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PRESENTACION

Los capitulos que incluye este texto desarrollan los conteni-
dos de cardcter matematico que se consideran esenciales para la
formacion basica de un futuro estudiante universitario del area de

Humanidades o Ciencias Sociales.

Conociendo que el tiempo del que disponen los estudiantes
que afrontan esta iniciativa es limitado, el disefio de este manual
estd pensado para que el estudiante, si fuese el caso, pueda abor-
dar sus contenidos de manera auténoma. Es por esta razon por lo
que el presente manual, sin perder el rigor que la materia merece,
tiene un contenido eminentemente practico. Cada uno de los seis
capitulos que lo componen incluye unas pocas herramientas tedri-
cas asi como el planteamiento y resolucion de muchos ejemplos,
incorporando ademas al final de cada capitulo numerosos ejerci-
cios propuestos tipo test cuyas soluciones se muestran al final del

texto.

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA 9



PRESENTACION

Se anima al lector a seguir concienzudamente este texto pe-
ro también a consultar y estudiar otros manuales dedicados a la
materia entre los que se encuentran los que se proponen en la bi-

bliografia.
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CONJUNTOS NUMERICOS Y OPERACIONES
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La necesidad de contar objetos es tan antigua como el hombre,
y las distintas culturas que han habitado este planeta han utiliza-
do diferentes sistemas de numeracion y simbolos para representar
los nimeros. El estudio de los conjuntos numéricos, por el que
empezamos este capitulo, constituye el embrion de las Ciencias
Matematicas, siendo al dia de hoy una disciplina aparte dentro del
edificio matematico, suscitando ain numerosos temas de investi-
gacion.

No fue hasta el siglo XVIII cuando empezaron a formalizarse
los conceptos relacionados con los conjuntos numéricos, con el

trabajo, entre otros, de Cantor, Cauchy y Gauss.

Este capitulo comienza presentando los conjuntos numéricos,
los nimeros naturales, enteros, racionales, irracionales y los nu-

meros reales. Este ultimo conjunto, que incluye a todos los ante-

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA 13



CONJUNTOS NUMERICOS Y OPERACIONES

riores, constituird la base sobre la que se desarrollara el resto de
este manual. Estudiamos las operaciones que pueden llevarse a
cabo con los numeros reales, suma, producto, potenciacion y ra-

dicacion.

1.1 Conjuntos numéricos

Comenzamos esta seccidon con una introduccion a los diferen-
tes conjuntos numéricos existentes.

El conjunto de los nimeros naturales, que se denota mediante
N surge por la necesidad de contar y ordenar elementos. Lo com-

ponen, el 0, 1, 2, etc. Escribiremos, en este caso,
N={0,1,2,3,...}.

En ocasiones se denota mediante N* al conjunto de los niume-
ros naturales con excepcion del cero. Esto es, N* = N—{0}. Para
indicar que un numero dado (o un elemento cualquiera de un con-
junto que no tiene por qué ser numérico) pertenece a un conjunto
dado se utiliza el simbolo € que puede leerse como pertenece
a”. Asi, podemos escribir que 3 € N o bien 5 € N. Por otro la-
do, escribiremos —2 ¢ N para indicar que un elemento dado no

pertenece a un conjunto determinado.

14 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA



EMILIO GOMEZ DENIZ Y CHRISTIAN GONZALEZ MARTEL

Si sumamos o multiplicamos dos nimeros naturales el resul-
tado es de nuevo un niumero natural. Sin embargo, la resta de dos
numeros naturales no garantiza que el resultado sea de nuevo un
nimero natural. Por ejemplo, la operacion 7 — 3 = 4 resulta un
numero natural. Sin embargo, la operacion 3 — 7 no resulta un
numero natural. De ahi que surgiese la necesidad de construir un
conjunto numerico mayor que permitiese este tipo de operaciones,
asi como ampliar el campo de los conjuntos numéricos. Surge asi
el conjunto de los numeros enteros, denotado por Z, y constituido
por los nimeros naturales, asi como estos mismos precedidos del

signo menos. De este modo tenemos,

Z={.,-2-1,01,2,.. .}

Un problema similar al anterior surge ahora cuando se desea
dividir dos numeros enteros. Por ejemplo, si efectuamos la divi-
sion entre los dos numeros enteros 12 y 3, el resultado es 4, que es
de nuevo un niimero entero. Sin embargo, no siempre se garanti-
za que la division vaya a resultar de nuevo un nimero entero. Asi
ocurre, por ejemplo, al dividir 3 entre 12, o bien 7 entre 2. Esta
necesidad llevo a definir un nuevo conjunto que permitiese reali-

zar este tipo de operaciones. Se trata del conjunto de los nimeros

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA 15



CONJUNTOS NUMERICOS Y OPERACIONES

racionales, Q, definido como,
_JP.
@—{ap,qeﬂ q#O}-

La expresion § recibe el nombre de fraccion, siendo p el nu-
merador de la fraccion y ¢ el denominador.

El conjunto de los nimeros racionales, pues, lo componen aqué-
llos nimeros que estdn expresados como cocientes entre dos nu-
meros enteros, con la salvedad de que el nimero que aparezca en

el denominador no puede ser cero. Asi, por ejemplo, son nimeros

racionales los siguientes, %, —i, 4, etc. Obsérvese que cualquier
numero entero puede expresarse como un nimero racional sin mas

asumir que el denominador de la fraccion es 1.

Por otro lado, si dividimos el numerador de una fraccion por el
denominador obtenemos un niimero decimal. Asi, por ejemplo, el
nimero decimal asociado a la fraccion % es 3, que es también un
numero entero. El nimero decimal asociado a la fracion % es 0.4.
El nimero decimal asociado a la fraccion % es 0.33333..., que
puede escribirse como 0.3, en el que 3 se denomina periodo. El
numero decimal asociado a la fraccion % resulta 4.2656565. . .,
que puede escribirse como 4.265 y en el que el periodo es 65.

Téngase en cuenta que cualquier nimero entero o decimal no pe-

riddico puede escribirse con un periodo sin mas que anadirle una

16 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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comay ceros a la derecha, aunque esto no es usual. Por ejemplo, 3

puede escribirse como 3.0, 0 bien 0.4 puede escribirse como 0.40.

Obviamente con los conjuntos definidos hasta el momento pue-
de establecerse claramente la siguiente secuencia de inclusiones

estrictas’,

NcZcQ.

Existe otro conjunto de nimeros que no admiten ser escritos
en forma de fraccion como 7 (aproximadamente igual a 3.1416, es
la relacion entre la longitud de una circunferencia y su diametro, el
doble del radio de la misma), v/2, /3, . . ., que conforman el con-
junto de los nimeros irracionales, que se suele denotar mediante

L.

El conjunto que los incluye a todos es el conjunto de los nu-
meros reales, R, que puede escribirse como R = Q U I, en la que
el simbolo U se lee “union®. Es decir, los numeros reales estan
compuestos por la unién del conjunto de los nimeros racionales e
irracionales.

Esusual visualizar R como el conjunto de puntos ordenados de

una recta denominada recta real, cuya grafica aparece en la Figura

1.1.

1El simbolo C se lee contenido en o incluido en.

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA 17
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5 1 5
R -3 2 V2 3
% 4 3 =2 1 0 1 2 3 4 Ao

Figura 1.1: Recta real.

Esta recta esta ordenada (si un numero es menor que otro el
primero estara situado a la izquierda del segundo en la recta real),

de modo que, por ejemplo,
3 3
—oo<—4<—§<—1<O<1<§<2<7r<5<—|—oo,

en el que < se lee “menor que®. Ademas, la recta real esté llena,
en el sentido de que entre dos nimeros reales siempre existe otro
numero real entre ellos.

El simbolo oo (con més precision, +00) representa a nimeros
extremadamente grandes y se lee “infinito*. Cuando estos nume-
ros extremadamente grandes estén afectados del signo negativo
entonces se representaran mediante —oo.

A veces resulta recomendable trabajar s6lo con una parte de la
recta real. Por ejemplo, en muchos problemas econdmicos se tra-
baja solamente con cantidades positivas, como el precio o la canti-
dad de un bien. De ahi que resulte apropiado definir los siguientes
subconjuntos, que corresponden a segmentos y a semirrectas su-

yas.

18 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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,—[Deﬁnicién (Intervalos finitos o segmentos)}

Dados a, b € R, se define:

* Intervalo cerrado de extremos a y b, en notacion [a, b],

como el conjunto

[a,b] ={r €R:a <z < b}

* Intervalo abierto de extremos a y b, en notacion (a, b),

como el conjunto

(a,b) ={x € R:a <z <b}.
Obsérvese que en [a, b] tanto a como b pertenecen al
intervalo, estoes a, b € [a, b]; encambioa, b ¢ (a,b).

* Intervalo semiabierto de extremos a y b (cerrado en

a 'y abierto en b), [a, b), como el conjunto

[a,b) ={z € R:a <z <b}.

* Intervalo semiabierto de extremos a y b (abierto en a

y cerrado en b), (a, b, al conjunto

(a,b] ={r €R:a <z <b}.

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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Cuando alguno de estos intervalos no tiene origen o no tiene

extremo se habla de semirrectas.

,—[Deﬁnicién (Intervalos no finitos o semirrectas)}—

Sea a € R, se definen

* [a,+0) ={zr € R:a <z},

* (a,400) ={r e R:a <z},
como las semirrectas de origen a.

¢ (—o0,a] ={reR:z<a}l,

¢ (—o0,a)={r eR:z <a}l,

como las semirrectas de extremo a.

Atendiendo a estas definiciones se puede escribir la recta real

como
R = (—00,a) U [a,+00) = (—00,+00), a € R.

Ademas se suele notar

Ry =10,4+00), R* =(0,400), Ry = (—o0,0],
R~ = (—00,0).

20 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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Ejemplo 1.1
Indicar mediante el simbolo de pertenencia a qué conjuntos de los

siguientes
Q, Z, N, I, (=2,2), [-3,0), (1,+00)

pertenecen los siguientes numeros: 2, —3, g, V2,0, 0.252525. ..

Solucion: Es inmediato que,

2€Q,2€Z,2€eN, 2¢€ (1,+00),
-3€Q, -3€7Z, -3€[-3,0),

3 3
Z e (-2,2
F€Q 56( ,2),
V2 el V2 e (=2,2), V2 e (1,+00),
0€Q,0€Z,0eN, 0€(-2,2),

25 -
025 =5 €Q, 0.25 € (-2.2)

1.2 Operaciones con los niimeros reales

Estudiamos en esta seccion las operaciones usuales que pue-

den llevarse a cabo con los nimeros reales. Comenzamos, a titulo

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA 21
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de recordatorio, con las reglas de signos para el producto y cocien-

te.

* Regla de signos del producto:

o =) a-)
& =) -
Ejemplo 1.2
Efectuar las siguientes operaciones:
) 4(-3)(-2) b (5)(-6)(-2)
) _Tw ) —_74.
0 2(—32(5—10)- ) (—6%)_(2—)3)

Solucion: Se tiene lo siguiente:

22 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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c) = = -2

oo

e) —2<_32(5_10) = ﬁ—% = —12.
(—4)(=3) 12

/) 6(—2) BT

,—[Propiedades (de los numeros reales)}

Las siguientes propiedades son ciertas para cualesquiera

a,b,ceR.

a+b=b+a (a+b)c = ac+ bc
a+0=0+a=a ab = ba
a+(—a)=(—a)+a=0 a(bc) = (ab)c
a+(b+c)=(a+b)+c a-0=0-a=0

a(b+c) = ab+ ac

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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Ejemplo 1.3

Efectuar las siguientes operaciones:
a) —=5—(—2)+3(—6)—2(—3). b) 14+2(—3+5)—T7.

¢) (—18+9)(—4). d) —6—7(2 —4).

Solucion: Se tiene lo siguiente:
a) =5 —(=2)+3(—6) —2(-=3)=—-5+2—18+6 = —15.

b) 1+2(—3+5)—7=142(2)—7 = 14+4—7 = —2. También
puede llegarse al mismo resultado aplicando la propiedad
distributiva del producto con respecto a la suma. En este

caso se tiene,

142(—3+45)—7 = 142(—3)+2-5—7 = 1—6+10—7 = —2.

¢) (—18 4+ 9)(—4) = —9(—4) = 36.

d) —6—7(2—4)=—6-—7(-2) = —6+ 14 = 8.

O

Estudiemos ahora las operaciones de nimeros reales cuando

aparecen fracciones.

24 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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1.2.1 Suma (resta) de fracciones

En el caso de suma o resta de fracciones hay que distinguir los
casos en que el denominador es comun de cuando no lo es. De este

modo tenemos lo siguiente:

» Suma o resta de fracciones con denominador comun:

a—+c

_|_

¢
b b

a
; )
* Suma o resta de fracciones con denominador no comun: Se

reducen las fracciones a denominador comun calculando el

minimo comun multiplo (el menor multiplo comun a los de-

nominadores).

Ejemplo 1.4

Efectuar las siguientes operaciones con fracciones:

_|_

[N
S
~—~—
|
+
|
|

| Ot
|
|

a)

Solucion: Se procede como sigue.

a) Al tener los denominadores comunes resulta directamente,

+7_5—1+7_11
6 6 6

1
6

| Ut

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA 25
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b) Al tener los denominadores diferentes calculamos el mi-
nimo comun multiplo (m.c.m.) de los denominadores para
construir tres fracciones equivalentes a las anteriores con el

denominador comun. Tenemos, m.c.m.{2, 3,4} = 12. Lue-

£0,

6x3 4x2 3x1 23
— —|— — —

+2 1
3 4 12 12 12 12

[\CR V]

1.2.2 Producto de fracciones

Es una operacion muy sencilla que da lugar a una fraccion en
la que el numerador se obtiene multiplicando en linea los numera-
dores y el denominador se obtiene también multiplicando en linea

los denominadores.

> e
Ul o
>
IS

Ejemplo 1.5

Efectuar los siguientes productos de fracciones:

5 4 2 4 4

VT 05 (2) 5
2 —1
AT

26 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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Solucion: Procedemos como se detalla a continuacion.

)5 4 54 20 20:2 10
Y6 7T 6.7 42 42:2 2l
5)2 4\ 4 2-(—4)-4 32
3 7) 5  3-7-5 105
2 —1 5.2-(=1) 10 1
5.2, _— — T
S 0T T 0 0 7

1.2.3 Cociente de fracciones

También se trata de una operacion sencilla. Se efectua la ope-

racion multiplicando en cruz como se indica a continuacion.

a-d

a.c
b d b-c

Ejemplo 1.6
Calcular las siguientes divisiones de fracciones:

3 7 1 -3

Solucion: Se obtiene de manera inmediata lo siguiente.

7 3-8 24 12
a) = —

b)

8 2.7 14 T
~3 8 2

B~ = Nl w

8 12 3

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA 27
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1.2.4 Potencias y radicales

Se llama potencia de base a y exponente n al producto de n

factores de a, esto es,

T veces

que se lee a elevado a n.
Cuando se efectiian operaciones con potencias hay que tener

en cuenta lo siguiente:

* Todo nimero positivo elevado a exponente par o impar da

un nimero positivo.

» Todo niimero negativo elevado a exponente par da un ni-

mero positivo.

