUC CUI+ CUI-
config2866 0.97 0.97 0.97 0.97 0.97 0.94 0.94
config5459 0.98 0.98 0.98 0.98 0.97 0.96 0.96
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Figure 4.14: ROC curves of the best SupeRGNG configurations for the MCI-AD classification
task (2 projection components, Unscaled, PCA).
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in previous classification tasks, the same methodologies were followed to select input data,
preprocessing and processing.

4.5.1 Input data and preprocessing

Data from 752 subjects — 212 CN, 373 MCI and 167 AD — that belonged to the ADNI1
phase were collated, Table 4.15.

The feature ranking process started with the features ranked with FCBF and keeping
those with the highest FCBF score for this classification task. The ranked features were,
from greater to lesser significance: ABETA, MMDATE, AGE, MMDAY, CLOCKTIME,
MMMONTH, MMFLOOR, NPIG, MMHOSPIT, MMYEAR and MMREAD. It includes the
age of the patient, the CSF measure of the A𝛽 biomarker, 7 subscales of the MMSE test, an
item of the clock drawing test, and a subtest of the NPI scale.

An iterative refining process of this feature set was then performed to increase its quality
(that is, higher inter-class and lower intra-class distances) and reduce its size, which derived
in choosing other features. This extra process was done because the task is more difficult
due to being multiclass.

Different sources of information on the features were used to perform this refining. Before
including a new feature among those available, its biological relevance was analyzed according
to AD-related clinical bibliography Budelier and Bateman [2020]; Gunes et al. [2022], and its
relevance for the diagnostic problem addressed by means of analyzing descriptive statistics
(mean, standard deviation and interval), and clustering quality metrics (silhouette, Davies-
Bouldin and Calinski-Harabasz scores) da Silva et al. [2010]; Gutoski et al. [2018]; McCrory
and Thomas [2025]. The usage of the latter is supported by the fact that such clustering
quality metrics can help identify relevant features for clustering tasks and, ultimately,
classification ones as is our case too da Silva et al. [2010]; Gutoski et al. [2018]; McCrory and
Thomas [2025]. Generally, clustering quality metrics can help identify feature sets that lead
to more meaningful and well-separated clusters, this way helping in the selection of relevant
features for clustering tasks and, ultimately, classification ones as is our case too. On the
contrary, only the adequacy for the diagnostic problem was used to discard a feature.

The final set of features included, Table 4.15: a demographic data, a quantitative
neuroimaging measurement that measures the volume of the ventricles, a CSF value that
measures the quantity of A𝛽, and the main scores of two neuropsychological scales. As it can
be observed, all these final features but AGE and ABETA were inserted during the refining
process. Several references confirmed the biological adequacy of this new feature set and its
possible extrapolation to other non-ADNI MCI and AD populations Budelier and Bateman
[2020]; Gunes et al. [2022]

Among the many scaling methods that were analyzed, section 2.3, Standard and Robust
looked more promising. Only one candidate of the projection methods tried, section 2.4,
NCA with “identity” initialization, was selected as the components ended with similar ranges
of values. As per the number of projected components, 3 and 4 PCs were analyzed. As noted
in [Cabrera-León et al., 2024b], there are 8 possible scenarios to be studied given the pair of
values of these three preprocessing steps. However, in this thesis only two scenarios were
preferred after analyzing the boxenplots: with AGE, Standard scaling and 3 PCs, and with
AGE, Robust scaling and 4 PCs.



136 CHAPTER 4. MYGNG & SUPERGNG. IN AD & MCI DIAGNOSIS

Table 4.15: Characteristics of the subjects in the CN-MCI-AD classification
problem: a demographic feature, and the six attributes used by the model as
input, sorted according to their FCBF score.

AD MCI CN
Number of subjects 167 373 212
AGE: mean 75.55 74.96 75.96
AGE: StD 7.42 7.35 4.98
AGE: interval [55.1 - 90.9] [55.2 - 89.3] [59.9 - 89.6]
AGE: p-value 0.6312 ns
VENTRICLES: mean 50941.89 45719.62 35555.31
VENTRICLES: StD 26395.31 24555.92 20383.57
VENTRICLES: interval [9166 - 147064] [7801 - 145115] [5834 - 118875]
VENTRICLES: p-value 3.5611e-08 ****
ABETA: mean 627.94 725.24 1254.76
ABETA: StD 266.75 328.29 447.83
ABETA: interval [265.6 - 2568.0] [210.9 - 2809.0] [200.0 - 3592.0]
ABETA: p-value ’1.7529e-61 ****
FAQTOTAL: mean 12.86 3.78 0.14
FAQTOTAL: StD 6.75 4.39 0.61
FAQTOTAL: interval [0 - 30] [0 - 21] [0 - 6]
FAQTOTAL: p-value 6.5382e-70 ****
MMSCORE: mean 23.34 27.04 29.12
MMSCORE: StD 2.03 1.75 0.95
MMSCORE: interval [18 - 27] [24 - 30] [26 - 30]
MMSCORE: p-value 7.0326e-75 ****

Acronyms: ns (not significant), StD (Standard Deviation).
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Figure 4.15: Boxenplot of the features (AGE included) for the CN-MCI-AD classification
task: 3 projected components, Standard scaling, NCA with “identity” initialization.
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Figure 4.16: Boxenplot of the features (AGE included) for the CN-MCI-AD classification
task: 4 projected components, Robust scaling, NCA with “identity” initialization.
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Table 4.16: Performance results of the MyGNG in each of the two scenarios
studied for the CN-MCI-AD classification task.

Scenario Accu Sens Spec Prec AUC CUI+ CUI-
With
AGE

Scaling
method

No.
PCs

Yes Standard 3 0.83 0.89 0.78 0.8 0.83 0.71 0.69
Yes Robust 4 0.86 0.89 0.79 0.82 0.83 0.73 0.72

Acronyms: Accu (accuracy), AUC (Area Under the ROC Curve), PC (principal component),
Prec (precision), Sens (sensitivity), Spec (specificity).

4.5.2 Processing and results with the MyGNG
StratifiedKFold with 5 folds was used in the experiments with both models.

The values of the hyperparameters of the GNG that were considered appropriate for the
MCI-AD classification task were used in the grid search as the initial ones, subsection 4.4.2:
𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 = 100, 𝑎𝑚𝑎𝑥 = 5, 𝜆 = 25, 𝜀𝑏 = 0.9, 𝜀𝑛 = 0.01, 𝛽 = 0.7, 𝑑 = 0.18, 𝑒𝑝𝑜𝑐ℎ𝑠 = 7, 𝜌 =
0.01, 𝑒𝑝𝑜𝑐ℎ𝑠 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 = 50. These initial values were then varied to find the optimal
combination of the hyperparameters of the MyGNG. One was found of interest when 3
principal components (PCs) were used: 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 = 75, 𝑎𝑚𝑎𝑥 = 5, 𝜆 = 50, 𝜀𝑏 = 0.65, 𝜀𝑛 =
0.015, 𝛽 = 0.7, 𝑑 = 0.8, 𝑒𝑝𝑜𝑐ℎ𝑠 = 8, 𝜌 = 0.01, 𝑒𝑝𝑜𝑐ℎ𝑠 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 = 50. A different one when
there were 4 PCs: 𝑚𝑎𝑥 𝑛𝑜𝑑𝑒𝑠 = 75, 𝑎𝑚𝑎𝑥 = 5, 𝜆 = 50, 𝜀𝑏 = 0.5, 𝜀𝑛 = 0.015, 𝛽 = 0.6, 𝑑 =
0.7, 𝑒𝑝𝑜𝑐ℎ𝑠 = 8, 𝜌 = 0.01, 𝑒𝑝𝑜𝑐ℎ𝑠 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 = 50. Adding AGE to the feature set was
beneficial in both cases and the optimal configurations remained the same.

In Table 4.16 the performance results of the MyGNG in each of the two scenarios that
were studied are shown.

4.5.3 Processing and results with the SupeRGNG
Compared to the previous binary problems and considering the complexity of this multiclass
task, substantially more combinations of the hyperparameters were studied. For this reason,
in Table 4.17 there only will be tabulated those sets of configurations where the optimal ones
were found: “config1144” and “config848”, respectively for each scenario, Table 4.18. The
value of 𝜄 was calculated as before, as the 80% of the number of samples: 656.

The performance results of the best SupeRGNG configurations in each of the two scenarios
selected for this multiclass task are depicted in Table 4.19.

4.6 Comparative studies of the Modular Hybrid Grow-
ing Neural Gas and the Supervised Reconfigurable
Growing Neural Gas with other Machine Learning
methods

A quantitative comparative study of SupeRGNG and MyGNG with ML and DL models was
conducted.



140 CHAPTER 4. MYGNG & SUPERGNG. IN AD & MCI DIAGNOSIS

Table 4.17: Sets of configurations that were tested where the optimal ones are found, one per
scenario (CN-MCI-AD classification task). The number of configurations in each of these
tests was: 1800 and 1600.

Scenario Hyperparameter Values

With AGE,
Standard,
3PC

𝜆 [25, 50, 75, 100, 125, 150, 175, 200]
𝑎𝑚𝑎𝑥 [600, 700, 800, 900, 1000]
max nodes [40, 60, 80, 120, 180, 280, 380, 480, 580]
𝜂 [100, 300, 500, 700, 900]
𝜄 [656]

With AGE,
Robust,
4PC

𝜆 [405, 455, 505, 555, 605]
𝑎𝑚𝑎𝑥 [405, 455, 505, 555, 605]
max nodes [60, 80, 120, 180, 280, 380, 480, 580]
𝜂 [200, 300, 400, 500, 600, 700, 800, 900]
𝜄 [656]

Table 4.18: Best configurations found for the CN-MCI-AD classification task.

Configuration 𝜆 𝑎𝑚𝑎𝑥 max nodes 𝜂
config1144 150 600 120 900
config5459 505 555 120 200

Table 4.19: Performance results of the SupeRGNG in each of the two scenarios
studied for the CN-MCI-AD classification task. First line: mean, Second line:
CN-AD, Third line: CN-MCI, Fourth line: MCI-AD.

Scenario Accu Sens Spec Prec AUC CUI+ CUI-
With
AGE

Scaling
method

No.
PCs

Yes Standard 3 0.88 0.88 0.88 0.88 0.95 0.77 0.77
0.88 0.88 0.88 0.88 0.99 0.78 0.78
0.88 0.88 0.88 0.88 0.97 0.77 0.77
0.87 0.87 0.87 0.87 0.87 0.76 0.76

Yes Robust 4 0.89 0.89 0.89 0.89 0.94 0.79 0.79
0.94 0.94 0.94 0.94 1 0.89 0.89
0.83 0.83 0.83 0.83 0.91 0.69 0.69
0.89 0.89 0.89 0.89 0.92 0.8 0.8

Acronyms: Accu (accuracy), AUC (Area Under the Curve), CUI (Clinical Utility Index),
PC (principal component), Prec (precision), Sens (sensitivity), Spec (specificity).
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4.6.1 Quantitative comparative study

Both shallow neural networks and non-neural ML approaches were selected for this compara-
tive study.

Shallow neural networks refers to the most paradigmatic supervised neural architecture,
the Multilayer Perceptron (MLP) with Backpropagation Network (BPN) learning. This
will allow us to conduct a comparative study with deep architectures whose underlying
architectural framework is also BPN, i.e., Convolutional Neural Networks (CNNs).

On the one hand, a quantitative comparative study between our methods and other
popular supervised ML models was carried out, with the same models as in [Cabrera-León
et al., 2024b]: a Decision Tree (DT) (flowchart-like structure; easier to interpret than Artificial
Neural Networks (ANNs)) [Kotsiantis, 2013], a Näıve Bayes (NB) classifier (based on applying
the Bayes’ theorem and assuming that the features are strongly independent given class)
[Rish, 2001], a Random Forest (RF) (an ensemble of DTs, each trained with a random
subset of features; the class that is returned is the one chosen by most DTs) [Kotsiantis,
2013], a Support Vector Machine (SVM) (builds an hyperplane usually in a high-dimensional
space to separate classes; using certain kernel functions allow separation of non-linear data)
[Cortes and Vapnik, 1995], and a MLP (a feedforward ANN able to separate non-linear data,
unlike the single-layer perceptron) [Haykin, 2009]. Another shallow architecture that we
have used in this comparative study is a hybrid neural network named Counterpropagation
Network (CPN) [Hecht-Nielsen, 1987; Freeman and Skapura, 1991], such as our proposed
architectures.

The previous ML classifiers were implemented with “scikit-learn” [Pedregosa et al.,
2011] and “Keras” [Chollet et al., 2015], two very popular ML and DL Python modules,
respectively. Best results were yielded by models with these combinations of hyperparameters.
For DT, Pruning=at least 2 instances in leaves; at least 5 instances in internal nodes;
maximum depth=100; Splitting: Stop splitting when majority reaches 95% (classification
only); Binary trees: Yes For NB, scikit-learn’s default values. For RF, Number of trees=10;
Maximal number of considered features=unlimited; Replicable training=No; Maximal tree
depth=unlimited; Stop splitting nodes with maximum instances=5. For SVM, C=1.0, 𝜀=0.1;
Kernel: RBF; exp(-auto|𝑥 − 𝑦|2); Numerical tolerance: 0.001; Iteration limit: 100. For MLP,
hidden neurons=(16, 8); activation function=”relu”; solver=”rmsprop”.

Additionally, a comparison of the SupeRGNG with a parallel CNN called ParallelNet
[Sharma et al., 2019] and some variants of the Residual Network (ResNet) CNN [He et al.,
2016] was carried out. The variants selected were ResNet-18, ResNet-50 and ResNet-101.
The main differences of these three variants of the ResNet are the number of layers (18,
50 and 101, respectively), the number of parameters (11.7, 25.6 and 44.6, respectively, in
million), and the memory used for the parameters (45, 98 and 171, respectively, in MB). In
common they have the size of the input image: 224 x 224.

Firstly, the reason for choosing the DeepInsight architecture, in which the ParallelNet
is proposed as one of its classification models, is its parallel nature and the good results it
provides in [Sharma et al., 2019] for different types of input data, especially in the accuracy
metric, with outstanding values compared to those obtained with other classifiers (i.e. RF).
On the other hand, the choice of the other three pre-trained ResNet networks is mainly
due to their good classification accuracy-Graphics Processing Unit (GPU) computing power
balance on the ImageNet validation set, as depicted in Figure 4.17, where the size of the
circle is proportional to the number of parameters. It should be noted that a high accuracy
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on ImageNet does not necessarily mean that the same will also occur with other tasks or
datasets.

As we are addressing these diagnostic problems with non-neuroimaging biomarkers and con-
sidering the characteristics of the CNNs, which are essentially designed for a two-dimensional
input space, it was required that our feature vectors were converted to that type of data.
More specifically, the conversion to 2D images was performed via the DeepInsight pipeline
[Sharma et al., 2019] so that these deep architectures were able to work with our feature
vectors. Both DeepInsight and ParallelNet were already described in subsubsection 2.1.3.1.

Figure 4.17: Accuracy vs relative prediction time using GPU of several Deep Neural Networks
on the ImageNet validation set. Source: MathWorks [2025]

4.6.1.1 CN-AD

The best SupeRGNG configurations yielded the best possible value with all performance
metrics, Table 4.20. Although results are quite good and similar in all classifiers, SupeRGNG
and CPN are the only ones with perfect performance with all performance metrics, followed
by SVM. Despite data being linearly separable in all cases, MLP was unable to obtain the
best possible results.