» Todo numero negativo elevado a exponente impar da un nii-

mero negativo.

Obsérvese que siempre se verifica,

(—a)" =a", sin es par,

(—a)" = —a", sin es impar.

28 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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Ejemplo 1.7

Efectuar las siguientes potencias:

a) 2* b) 23

0) (—3) d) (-3)*
e) —24 f) =28
9) (~2)* h) (2’

Solucion: Se obtiene lo siguiente:

a) 24 =2.2.2.2=16.

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA 29
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A continuacion se muestran las principales propiedades de las

potencias.

,—[Propiedades (de las potencias)] \
Las siguientes propiedades son ciertas para cualesquiera
a,b,m,n € R.

am an — am—i—n (a b)n — CLn bn
am b b
1
m\n __ .mn -n _ =
(@™)" =a "=

Ejemplo 1.8
Efectuar las siguientes operaciones utilizando las propiedades de

las potencias.

a) 372 b) 2-471
) (D (- (B d)
) () &L

30 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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0 (3) ) o
) (5) 2 (2)

Solucion: Procedemos como sigue.

-3

a) 377 = % = é

b) 2.41:2&:223

c) (=2)*+(=2)*+(=3)* = (-2)*(=3)" = (-32)-9 = —288
22 5.5 50 1

_ ) _ _ 93
f) 3_7 3_7 T7—3 —27
2\? 22 4
9 (z) =5=5
5 5 25
B —-32.3t  —3f _—34__81
(3-2)2  32.22° 4 4~

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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Ejemplo 1.9

Efectuar,

Luego:
1 2
3 5 - 1 T =26
- - Q2 ——9 3
<4 12)+(3> 3

117 26 117x3 _ 351

4 73 4x2 104
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Ejemplo 1.10

Calcular y simplificar la expresion

B 1_ 2 B _5 2
)
(27 -125)/9
—3/9

98
5

O

Los radicales (radicacion) constituyen otra forma de expresar

las potencias. La relacidon que existe entre ambas operaciones vie-

ne dada por,

Vam = a™m.

La expresion {/a se lee raiz n-ésima de a, donde a es el radi-

cando y n el indice de la raiz.

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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De este modo tenemos, por ejemplo,

V5 =513,
V32 = 32/3,
V9 =32 =32 = 3, puesto que 3% = 9.
V8 =V23 =23 = 2, puesto que 2° = 8.

Ahora podemos reescribir las propiedades de las potencias es-
tudiadas anteriormente para expresarlas en términos de radicales,

como se muestra en el siguiente cuadro.

,—[Propiedades (de los radicales)} \

Las siguientes propiedades son ciertas para cualesquiera

a,b,m,n € R,

Va = a'" (C/a)n:a

I
=
=
3
S
IS
|
3
S

Ejemplo 1.11

Simplificar las siguientes operaciones:

a) V8. b) 3v3 —2V12 4 V3.
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) 2 s
04\/5. 3\/@.

6)\/%2\/2 f) V.

Solucion: Resulta lo siguiente.
a) Descomponiendo factorialmente 8 se tiene, 8 = 23, luego

V8 =v23 =022 =V22/2=2V2.

b) Se tiene que 12 = 22 - 3, luego,

3V3—2V12+V3=3V3-2V22.3+V3
=3vV3—-4V3++V3=0.

V8 2v2 1
c)m—m—i.
)V _5VE 5

3v8 6v2 6
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36

f) En este caso, en el que los indices de las raices son distin-
tos conviene convertir las raices en semejantes. Para ello,
obsérvese que /7 : /z = z*/® : z'/2. El minimo comun

multiplo de 3 y 2 es 6, luego,

) 2
LB 12 206 36 [T \6/1: 1 _
x3 r  Jx
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Ejercicios propuestos tipo test

1. Solo una de estas afirmaciones es cierta:

3 3

a) —3€R,ZEQ. b) —36@,—162.
3

c) —BEN,ZEQ.

2. Solo una de estas afirmaciones es cierta:
a) 0 e N, 5 €Q. b) 0€Z,5€Q.

) beQ,0el

3. Solo una de estas afirmaciones es cierta:

a) 1 €(1,2). b) 1€[-1,09]. ¢) 1€][l,2).

4. Solo una de estas afirmaciones es correcta:

a) —g € (—1,2). b) —; € (—g ,O].

c) —; € (—o0,2).

2 4
5. Elresultado de la operacion — + - — 2 es:
3 7 4
1 3 1

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
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38

2 1 4 3
6. El Itado de 1 Ts —— =) =2=—--= :
resultado de la operacion 3 (5 6) E 4> es
3 3 5
——. b) —. —.
) 3 ) 5 ‘)3
2 5 1
7. El resultado de (? — 5) -3+ 1 €s:
179 178 179
9 ~%5 TR ) 35
3 2 2 )
8. Al efectuar (Z — §) : 5 1 se obtiene:
19 5 19
3 2 2
. Al efi ———]:==-1 Ita:
9 efectuar (4 3) (5 ) resulta
11 11
e b -2 o -2
120 36 120
10. Al efectuarg . 1 — § — § resulta:
3 6 4 2
77 36 31
1 2
Z 4.2
11. El resultado de —23 + % es:
5 3
11 11 1
- b) —. —.
o) =3 )3 ‘)3
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12.

13.

14.

15.

16.

17.

1 2
Z_4.2
El resultado de (—2)* + 32 43 es:
5 3
37 11 37
5 3
Z492.2
El resultado de 32 15 es:
371
1 172 172
o) 110 b — 112 o 172
55 55 29
1 2
(—2)3 -3 (§ — 1)
El resultado de ! e es:
l—=-|1—-=
(-2)
136 32 224
El resultado de (—3)? - (=3) - 3% es
a) 729. b) (—3)°. c) —T729.
-2 3
Al efectuar 51 51 resulta:
1 1 1
- _Z -1/2
a) 5 b) 5 c) 2712,
2.3)2.372.2¢
El resultado de ( 2)3 373 es:

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

39



CONJUNTOS NUMERICOS Y OPERACIONES

a) 261. b) 216. c) 23373,
9\ 2
18. El resultado de (5) es:
9 9 4
——. b) -. ——.
9 -3 ) 3 95
1\ 2
19. El resultado de 2% — (5) es:
)2 b -5 ) 5
a) —. — ) 5.
D
2.32,..3
20. Simplificando la expresion (%) w2 resulta:
3(y2)3z
2 2.2 2.2
a) = b = o) =
) Y Y
21. Simplificando la expresion (223y*)? - (6x%y) > resulta:
2 2
y y 2y°w
=. b) =—. .
) 54 ) %6 ) 51
~1y2
22. Simplificando la expresion yvez") resulta:
x2y 3z
5 5 5
y y (yz)
- b) —— .
%) xz3 ) x3z ‘) xz

40
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24. Elresultado de 3v/2 — 3v/8 + 4V/18 es:

a) 9V2. b) —2. c) 9V/3.

25. El resultado de 3v/5 — V125 + /5 es:

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

41



Ejemplar para autor



CAPITULO 2

EXPRESIONES ALGEBRAICAS
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Este capitulo esta dedicado a las expresiones algebraicas y los
polinomios. Cuando en Europa se vivia una época de oscurantis-
mo, el matematico arabe Al-Khuwarizmi escribi6 en el siglo [X un
tratado en el que introdujo de manera sistematica el uso de letras
y otros simbolos para configurar expresiones matematicas, dan-
do lugar al nacimiento de una parte de las Matematicas conocida

como Algebra.

En matematicas, una expresion algebraica es una expresion
construida a partir de constantes enteras, variables y operaciones
algebraicas (suma, resta, multiplicacion, divisidon, potenciacion,
radicacion). Estas expresiones permiten ampliar enormemente el
campo de las matematicas a numerosos terrenos. Por ejemplo, el
area de un cuadrado de lado [ se puede expresar de manera alge-

braica como A = [? y si p representa el precio de un determinado
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bien, el ingreso que se obtiene por la venta de ¢ unidades de dicho

bien podra expresarse algebraicamente como [ = p - q.

2.1 Expresiones algebraicas y polinomios

Una expresion algebraica es un conjunto de numeros y letras
ligados por los signos de suma, resta, multiplicacion, division, po-
tenciacion y radicacion, aunque no tienen que estar todos presen-
tes simultaneamente. Son ejemplos de expresiones algebraicas las

siguientes: 322, 2xy — 1, \/xy3 — 3x — v, etc.

Las letras, usualmente las ultimas del alfabeto, se utilizan en
matematicas como simbolos para expresar cantidades desconoci-
das. Algunos ejemplos significativos son los siguientes: el doble
de un nimero x lo podemos expresar como 2z; la mitad de un nt-
mero x como x/2; un niimero par lo podemos denotar como 2z,
siendo x € N, y si lo que deseamos es expresar un numero impar

podemos escribir 2z + 1, donde x € N.

Se llama valor numérico de una expresion algebraica al nime-
ro que se obtiene al sustituir las letras por nimeros concretos. El

siguiente ejemplo trata de ilustrar este concepto.
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Ejemplo 2.1

Calcular el valor numérico de la expresion algebraica
22%y — 33y + 4

enx =—1,y=2.

Solucion: Sustituyendo en la expresion dada x por —1 e y por 2

se obtiene,
2(—=1)*2 = 3(=1)*(2)* +4 =4+ 12+ 4 = 20.

O
Un monomio es una expresion algebraica en la que los niime-
ros y letras estan ligados so6lo por los signos de multiplicacion,
division, potenciacion y radicacion. A la parte numérica se le de-
nomina coeficiente.
Dos monomios son semejantes cuando tienen las mismas le-
tras elevadas a los mismos exponentes.

Por ejemplo, las expresiones

. . 33 2
son monomios con coeficientes 5, 3T E y 4. Ademas, los mo-

. 322 39 .
nomios 5x°y ,5x Yy~ son semejantes.
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Cuando se efectlian operaciones con monomios hay que tener
en cuenta, por un lado, que solo pueden sumarse monomios seme-
jantes, y por otro, que para multiplicar, dividir o efectuar potencias
de monomios se aplican las propiedades de potencias estudiadas

en el capitulo 1 de este texto.

Ejemplo 2.2
Simplificar las siguientes expresiones algebraicas.
30 239, o 3 2,2
a)3:vy—§:vy + 7. b) (3zy?) - (—2x%y”).
5 2 3 3,,2
o 57 g 3TV
10xy3 Oxy322

Solucion: Se tiene lo siguiente:

a) Resulta sencillo obtener,

2 2
323y — §x3y2 + 2y = <3 — §> vy + 2%y
7
_ §x3y2 + 2y,

b) (3zy®) - (—22%y*) = —62%y’.

1023 - 212"

48 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA



EMILIO GOMEZ DENIZ Y CHRISTIAN GONZALEZ MARTEL

332z x?

d) XY= _

Owy’z2  3yz

Ejemplo 2.3

Escribir como una expresion algebraica los siguientes conceptos:
a) El triple de un nimero.
b) La tercera parte de un nimero mas uno.
c) El siguiente de un numero entero.
d) El anterior de un numero entero.
e) La suma por la diferencia de dos nimeros.
f) El cuadrado de una diferencia.

g) La diferencia de cuadrados.

Solucion:

a) Denominando al numero por x tenemos que el triple del

mismo se representard mediante 3.

b) Ahora tenemos g + 1.

c) Si el nimero entero es z, el siguiente sera x + 1.
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d) El anterior, obviamente, vendra dado por z — 1.

e) Sean x e y los dos niimeros, entonces la suma por diferencia

se representara mediante (x + y)(z — y).

f) El cuadrado de la diferencia de dos nimeros z e y se deno-

tara mediante (z — y)2.

g) La diferencia de cuadrados se representa mediante 2% — y2.

O

Un binomio es la suma (resta) de dos monomios y un trinomio

la suma (resta) de tres monomios. En general, un polinomio con-
siste de la suma o resta de muchos monomios. Suele representarse

mediante
() = ap2™ + ap_12™ P+ -+ ag2® + ayx + ay,
donde:

* Qp,dpn_1,---,0a1,agson los coeficientes del polinomio. Ade-

mas, ag se denomina término independiente.
* x es la variable o indeterminada.

* nes el grado del polinomio, el valor del exponente mas alto

del polinomio.
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» Se dice que z( es una raiz, solucion o cero del polinomio

p(z) sip(zo) = 0.

Las raices del polinomio p(x) se obtienen resolviendo la ecua-
cion p(z) = 0, teniendo en cuenta que un polinomio de grado n
puede tener como mucho 7 raices'. Ademas, si zg, 71, . . ., T, son

raices del polinomio p(z) entonces,

Ejemplo 2.4

Dados los polinomios

p(z) = 2* — 32+ 2,

1, o, 1
q(a‘:)——ix +at - o

indicar sus grados, coeficientes y términos independientes.

Solucién: Se tiene que p(x) = z* — 3z + 2 es un polinomio de
grado 2, con coeficientes 1, -3 y 2. El término independiente es 2.
El polinomio ¢(z) = —32° + 2% — L tiene grado 3. Sus co-

eficientes son —1, 1, —1 y 0. El término independiente es 0.

'Estas raices pueden ser reales o complejas, aunque estas tltimas no seran

estudiadas en este texto.
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Puesto que p(1) = 0y p(2) = 0, se tiene que 1 y 2 son raices

o ceros del polinomio p(x).

Por otro lado, puesto que ¢(0) = 0y ¢(1) = 0 se tiene que 0 y

1 son raices, soluciones o ceros del polinomio ¢(z).

Es interesante sefialar que si el término independiente de un

polinomio es cero, entonces 0 es siempre raiz del mismo. O

2.1.1 Operaciones con polinomios

La suma de dos polinomios es otro polinomio que se obtiene
sumando todos los términos de ambos polinomios reduciendo a
continuacion los términos semejantes. Restar dos polinomios con-
siste en sumar al primero el opuesto del segundo. Para multiplicar
dos polinomios se multiplica cada término del primero por cada
término del segundo, y después se reducen los términos semejan-

tes.

Las expresiones que se muestran en el siguiente cuadro reciben
el nombre de productos notables y son habituales cuando se reali-

zan operaciones con expresiones algebraicas y polindmicas.

52 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA



EMILIO GOMEZ DENIZ Y CHRISTIAN GONZALEZ MARTEL

,—[Propiedades (Productos notables)} \
Cuadrado de una suma: (a+b)? = a* + 2ab + b*.
Cuadrado de una diferencia: (a —b)* = a* — 2ab + b

Suma por diferencia: (a + b)(a — b) = a* — b*.

Ejemplo 2.5

Calcular y simplificar las siguientes expresiones algebraicas:
a) (2z —1)2

b) (z—3vx)(z +3x).

c) (zy+7)>
2 1 1
d) (22 —-3%)" - <2x— 5) <2$+§>.
Solucion:

a) Esta expresion corresponde al cuadrado de una diferencia.