Deep Neural Networks (DNNs) yielded very good but not perfect results in all these
preprocessed datasets but the non-invasive one. Especially low were the values of sensitivity
and CUI+ of the ParallelNet, which might be explained by their need for more training data
due to being a more complex network than the other CNNs.

Most of the architectures used yielded perfect results, being the SupeRGNG at the same
level as ensembles (RF) and hybrid models such as CPN. This confirms that ontogenetic
architectures as the one proposed are optimal computational solutions for distinguishing
subjects with AD from those cognitively healthy. We can conclude that for this type of
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Table 4.20: Comparison of the SupeRGNG and several popular neural
and non-neural ML methods (CN-AD classification task).

Dataset Method Accu Sens Spec AUC CUI+ CUI-

“Invasive”,
with AGE,
2PC, Max-
AbsScaler,
NCA
identity

DT 0.99 0.99 0.99 0.99 0.98 0.98
RF 0.99 0.99 0.99 0.99 0.98 0.98
NB 0.99 0.99 0.99 0.99 0.99 0.99
SVM 1 1 1 1 1 1
MLP 0.97 0.95 0.98 0.97 0.96 0.95
CPN 1 1 1 1 1 1
ResNet-18 0.99 1 0.99 1 0.98 0.99
ResNet-50 0.99 1 0.99 1 0.98 0.99
ParallelNet 0.99 0.99 0.99 0.99 0.98 0.99
SupeRGNG 1 1 1 1 1 1

“Invasive”,
without
AGE, 2PC,
MaxAbsS-
caler, NCA
identity

DT 0.99 0.99 0.99 1 0.98 0.98
RF 1 1 1 1 0.99 0.99
NB 1 1 1 1 1 1
SVM 1 1 1 1 1 1
MLP 0.94 0.88 0.99 0.93 0.97 0.90
CPN 1 1 1 1 1 1
ResNet-18 0.99 1 0.97 1 0.98 0.99
ResNet-50 0.99 0.99 0.99 1 0.98 0.99
ParallelNet 0.99 0.99 0.99 0.99 0.98 0.98
SupeRGNG 1 1 1 1 1 1

“Invasive”,
with AGE,
2PC, Ro-
bustScaler,
NCA
identity

DT 0.99 0.99 0.99 0.99 0.98 0.98
RF 0.99 0.99 0.99 0.99 0.98 0.98
NB 0.99 0.99 0.99 0.99 0.99 0.99
SVM 1 1 1 1 0.99 0.99
MLP 1 1 1 1 0.99 0.99
CPN 1 1 1 1 1 1
ResNet-18 0.99 1 0.99 1 0.99 0.99
ResNet-50 0.99 1 0.99 1 0.99 0.99
ParallelNet 0.99 1 0.99 0.99 0.99 0.99
SupeRGNG 1 1 1 1 1 1

“Non-
invasive”,
with AGE,
2PC, Ro-
bustScaler,
NCA
identity

DT 1 1 1 1 0.99 0.99
RF 0.99 0.99 0.99 1 0.99 0.99
NB 0.99 0.99 0.99 0.99 0.98 0.98
SVM 1 1 1 1 1 1
MLP 0.98 0.99 0.96 0.98 0.91 0.96
CPN 1 1 1 1 1 1
ResNet-18 0.84 0.73 0.93 0.90 0.64 0.76
ResNet-50 0.85 0.76 0.92 0.90 0.67 0.77
ParallelNet 0.66 0.21 1 0.71 0.27 0.63
SupeRGNG 1 1 1 1 1 1

Acronyms: Accu (accuracy), AUC (Area Under the Curve), CUI (Clinical Utility
Index), DT (Decision Tree), MLP (Multilayer Perceptron), MyGNG (Modular
Hybrid Growing Neural Gas), NB (Näıve Bayes), RF (Random Forest), Sens
(sensitivity), Spec (specificity), SupeRGNG (Supervised Reconfigurable Growing
Neural Gas), SVM (Support Vector Machine).
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diagnostic problem it is sufficient a monolithic and shallow ANN, which are less complex
and computationally intensive than ensembles and deep architectures, respectively.

On the other hand, as there are four set of features that were considered good candidates
by the methodology used, it is generally advisable to propose to clinicians a single candidate
of feature set to be used as the optimal clinical criteria for the CN-AD classification task.
After the analysis done, we can conclude that the “non-invasive” set of features (that is,
FAQREM, FAQFORM, FAQTRAVL, MMSCORE, MMFLAGDL and AGE) is preferable
due to the features being non-invasive, fast to obtain, easily repeatable and non-expensive.
These characteristics make these features especially interesting for primary care.

4.6.1.2 CN-MCI

Compared to other ML solutions, the SupeRGNG behaved similarly, yielding better results in
most metrics but AUC, Table 4.21. Comparing these values with the also hybrid architecture
CPN, the difference is not statistically significant. Values of sensitivity with CPN were the
best, albeit it had much lower specificity and CUI-. The better CUI+ values of SupeRGNG
may indicate that this network is a good option for translational medicine.

Most of the architectures compared yielded good results, being the SupeRGNG the one
with good yet balanced values in the pairs sensitivity-specificity and CUI+-CUI-. Sensi-
tivity, AUC and CUI+ in CPN and DNNs were higher or slightly higher than those of the
SupeRGNG. However, their values of specificity and CUI- were quite lower, in the ParallelNet
case up to 0.16 and 0.19 less, respectively. This confirms that ontogenetic architectures as
the one proposed are good computational solutions for distinguishing subjects with MCI
from those cognitively normal.

On the other hand, considering that only one set of features have been proposed and
good results have been achieved, it can be concluded that the proposed set of features (that
is, ABETA, AGE, MMBALLDL, MMDAY, NPIL and MMYEAR) can be recommended to
clinicians as the optimal clinical criteria for the CN-MCI classification task. As it includes
the ABETA, which requires performing an invasive CSF extraction, it is not as recommended
for primary care.

4.6.1.3 MCI-AD

A comparison with other ML algorithms is shown in Table 4.22. Same best results were
achieved in both versions of the SupeRGNG but the newer version is much faster thanks to
its new capabilities: its training finished in 529 epochs instead of the originally used 1000
epochs.

The SupeRGNG overtook the other models by a big margin, achieving the same per-
formance as the the previous variant [Cabrera-León et al., 2023], followed by the MyGNG.
The MLP and the DNNs behaved not as good, especially the sensitivity of the latter. This
confirms that ontogenetic architectures as the one proposed are good computational solutions
for distinguishing subjects with MCI from with AD.

On the other hand, considering that only one set of features have been proposed and very
good results have been yielded, it can be concluded that the proposed set of features (that
is, MMSCORE, MMDATE, MMBALLDL, ADAS Q7, MMYEAR and FAQSHOP) can be
recommended to practitioners as the optimal clinical criteria for the MCI-AD classification
task. Another advantage of this feature set is that only inexpensive, non-invasive and easy
to obtain features are included, making it interesting to be applied even in primary care.
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Table 4.21: Comparison of the SupeRGNG and several popular neural and
non-neural ML methods (CN-MCI classification task).

Dataset Method Accu Sens Spec AUC CUI+ CUI-

6 projection
components,
RobustScaler,
t-SNE with
perplexity=100

DT 0.74 0.74 0.74 0.73 0.54 0.54
NB 0.79 0.79 0.79 0.75 0.62 0.62
RF 0.80 0.80 0.80 0.74 0.65 0.65
SVM 0.84 0.84 0.84 0.79 0.71 0.71
MLP 0.79 0.79 0.79 0.77 0.63 0.63
CPN 0.86 0.91 0.76 0.91 0.80 0.63
ResNet-18 0.83 0.88 0.74 0.87 0.75 0.58
ResNet-50 0.83 0.89 0.74 0.88 0.76 0.59
ResNet-101 0.83 0.89 0.72 0.87 0.75 0.57
ParallelNet 0.82 0.89 0.70 0.87 0.75 0.55
SupeRGNG 0.86 0.86 0.86 0.88 0.74 0.74

Acronyms: Accu (accuracy), AUC (Area Under the Curve), CUI (Clinical Utility
Index), DT (Decision Tree), MLP (Multilayer Perceptron), MyGNG (Modular Hybrid
Growing Neural Gas), NB (Näıve Bayes), RF (Random Forest), Sens (sensitivity),
Spec (specificity), SupeRGNG (Supervised Reconfigurable Growing Neural Gas),
SVM (Support Vector Machine).