Luego,

(2r—1)*=(22)* —=2-(22) - 1+ 1> =42 — 4w + 1.
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b) Se trata de una suma por una diferencia. Luego,

(z — 3vx) (7 + 3vx) = 2% — (3v/1)* = 2% — 9z.

c) Se trata del cuadrado de una suma. En este caso se tiene,

(zy +7)* = (2y)* +2- (2y) - 7+ 7% = 2%* + 14y + 49.

d) Setrata de la diferencia entre el cuadrado de una diferenciay

una suma por diferencia. El cuadrado de la diferencia viene

dado por,
2 2
27 — = :(23:)2—2(21’)1—1— -
3 3
4 1
P
3 +9’

mientras que la suma por diferencia resulta,

<2w - %) (23: + %) = (22) - (%)2 = da® — %

de donde restando la primera expresion menos la segunda

resulta,

4z 1 1 —120+42  2(1-6
s T L g 12 21-67)
39 9 9 9
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2.1.2 Descomposicion factorial de po-

linomios

Descomponer un polinomio en factores es expresarlo en forma
de producto de polinomios mas sencillos.

Asi, siay,as,...,a, sonraices o ceros del polinomio
p(T) = cpx™ 4 Cp1™ -+ 11+ o,
el polinomio puede descomponerse como
p() =cp(z —an)(x —ap—1) ... (x —ay).

La primera operacion de descomposicion de una expresion que
debe anteponerse a otras consiste en sacar factor comun a uno o
todos los factores comunes que aparecen en todos los sumandos
de la expresion, siempre que sea posible. En el siguiente ejemplo

se muestra este mecanismo.

Ejemplo 2.6

Extraer factor comun en las siguientes expresiones algebraicas.
a) 3x® — 2% + 5.
b) 22y + zy?.

c) 2%y — dxy?.
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d) zy — zy + xt — zt.

Solucion: Se procede como se detalla a continuacion.

a) En esta expresion se observa que la variable x aparece en
todos los sumandos. Luego, podemos escribir 32° — 222 +

Sz = x(3x? — 2x +5).

b) Ahora se tiene que el factor que se repite en todos los su-

mandos es zy, luego

22%y + xy® = 2y(2z + y).

c) El factor que se repite ahora es 2zy, luego 2%y — 4xy? =
2xy(z — 2y).
d) En este caso se repite el factor y, por un lado, y por otro lado

se repite el factor £. Tenemos, pues,

ry—zy+at—zt=ylr—z2)+tlx—2) = (y+1t)(z—2).

O
En otro caso, podemos descomponer un polinomio conocien-

do aquéllos valores que hagan que el polinomio tome el valor cero.

56 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA



EMILIO GOMEZ DENIZ Y CHRISTIAN GONZALEZ MARTEL

Estos valores se encuentran entre los divisores del término inde-
pendiente, mas faciles de obtener cuando sean nimeros enteros.
Por tanto habra que descomponer en factores primos el término
independiente del polinomio, hallar sus divisores enteros y probar
exclusivamente con estos utilizando la regla de Ruftini. Esta regla
es una potente herramienta que permite dividir cualquier polino-
mio por un binomio de la forma x — a, donde a es un nimero real.
Luego, lo que procede hacer es probar con los divisores del tér-
mino independiente que hagan que el resto de la division sea cero.

Los pasos a seguir se muestran a continuacion.

* Se trazan dos lineas, una horizontal y otra vertical, como
se muestra en la Tabla 2.1, escribiéndose los coeficientes
de p(z) = apa™ + a, 12" ' + -+ + a1z + ag en la parte
superior, ordenados de mayor a menor grado y sin omitir los

términos nulos.

+ Se escribe el valor con el que se desea probar en el lado
izquierdo y el primer coeficiente, a,, en el renglon inferior

del mismo.
* Se multiplica a,, por a y se escribe debajo de a,,_1.

» Se suman los dos valores obtenidos en la misma columna.
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* Serepite el proceso hasta llegar al final. Si el Gltimo término
(resto de la division) es cero, indicard que el polinomio di-
videndo es divisible por el polinomio divisor y, por tanto,
p(z) = (x — a) - ¢(x), siendo ¢(z) el polinomio cociente.
Recuérdese que en toda division se verifica que el dividen-
do es igual al divisor por el cociente mas el resto (cero en

este caso).

* A continuacion se vuelve a aplicar la regla de Ruffini al po-
linomio ¢(x), continuando de manera sucesiva hasta tener,

si se puede, el polinomio inicial completamente factorizado.

Tabla 2.1: Regla de Ruffini.

(07% Ap—1 Ap—2 ... ao

a a-a, (ap_1+a-a,)-a

Ay, Qp_1+a-ay,

Coeficientes del cociente Resto = 0

Obsérvese que el valor del polinomio para x = a es cero, luego
este valor es solucion de la ecuacion p(x) = 0, como tendremos

ocasion de abordar en el capitulo 3 de este texto.
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Ejemplo 2.7

Descomponer factorialmente los polinomios:
a) p(z) = 22° — 18z.
b) p(z) = 3z* — 92% + 6z.

c¢) p(z) = z* — T2 — 322 + 55z + 50.

Solucion: Se procede como se detalla a continuacion.

a) En este caso resulta sencillo obtener,

p(z) = 22° — 18z = 2z(2® — 9) = 2x(z + 3)(z — 3).

Obsérvese que la expresion 22 — 9 es una diferencia de cua-
drados que puede expresarse como la suma por diferencia; esto

es, 22 — 9 = (z + 3)(z — 3).
b) Ahora se tiene,

3zt — 92% + 67 = 3x(2® — 3z + 2).

Luego, descomponiendo por la Regla de Ruffini (los divisores
enteros del término independiente 2 son +1y 4-2) el polinomio

23 — 3z + 2, resulta la descomposicion que se muestra en la

Tabla 2.2.
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Tabla 2.2: Descomposicion factorial del polinomio x® — 3x + 2.

1 0 3 2
1 1 1 2
1 1 -2 0
1 1 2
1 2 0
-2 -2
] 1 0

En definitiva,

3zt — 92% + 62 = 3w(2® — 3z + 2)
=3z(x —1)(z — 1) (z+2)

=3x(z — 1)*(z + 2).

¢) El término independiente 50 tiene como divisores enteros +1,
+2, +5, £10, £25 y £50. Como el polinomio a descomponer
tiene grado 4, s6lo cuatro de estos divisores podran ser candi-
datos a formar parte de la descomposicion. Aplicando la Regla
de Ruffini y probando con los divisores anteriores (usualmente
se empieza con los mas pequefios) se tiene la descomposicion

que se muestra a continuacion de la Tabla 2.3.
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Tabla 2.3: Descomposicion factorial del polinomio p(x) = x? —

723 — 322 + 552 + 50.

5 5 -15 =50
1 -3 -10 0
-2 -2 10
1 -5 0
5 5
o 1 0

p(z) = (x+1)(x—5)(z+2)(x—5) = (z+1)(x+2)(z—5)*.
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62

Ejercicios propuestos tipo test

. Dada la expresion algebraica 2%y — 2xy? + 1, entonces su

valor numérico parax = —1,y = 1 es:

a) —4. b) 4. ¢) 0.

. Dada la expresion algebraica 2%y — 2xy* + 1, entonces su

valor numérico parax = 1,y = —1 es:

a) 2. b) 0. ¢) —2.

. Dada la expresion algebraica 323y — %ny — 2, entonces su

valor numérico paraz = 1,y = —1 es:
29 3 29
- b) —. —.
9 3 )3 ‘) 3

. Dada la expresion algebraica 3z%y — f2y* — 2, entonces su

valor numérico parax = 0,y = % es:

29
a) —. b) —2. c) 2.
8
. El valor numéricoen z = —1,y = % para la expresion

) 2 3
LY Ty
T+y
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el ©

a) b) —=

5 c) 1.

6. Elresultado de la operacion (22° — 322 +1)+ (523 + 22— 3)
es:

a) Tx3 — 3z + 2z — 2.
b) Txd — 3z 4 2z + 2.
¢) Twd — 3x? — 2z — 2.

7. Elresultado de la operacion (22° — 322 +1) — (52 +2x — 3)
es:

a) —3z% — 32% — 2z — 4.
b) —32% — 32? — 2z + 4.

¢) —32% + 32% — 2z + 4.

8. El resultado de la operacion

2
(52° +Tx +2) — (8x — 3) + (4952 — §)
es:

13
a) 9v* +x + —

3
13
b) 9% — 2 — —.
) 9z° —x 3
13
C) 91’2—1'—}—?
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9. Elresultado de la operacion (22° — 322 + 1) (52 + 22 — 3)

es:
a) 102% — 152° + 42* + 723 + 92% + 22 — 3.
b) 102% — 152° + 4a* — 723 + 92% — 22 — 3.

c) 1028 — 1525 + 4a* — 723 + 922 + 22 — 3.

10. El resultado de la operacion (5z% 4 Tz + 2) (422 — 2) es:

14 14 4

20z + 2823 + —2? + —x — —.
a) 20x* + x+3x+3x 3
14 14 4

DY 204t 4 9845 4 —og? 22 2
)Ox—|—8x+3x Bm 3
14 18 4

20z* + 2823 + —a? — —x — —.
c) 202" + IL’+3 3773

11. Al extraer factor comun en la expresion z° — 322 + 2z re-

sulta:
a) z(z? — 3z + 2).
b) 2x(x? — 3z +1).

¢) x(x® + 3z + 2)

. 3
12. Al extraer factor comun en la expresion 2y2x> + 5x2y3 —xy

resulta:
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3
a) zy (23/:62 + 5xy2 + 1).

b) xy (2y3:2 + gq:gf — 1).
2(0.2, 3
c) xy” | 2z + =Y 1).

13. Elresultado de (22 — 1)? — (z — v/2)(z + V/2) es:

a) z* + 3.
b) x? —4x + 3.

c) 3z* —4dx + 3.

2
14. El resultado de (g — 3) — (3; + 1) (37% — 1) es:

a) —2z%— 3z + 10. b) —a? — 4.

c) —2x? — 8.
15. El resultado de (3z — 2)* — (3x + 2)% es:
a) —24x. b) 24. c) 18z% — 24.

16. El resultado de (3z — 2)% + (32 + 2)* es:
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17.

18.

19.

20.

21.

66

a) 18z% + 24z + 8. b) —24.
c) 2(9z% +4).
Al desarrollar (z — 3)* + (z + 1) (z — 1), se obtiene:

a) 4z*—12z+1. b) 22?4+ 62 +8. ¢) 22> —6x+8.

1 1
Al desarrollar (sz + 5) (3x2 — 5) — (3x2 + 1)2, se ob-

tiene:

El resultado de (3zy — z)? — (zy + z)(zy — z) es:

a) 222(4y* — 3y — 1).
b) 2z(4xy? — 3wy — 1).

c) 2z%(4y* — 3y +1).

Al desarrollar (2:1:3 + E) (21‘3 — z), se obtiene:

2 2
2 2 2
a) 42° + % b) 45 — % c) 4x6—x4—|—%.

Al descomponer factorialmente el polinomio

ot — 423 + 522 — 2x
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resulta:
a) z(z —1)*(z + 2).
b) z(z—1)*(x —2).

¢) 3(x—1)%(x —2).

22. Al descomponer factorialmente el polinomio 2z* + 323 — z

se obtiene:
a) 2x(x + 1)%(z — 2).
b) 2x(x+1)° (x — %)
¢) x(x —1)*(z — 2).
23. La descomposicion factorial del polinomio
at — 2 - 32 + x4+ 2
viene dada por:
a) (22 +1)3(x — 2).
b) (2 —1)(z +1)(z +2).

¢) (> —=1)(z+1)(z —2).
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24. La descomposicion factorial del polinomio

1
3zt — §x3+ —3$2+§

)

1
4

esta dada por:

0) 3z —1)? (x _ %) <x+

e~ =

25. Al descomponer factorialmente el polinomio

9t 13
x5—i+7x3——x2+6x—2

2 2

resulta:
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Las ecuaciones se utilizan en la mayoria de las disciplinas
cientificas para calcular y para enunciar leyes, permitiendo expre-
sar relaciones entre distintas variables. Por ejemplo, en Economia
el punto de equilibrio de mercado entre la oferta y la demanda
de un bien es la solucidn, si existe, de una ecuacion; la canti-
dad que maximiza la funcién de beneficios es también solucion
de una ecuacién, mientras que el célculo de los intervalos en que
dicha funcién es creciente o decreciente se obtiene resolviendo

una inecuacion, etc.

La introduccion de la notacion simbolica, que permite un tra-
tamiento mas sencillo y comodo de las ecuaciones, se le atribuye a
Viete, matematico francés y uno de los precursores del algebra mo-
derna. Fue el primero en representar los parametros de una ecua-

cion mediante letras, iniciando el camino de una nueva etapa en
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las ciencias en la que también Descartes contribuye de forma nota-
ble al desarrollo de dicha notacion. La ecuacion de segundo grado
y su solucion tiene origen muy antiguo. Se conocieron algoritmos
para resolverla en la antigua Babilonia y Egipto y, posteriormente,
en Grecia fue estudiada por el matematico Diofanto de Alejandria.

En este capitulo se estudian las ecuaciones de primer y segun-
do grado, las ecuaciones bicuadradas, las ecuaciones de grado su-
perior a dos, las inecuaciones de primer grado y grado mayor que

dos asi como los sistemas de ecuaciones lineales.

3.1 Ecuaciones

Se denomina ecuacion a cualquier igualdad que relaciona ntimeros
y letras que representan cantidades desconocidas llamadas incog-
nitas y que se desean calcular.

Generalmente las incognitas se representan con las Gltimas le-
tras del alfabeto en mintsculas. Grado de la ecuacion es el mayor

exponente que afecta a la incognita. Asi:

* 5r — 8 = 3 es una ecuacion de primer grado cuya incognita

€S I.

e 2t — 7t + 4 = 0 es una ecuacion de segundo grado cuya

incognita es ¢.

72 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA



EMILIO GOMEZ DENIZ Y CHRISTIAN GONZALEZ MARTEL

e 52% — 322 — 42 = —5 es una ecuacion de sexto grado cuya

incognita es x.

El objetivo es calcular las soluciones, denominadas también
raices, que son los valores de la incognita que hace cierta la ecua-
cion. Una ecuacion puede tener tantas soluciones reales como in-

dique su grado.

3.1.1 Ecuaciones de primer grado

Una ecuacion de primer grado se expresa de la forma az + b = 0,
en la que a y b son nimeros reales con a # 0.

Para resolverla (calcular el valor de la incognita x) se reali-
zan operaciones hasta obtener una ecuacion equivalente en la que
pueda aislarse la incognita para obtener la solucion.

En algunas ocasiones cuando se procede a resolver una ecua-
cion se llegan a expresiones absurdas, como por ejemplo 0 = 1.
Esto ocurre porque la ecuacion no tiene solucion (se habla enton-
ces de que es incompatible). En otras ocasiones, si al resolver una
ecuacion se llega a una identidad, por ejemplo 2 = 2, entonces es
que la ecuacion tiene infinitas soluciones (se dice en este caso que

es compatible indeterminada).
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Ejemplo 3.1

Resolver la ecuacion 3z + 4 = 16.

Solucion: Si sumamos a ambos lados de la igualdad la cantidad

—4, nos queda:

30 +4—4=16-4,

3z = 12.

Finalmente, dividiendo ahora por 3 a ambos lados de la igual-

dad resulta:

327_12
3 3’
T = 4.