Table 4.22: Comparison of the SupeRGNG, the MyGNG and several popular
neural and non-neural ML methods (MCI-AD classification task).

Dataset Method Accu Sens Spec AUC CUI+ CUI-

2PC,
Unscaled,
PCA

DT 0.91 0.91 0.91 0.92 0.83 0.83
NB 0.91 0.91 0.91 0.92 0.83 0.83
RF 0.90 0.90 0.90 0.92 0.81 0.81
SVM 0.94 0.94 0.94 0.94 0.88 0.88
MLP 0.89 0.89 0.89 0.90 0.79 0.79
CPN 0.87 0.87 0.87 0.96 0.64 0.82
ResNet-18 0.90 0.77 0.96 0.94 0.68 0.86
ResNet-50 0.89 0.80 0.93 0.94 0.66 0.85
ResNet-101 0.90 0.73 0.97 0.95 0.67 0.87
ParallelNet 0.89 0.73 0.96 0.95 0.65 0.85
MyGNG 0.93 0.97 0.83 0.96 N/A N/A
“Static”
SupeRGNG 0.98 0.98 0.98 0.97 N/A N/A

SupeRGNG 0.98 0.98 0.98 0.97 0.96 0.96
Acronyms: Accu (accuracy), AUC (Area Under the Curve), CUI (Clinical Utility Index),
DT (Decision Tree), MLP (Multilayer Perceptron), MyGNG (Modular Hybrid Growing
Neural Gas), N/A (Not Available), NB (Näıve Bayes), RF (Random Forest), Sens (sensi-
tivity), Spec (specificity), SupeRGNG (Supervised Reconfigurable Growing Neural Gas),
SVM (Support Vector Machine).
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4.6.1.4 CN-MCI-AD

In the 2 scenarios that were analyzed the SupeRGNG has behaved quite good, outperforming
the ML approaches. Although its values of AUC were on par with or slightly superior than
the those from the CPN and the four DL approaches, the values of the rest of metrics
were not. On the contrary, MyGNG was outperformed by the DNNs and CPN but yielded
performance results at the same level as those from the most popular ML classifiers.

Additionally, the proposed set of features (that is, VENTRICLES, ABETA, FAQTOTAL,
MMSCORE, and AGE) has demonstrated to be a good set of features for the CN-MCI-AD
classification problem. Therefore, it is suitable for presentation to physicians for diagnostic
use, although the presence of ABETA makes this set not the most recommended for primary
care.

In Table 4.23 it is shown a quantitative comparative for the multiclass task.

4.7 Towards an e-Health solution for the diagnosis of
Alzheimer’s Disease

Geriatric and neurological assessments should be diagnostic instruments to analyze biological,
mental, functional and psychosocial disorders of the older people, to achieve an adequate
treatment plan and an optimal management of the sociosanitary resources. Primary Care
(PC) centers lack specialists in AD and other related pathologies at their disposal. Hence,
used procedures, techniques and diagnostic tools are not especially conditioned for the care
needs to perform an accurate diagnosis of patient’s disease (type of dementia) neither to
provide the disease stage. In the particular case of Specialized Care (SC) centers, diversity
and variability of procedures and diagnostic methods employed by clinicians to perform
patient-evaluation and assessment are of remarkable importance. Continuity in patient care,
a detailed monitoring of any variable associated to the disorder, fomenting collaborative work
between specialists, and giving the patient’s familiar environment the importance it deserves
become a must to build a solid knowledge base on MCI, AD and other dementia.

To achieve this goal, we propose an e-Health solution that involves a virtual clinical
environment, delivered through a web application. This virtual clinical station is user-friendly
for both primary and specialized care practitioners. It can use the intelligent diagnostic
support systems for dementia in general and AD in particular, developed in this thesis. These
new tools, also considering the intelligent diagnostic support systems based on the new neural
architectures developed in this thesis, should drive better use of healthcare system resources,
improving the relationship between healthcare quality, efficiency, and budget.

In this chapter we will describe an e-Health solution for the diagnosis of AD and MCI
that is able to integrate, among others, any of the ANNs implemented, which have been
described in previous chapters.

4.7.1 EDEVITALZH
Clinical Virtual Environment to aid diagnosis and prognosis of Alzheimer’s Disease and
other dementias (EDEVITALZH) is a Personalized, Predictive, Preventive, and Participatory
Healthcare Delivery System (4P-HCDS) that follows the philosophy of a Clinical Workstation
(CW) [Pérez Del Pino, 2015; Pérez-del-Pino et al., 2014; Suárez Araujo et al., 2012; Suárez-
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Table 4.23: Comparison of the SupeRGNG, the MyGNG and several
popular neural and non-neural ML methods (CN-MCI-AD classification
task).

Dataset Method Accu Sens Spec AUC CUI+ CUI-

With AGE,
3PC, Stan-
dardScaler,
NCA
identity

DT 0.86 0.86 0.86 0.90 0.73 0.73
NB 0.87 0.87 0.87 0.88 0.76 0.76
RF 0.88 0.88 0.88 0.89 0.77 0.77
SVM 0.88 0.88 0.88 0.90 0.77 0.77
MLP 0.71 0.71 0.71 0.75 0.51 0.51
CPN 0.93 0.93 0.93 0.95 0.88 0.88
ResNet-18 0.91 0.91 0.91 0.94 0.85 0.85
ResNet-50 0.91 0.91 0.91 0.94 0.85 0.85
ResNet-101 0.91 0.91 0.91 0.93 0.85 0.85
ParallelNet 0.92 0.92 0.92 0.94 0.86 0.86
MyGNG 0.83 0.89 0.78 0.83 N/A N/A
SupeRGNG 0.88 0.88 0.88 0.95 0.77 0.77

With AGE,
4PC, Ro-
bustScaler,
NCA
identity

DT 0.86 0.86 0.86 0.86 0.74 0.74
NB 0.86 0.86 0.86 0.89 0.74 0.74
RF 0.88 0.88 0.88 0.91 0.77 0.77
SVM 0.87 0.87 0.87 0.90 0.76 0.76
MLP 0.70 0.70 0.70 0.53 0.50 0.50
CPN 0.93 0.93 0.93 0.94 0.88 0.88
ResNet-18 0.92 0.92 0.92 0.94 0.86 0.86
ResNet-50 0.91 0.91 0.91 0.93 0.85 0.85
ResNet-101 0.91 0.91 0.91 0.94 0.84 0.84
ParallelNet 0.91 0.91 0.91 0.94 0.85 0.85
MyGNG 0.86 0.89 0.79 0.83 N/A N/A
SupeRGNG 0.89 0.89 0.89 0.94 0.79 0.79

Acronyms: Accu (accuracy), AUC (Area Under the Curve), CUI (Clinical Utility
Index), DT (Decision Tree), MLP (Multilayer Perceptron), MyGNG (Modular
Hybrid Growing Neural Gas), NB (Näıve Bayes), RF (Random Forest), Sens
(sensitivity), Spec (specificity), SupeRGNG (Supervised Reconfigurable Growing
Neural Gas), SVM (Support Vector Machine).
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Araujo et al., 2004]. EDEVITALZH Environment provides both an Electronic Medical
Records Database (EMRDB) and the digital implementation of the Global Clinical Protocol
for Dementia (GCPD). A GCPD includes a detailed set of clinical procedures, forms, tests
and diagnostic criteria, which have been validated by Geriatrics and Neurology experts.