Puede ahora comprobarse que la solucion obtenida es correcta
llevandola a la ecuacion original y observando que la igualdad se
convierte en una identidad, esto es dos cantidades iguales a ambos
lados del signo de igualdad. En efecto, sustituyendo x por 4 en la

ecuacion 3z + 4 = 16, resulta 3 - 4 + 4 = 16. O

Ejemplo 3.2
Resolver la ecuacion 3(x + 2) — 2(x — 1) = 4z + 5.
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Solucion: Quitando paréntesis nos queda:

3r+6—2xr+2=4x + 5,

3r—2rx —4xr=5—6—2,

-3z = —3,
-3
rT=—,
-3
rz=1
O
Ejemplo 3.3
4
Resolver la ecuacion g —5= _S(xT—l—) + 3.

Solucion: Multiplicando a ambos lados de la igualdad por 4 (que

es el minimo comun multiplo, m.c.m., de 2 y 4) resulta:
20 — 20 = =3(z +4) + 12,
de donde se obtiene, después de quitar paréntesis:

2¢ + 3xr = —12 4+ 12 4+ 20,

5z = 20,
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Ejemplo 3.4

. . 7 1 3
Hallar la solucién de la ecuacion 5x + 5(96 -1) - 6= 5(35 +2).

Solucion: Elm.c.m. es 6, luego:

30z +21(x — 1) =1 =9(x + 2),
30z +21x — 21 — 1 =92 4 18,

30x + 21z — 92 = 18 + 21 + 1,

422 = 40,
40 20
T T ar
O
Ejemplo 3.5
r—1 2x—3
Resolver 1 10 — =4.
esolver la ecuacién — 5
Solucion: Elm.c.m. es 18, luego:
b —1—9(2z —3) =72,
br —1— 18z 427 =172,
br —18x =T2+1— 27,
—13z = 46,
46
13
(Il
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Ejemplo 3.6
rT—5 1= or + 2

Resolver la ecuacion 2(z — 3) — 5 1

Solucion: El minimo comin multiplo es 12, luego tenemos:

24(x —3) —6(z —5) — 12 =5z + 2,

24r — 6x —br =24+ 72— 30 + 12,

13z = 56,
. 56
137

Ejemplo 3.7

Resolver las ecuaciones:

)x—l T+ 2 x+x+1
a - ==+ — .
3 15 5 15

b) 3(x+1)—2(x—3)=x+09.

Solucion:
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a) El m.c.m. es 15, luego:

5(z—1)— (z+2) =3z +x+ 15,
52 —5—2—2=3z+1z+ 15,

0z = 22.

Luego, esta ecuacion es incompatible, esto es, no tiene solu-
cion, puesto que no existe ningin nimero que multiplicado

por 0 resulte 22.
b) En este caso tenemos,
3r+3—-2x+6=x+9,

Oz =0.

Luego esta ecuacion tiene infinitas soluciones. El lector pue-
de comprobar como, sustituyendo en la ecuacion dada, la
incognita x por cualquier numero real la ecuacion se con-

vierte en una identidad.

Ejemplo 3.8

3r+1 r—1
+ .

Resolver la ecuacion 4(z + 1) — 5 3
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Solucion: El minimo comin multiplo es 6, luego tenemos:

24(x+1) — (Br+ 1)+ 12 =2(x — 1),
2dx +24—-3rx —1+12 =22 — 2,

2dr —3r —2x = —-2—-24+1—12,

192 = —37,
37
T =——.
19
O
Ejemplo 3.9
., 10 2
Resolver la ecuacion - =0
r+3 zx+1

Soluciéon: Elm.c.m.dez+3yx+1esel producto (z+3)(z+1),

luego:

10(x +1) — 2(x +3) =0,
10z + 10 — 22 — 6 = 0,

8z +4=0,

4 1
T=—==—=.
8 2
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3.1.2 Ecuaciones de segundo grado

Una ecuacién de segundo grado se expresa de la forma:
ar? +br 4+ ¢ =0,

donde a, by ¢ son constantes y a # 0.

Para resolverla utilizamos la formula:

B —b 4+ /b?% — 4ac

o (3.1)

T

La expresion b* — 4ac > 0 recibe el nombre de discriminante,
de cuyo valor depende el nimero de soluciones de la ecuacion.

Asi, si:

» b2 — 4ac > 0, existen dos soluciones distintas.

* b2 — 4ac = 0, existe una sola solucion (doble).

* b?> — 4ac < 0, no existe solucion.

Ejemplo 3.10

Hallar las soluciones de la ecuacion 22 + 2z — 3 = 0.
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Solucion: Se trata de una ecuacion de segundo grado en la que

a=1, b=2, c¢= —3. Utilizando la formula (3.1) se tiene:

—24./22-4-1-(-3) _ —2+4/16

xr =

2-1 2
—2+4
2+ =L
244
2 -2-4 -6 5
2 2 7
Luego, las dos soluciones son x; = 1, x5 = —3. O

Ejemplo 3.11

Resolver la ecuacion —2z2 — z + 1 = 0.

Solucion: Se trata de una ecuacion de segundo grado en la que
a = —2,b= —1, c = 1. Utilizando de nuevo la expresion (3.1)

se tiene:

:1i\/(—1)2—4-(—2)-1: 1++9

’ 2. (-2) 4
1+3
ot
1+3 )
- 1-3 -2 1
—4 -4 2
Luego, las dos soluciones son z; = —1, x5 = % O
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Ejemplo 3.12

Resolver la ecuacion 222 — 48 = —10z.

Solucion: Como en los ejemplos anteriores, se trata de una ecua-
cion de segundo grado pero que aparece desordenada. En primer
lugar la ordenamos, quedando 2x? + 10z — 48 = 0. Ahora obser-
vemos que podemos dividir toda la ecuacion por 2, de modo que
quede escrita de una forma mas sencilla. Luego la ecuacion que
debemos resolver es 2% + 5z — 24 = 0. Los coeficientes de la
ecuacionsona = 1,b =5, c = —24.

Utilizando de nuevo la expresion (3.1) tenemos:

 —b+4/52—4-1-(-24) 54121

xr = =

2-1 2
-5+ 11
T+ -3
=5+ 11
2 -5—11 16 g
2 2 7
Luego, las dos soluciones son z; = 3, x5 = —8. O
Ejemplo 3.13
Resolver las ecuaciones:
a) —7z? = 0. b) —4z* +100 = 0.
c) ¥? — 5z = 0. d) y = 32% 4 2z + 1.
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Solucion: Las tres primeras ecuaciones cuadraticas no son com-
pletas, sino del tipo az? = 0, az?® + ¢ = 0, o bien ax? + bx = 0,
respectivamente. En todos estos casos las resolucion puede llevar-
se a cabo utilizando, como en los ejemplos anteriores, la expresion
(3.1), aunque resulta mas sencillo proceder como se muestra a con-

tinuacion.

a) Dividiendo por —7 a ambos lados de la igualdad tenemos
que la solucion resulta 22 = % =0, de donde z = +/0 =

0. Luego se obtiene una solucion doble.

Toda ecuacion del tipo az? = 0 siempre tiene la solucion

= (0 doble.

b) En este caso se tiene:

—42? = —100,
100
2
== =25
xXr 4 s

T = V25 = £5.

Toda ecuacion cuadratica del tipo ax? + ¢ = 0 tiene como

solucion » = £,/—2, siempre que —c/a sea positivo.
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c¢) En este caso, sacando factor comun a la incognita x, que se

repite en ambos sumandos, tenemos:
2 — 5z = x(r — 5) = 0.
De aqui se deduce:

x =0,

x—5=0, luegoz =>5.

Luego las dos soluciones de esta ecuacion son z; = 0, x5 =

D.

Toda ecuacion del tipo ax? + bx = 0 tiene como soluciones
b

a”

r=0yx=—

d) En este caso tenemos,

2412 —244/-8
B 6 n 6 ’

i

de donde se deduce que la ecuacion carece de soluciones ya

que el discriminante de la misma es negativo.
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3.1.3 Ecuaciones de grado superior a

dos

Empezamos esta seccion estudiando un tipo particular de ecuacion
polinomica de grado mayor que dos. Lo constituye las ecuaciones

bicuadradas, que adoptan la forma
az* + bz’ + ¢ =0,

donde a, b, ¢ constantes y a # 0.

Esta ecuacion puede tener hasta cuatro soluciones reales. Ha-
ciendo el cambio de variable y = z? se obtiene la ecuacion de
segundo grado ay?® + by + ¢ = 0, que puede resolverse aplicando
la expresion (3.1), esto es

—b+ Vb2 —4dac
y= :
2a

Finalmente se deshace el cambio haciendo » = £, /y.

Ejemplo 3.14

Resolver la ecuacion z* — 622 + 5 = 0.

Solucién: Haciendo el cambio de variable y = 22 la ecuacion

puede reescribirse como y?> — 6y + 5 = 0, cuya solucién viene
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dada por:

_6+4/36—-20 6+4 Y1 =9,
= 5 ==

Yy
ygzl.

Deshaciendo el cambio de variable se obtienen las soluciones,
r =45, r ==+l O

Para resolver una ecuacion de grado superior a dos del tipo
p(z) = 0, en el que p(z) es un polinomio de grado mayor que
dos, aplicamos la regla de Ruffini con el objeto de obtener las po-
sibles soluciones enteras. Estas soluciones se encuentran entre los
divisores del término independiente de la ecuacion.

El procedimiento a seguir es el siguiente. Si a es un divisor del
término independiente del polinomio p(z) entonces el resto de la
division de p(z) entre x — a es cero y = a es una raiz o cero de
p(z).

En los siguientes ejemplos se muestra el procedimiento.

Ejemplo 3.15

Resolver la ecuacion polinémica 2% — 723 — 322 + 552 + 50 = 0.

Solucion: Aplicando la regla de Ruffini se obtiene el desarrollo
correspondiente que se muestra en la Tabla 3.1. Luego las solucio-
nes o raices del polinomio son x = —1, x = 5 que sale dos veces

yr=—2. a
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Tabla 3.1: Regla de Ruffini para el Ejemplo 3.15

I 7 -3 55 50
Ol a8 -5 50
I 8 5 50 0
5 5 _15 50
I 3 -10 0
2l 2 10
1 50
5 5
1o

El ejemplo que viene a continuacion muestra una ecuacion po-
linébmica en el que el polinomio carece de término independiente.
Por tanto, x = 0 es siempre solucion de un polinomio con esta

caracteristica.

Ejemplo 3.16

Resolver la ecuacion polindmica z° + 2t — 1123 + 22 — 122 = 0.

Solucion: Obsérvese que

2® 42t —112* + 2% — 122 = z(2* + 2% — 112® + v — 12),
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luego, x = 0 es una solucidon. Ahora, aplicando la regla de Ruffini
al polinimio 2+ 3 — 1122 +x — 12 se tiene el desarrollo mostrado
en la Tabla 3.2. El polinomio final resulta 2 + 1, que no tiene
raices reales. Luego las soluciones o raices del polinomio inicial

sonr =0,z =3yz=—4. O

Tabla 3.2: Regla de Ruffini para el Ejemplo 3.16

11 11 1 -12
3 312 3 12
1 4 1 4 0
4 4 0 -4
1 0 1 0

Ejemplo 3.17

Resolver la ecuacion polindmica x* — 322 + 62 — 4 = 0.

Solucion: Aplicando directamente la regla de Ruffini tenemos
el desarrollo que se muestra en la Tabla 3.3. El polinomio final
resulta 22 — 2. Resolvemos ahora la ecuacion 22 — 2 = 0, cuyas
raices son £+/2. Luego las soluciones o raices de la ecuacién dada

sonxy =1, 10 =2, 13 = =2y 24 = V2. 0
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Tabla 3.3: Regla de Ruffini para el Ejemplo 3.17

1 1 2 2
1 2 2 4
2 2 0 4
1 0 2 0

3.2 Incecuaciones

Son desigualdades en las que aparecen letras y niimeros con
las operaciones usuales. Las letras son las variables o incognitas de
las inecuaciones. La desigualdad se reconoce por aparecer algunos

de los siguientes simbolos:
* < se lee menor que,
* > se lee mayor que,
» < se lee menor o igual que,
» > se lee mayor o igual que.

Resolver una inecuacion es averiguar el conjunto de valores

de x que hacen que la desigualdad se sostenga.
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Las inecuaciones se clasifican, al igual que las ecuaciones,
atendiendo al nimero de incognitas y al grado de la expresion
algebraica que aparece en ellas, aunque aqui sélo se trataran las
inecuaciones de primer y segundo grado y que constan solamente
de una incognita.

Para resolverla se siguen procedimientos similares a los uti-
lizados en las ecuaciones pero teniendo en cuenta una cuestion
importante, si se multiplica o divide a ambos lados del simbolo
de desigualdad de una inecuacion por un nimero negativo la des-

igualdad cambia de sentido.

Siazxz < bentonces — ax > —b

Siaz > bentonces — axr < —b

3.2.1 Inecuaciones de primer grado

Una inecuacion de primer grado es una expresion que aparece

escrita de alguna de las formas siguientes:

ar+b<0, ar+b>0, ar+06<0, axr+b>0.

Ejemplo 3.18

Resolver la inecuacion 15 — 3z < 3.
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Solucion: Procediendo como en el caso de las ecuaciones tene-

mos:

-3z < —12,
ps 12
- _37
T >4

Obsérvese que al dividir por —3 a ambos lados de la desigual-
dad el sentido de ésta cambia. Luego, el conjunto de soluciones
de la inecuacién lo constituye todos los nimeros reales mayores
o iguales que 4. Este conjunto de soluciones se puede expresar

también como el intervalo [4, +00). O

Ejemplo 3.19

Resolver la inecuacion (z + 3)(z + 2) > 2% — 1.

Solucion: Haciendo las operaciones oportunas se obtiene:

24+ 5046 > 2% —1,

Sr > —7,
- 7
x> —-.
5

Luego, el conjunto de soluciones de la inecuacion lo cons-

tituye todos los nimeros reales mayores que —%. Este conjunto
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de soluciones se puede expresar también mediante el intervalo

(=7/5,+00). 0

Ejemplo 3.20

. ., r—3 2z + 1 T r+1
Resolver la inecuacion — .

2 5 107 4

Solucion: El minimo comun multiplo es 20. Luego:

10(x —3) —4(2x +1) < 2x+5(x+1),
10 —8x —2x —5x < 5+ 30+14,

—dxr < 39,

v s -2
5

Obsérvese que al dividir por —5 a ambos lados de la desigual-
dad el sentido de ésta cambia. Luego, el conjunto de soluciones de
la inecuacion lo constituye todos los nimeros reales mayores que
—39/5. Este conjunto de soluciones se puede expresar también

como el intervalo (—39/5, +00). O

3.2.2 Inecuaciones de segundo grado

Una inecuacion polinomica de grado superior a uno es una expre-

sion que aparece escrita de alguna de las formas siguientes:

p(r) <0, p(x) >0, p(x) <0, p(z)=0,

donde p(x) es un polinomio de grado mayor que uno.
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Para resolver una inecuacion de grado superior a uno repre-
sentamos en la recta real las raices del polinomio p(x) (podran
obtenerse utilizando la regla de Ruffini) que dividiran la recta real
en intervalos. Tomamos ahora valores en cada uno de esos interva-
los, sustituyéndolos en el polinomio p(z), de modo que evaluamos
de esta manera el signo que toma en cada uno de esos intervalos.
Finalmente, la solucion estara en aquéllos intervalos que verifican
la condicion dada por la inecuacion. En la practica bastara con
evaluar el signo en uno solo de los intervalos de manera que los
intervalos consecutivos alternan el signo si la raiz salié un nimero
impar de veces. Si la raiz salié un niumero par de veces los inter-
valos consecutivos a cada lado de dicha raiz conservan el mismo
signo. Es interesante notar que no hay que olvidar considerar los

extremos del intervalo en el caso de que la inecuacion contenga

los signos < 6 >.