EDEVITALZH Environment is based on a scalable, secure, robust and fault-tolerant
technological architecture that provides users anywhere the capability to connect at any
time. The principal set of applications, systems, tools and EDEVITALZH for information
management, exploitation and integration inside the EDEVITALZH Environment is known as
EDEVITALZH Core (EDV-Core), Figure 4.18 EDEVITALZH Environment is considered to
be an iCWs thanks to the Intelligent Clinical Wizard and Assistant (ICWA), which comprises
the integration of EDV-Core User Interface (UI) applications (ICWA-App) with our intelligent
systems for diagnosis based on MyGNG (MISD) and SupeRGNG (SISD), providing the
environment of Computational Intelligence. This way, EDV-Core has embedded the required
business logic to manage some Intelligent Systems for Diagnosiss-Intelligent Decision Support
Tools (ISDs-IDSTs) working at the same time on different requests according to the clinical
criteria selected, Figure 4.18. Moreover, EDEVITALZH incorporates the Electronic Medical
Interconsultation (EMI), whose aim it to entice collaboration between clinicians via an
internal messaging. Thank to this, physicians can ask for colleagues’ opinions, interact in
discussions and aid in the monitorization of colleagues’ patients. EMI is a powerful and
valuable tool for clinicians at primary care and other welfare centers where no specialist
physicians in MCI, AD and other dementia are easily available. This gives the primary care
clinicians the possibility to assist patients with these neuropathologies with a higher level of
quality, accuracy and efficiency in the diagnosis and prognosis processes.
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Figure 4.18: High level architectural diagram of the EDEVITALZH environment.

4.7.2 EDEVITALZH systems level
This virtual clinical environment has been built over a EDEVITALZH Systems Level (SL)
base [Pérez Del Pino, 2015]. As a multi-user environment, it allows many clinicians to request
at the same time aid in the diagnosis process. It provides services of Patient Management
Software (PMS) to manage patients’ medical records in a computerized way. This is directly
related to database systems and storage.
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Also, it provides services of CW via the set of clinical procedures, forms, tests and
diagnostic criteria used by physicians to diagnose the patient. This has direct implications
with UI Applications, database systems and storage.

Additionally, it provides the required technological mechanisms to integrate and communi-
cate EDV-Core with Intelligent Systems for Diagnosis (ISD) and Intelligent Decision Support
Tool (IDST), enabling EDEVITALZH to become an intelligent Clinical Workstation (iCW).
This is directly related to processing systems, database systems and communication proce-
dures.

The Systems Level Core (SL-Core) is the hardware basis to support the EDV-Core,
Figure 4.18. It comprises the group of systems that manage databases, user applications and
internal and external communications of the EDEVITALZH environment.

The Decision Support Tools Execution Module (ST-Exec) consists of the group of systems
which manage processing load and storage via execution policies regarding ISDs-IDSTs
workload. Each ISD-IDST component must be developed as an autonomous entity because
every part of the environment has to be developed as self-reliant. Each ISD-IDST component
receives input data under a user request and returns results according to that data. This
way, one or several ISDs-IDSTs are first selected upon a selection procedure and then asked
to generate certain results according to the provided inputs every time a user demands a
Decision Supported Operation.

Taking into account that EDEVITALZH is considered a multi-user platform, the environ-
ment is able to handle several simultaneous decision supported operations. This means that
EDEVITALZH needs to be capable of planning and managing its global processing resources
to handle all user decision supported operations efficiently, because it has execution policies
to queue, prioritize and execute decision supported operations.

The Database Level (DBL) comprises the EMRDB Infrastructure that stores, manages
and relates the social, administrative and clinical data of EDEVITALZH subjects.

EMRDB is the resulting database structure of representing the EDEVITALZH Data
Model (DM), which models the patients’ electronic medical records and their detailed set
of clinical procedures, forms, tests and diagnostic criteria defined by GCPD Pérez-del-Pino
et al. [2014]. Validated by medical experts in Geriatrics and Neurology, GCPD reflects
schematically specific and relevant data focused on the diagnosis of Alzheimer’s Disease and
other dementia, correlating clinical and therapeutical parameters at the same time.

On the other hand, the presentation level regards the user interfaces, EDEVITALZH
PT-UI, which consists of the web applications that make up the iCW UI. It guides clinical
users in their workflow. Two main web applications have been implemented, based on the
GCPD. On the one hand, the PC web application (PCapp) is focused on PC clinicians and
handles a reduced set of the GCPD that groups the needed medical criteria to perform a
basic diagnosis at any not-specialized center. On the other hand, the SC web application
(SCapp) is focused on SC clinicians and manages the complete version of GCPD to perform
a more accurate differential diagnosis and prognosis. Also, it allows carrying out evolution
studies of patients and their pathologies.

With the EMIs capabilities it can be performed shared consultation by several clinicians,
at primary care or specialized care, or even a college can be asked for opinion or specialized
assessment. Furthermore, since both applications, PCapp and SCapp, share the database
environment, doctors can refer their patients to any other specialist physician in a simple
and straightforward way.
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4.7.2.1 Integration of Intelligent Systems for Diagnosis Mechanisms

EDEVITALZH integration mechanisms are the logical component of the Integration Engine,
Figure 4.18. It specifies processes related to the extraction, deidentification (if required),
encapsulation and transfer of information between ICWA-Apps, hence the EDV-Core, and
ISDs-IDSTs, Figure 4.19.
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Figure 4.19: Mechanism to integrate Intelligent Systems for Diagnosis with the corresponding
ICWAs Application to provide aid in decision making tasks. The flow diagram depicts the
operative since the clinical user requests helps in decision making until results are available.

EDEVITALZH processes for data extraction are implemented as SQL views, which are
custom developed to extract a specific data set, according to the input needs of the SISDT
or SISDs-IDSTs that are going to be requested. Later, the dataset will be encapsulated as an
XML structure and saved into a storage system. If there are any restriction (such as special
parametrization of any SISD/MISD), every XML files contain an SISD/MISD ID parameter
section. This section will allow the different intelligent systems based on our SupeRGNG or
MyGNG to identify when they should handle a certain request.

Once the file is generated, the corresponding ICWA-App is responsible for the execution
of the set of processes corresponding to each requested SISD. As soon as results are ready,
they are written to the corresponding patient’s medical record in the EMRDB, Figure 4.19.

This integration protocol has several advantages to the way EDEVITALZH functions:
it offers the possibility to request a certain support for decision making, while the user is
performing any other task without interfering with their workflow. It is possible to manage
requests asynchronously, and results will be notified to EMRDB when available.
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Regarding security, an intrusion detection system based on Artificial Neural Networks is
included [Pérez del Pino et al., 2012], which is able to detect any type of known and unknown
attacks [Suárez-Araujo et al., 2004].

Considering all the above, the intelligent systems developed to comply with the first and
second goals of this PhD thesis, in the Abstract, can be used as the intelligent detection
engines in a mono- or multi-scheme in the diagnosis module of EDEVITALZH, Figure 4.20.
This way, it provides a complete e-Health solution in the fields of Primary Care, Neurology
and Gerontology, which is able to deal with all the disease stages found in the AD continuum.
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Figure 4.20: Example of a SupeRGNG-based multi-scheme working as intelligent detection
engines in the diagnosis module of EDEVITALZH.



Chapter 5

Conclusions and Future Works

5.1 Conclusions
It can be concluded, overall, that the main contributions of this doctoral thesis are its own
objectives, which have been completely covered. In the next paragraphs the conclusions and
main contributions of this PhD thesis are indicated:

1. The ability of ontogenic architectures, such as the Supervised Reconfigurable Grow-
ing Neural Gas (SupeRGNG), to address complex real-world problems such as the
differential diagnosis of Alzheimer’s Disease (AD) in its early stages, compared to
deep architectures, neural ensembles, and other traditional Machine Learning (ML)
approaches.