Ejemplo 3.21

Resolver la inecuacion 2x2 > —3 + Tx.

Solucion:  La inecuacion dada es equivalente a la inecuacion

222 — 7z + 3 > 0. Las raices del polinomio 222 — 7z + 3 son

T1 = %y oy = 3. Representamos estos valores en la recta real y
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evaluamos el signo del polinomio anterior en cada uno de los inter-
valos, obteniendo la grafica de la Figura 3.1. Por ejemplo, en este
caso es sencillo comprobar que el signo que toma el polinomio en
0 € (—o0,1/2) es positivo. Como la inecuacion trata de calcu-
lar los valores que hacen mayor que cero la expresion, tendremos
que elegir aquellos intervalos donde la evaluacion del signo no ha-
ya dado negativa o cero, por lo que la soluciéon correspondera al

intervalo (—oo, 1) U (3, +00).

A
~

wl= +

Figura 3.1: Grafico correspondiente al ejemplo 3.21

Téngase en cuenta que el polinomio p(x) corresponde a una
parabola convexa! (el coeficiente de 2 es positivo) que corta al eje
OXenzx = % y x5 = 3. En definitiva tenemos que el polinomio

es positivo en (—oo, 1) U (3, +00) y negativo en (3, 3). O

Ejemplo 3.22

Resolver la inecuacion 3z2 — Tx < —2.

'Este tipo de funciones se estudiara en el Capitulo 4.
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Solucién: Reescribimos la inecuacion como 322 — Tz + 2 < 0.
Las soluciones de la ecuacion 322 — 7o +2 = 0sonz; = 1/3y
xro = 2. Representamos estos valores en la recta real y evaluamos
el signo en cada uno de los intervalos, obteniendo la grafica de la

Figura 3.2.

ol +

Figura 3.2: Gréfico del ejemplo 3.22

Como la inecuacion trata de calcular los valores que hacen
menor que cero (negativo) la expresion, se tiene que la solucion

correspondera al intervalo (3, 2). O

Ejemplo 3.23

Resolver la inecuacion z* — 722 > 20z + 12 — 223,

Solucion: Primeramente ordenamos la inecuacion escribiéndola
como z* + 223 — Tx? — 20 — 12 > 0. Calculamos las raices
del polinomio 2% + 22% — 722 — 202 — 12 mediante la regla de
Ruffini, obteniéndose x; = —2 (doble), z; = —1, x3 = 3.

Representamos estos valores en la recta real y evaluamos el signo
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en cada uno de los intervalos, obteniendo la grafica de la Figura

3.3.

|

A
~

Figura 3.3: Grafico del ejemplo 3.23

Obérvese que, puesto que la raiz x; = —2 es doble, la misma
no cambia el signo del polinomio. Como la inecuacion trata de cal-
cular los valores que hacen mayor o igual que cero la expresion,
tendremos que elegir aquellos intervalos donde la evaluacion del
signo no haya dado negativa, por lo que la solucion sera el inter-

valo (—oo, —1] U [3, 4+00). O

3.3 Sistemas de ecuaciones

Estudiamos en esta seccion los sistemas de ecuaciones lineales con
dos incognitas.
Un sistema de dos ecuaciones lineales con dos incognitas se

expresa de la forma:

ax + by = m,

cx + dy = n.
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en donde a, b, ¢, d, m, n son nameros reales, siendo x,y las
incognitas. Para su resolucion utilizaremos indistintamente el mé-
todo de reduccion, sustitucion o igualacion. Veamos un ejemplo

de cada caso.

Ejemplo 3.24

Resolver el sistema de ecuaciones

r+y=1,

20 — 3y = 8.

Solucion: Procederemos por reduccion. Para ello multiplicamos
la primera ecuacion por 3, con el objetivo de que una de las incog-
nitas en ambas ecuaciones tenga el mismo coeficiente pero con
signo diferente.

9z 4 3y = 3,

2z — 3y = 8.
Sumando ahora ambas ecuaciones tenemos la ecuacion 11z = 11,
de donde resulta z = 1.

Sustituyendo ahora este valor en cualquiera de las dos ecuacio-

nes, por ejemplo en la primera, podemos calcular la otra incognita

de la manera siguiente:
3-1+y=1;, y=1-3=-2.

En definitiva, la solucion del sistemaesz =1, y = —2. O
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Ejemplo 3.25

Resolver el sistema de ecuaciones

do —y = —1,

6z + 2y = 9.

Solucion: En este caso resolvemos por igualacion. Para ello des-
pejamos una de las incognitas en ambas ecuaciones e igualamos.
Asi, por ejemplo, despejando la incognita y de ambas ecuaciones

resulta:

y =4z + 1,

Igualando las expresiones de la derecha tenemos la ecuacion
(s6lo en la incognita x):

— 6z

9
4 1=
T 4+ 5

cuya solucion resulta © = 1/2.
Sustituyendo ahora este valor en cualquiera de las dos expre-
siones en la que aparece y despejada (por ejemplo, la primera)

podemos obtener la incognita y como sigue:
1
=4.-—+1=3.

En definitiva, la soluciéones z = 1/2, y = 3. O
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Ejemplo 3.26

Resolver el sistema de ecuaciones

r+y=1,

6x — 3y = 0.

Solucion: En este caso procederemos por el método de sustitu-
cion. Para ello despejamos una de las incognitas en alguna de las
ecuaciones y sustituimos en la otra. Asi, por ejemplo, despejando
la incognita y de la primera ecuacion resulta y = 1 — x, que susti-

tuida en la otra ecuacion proporciona la ecuacion en x siguiente:
3 1
6$—3(1—1‘):O; 9z = 3, [B=§:§

Sustituyendo ahora este valor en la expresion en la que aparece
la incégnita y despejada resulta y = 1 — % = %

Luego, la solucion del sistema es z = 1/3, y = 2/3. O

Ejemplo 3.27 Y+ 5z
2

S5z +y)+2=uy.

=Y —- 17
Resolver el sistema de ecuaciones

Solucion: La primera ecuacion del sistema equivale a 5z — y =

—2, luego el sistema de ecuaciones puede reescribirse como,

r —y = —2

or + 4y = —2.
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Multiplicando la segunda ecuacion por —1, el sistema anterior

es equivalente al sistema

or —y = —2

—bxr — 4y = 2.

Sumando ambas ecuaciones se obtiene —5y = 0, cuya solu-
cion es y = 0. Este valor se lleva a cualquiera de las ecuaciones
anteriores para obtener el valor de x. Por ejemplo, sustituyendo
en la ecuacion bxr — y = —2 tenemos 5z — 0 = —2, de donde se
obtiene inmediatamente x = —%.

O

Los sistemas de ecuaciones anteriores son todos lineales. En
todos ellos, si escribimos la incognita y en funcion de = (despejan-
do) resulta un polinomio de grado 1, cuya representacion grafica
es una recta. De hecho, otro método que permite resolver el sis-
tema consiste en representar ambas rectas (las correspondientes a
cada una de las ecuaciones que componen el sistema) y encontrar
el punto de interseccion de ambas. Se deja propuesto al lector que
lo haga para los sistemas resueltos en los ejemplos anteriores.

Si al resolver un sistema de ecuaciones, este tiene infinitas so-

luciones entonces es que las dos rectas son coincidentes, mientras
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que si no tiene solucion (incompatible) es que las rectas son para-

lelas.

3.4 Problemas con ecuaciones

Ejemplo 3.28

Calcular dos ntimeros cuya diferencia sea 13 y su cociente 2.

Solucion: Sillamamos x € y a los nimeros que se desean calcular,

tenemos que el sistema que debemos resolver es el siguiente:

r—y =13,

=2

<R

Despejando de la segunda ecuacion la incognita x tenemos
x = 2y, que llevado a la primera ecuacion proporciona la ecuacion
2y —y = 13, cuya solucion es y = 13. Finalmente, la incégnita x
esT = 2y = 2 - 13 = 26. Luego los dos nimeros que se pedian

son 13y 26. O

Ejemplo 3.29
La edad de Juan es doble de la edad de Carlos mientras que hace

cuatro afios era el triple. Averiguar la edad actual de Juan y Carlos.
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Solucion: Si llamamos x a la edad de Carlos entonces la edad
de Juan sera 2x. Hace cuatro afios la edad de Carlos era x — 4,
mientras que la edad de Juan era 2x — 4. Como ésta era el triple
de la de Carlos formamos la ecuacion 2z — 4 = 3(z — 4), cuya
solucion es x = 8. En definitiva, la edad de Carlos es de x = &

afios y la de Juan de 2x = 16 afos. O
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Ejercicios propuestos tipo test

Resolver las ecuaciones, incecuaciones y sistemas que se mues-

tran a continuacion.

l. 5(x — 1)+ 3(z +2) = 12.

a) r=-1 b) z =1 c)x=0
s Lo _ 1
5 10 20
1 1
—-. b) 6 —.
W ¢ ) 9
T2 205 . a4l
! 6 3
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—. ——. 13.
a) 5 b) 13 c) 13
r—1 zx42
- -2 1).
7 5 3 +3(z+1)
17 20 20
8. Lot @_1) = 2 +8
"3 3
) 10 b . ) 4
a ) T c
9. 5(x —3)—T(x—1)+zx=4(x+5) + 1.
5 29
- b) ——. 29
%) ~39 ) =5 )
10, 3(x+4) 22-6 5% r—1
5 10 3 5
93 93 93
11. 22 —10x +24 = 0.
a) xr1 =4, x9 = —6. b) 1 = —4, o = —6.

¢) x1 =4, xs =6.

12. 322 —2 = —x.
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a) ry = —1, T2 = 3.

C) 1'1:1, l’gzg.

13. 922 — 122 = 5.

1 5 1
a) =g 2= g b)ZEl:g,IQ:
) 1 5
C) X1 = 3,1‘2— 3
14. 622 —x —2=0.
1 2 1
a)xlzg,m:g. b) 131:—5,1'2—
2
C) T = —5, To = —§
15. 22 — 24 = 0.

a) z1 = V6, x5 = 6. b) = = 2V/6.

¢) = +2V6.

16. —622 = 0.
a) = = 0 (doble). b) 1 =0, x93 = —6.
c) =0.

17. 72?4+ 52 = 0.
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5
a) x1 =0, z9 = —T. b) x1 =0, 3:2:—?.
c) =0.
18. 224+ 62+ 9 =0.
a) xr;1 = =3, x9 = 3. b) © = —3.
¢) = = —3 (doble).
19. 222 — 6z = 0.
a) r1 =0, x9 = 3. b) x1 = —0, 5 = —3.
¢) © = —3 (doble).
20. 22 —x+24=0.
a) x; = 0 (doble). b) 11 =-3, z5=1.

¢) No tiene solucion real.

21, 2% — 3422 + 225 = 0.
a) x1 =3, ro = —3, x3 =05, 4 = 5.
b) x1 =3, 13 =3, x3 = —5, x4 = —b.

c) r1 =3, xo =-3, x3=05, x4 = —b.
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22, 2% — 423 — 1022 4+ 28z — 15 = 0.

a) x1=—1, 1o =—1, x3 = =3, 14y = 5.
b) l’lzl, 132:1, .733:—37 5134:5.

¢c) x1=—-1, zo=1, x3 = -3, ©4 = —3.

23. 325 + 32* — 1523 — 1522 + 122 + 12 = 0.

CL) xl:_la I2:_1; $3:17 I4:—2,

1 3
b) x1:I2:—1, I’g:]_, 33'422:—57 x5:_§-
)y =—1, my=—1, 23 =1, 24 =2, 75 = —2.

24, 425 +8x* — 323 — 1122 —x+3=0.

1 3
a) x1=—1, xp=—1, 23 =1, T4 =55 T5 = =5
1
b) x1=—1, o= -1, 23 =1, e =5
1 3
C) xlz—l, I’ZI—l, 1‘3:17 x4:_§’ $5:—§_

25. 80z — 80z2 4 2° — 10z* 4 402% — 32 = 0.
a) x1 =2, 19 =2, 13 =2, x4 = —2.
b) Ilz—l, LL’2:2, $3:2, 134:2, 1’5:2.

) x1 =2, x9=2, x3 =2, x4 =2, T5 = 2.
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26. ot — 223 — 222 — 220 — 3 =0.
a) ;1 =3, xr3 =3, x3=3, x4 = —L.
b) .131:—]., 5(72:3, 1’3:3.

c) x1 = —1, x9 =3.
27. 2z* + 423 + 522 + 62 + 3 = 0.
a) xy=—1, x9=—1, 23 =1, 24 = 1.
b) I = —]_, To = —]_
c) x1=—1, 1o =—-1, z3 = 1.
28. 2z% =3 — 22
a) xty =1, 19 =—-1, x5 =—1, 24 = —1.
b) I = 17 Ty = —1
c) x1=—1, zo=—-1, x5 =—1, o4y = —1.
29. 4z* — 1012% + 25 = 0.
a) r1=1/2, w9 = —1/2, 23 = =5, x4 = 5.

b) T, = —1/2, To = —1/2, T3 = —5, T4 = 0.

c) xy=1/2, 19 =1/2, v3 = -5, x4 =>5.
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r+3 x-1 5
. — >2 1) — - 1.
30 5 o2 (x+1) 3:B—|-
69 69 69
a)x§7. b) :c<—7. c)x>—7.
31, x+1_2.3—x_2(:€—1)_£
8 4 12 6
29 29 15
a) > —. b) > ——. c) x> ——.
15 15 29
20+3 x+4 _ 3x+1) 2
32. — > — — — 5.
3 + 12— 4 3 g
51 51 43
a) x> ——. b) v > ——. c) v < —.
8 8 8
33. 22+ 3(x—1) < (z+ 1) — 5z + 2.
a) < 1. b) x> 1. c) < —1.

34. 224+ —-2>0.

35. 222 — 1 < —x.
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36. 2 +x+1>0.
a) (—00,0) U (0, 00). b) R.
c) (—1,1).

37. 22+ 32 — 4 < 0.
a) (—oo, —4)U(1,00).  b) R.

¢) (~4,1).

38. 2% < 3+ 2.

a) (—1,3). b) (—oo,—1)U(-1,3).
c) [-1,3].
3z +y =10
39.
20 4+ 3y = 9.
a) x=3, y=2 b) z=3,y=1
c)r=1,y=3
dr —y = =2
40.
y=x— 1.
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a)r=1, y=-2.

) r=—-1,y=-2

a:+ _4
4.027773
T+ 3y = 3.

a) v=2,y=1/3.

c)r=2,y=3
. 9
=3 y—2_
40.{ 3 xzy
212
2_'_3
a)zr=0,y=1
c)rx=1y=0
xr—2y=—4
43.
x
=2
5 )

a) Incompatible.

c¢) Infinitas soluciones.

b) x=—-1, y=2.

b) x=1/3, y=2.

44. Calculando dos niimeros cuya suma sea 12 y tal que el pri-

mero sea el doble que el segundo resulta:
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45.

46.

47.

48.

112

a) 16y 8. b) 8y4. c) 20y 10.

Al calcular dos numeros cuya diferencia sea 6 y dados que

el segundo sea la tercera parte que el primero resulta:

a) 9y3. b)gyl. c) 30y 10.

Un adolescente tiene tres cuentas en las redes sociales Fa-
cebook, Twiter y MySpace con un total de 200 seguidores.
Si en Twiter tiene el doble de seguidores que en Facebook
y en ésta red el triple que en MySpace, entonces la cantidad
de seguidores que tiene en Facebook, Twiter y MySpace es,

respectivamente:
a) 60, 120y 20. b) 120, 60 y 20.
c¢) 100, 50 y 50.
En un corral hay gallinas y conejos, contabilizandose en to-

tal 55 cabezas y 180 patas. Entonces el nimero de gallinas

y conejos que hay en el corral es, respectivamente:

a) 35y 20. b) 20y 20. c) 20y 35.

Un inversor tiene 14000 € repartido en tres fondos de in-

version, A, By C. Si en el fondo A tiene invertido el do-
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49.

50.

ble que en el fondo C y en éste el doble que en el fondo
B, entonces la cantidad invertida en el fondo A, By C es,

respectivamente:

a) 2000, 8000 y 4000 €. b) 8000, 2000 y 4000 €.

¢) 5000, 6000 y 3000 €.

La suma de tres nimeros impares consecutivos es 309. En-

tonces los nimeros son:

a) 101,103y 105. b) 101, 105y 107.

c¢) 305,307 y 309.

El propietario de un local desea alquilarlo y recibir una renta
neta anual de 5400 €, teniendo en cuenta que el impuesto
anual sobre el alquiler totaliza el 10% de éste. Entonces la

renta bruta mensual deberd ser de:

a) 400 €. b) 500 €. c) 200 €.
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En este capitulo se comienza con una revision de algunos con-
ceptos basicos de las funciones reales de variable real. Se define
la funcion real de variable real, asi como su dominio, operaciones
que se pueden realizar con las mismas y se repasan las graficas de
la funciones polinémicas de grado uno y dos; esto es, la recta y
la parabola. El concepto de funcién como un objeto matematico
independiente, susceptible de ser estudiado por si solo, no apare-
cio6 hasta los inicios del calculo en el siglo XVII. René Descartes,
Isaac Newton y Gottfried Leibniz establecieron la idea de funcion
como dependencia entre dos cantidades variables, debiéndose a
Leibniz los términos de variable y funcion. La primera vez que
aparece la notacion f(x) parece clara que fue en el siglo XVIII

por los matematicos A.C. Clairaut y por Leonhard Euler.
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Este concepto es uno de los mas importantes de las matema-
ticas, cuya aplicacion es evidente en todas aquellas disciplinas
que necesitan las matematicas como herramienta de trabajo. Una
funcién es una relacion entre dos o mas magnitudes que expresa
como una cantidad depende de otra. Por ejemplo, en Economia,
el consumo, C, depende de la renta, Y, que se expresa median-
te C' = f(Y). Otros ejemplos de funciones en este escenario lo
constituyen la funcion de oferta (indica la cantidad total que los
fabricantes estan dispuestos a producir a un precio determinado),
la funcién de demanda (indica la cantidad que los consumidores
estan dispuestos a comprar a un precio determinado), la funcion
de utilidad (expresa el grado de satisfaccion de un consumidor al

consumir un bien), etc.

4.1 Concepto de funcién. Dominio y

operaciones

Cuando se desea indicar que cierta magnitud depende de otra
se suele decir que dicha magnitud es funcion de esta ultima. For-
malmente esta relacion exigira que la dependencia sea elemento
a elemento. La siguiente definicion establece el concepto de fun-

cion.
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,—[Concepto de funci()n} \

Una funcién es una correspondencia entre dos conjuntos
que asigna a cada elemento del primer conjunto uno y solo
uno del segundo conjunto. Generalmente las funciones se

representan con las letras f, g, h, etc., y se expresa

f:A—B

r—y= f(z),

donde x se denomina variable independiente e y variable

dependiente.

Si A, B C R, se habla de funcién real de variable real, que
seran las tratadas siempre en este texto.

Dominio de una funcion real de variable real es el conjunto de
numeros reales para los que tiene sentido la expresion analitica de
la misma. Si la expresion de la funcién es y = f(z) el dominio
se expresa con la terminologia Dom( f). La expresion analitica es
un conjunto de niimeros y letras (variables) unidos mediante las
operaciones aritméticas.

Por ejemplo, la funcion que duplica un nimero real tiene como

expresion analitica y = f(z) = 2x y su dominio es R ya que
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a la variable independiente = le estd permitido tomar cualquier
valor real. La funcion que relaciona un ntimero con el reciproco del
. . ., y e _ 1 . .
mismo tiene como expresion analitica y = f(x) = . El dominio

., ., 1 .
de esta funcion es R — {0}, puesto que la expresion § no tiene

sentido.
Ejemplo 4.1
Calcular el dominio de las siguientes funciones.
W) flr)=a? 1. B fr) = .
rT—295

Solucion: Se procede como sigue:

a) Esta funcion es polindmica de grado dos. Su dominio es R.
Hay que destacar que el dominio de una funcion polindémica

es siempre R.

b) Igualando a cero el denominador se obtiene x = 5, que es

el valor que habra que excluir del dominio. Luego tenemos,

Dom (f) = R — {5}.

c¢) Puesto que la raiz cuadrada de los niimeros negativos no
existe en R tendremos que exigir que z > 0. Luego, Dom ( f)

{reR:z >0}
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d) Este ejemplo es similar al anterior con el afiadido de que a
la variable independiente = tampoco le esta permitido to-
mar el valor 0, que anula el denominador. En definitiva,
Dom (f) ={zx € R:2 > 0}.

O

La grafica de una funcion, que es el conjunto de puntos que de-

fine a esa funcidn, suele ser muy ilustrativa ya que ofrece informa-
cion sobre la forma en que las variables x e y estan relacionadas.
Obsérvese, que dada la definicion de funcion anterior, una grafica
corresponde a una funcidn si cada recta vertical (recta paralela al
eje OY) corta a la grafica solamente una vez. En la Figura 4.1 se
muestra una grafica que no corresponde a una funcién (izquierda)
ya que para el valor del dominio z( le corresponden dos puntos

sobre la grafica y otra que si representa una funcion (derecha).

Lo Zo

Figura 4.1: La grafica de la izquierda no representa una funcion.
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Se denomina recorrido o imagen de una funcion al conjunto
de valores que toma la variable dependiente. Dada una funcién
y = f(x), suele denotarse a la imagen mediante Im( f). Asi, por
ejemplo la funcion y = f(x) = = + 1 tiene como imagen todo el
conjunto de los numeros reales, y escribiremos Im(f) = R. Sin
embargo, la funcion y = f(x) = 22 tiene como imagen R, ya

que el cuadrado de un numero real siempre es positivo o cero.

4.1.1 Operaciones con funciones

De manera natural se definen las operaciones suma (resta),
producto y cociente de funciones.
Dadas las funciones f : ACR — Ryg: BCR — R,

se define:
* Suma: (f + g)(z) = f(z) + g(x).

* Producto: (f g)(x) = f(x) g(z).
)

* Cociente: 5) (x) = %, g(z) #0.

Ejemplo 4.2

Dadas las funciones f(z) = 2> — 1y g(z) = x + 1, calcular:
o) 2f()  o(»). n 1.
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Solucion: Se obtiene de forma inmediata lo siguiente:
a) 2f(x) —g(x) =2(z*—1) — (x +1) =22% —x — 3.

flz) a*—1 B
) glx)  x+1° v# L

4.1.2 Extremos y monotonia

Estudiamos en esta seccion el concepto de extremos locales
y globales (méximos y minimos locales y globales), asi como el
concepto de monotonia, esto es, el hecho de que una funcion sea
creciente, decreciente o constante.

De manera informal se dice que una funcion alcanza un ma-
ximo relativo o local en un punto x,; si para cualquier z que esté
proximo a z); se cumple que f(z) < f(xy), es decir que en las
cercanias de xj; la funcidon toma valores menores que en dicho
punto. De la misma manera, la funcion alcanza un minimo local o
relativo en x,, si para cualquier x que esté proéximo a x,, la fun-
cion toma valores mayores que en dicho punto. En la practica,
una funcioén puede tener mas de un maximo o minimo relativo,
denominandose maximo absoluto o global al mayor de todos los
maximos relativos y minimo absoluto o global al menor de todos

los minimos relativos.
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En consecuencia, el maximo global de una funcion, si lo alcan-
za, estara en aquel valor del dominio para el que la funcién toma
el mayor valor. De la misma manera, el minimo global de una fun-
cion, si lo alcanza, estara en aquel valor en el que la funcion toma

el minimo valor.

Obviamente, de todo lo anterior se desprende que todo extre-

mo (maximo o minimo) global es local.

Una ilustracion de lo sefialado aparece en la Figura 4.2 en la

que se muestra una funcion definida en el dominio [a1, as)].

\y

as, as: Méaximos locales
ai,as,as: Minimos locales
az: Méximo global

as: Minimo global

=

ay as as ay as

Figura 4.2: Extremos locales y globales.

124 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA



EMILIO GOMEZ DENIZ Y CHRISTIAN GONZALEZ MARTEL

En ella se observa que el maximo global se corresponde con
el mayor de todos los maximos relativos, y que el maximo global
es también maximo local o relativo. El mismo comentario puede
hacerse también en relacion al minimo global.

El concepto de crecimiento o decrecimiento (monotonia) de
una funcion es algo bastante intuitivo. De manera informal deci-
mos que una funcion es creciente (decreciente) si los valores que
toma la funcién aumentan (disminuyen) conforme avanzamos de
izquierda a derecha en el dominio de la funcion.

En la Figura 4.3 se muestra un ejemplo de funcion creciente
(derecha) y otra decreciente (izquierda). Cuando una funcioén no
crece ni decrece se dice que es constante, lo que se traduce grafi-

camente en una linea horizontal y, por tanto paralela al eje OX.

f(x) creciente f(z) decreciente
1 < xo : f(z1) < flx2) x1 < 29t f(wr) > fla2)

f(w2)

Flan) fromme> 1
Flaz) |

flan) prmmes f

(a) Funcidn creciente (b) Funcion decreciente

Figura 4.3: Tlustracion de una funcion creciente y otra decreciente.
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4.1.3 Concavidad, convexidad y puntos

de inflexion

Abordamos ahora, también de una forma suscinta e informal,

los conceptos de concavidad, convexidad y punto de inflexion.

Se dice que una funcién f(z) es convexa en un intervalo si
dados x1 y x4 pertenecientes al mismo, el segmento que une f(x1)
y f(x2) queda por encima de la grafica de f(x) en dicho intervalo.

Por otro lado, se dice que f(x) es concava en un intervalo si
dados x; y x4 pertenecientes al mismo, el segmento que une f(x;)

y f(z2) queda por debajo de la grafica de f(z) en dicho intervalo.

f(x) céncava

f(x) convexa

(a) Funcién concava (b) Funcion convexa

Figura 4.4: Tlustracion de una funcion concava y otra convexa.

En la Figura 4.4 se muestran las graficas de una funcion con-

cava (arriba) y otra convexa (abajo).
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Un punto en el que la funcion cambia la concavidad (pasa de
concava a convexa o viceversa) se denomina punto de inflexion.
Por ejemplo, la funcion que se muestra en la Figura 4.5 tiene un
punto de inflexion en z( ya que la funcion es concava a su izquier-

da y convexa a su derecha.

Y&

Figura 4.5: Ilustracion de una funcion con un punto de inflexion

en xy.

Conceptos como el de monotonia (crecimiento y decrecimien-
to) y extremos locales se volveran a estudiar en el capitulo 4 de
este manual utilizando ciertas herramientas matematicas propor-

cionadas por el calculo diferencial (la derivada). De hecho, estas
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herramientas nos permitiran estudiar en qué partes de su dominio

una funcidn es creciente, decreciente y presenta extremos locales.

4.2 Funciones polinémicas

En este apartado se estudiaran las funciones mas sencillas que
aparecen en el estudio del analisis real de una variable. Nos refe-

rimos a las funciones polindmicas de grado uno y dos.

4.2.1 Funcién lineal (la recta)

La expresion analitica de una funcién lineal es un polinomio

de grado uno. Esto es,
y=f(z)=ax+Db,

donde a y b son niimeros reales. Evidentemente al tratarse de una
funcion polindmica se tiene que Dom () = R. Su representacion
grafica es unarecta y los dos paradmetros que aparecen en la expre-
sion analitica, a y b, son la pendiente y la ordenada en el origen,

respectivamente. Asi:

* a es la pendiente (inclinacion) de la recta. De modo que:

— Sia > 0, larecta es creciente.
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— Sia < 0, larecta es decreciente.

* b es la ordenada en el origen (corte con el eje OY).

Ademas:

* Dosrectasy = ax+bey = a’ x4+ son paralelas si tienen

la misma pendiente. Esto es, a = a'.

. a b .
*Si— = v entonces las rectas son paralelas y coincidentes.
a

En la Figura 4.6 se muestran algunas representaciones graficas

de rectas en funcion de los pardmetros a y b.

'
y=ar+b b a <0
b a >0

b=0

y=axr; a>0 y=ar; a<0

Figura 4.6: Distintas graficas de la funcion lineal.
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Téngase en cuenta que la recta z = k (recta vertical) no re-
presenta una funcion porque a un solo valor de la variable x le
corresponden mas de un valor de .

Muchos fendmenos naturales y econémicos pueden modeli-
zarse a través de funciones lineales. Por ejemplo, el coste de un
viaje, la cantidad demandada de un bien, que puede depender li-

nealmente del precio, etc.

Ejemplo 4.3

Disponemos de 15 dias de vacaciones y deseamos alquilar un vehicu-
lo. La empresa de alquiler nos ofrece dos opciones: 40 € diarios
con kilometraje ilimitado o 10 € diarios mas 10 € por kilometro
recorrido. Calcular la funcion de gasto en cada opcidn y estudiar

a partir de cuantos kilometros es mas rentable la opcion primera

que la segunda.

Solucion: Denominando al gasto incurrido por y y al nimero
de kilometros recorridos por x tenemos que en el primer caso la
funcion de gasto viene dada por y = 40- 15 = 600, y por tanto una
funcion constante. En el segundo caso la funcion viene dada por
y = 102 +150. Igualando ambas expresiones se tiene 10z +150 =
600. Despejando la variable x resulta x = 45. Luego, si tenemos

pensado realizar mas de 45 km durante los 15 dias de vacaciones
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la primera opcion resulta mas rentable que la segunda. Véase la

Figura 4.7. O
A\
Gast
w00 y(Gasto) y = 10z + 150
700
600 :
; y = 600
500 !
400 !
300 3
200 !
100 |
3 z(Km)
10 20 30 40 45 50 60 70

Figura 4.7: Gréafica de la funciones y = 600, y = 150 + 10x.