2. The possibility of obtaining highly accurate diagnoses using non-invasive multimodal
clinical criteria appropriate for primary care.

3. The possibility of achieving a universal diagnosis in both primary and specialized care
(neurology and geriatrics).

4. A dataset has been built by integrating longitudinal data from different modalities
such as neuropsychological tests, demographic data, biospecimen, genetics, quantitative
neuroimaging, and Cerebrospinal Fluid. These data were extracted from multiple files of
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, and it includes data
from Cognitively Normal (CN), Mild Cognitive Impairment (MCI) and AD subjects.

5. Two intelligent diagnostic systems have been put forward for the diagnosis of all the
disease stages of the AD continuum, which are based on two novel neural architectures.
Also, it is demonstrated that Artificial Neural Networks (ANNs) are good approaches
for complex problems, and those that were developed, also with unbalanced datasets, a
characteristic frequent in medicine ones.

6. A new hybrid ontogenetic ANN, the Modular Hybrid Growing Neural Gas (MyGNG),
has been proposed. It comprises two modules: a Growing Neural Gas (GNG), unsuper-
vised, for clustering the input data followed by a mono-layer perceptron, supervised, to
improve the clustering made.
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7. A novel supervised, ontogenic ANN, the SupeRGNG, has been developed. Its main
characteristics are the dynamic disconnection and reconnection of the clusters, which
improves the clustering performed by the GNG on which it is based. These dynamic
procedures allow the user to choose when to initiate them and how frequently to run
them. As other ANNs can also do, an early stopping mechanism was included in order
to shorten training time. The SupeRGNG reliably works with extremely unbalanced
datasets (up to 90%) and with non-Gaussian and non-linearly separable datasets.
Furthermore, it is capable of producing very good performance results with heavily
class overlapped datasets.

8. Performance results with both MyGNG and SupeRGNG in several binary classification
problems related to the diagnosis of the different stages of the AD continuum — CN vs
MCI, CN vs AD and MCI vs AD — were outstanding, especially the SupeRGNG, which
was able to outperform the rest of ML classifiers, including a parallel Convolutional
Neural Network (CNN) and several variants of Residual Network (ResNet).

9. Performance results with MyGNG in the CN vs MCI vs AD multiclass problem were
on par with the popular ML classifiers.

10. Performance results with SupeRGNG in the CN vs MCI vs AD classification task were
on par with the ResNets and the parallel CNN, and greater than the other popular
ML models.

11. For each binary and multiclass classification task that clinicians and researchers consider
of interest, the minimal and optimal set of diagnostic criteria was obtained, which can
be considered sufficient and appropriate for the differential diagnosis of AD, MCI and
healthy aging brains.

12. Both neural computation methods developed can be integrated into an e-Health
solution as intelligent systems to aid in the diagnosis of AD. They can be used in
almost any e-Health solution. In fact, they can be used as the detection engines in
the diagnosis module of Clinical Virtual Environment to aid diagnosis and prognosis
of Alzheimer’s Disease and other dementias (EDEVITALZH). This way, they can
provide a complete e-Health solution in the fields of Primary Care, Neurology and
Gerontology, which is able to deal with all the disease stages found in the AD continuum.
Moreover, EDEVITALZH is securely accessible with inexpensive devices anytime and
from anywhere, allowing different clinicians and researchers to work collaboratively and
exchange information. All of this indicates that our proposal is capable of providing
universal cortical dementia diagnosis.

5.2 Future works
The work presented in this doctoral thesis has opened several lines of research and some
future work may be derived:

• Characterization of AD by establishing its Biological-Cognitive Profile.

• Study the evolution of AD by determining an optimal classification of the degree of
severity of this neuropathology.
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• Development of a prototype of EDEVITALZH that makes use of both intelligent
systems developed as its detection engines.

• Creation of a new multisite dataset that integrates data from several non-private
databases other than ADNI, such as Open Access Series of Imaging Studies (OASIS)
and Sydney Memory and Ageing Study (MAS). Additionally, use data from both
public and private databases that include all possible biomarkers that have been used
to date for the diagnosis and prognosis of AD.

• Development of intelligent systems, based on the new proposed neural architectures, to
aid in the prognosis of neurodegenerative pathologies studied in the thesis.

• Development of new neural computation methods, possibly as improvements of those
developed in this PhD thesis, able to work with non-quantitative neuroimaging data,
presumably also as a multimodal solution.

• Further studies on other data preprocessing techniques, especially regarding feature
selection and data projection.





Appendix A

List of acronyms

4P-HCDS Personalized, Predictive, Preventive, and Participatory Healthcare
Delivery System

aMCI amnestic Mild Cognitive Impairment
AA Alzheimer’s Association
A𝛽 Amyloid beta
AD Alzheimer’s Disease
ADAS Alzheimer’s Disease Assessment Scale
ADNI Alzheimer’s Disease Neuroimaging Initiative
ADRDA Alzheimer’s Disease and Related Disorders Association
AE Autoencoder
AI Artificial Intelligence
AIBL Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing
ANN Artificial Neural Network
APA American Psychiatric Association
APOE Apolipoprotein E
APP Amyloid Precursor Protein
ASL Arterial Spin Labeling
ART Adaptive Resonance Theory
AUC Area Under the Curve
AV-45 Florbetapir F 18 amyloid
BMI Body Mass Index
BMU Best Matching Unit
BNN Biological Neural Network
BPN Backpropagation Network
CAD Computer-Aided Diagnosis
CCI Cognitive Change Index
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CDR-SB Clinical Dementia Rating Scale Sum of Boxes
CDR Clinical Dementia Rating
CFC Cognitive-Functional Composite
CHL Competitive Hebbian Learning
CN Cognitively Normal
CNN Convolutional Neural Network
CNS Central Nervous System
CPN Counterpropagation Network
CPU Central Processing Unit
CSF Cerebrospinal Fluid
CT Computed Tomography
CUI Clinical Utility Index
CW Clinical Workstation
DCL Deterioro Cognitivo Leve
DL Deep Learning
DLB Dementia with Lewy bodies
DNN Deep Neural Network
DSM Diagnostic and Statistical Manual of Mental Disorders
DT Decision Tree
DTI Diffusion Tensor Imaging
DW-MRI Diffusion-Weighted Magnetic Resonance Imaging
EA Enfermedad de Alzheimer
ECog Everyday Cognition
EDEVITALZH Clinical Virtual Environment to aid diagnosis and prognosis of

Alzheimer’s Disease and other dementias
EEG Electroencephalography
EII Escuela de Ingenieŕıa Informática
ELM Extreme Learning Machine
EmITIC Empresa, Internet y Tecnoloǵıas de las Comunicaciones
EMCI Early Mild Cognitive Impairment
EMI Electronic Medical Interconsultation
EMRDB Electronic Medical Records Database
fMRI Functional Magnetic Resonance Imaging
FAQ Functional Activities Questionnaire
FCBF Fast Correlation-Based Filter
FDG-PET Fluorodeoxyglucose-Positron Emission Tomography
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FDG Fluorodeoxyglucose
FN False Negatives
fNIRS Functional Near-Infrared Spectroscopy
FP False Positives
FPR False Positive Rate
FPGA Field Programmable Gate Arrays
FTD Frontotemporal dementia
GAN Generative Adversarial Network
GCN Graph Convolutional Network
GCPD Global Clinical Protocol for Dementia
GCS Growing Cell Structures
GDS Geriatric Depression Scale
GEO Gene Expression Omnibus
GNG Growing Neural Gas
GNN Graph Neural Network
GPU Graphics Processing Unit
HPC High-Performance Computing
HUMANN Hybrid Unsupervised Modular Adaptive Neural Network
ICV Intracranial Volume
iCW intelligent Clinical Workstation
ICWA Intelligent Clinical Wizard and Assistant
IDST Intelligent Decision Support Tool
ISD Intelligent Systems for Diagnosis
IUCES Instituto Universitario de Cibernética, Empresa y Sociedad
IWG International Working Group
IWG-1 International Working Group-1
IWG-2 International Working Group-2
k-NN k-Nearest Neighbors
LATE Limbic-predominant Age-related TDP-43 Encephalopathy
LMCI Late Mild Cognitive Impairment
LR Logistic Regression
LSTM Long Short-Term Memory
LVQ Learning Vector Quantization
MAS Sydney Memory and Ageing Study
MCC Matthews Correlation Coefficient
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MCI Mild Cognitive Impairment
MEG Magnetoencephalography
ML Machine Learning
MLP Multilayer Perceptron
MMSE Mini-Mental State Examination
MoCA Montreal Cognitive Assessment
MRI Magnetic Resonance Imaging
MyGNG Modular Hybrid Growing Neural Gas
naMCI nonamnestic Mild Cognitive Impairment
NB Näıve Bayes
NC Normal Control
NCA Neighborhood Component Analysis
NFT neurofibrillary tangle
NG Neural Gas
NIA-AA National Institute on Aging and Alzheimer’s Association
NIA National Institute on Aging
NINCDS-ADRDA National Institute of Neurological and Communicative Disorders and

Stroke and Alzheimer’s Disease and Related Disorders Association
NINCDS National Institute of Neurological and Communicative Disorders and

Stroke
NPI-Q Neuropsychiatric Inventory-Questionnaire
NPI Neuropsychiatric Inventory
OASIS Open Access Series of Imaging Studies
OCTA Optical Coherence Tomography Angiography
OS operating system
OVL overlapping coefficient
PCA Principal Component Analysis
PD Parkinson’s Disease
PDD Parkinson’s Disease Dementia
PET Positron Emission Tomography
PiB Pittsburgh compound B
pMCI progressive Mild Cognitive Impairment
PMS Patient Management Software
PPV Positive Predictive Value
qMRI Quantitative Magnetic Resonance Imaging
RAVLT Rey Auditory Verbal Learning Test
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RBF Radial Basis Function
ResNet Residual Network
RF Random Forest
RNA Red Neuronal Artificial
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
ROI Region of Interest
SHAP SHapley Additive exPlanations
sMRI Structural Magnetic Resonance Imaging
SAE Stacked Autoencoder
SMC Significant Memory Concern
SMV Simple Majority Voting
SNP Single Nucleotide Polymorphism
SOM Self-Organizing Map
SPECT Single-Photon Emission Computed Tomography
SupeRGNG Supervised Reconfigurable Growing Neural Gas
SVM Support Vector Machine
TADPOLE The Alzheimer’s Disease Prediction Of Longitudinal Evolution
TMS Transcranial Magnetic Stimulation
TN True Negatives
TNR True Negative Rate
TP True Positives
TPR True Positive Rate
t-SNE t-distributed stochastic neighbor embedding
UI User Interface
ULL Universidad de La Laguna
ULPGC Universidad de Las Palmas de Gran Canaria
VaD Vascular dementia

present

VGG Visual Geometry Group
ViT Vision Transformer
WMS Wechsler Memory Scale
WNN Wavelet Neural Network
XGBoost Extreme Gradient Boosting





Appendix B

Growing Neural Gas hyperparameter
recommendations from other authors

Few succinct recommendations for selecting the values of the GNG hyperparameters have
been found in the literature [Fritzke, 1995; Hamker and Heinke, 1997; Heinke and Hamker,
1998; Holmström, 2002].

GNG has low sensitivity to variation of its parameters, and only a few of them severely
influence the behavior of the network [Heinke and Hamker, 1998]1: learning rate of best (𝜀𝑐;
0.1 or 0.2), learning rate of neighbors (𝜀𝑛; 0.006 or 0.012), learning rate of output (None2;
0.15), adaptation steps (𝑒𝑝𝑜𝑐ℎ𝑠; 100 or 200), decreasing counters (𝑑; 0.995), decreasing of
signal counters (𝛽; 0.5), and maximum age of edges (𝑎𝑚𝑎𝑥; 50). These authors indicated that
no insertions for rare classes tend to occur when too high values for the adaptation step are
chosen. Having fewer nodes and tuning the other parameters appropriately to obtain similar
performance is possible [Heinke and Hamker, 1998]. In their experiments, the maximum
number of epochs was 200, and each dataset was run 30 times: six of every parameter set,
each with five randomly selected initializations.

Selecting values for the parameters 𝜀𝑐 and 𝜀𝑛, which are the steps or learning rates for the
winner neuron and its neighbors, respectively, depends on both the other GNG parameters
and the input distribution. In most cases, 𝜀𝑐 and 𝜀𝑛 should have low values, ideally lower
than 0.3 [Holmström, 2002]: for example, 0.05 and 0.0006. Too high values will give unstable
GNG networks, while too low values cause GNG to adapt sluggishly. Also, 𝜀𝑛 should use
values one or two orders of magnitude smaller than the ones given to 𝜀𝑐 so that the winner
neuron adapts faster than its neighbors.

The 𝜆 parameter, the neuron insertion rate that has a fixed value in the original GNG,
heavily impacts the GNG performance [Holmström, 2002]. Too low values provide non-
optimal initial distribution of neurons, where some neurons will become inactive with time
as they will be far from the inputs [Holmström, 2002]. This implies that more epochs are
required in order to delete these inactive nodes and create new ones where they are more
needed to better represent the inputs. Conversely, too high values cause GNG to grow slowly,

1According to [Heinke and Hamker, 1998], “only some parameters have a strong influence on the outcome
of the training”, Table XVIII in that document: learning rate of best, learning rate of neighbors, learning
rate of output, adaptation steps, decreasing counters, decreasing of signal counters, and maximal age of
edges.

2Apparently, these authors used a supervised variant of the GNG, further explained in [Hamker and
Heinke, 1997], as the original GNG in [Fritzke, 1995] does not have the parameter called “learning rate of
output”.
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hence needing more epochs, but the distribution of neurons will be correct.



Appendix C

Statistical significance, null hypothesis,
significance level and p-value

Three concepts are important to be defined beforehand:

• The null hypothesis, which refers to the hypothesis where the phenomenon being
studied has no effect. It can be rejected if the result is statistically significant. That is,
its p-value is less or equal than the pre-specified significance level 𝛼.

• The significance level 𝛼, the probability of the study rejecting the null hypothesis,
considering the null hypothesis to be true. A value of 0.05 is common, or much lower
in some fields of study. It needs to be selected before data collection.

• The p-value, which is the probability of occurrence of a result at least as “extreme”,
considering the null hypothesis to be true.

Results or an observed effect during a research may have been obtained by chance or due
to a sampling error. To conclude that a result has statistical significance, it should be very
infrequent to obtain a result at least as ”extreme”, considering the null hypothesis to be true.

Many methods have been used to statistically compare classifiers over multiple datasets
[Demšar, 2006]. However, a few of them can be used to tackle most research questions
[Shankar and Singh, 2014]. Choosing which statistical test to use depends on several aspects
[University of Minnesota, 2018]: the research design, the distribution of the data, and the
type of variable. Not selecting the most appropriate statistical test might make the results
obtained become not significant. Hence, the importance of checking the indicated aspects.
The most common mistake is to use a parametric test, mainly used with normally distributed
data, when the data is non-normal, which requires a non-parametric one. Non-parametric
tests equivalent to parametric ones exist [Boslaugh and Watters, 2008; McDonald, 2014;
Tronstad and Pripp, 2014; Greenland et al., 2016; Marshall and Russell, 2016].

Evaluating the statistical association of each clinical criteria (feature) with the disease
severity of a patient (sample) is another use of some of these statistical methods, especially
in a clinical context [Yao et al., 2020].