Ejemplo 4.4
Hallar la ecuacion de la recta que pasa por el punto (2, —1) y su

pendiente es —2. Representarla graficamente.

Solucion: La expresion de una recta de pendiente a esy = ax+b.
Luego la recta pedida (la pendiente es —2) vendrd dada por y =

—2x+b. Imponiendo ahora a que la recta pase por el punto (2, —1)
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resulta —1 = —2 - 2 + b, de donde de forma inmediata se obtiene

b=3.

Luego, la recta pedida es y = —2z + 3. Su representacion

grafica aparece en la Figura 4.8. O

Ay

\&

-2 ¢ y=-—-2r+3

Figura 4.8: Grafica de la funcion y = —2x + 3.

Ejemplo 4.5
Hallar la ecuacion de la recta que pasa por los puntos (2,0) y

(0, —2). Representarla.
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Solucion: En este caso imponemos a la recta y = ax + b a pasar

por los dos puntos dados, constituyendo el sistema

0 =2a+ b,
—2=0,
cuyasoluciénes a = 1, b = —2. Luego, la ecuacion de la recta es

y = x — 2. Su representacion grafica se muestra en la Figura 4.9.

O

Figura 4.9: Grafica de la funcion f(x) = x — 2.

Ejemplo 4.6
Calcular y representar la ecuacion de la recta que pasa por el punto

(—1,1) y es paralela a la recta de ecuacion 3z — y = 1.
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Solucion: Larecta 3z —y = 1 puede escribirse como y = 3z — 1,
cuya pendiente es 3. Luego la recta que se pide ha de pasar por
el punto (—1,1) y tener la misma pendiente que la anterior, ya

que es paralela. Después de algunos calculos se obtiene la recta

y = 3x + 4. Su grafica se muestra en la Figura 4.10. O
Ay
y=3z+4
4
2
Z
—2 2 4 "

Figura 4.10: Grafica de la funcion f(x) = 3z + 4.
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Modelo de oferta y demanda

En Economia, para cada nivel de precios de un producto existe
una cantidad correspondiente de ese producto que los consumido-

res demandan en un determinado periodo.
N

Oferta
qe

Demanda

VS

Figura 4.11: Equilibrio de mercado.

Por lo general, conforme mayor es el precio, menor es la can-
tidad demandada. Si el precio por unidad de un producto esta dado
por py la cantidad correspondiente por ¢, la expresion que relacio-
na py q, en algunos casos particulares, se puede expresar median-
te una expresion lineal denominada funcioén de demanda y, conse-
cuentemente la funcion de demanda tendra pendiente negativa. En
respuesta a diversos precios, existe una cantidad de productos que
los fabricantes estan dispuestos a ofrecer en el mercado en un pe-

riodo. Por lo general, cuanto mayor es el precio, tanto mayor sera
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la cantidad que los fabricantes estan dispuestos a ofrecer; al re-
ducirse el precio, se reduce también la cantidad de oferta. En este
caso hablamos de la funcion de oferta, que si se representa tam-
bién mediante una funcion lineal, tendrd pendiente positiva. Re-
presentando conjuntamente la funcion de oferta y demanda, como
funcion de p, ¢ = f(p), el punto en que coinciden ambas cur-
vas (pe, ¢.) se denomina punto de equilibrio de mercado (véase la

Figura 4.11).

Ejemplo 4.7

Supongase que la demanda semanal de un producto es de 10 uni-
dades cuando el precio es de 30 unidades monetarias por unidad,
y de 20 unidades cuando el precio es de 25. Determinar la ecua-
cion de demanda, suponiendo que es lineal. Si la funcion de oferta
viene dada por la ecuacioén ¢ = %p + 21, determinar el punto de

equilibrio del mercado.

Solucion: Dados los datos, se sabe que la ecuacion de demanda
es una recta que pasa por los puntos (10, 30) y (20, 25). Por tanto,

resolviendo el sistema dado por las ecuaciones

30 = 10a + b,

25 = 20a + b,

136 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA



EMILIO GOMEZ DENIZ Y CHRISTIAN GONZALEZ MARTEL

se obtiene la solucion a = —%, b = 35. Por tanto, la funcion de
demanda viene dada por g = —%p + 35.
Para hallar el punto de equilibrio resolvemos el sistema dado

por las funciones de oferta y demanda,

1
= ——p+35
q 2p+ )
_1 + 21
q_2p 9

cuya solucién es p = 14, g = 28. Por tanto, el punto de equilibrio

del mercado viene dado por (p*, ¢*) = (14, 28). O

4.2.2 Funcidén cuadratica (la parabola)

La expresion analitica de la funcion cuadratica se corresponde

con un polinomio de grado dos. Esto es,
y=f(x)=a2x®*+bxr+ec, a##0.
El dominio es R y su grafica es una parabola.

* Sia > 0 la pardbola es convexa y tiene minimo y sia < 0
es concava y tiene maximo. Segun que el valor de a sea ma-
yor o menor que uno, la parabola esta menos o més abierta

respectivamente.
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* El maximo o minimo de la parabola se alcanza en x = — %,

que también es eje de simetria de la parabola.

* Siz = 0 entonces f(0) = c, la parabola corta el eje vertical

en (0, ¢).

* Los puntos de corte con el eje OX (si los tiene) se obtienen
resolviendo la ecuacion az? + bz + ¢ = 0, y se obtienen

mediante la conocida formula

B —b+ Vb2 —4ac

2a

i

Dependiendo del signo del discriminante, /A = b? — 4ac, se

tiene:

— Si A < 0, entonces, no hay raices reales y la parabola
no corta al eje horizontal.

b

— Si A = 0, entonces, ¥ = —5- es raiz doble y la para-

bola es tangente al eje horizontal.

— Si A > 0, entonces, hay dos raices reales distintas y

la parabola corta al eje horizontal en dos puntos.
Como ejemplos de casos particulares se tiene:

s b= 0,y = ax® + c: la pardbola es simétrica respecto al eje

vertical.
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e ¢ =0,y = ax® + bx: la parabola corta al eje OX en z = 0

yx=—b/a.

* b=c=0,y = azr’ la pardbola pasa por (0,0) y tiene el

vértice en el origen.

LaFigura4.12 muestra diferentes graficas de parabolas en fun-
cion de los pardmetros a, by c para el caso en que a > 0 (superior)

y a < 0 (inferior).

Ejemplo 4.8

Representar la funcion cuadréatica y = f(x) = 2 + 4o — 12.

Solucion:

e Tenemos que a = 1, b = 4, ¢ = —12, luego, puesto que

a > 0, se trata de una parabola convexa, que alcanza el

b

minimoen & = —~ =
2a

—3 = —2, que a su vez es ¢je de

simetria de la parabola.

* Corte con OY: Si z = 0, entonces y = —12. Luego el corte
esta en (0, —12).

—4 4+ /16 + 48
5 i =T

* Corte con OX: z = =2, xr = —60.
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a>0 a>0
y - y
’ — b=c=0
J---b=0,¢>0
c=0,b<0
z z
a<0 a<0

Figura 4.12: Diferentes tipos de parabolas segtin los parametros b

y ¢, caso a > 0 (superior) y a < 0 (inferior).

Su representacion grafica se muestra en la Figura 4.13. Enella
se ha representado también la recta x = —2, que es el eje de si-

metria de la parabola.
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20

10

Figura 4.13: Grafica de la funcion f(z) = 2%+ 4z — 12.

Ejemplo 4.9
Dada una funcion de demanda lineal p = f(q) = ag+ b, a < 0,
la funcion de ingresos se define como /(q) = pg = (aq + b)q

que es una funcion cuadratica y concava ya que el coeficiente de

q? es negativo. A un precio de p = 200 — ¢ euros una empresa

vende ¢ unidades de un producto mensualmente. Se pide, calcular
el precio al que debe vender el producto para maximizar el ingreso

mensual, asi como el ingreso maximo mensual.
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Solucion: Se tiene que
Ingreso = I(q) = precio x cantidad = (200 — ¢)q
= 200q — ¢,

que es una parabola concava (el coeficiente de ¢* es negativo),

con méximo en ¢ = —& = zf(z_()f) = 100; luego la cantidad que

maximiza el ingreso es ¢ = 100. El precio serd p = 200 — 100 =

100 €, mientras que el ingreso maximo es 100 x 100 = 10000 €.
O
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Ejercicios propuestos tipo test

1. Dada la funcion f(x) = , entonces su dominio es:

22 + 3
a) Dom(f) =R — {—3}.
b) Dom(f) = R.

¢) Dom(f) =R — {+v/3}.

1
vr+1

a) Dom(f) ={reR:z < —1}.

2. Dada la funcion f(x) = , entonces su dominio es:

b) Dom(f) ={z e R:z > —1}.
¢) Dom(f)={zeR:z>—1}.

3. Dadas las funciones f(z) = (x + 2)?, g(z) = 2* — 1,

entonces (fg)(z) resulta:
a) xt+ 423 + 32° — 4o — 4.
b) at —4a® + 32?2 + 4w + 4.
¢) ot + 4x3 — 32 + 4r — 4.

4. Dadas las funciones f(x) = z*> + 1, g(z) = 2> — 1, enton-

ces 2f(z) — 3g(x) es igual a:
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a) 5— a2 b) 5— . c) z* + 2z — 5.

. 1
5. La ecuacion de la recta que pasa por el punto (—1, —) y

3
tiene por pendiente —2 es:

5 7
-2 —. b) y = —2x — —.
a) y T+ )y T3

5

= —2r — —.

c) y T3

. 21
6. La ecuacion de la recta que pasa por el punto ( ) y

52
tiene por pendiente 4 es:
21 10 11
a) y T+35 )y T+ 5 c) y=4x 0

7. La ecuacion de la recta que pasa por los puntos (2,1) y
(—3,2) es:

. 1
8. La ecuacion de la recta que pasa por los puntos (—1, 5) y
(0,1) es:

a) y

1
—x+ 1.

_1 )
T+ c
) 5

2

N = <

144
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9. La ecuacion de la recta que pasa por el punto (1, —1) y pa-

ralela a la recta 3z — y = 2 es:

a) y=3xr—4. b)y=3r+4 ¢ y=-3r—4

11
10. La ecuacion de la recta que pasa por el punto <§, §> y

paralela a la recta y = —§x+1es:
4 7 4 7
a)y——gx—l—é b)y—§x—|—6
) 4 7
c)y=—-xr— =
Y7736

11. Larectay = 2z + 3 cortaa los ejes OX y OY, en los puntos

respectivos:

a) (0,3), (-%,o). b) (—2,0), 0.3).
) GO) (0,3).

4
12. Larecta g(m —1)+3(y+2) = 3 cortaa los ejes OX y OY,

en los puntos respectivos:

(39 v (39).6-3)
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13. Lasrectasy = dxr — 1,y = —bz — 1:

a) Son paralelas.
b) Se cortan en el punto (—1,0).

¢) Se cortan en el punto (0, —1).

14. Lasrectasy =2z — 1,y = 2z + 1:
a) Son paralelas.
b) Son coincidentes.
¢) Se cortan en el punto (—1,0).
15. Larecta —2(z + 1) +5(y —3) —2 =0:

) . 19
a) Es creciente y la ordenada en el origen es =

. . 19
b) Es decreciente y la ordenada en el origen es 5

c¢) Es creciente y la ordenada en el origen es -

16. Larectay —4x = 1:
. 1
a) Es decreciente y pasa por el punto (—5, —1) .
. 1
b) Es creciente y pasa por el punto (—5, —1) .

c¢) Es creciente y pasa por el origen de coordenadas.
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17. Si las funciones de oferta y demanda son ¢, = 2p + 10,

G = —% + 45, respectivamente, el equilibrio se alcanza
para:
50 107
= g=—. b =10, ¢ = 30.
a)p=—, 4= 77 ) p=10, ¢

c) p=30, ¢ =10.

18. Si las funciones de oferta y demanda son ¢, = 37” + 485,
q. = —% + 505, respectivamente, el equilibrio se alcanza

para:
a) p =500, g = 10. b) p =10, ¢ = 500.

¢) p=10, ¢ = 50.

19. Si la gréafica de una parabola es

entonces su expresion analitica s6lo puede corresponder a:
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a) y = z*+ 3. b) y=a2*— 3+ 2.

c) y=ux*—3z.

20. Si la gréafica de una parabola es

entonces su expresion analitica s6lo puede corresponder a:

a) y=2>—x+1. b) y=x?— 3.

c) y=a?—3x+2.

21. Si la grafica de una parabola es

entonces su expresion analitica s6lo puede corresponder a:
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a) y=—x?+ . b) y=—br?—5z+4.

c) y=—22%+2.

22. Si la grafica de una parabola es

7

entonces su expresion analitica so6lo puede corresponder a:
a) y = 322
b) y= —ba>.
c) y=—x*+2z.
23. Laparabolay = 42° 4 4z + 1:
. 1
a) Es convexa y corta dos veces al eje OX en z = —3
. 1
b) Es convexa y corta dos veces al eje OX en x = ié'

. 1
c¢) Es concava y corta dos veces al eje OX en x = 5
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24. La parabola f(z) = 2* — 3z :
. s 9 3
a) Es convexa y tiene el vértice en el punto 73}
. . - 3 9
b) Es concava y tiene el vértice en el punto 371/
. - 3 9
c) Esconvexa y tiene el vértice en el punto 31/

25. Lapardbolay = —z* + 3z — 10:

a) Es convexa y no corta al eje OX.
b) Es concavay corta al eje OX enz; = —1, xy = —8.

¢) Esconcava y no corta al eje OX.
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Una de las grandes areas de estudio tratadas en los textos de
Célculo es el Caélculo Diferencial (calculo de derivadas), que se
ocupa del estudio de la variacién que experimenta una cantidad y
cuando se produce una variacion sobre otra cantidad x, de la que

depende la primera.

Historicamente, el calculo de derivadas fue introducido duran-
te el siglo XVII por Newton y Leibniz cuando se plantean calcu-
lar la pendiente de la recta tangente a una funcién en un punto.
Cuestiones que tipicamente se han resuelto con estas técnicas son
problemas de optimizacion, de razon de cambio y de calculo de la

pendiente de la recta tangente a una curva en un punto.

En Economia, el estudio de la variacion en la demanda de un
producto cuando se incrementa en una unidad monetaria su pre-

cio, la variacion en el coste total como resultado de producir una
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unidad adicional, o la variacion en el ahorro cuando se incrementa
la renta y, en general, todo el analisis econdmico marginal y los
problemas de optimizacion, utilizan como herramienta el calculo

de derivadas.

5.1 Derivabilidad. Calculo y reglas

El problema de la derivada, como ya se ha sefalado, surge
porque se desea calcular la pendiente de la recta tangente ¢ a la
funcién y = f(x) en un punto de abscisa (. Esta pendiente medi-
ra la inclinacion de la curva y = f(z) en xq y, por tanto, nos dara
aproximadamente la variacion de y ante variaciones de x.