Based on the tables and schemes found in several articles [De Muth, 2009; Campbell
and Shantikumar, 2010; Marusteri and Bacarea, 2010; Nayak and Hazra, 2011; Shankar and
Singh, 2014; SmartVision Europe, 2017], we summarize them in a Decision Tree, Figure C.1,
that can be used to ease the selection of the most well-suited statistical test. The main
questions to be answered are: the type of study to be carried out, the number of classes
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Figure C.1: Decision tree to choose the most appropriate statistical test.

present in the data, the dependence of the data to be analyzed (paired vs unpaired tests),
and if these data follow the normal distribution (parametric vs non-parametric tests).
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bioloǵıa computacional. Doctoral thesis, Universidad Politécnica de Madrid.
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J. M. (2014). Speech in Alzheimer’s Disease: Can Temporal and Acoustic Parameters
Discriminate Dementia? Dementia and Geriatric Cognitive Disorders, 37(5-6):327–334.

Metz, C. E. (1978). Basic principles of ROC analysis. In Seminars in Nuclear Medicine,
volume 8, pages 283–298. Elsevier.

Miikkulainen, R. (2010). Topology of a Neural Network. In Sammut, C. and Webb, G. I.,
editors, Encyclopedia of Machine Learning, pages 988–989. Springer.

Ming, G.-l. and Song, H. (2011). Adult Neurogenesis in the Mammalian Brain: Significant
Answers and Significant Questions. Neuron, 70(4):687–702.

Mirzaei, G. and Adeli, H. (2022). Machine learning techniques for diagnosis of alzheimer
disease, mild cognitive disorder, and other types of dementia. Biomedical Signal Processing
and Control, 72(103293):1–13.

Mitchell, A. J. (2008). The clinical significance of subjective memory complaints in the
diagnosis of mild cognitive impairment and dementia: A meta-analysis. International
Journal of Geriatric Psychiatry, 23(11):1191–1202.

Mitchell, A. J. (2009). A meta-analysis of the accuracy of the mini-mental state examination
in the detection of dementia and mild cognitive impairment. Journal of Psychiatric
Research, 43(4):411–431.

Mitchell, A. J., McGlinchey, J. B., Young, D., Chelminski, I., and Zimmerman, M. (2009).
Accuracy of specific symptoms in the diagnosis of major depressive disorder in psychiatric
out-patients: Data from the MIDAS project. Psychological Medicine, 39(7):1107–1116.

Mitchell, A. J. and Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment
to dementia - meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica
Scandinavica, 119(4):252–265.

Mittal, S. (2020). A survey of FPGA-based accelerators for convolutional neural networks.
Neural Computing and Applications, 32(4):1109–1139.

Mizushima, N. and Komatsu, M. (2011). Autophagy: Renovation of Cells and Tissues. Cell,
147(4):728–741.



184 BIBLIOGRAPHY

Mosca, A., Sperduti, S., Pop, V., Ciavardelli, D., Granzotto, A., Punzi, M., Stuppia, L.,
Gatta, V., Assogna, F., Banaj, N., Piras, F., Piras, F., Caltagirone, C., Spalletta, G.,
and Sensi, S. L. (2018). Influence of APOE and RNF219 on Behavioral and Cognitive
Features of Female Patients Affected by Mild Cognitive Impairment or Alzheimer’s Disease.
Frontiers in Aging Neuroscience, 10.

Motta, C., Lorenzo, F. D., Ponzo, V., Pellicciari, M. C., Bonǹı, S., Picazio, S., Mercuri,
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F. S., Catalá-López, F., Cerin, E., Chavan, P. P., Cherbuin, N., Chu, D.-T., Costa, V. M.,
Couto, R. A. S., Dadras, O., Dai, X., Dandona, L., Dandona, R., De la Cruz-Góngora, V.,
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Kisa, S., Kivimäki, M., Koroshetz, W. J., Koyanagi, A., Kumar, G. A., Kumar, M., Lak,
H. M., Leonardi, M., Li, B., Lim, S. S., Liu, X., Liu, Y., Logroscino, G., Lorkowski, S.,
Lucchetti, G., Lutzky Saute, R., Magnani, F. G., Malik, A. A., Massano, J., Mehndiratta,
M. M., Menezes, R. G., Meretoja, A., Mohajer, B., Mohamed Ibrahim, N., Mohammad, Y.,
Mohammed, A., Mokdad, A. H., Mondello, S., Moni, M. A. A., Moniruzzaman, M., Mossie,
T. B., Nagel, G., Naveed, M., Nayak, V. C., Neupane Kandel, S., Nguyen, T. H., Oancea,
B., Otstavnov, N., Otstavnov, S. S., Owolabi, M. O., Panda-Jonas, S., Pashazadeh Kan,
F., Pasovic, M., Patel, U. K., Pathak, M., Peres, M. F. P., Perianayagam, A., Peterson,
C. B., Phillips, M. R., Pinheiro, M., Piradov, M. A., Pond, C. D., Potashman, M. H.,
Pottoo, F. H., Prada, S. I., Radfar, A., Raggi, A., Rahim, F., Rahman, M., Ram, P.,
Ranasinghe, P., Rawaf, D. L., Rawaf, S., Rezaei, N., Rezapour, A., Robinson, S. R.,
Romoli, M., Roshandel, G., Sahathevan, R., Sahebkar, A., Sahraian, M. A., Sathian, B.,
Sattin, D., Sawhney, M., Saylan, M., Schiavolin, S., Seylani, A., Sha, F., Shaikh, M. A.,
Shaji, K., Shannawaz, M., Shetty, J. K., Shigematsu, M., Shin, J. I., Shiri, R., Silva, D.
A. S., Silva, J. P., Silva, R., Singh, J. A., Skryabin, V. Y., Skryabina, A. A., Smith, A. E.,
Soshnikov, S., Spurlock, E. E., Stein, D. J., Sun, J., Tabarés-Seisdedos, R., Thakur, B.,
Timalsina, B., Tovani-Palone, M. R., Tran, B. X., Tsegaye, G. W., Valadan Tahbaz, S.,
Valdez, P. R., Venketasubramanian, N., Vlassov, V., Vu, G. T., Vu, L. G., Wang, Y.-P.,
Wimo, A., Winkler, A. S., Yadav, L., Yahyazadeh Jabbari, S. H., Yamagishi, K., Yang, L.,



186 BIBLIOGRAPHY

Yano, Y., Yonemoto, N., Yu, C., Yunusa, I., Zadey, S., Zastrozhin, M. S., Zastrozhina, A.,
Zhang, Z.-J., Murray, C. J. L., and Vos, T. (2022). Estimation of the global prevalence of
dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of
Disease Study 2019. The Lancet Public Health, 7(2):e105–e125.

Niemantsverdriet, E., Feyen, B. F., Le Bastard, N., Martin, J.-J., Goeman, J., De Deyn,
P. P., Bjerke, M., and Engelborghs, S. (2018). Added Diagnostic Value of Cerebrospinal
Fluid Biomarkers for Differential Dementia Diagnosis in an Autopsy-Confirmed Cohort.
Journal of Alzheimer’s Disease, 63(1):373–381.

Ning, K., Chen, B., Sun, F., Hobel, Z., Zhao, L., Matloff, W., and Toga, A. W. (2018).
Classifying Alzheimer’s disease with brain imaging and genetic data using a neural network
framework. Neurobiology of Aging, 68:151–158.
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Anblagan, D., Danso, S., Muñoz-Maniega, S., Job, D., Pernet, C., Mair, G., MacGillivray,
T. J., Trucco, E., and Wardlaw, J. M. (2018). Machine learning of neuroimaging for



187

assisted diagnosis of cognitive impairment and dementia: A systematic review. Alzheimer’s
& Dementia: Diagnosis, Assessment & Disease Monitoring, 10:519–535.

Pellicer Sarmiento, F. (2024). Análisis comparativo de la Red Ontogénica SupeRGNG en el
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