Atendiendo a la Figura 5.1 se observa que esta pendiente pue-
de calcularse como el limite de la pendiente de la recta secante s

cuando h esta proximo a cero. Esto es,

Pendiente de ¢ &~ pendiente de s,

cuando el valor de h esta cercano a cero.

Puesto que la pendiente de la recta s viene dada por

f(zo+h) — (o)
N ,
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se tiene que la pendiente de la recta tangente ¢ serd aproximada-

mente igual a

Pl £ 1) = ), 5.0

si h esta proximo a cero.
Por definicion, al cociente dado en (5.1), cuando h es aproxi-
madamente cero, se le denomina derivada de la funcion f(z) en

T = xp y se expresa como f’(zg).

f(zo+h)

f (o)

Figura 5.1: Interpretacion geométrica de la derivada.

Otras notaciones usualmente empleadas para denotar la deri-

vada de una funcién y = f(z) en un punto x, son las siguientes:

df (x)

dz

dy

f(x0) = ' (x0) = I

o o
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Cuando una funciéon y = f(x) es derivable en todos los puntos
de su dominio se dice que es derivable en el mismo.

Geométricamente, f'(x() es la pendiente de la recta tangente
ay = f(x)en xo. La ecuacion de esta recta (véase la seccion que

viene a continuacion) es

y = f(xo) + f'(w0)(z — x0).

Sean f(x)y g(z) funciones derivables y ¢ € R una constante.
Entonces, puede probarse a partir de la definicion de la derivada

las siguientes propiedades.

(f +9)(z) = f'(x) + g'(x)

(cf)(x) = c f'(x).

La primera expresion establece que la derivada de una suma
(resta) de funciones es la suma (resta) de las derivadas de las fun-
ciones correspondientes. La segunda expresion sefiala que la deri-
vada de una constante por una funcion es igual a la constante por
la derivada de la funcion.

A continuacion mostramos, sin demostrar, la derivada de las

funciones elementales.
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r—[Derivadas de las funciones elementales} N
y = k, k = constante y =0
y frd xn y/ — nmnfl
1
y = — y/ = —1/372
T
1
—_ / —_
y =z V=97
Ejemplo 5.1

Calcular las derivadas de las siguientes funciones:
4 3 2 1
a) y =z —2z° + bx — 3. b) y=32"+ — — 6y + 1.
x

2
c)y=a"—=+x+10. d) y=2x*— 3w +5.
x

Solucion: Utilizando las reglas del célculo de derivadas asi co-
mo las derivadas de las funciones elementales que aparecen en el

cuadro anterior resulta lo siguiente:

3
v

. 1
a) y = 4x3 — 622 + 5. b) y =6z — — —
T

2
c)y =75+ = + 1. d) y' = 8x% — 3.
T
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Ejemplo 5.2
Calcular las derivadas de las siguientes funciones en los puntos

que se indican:
a) y=—a*+x—1,enzy = 0.

4
b) y=a>+—+x+10,en x5 = 1.
T

Solucion: Utilizando de nuevo las reglas del calculo de derivadas
asi como las derivadas de las funciones elementales que aparecen

en el cuadro correspondiente resulta:
a) y = —3z% + 1. Por tanto 3/ (0) = 1.

4
b) ¥ =2z — = + 1. Entonces, y/'(1) = —1.

5.2 Recta tangente a una funciéon dada

Ya se coment6 en la seccion anterior que la derivada de una
funcion y = f(x) en el punto de abscisa x = x, es la pendiente de

la recta tangente a la curva y = f(z) en el punto z4. La ecuacion
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de esta recta, como se estudio en el capitulo anterior, es y = ax +
b. Ahora bien, como ya se vio, el parametro a, la pendiente de
la recta, coincide con f’(xg). Luego la recta tangente tendra por

ecuacion

y= f'(zo) -z +Db. (5.2)
Forzando a esta recta a pasar por el punto (z, f(x¢)) resulta
f(wo) = f(wo) - w0+ b

y despejando de esta ultima ecuacion el parametro b se obtiene
b= f(xo) — o - f'(x0), que reemplazado en (5.2) proporciona la

expresion dada por

y = f'(w0)(x — m0) + f(20). (5.3)

En los siguientes ejercicios se estudiara como calcular dicha

recta tangente.

Ejemplo 5.3
Calcular la recta tangente a la funcién y = f(z) = 2> — 3z +2en

x = 5. Representar la funcion asi como la recta tangente calculada.

Solucion:  Se tiene que f'(z) = 2z — 3, y por tanto f'(5) = 7.

Por otro lado, f(5) = 12, luego utilizando la expresion dada en
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(5.3) se obtiene,
y="T(x—5)+ 12.
Luego, la recta pedida es y = 7x — 23. Ambas funciones apa-

recen representadas en la Figura 5.2. O

25
20
15

10

3 2 1 1 2/ 4 5 6
-
—J

Figura 5.2: Gréfica de la funcion (parabola) f(z) = 2? — 3z + 2

y la tangente, y = 7x — 23, a la misma en x = 5.

Ejemplo 5.4
Calcular la recta tangente a la funcién
4 s 1
flx)=2"4+32"———2

X

en el punto de abscisa x = 1.
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1

Solucion: La recta tangente a f(z) = z* + 32> — 1 — 2 en

x = 1 tiene pendiente dada por f’(1). La derivada de f(z) es
f'(z) = 42® 4+ 62+ &, que sustituidaen z = 1 da f'(1) = 11. La

recta pedida, utilizando (5.3) es, por tanto,

y=11(z — 1)+ 1= 11z — 10,

yaque f(1)=1*4+3-12 -1 —-2=1. O

Ejemplo 5.5
Dadas las funciones del ejemplo 5.2 calcular la recta tangente a

cada una de ellas en los puntos considerados.

Solucion: Utilizaremos en todos los casos la expresion dada en

(5.3).
a) Se tiene que f(0) = —1y f’(0) = 1. Luego, utilizando

(5.3) resulta,

y=1zr—-0)—-1=x—-1.
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b) Ahora f(1) = 16y f’(1) = —1 y usando de nuevo (5.3)
resulta,

y=—1(r—1)+16 = —x + 17.

NOTA HISTORICA

Probablemente la mayor creacion matematica de toda la historia
corresponda a lo que Newton denominé fluxiones, y que hoy en
dia se le conoce como derivada. Sin embargo Newton eligi6 guar-
dar su descubrimiento y no lo difundi6, dando origen a una disputa
acerca de la invencion del calculo diferencial que al mismo tiempo
estaba trabajando Leibniz. Se debe a este ultimo la introduccion
de la notacién actualmente empleada para la derivada de una fun-

ciony = f(x),y = f'(z) = d’;(;”). Si bien, los problemas que

dieron origen al calculo diferencial tienen sus antecedentes en la
época clasica de la antigua Grecia (siglo III a.c), con conceptos de
tipo geométrico, como el problema de la tangente a una curva, los
métodos sistematicos de la resolucion de estos problemas no apa-
recieron hasta el siglo XVII con los trabajos de de Isaac Newton

y Gottfried Leibniz, entre otros.
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5.3 Aplicaciones de la derivada al es-

tudio local de funciones

Es esta seccion veremos que la derivada se muestra como una
poderosa herramienta que permite estudiar la monotonia (creci-

miento y decrecimiento) de una funcion.

Obsérvese, a partir de la Figura 5.3 donde se representa una
funcion f(z) derivable, que las regiones de crecimiento de la fun-
cion se corresponden con el signo positivo de su derivada, es decir
sus tangentes tienen pendiente positiva. Por otro lado, las regio-
nes de decrecimiento de la funcion se corresponden con aquéllas
en las que el signo de su derivada es negativo (sus tangentes tie-
nen pendiente negativa). Como consecuencia de lo comentado es
evidente que, dada una funcion y = f(z) derivable, y 2* € (a,b)
un maximo o minimo local de f(x), necesariamente tendra que
cumplirse f'(z*) = 0, ya que en este punto la funcion pasa de
creciente a decreciente o viceversa, por lo que f'(x) cambiara de

signo.

En definitiva, se tiene lo que se comenta en el siguiente resul-

tado.
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f(x) creciente f(z) decreciente
flx) >0 flx) <0

(a) f(x) creciente, f'(x) > 0 (b) f(z) decreciente, f'(x) < 0

Figura 5.3: Regiones donde la derivada de y = f(z) tiene el mis-

mo signo.

r—[Resultados sobre monotonia} N

Sea y = f(x) una funcion derivable:

* Si f’(z) > O0en (a,b), entonces f(x) es creciente en

(a,b).

« Si f'(z) < 0en (a,b), entonces f(x) es decreciente

en (a,b).

* Si f(x) tiene un extremo local (maximo o minimo)

en z*, entonces f'(z*) = 0.
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El reciproco de este resultado no es cierto. Una funcion puede
admitir un punto xz, con la derivada nula, o sea, f'(zo) = 0, y,
sin embargo, este punto no ser ni maximo ni minimo local de f.

Seguidamente se presenta un ejemplo que ilustra esta afirmacion.

Ejemplo 5.6

Sea la funcion f(z) = 23, cuya derivada es f’(x) = 322. El punto
xo = 0, que anula la primera derivada, no es ni maximo ni minimo
local de f, como puede apreciarse a partir de su grafica que se

muestra en la Figura 5.4.

\y

Figura 5.4: Grafica de la funcion f(z) = 23,
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No obstante, si una funcion f(z) es derivable, los maximos y
minimos de esta funcion se encuentran entre todos los puntos que
anulan la primera derivada. Al conjunto de puntos que anulan la

primera derivada de una funcion f(x) se les llama puntos criticos

de f(x).

Ejemplo 5.7
Estudiar la monotonia de la funcidén
2 5a?
flz) = §x3—%—3x+2,

y dar los extremos locales, si los tiene.

Solucion: Sobre el crecimiento, decrecimiento, maximos y mi-
nimos de una funcidn nos proporciona la informacion la derivada
de la misma. En este caso tenemos, f'(x) = 22 — 5z — 3, que es

cero cuando
x_5:|:\/49_5:|:7
4 4

Por tanto, se obtiene x = —% y x = 3. Evaluando el signo de la

derivada, por ejemplo en z = 0, se desprende el signo que toma
la derivada en los tres intervalos en que queda dividida la recta.
Véase la Figura 5.5.

En ella se deduce que la derivada, f'(z), es positiva en el inter-

valo (—o00, —1) U (3, 4+00) y negativa en (—1, 3). Por tanto f(z)
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Wl

méximo minimo

Figura 5.5: Gréafico correspondiente al ejemplo 5.7

es creciente en (—oo, —%) U (3, +00) y decreciente en (—%73)’

presentando un méximo local en z = —% y un minimo local en
r = 3. O
Ejemplo 5.8

Calcular los puntos criticos de la funcion
f(z) = 122° — 752" + 1202° + 10

y estudiar la monotonia.

Solucién: Tenemos que f'(x) = 602%(z* — 52+ 6) =0siz =0
(raiz doble), x = 2 y x = 3, que son los puntos criticos.
Evaluando el signo de la derivada, por ejemplo en x = 1 se
desprende el signo que toma la derivada en los cuatro intervalos en
que queda dividida la recta. Recuérdese que una raiz doble (multi-
plicidad par) no genera cambio de signo, de ahi que a la izquierda
y derecha de z = 0 el signo no cambie. Esto se observa en la

Figura 5.6.
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maéximo minimo

Figura 5.6: Grafico correspondiente al ejemplo 5.8

En ella se deduce que la derivada, f'(x), es positiva en el in-
tervalo (—oo,0) U (0,2) U (3, +00), donde la funcion es creciente
y negativa en (2, 3), en el que es decreciente. La funcion tiene un

maximo local en x = 2 y un minimo local en z = 3. a

Obsérvese a partir de los ejemplos anteriores que el estudio
de los maximos y minimos de una funcion se deduce a partir del
estudio de las regiones de crecimiento y decrecimiento de la mis-
ma. En el caso que la funcion sea derivable en todos los puntos de
un dominio abierto, los maximos y minimos seran localizados a

partir de los cambios de monotonia en los puntos criticos.

Por otro lado, si existen puntos del dominio donde la funcion
no es derivable, éstos han de considerarse como puntos donde es
posible que la monotonia cambie, por lo que pueden ser maximos

o minimos (como puede observarse en la Figura 5.7).
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Ny

\ &

Figura 5.7: La funcién f(x) tiene en = 0 un minimo (local y

global) aunque la funcién no sea derivable en ese punto.

5.4 Aplicaciones de la derivada a la Eco-

nomia

Dada una funcién de naturaleza econémica, como por ejemplo
la funcion de demanda, de ingresos o de costes, cuando se realiza
la derivada de la misma se le suele poner el calificativo de margi-
nal. Asi, por ejemplo, dadas las funciones de ingreso /(z), coste
C(x) y beneficios B(z), sus derivadas, I'(x), C'(x) y B'(x), se

les denomina ingreso marginal, coste marginal y beneficio mar-
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ginal, respectivamente. La interpretacion econdmica que admite

estas ultimas funciones es la siguiente:

* Ingreso marginal, I’(z) refleja aproximadamente el ingre-
so adicional que se consigue al vender una unidad mas de

producto.

* Coste marginal, C’(z) refleja aproximadamente el coste adi-

cional necesario para producir una unidad méas de producto.

* Beneficio marginal, B’(z) refleja aproximadamente el be-
neficio adicional que se consigue al producir y vender una

unidad mas de producto.

Ejemplo 5.9

A un precio de p euros una empresa vende ¢ = 30 — 2p unidades
de un producto mensualmente. Se pide, calcular el precio al que
debe vender el producto para maximizar el ingreso mensual y el

ingreso maximo mensual.

Solucion: La funcion de ingresos serda I(q) = (30 — 2p)p =
—2p? + 30p, cuya derivada es I'(p) = —4p + 30. Esta funcion se
anula en p = 15/2, que corresponde, como es facil deducir, a un

maximo. La cantidad a vender sera ¢ = 30 —2- % = 15 unidades.
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Por Gltimo, el ingreso maximo vendra dado por I(15/2) = 2.

15 =1125€. O

Ejemplo 5.10
Las funciones de ingresos y costes mensuales por la fabricacion y

venta de ¢ unidades de un producto vienen dadas por

5 2
I(q) = —%+20,
2q3
Clg) = —3q+ —

3

Se pide:
a) Hallar las funciones de ingresos y costes marginales.

b) Averiguar cual es el ingreso marginal y el coste marginal

para g = 2.

c¢) Hallar la funcion de beneficio mensual.

d) Averiguar cuantas unidades hay que producir y vender para

maximizar el beneficio.

e) (Cudl es el beneficio maximo?

Solucion: Procedemos como sigue:
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a) Derivando se obtiene las funciones pedidas. Esto es,

I'(q) = —5q,
C'(q) = =3+ 2¢>.

b) En este caso obtenemos /'(2) = —10, C"(2) = 5.
c¢) La funcion de beneficios se obtiene como

5¢2 2q3
B(q) =1(q) — C(q) = —%+20— = +3¢

d) Derivando la funcion de beneficios obtenemos,

B'(q) = —2¢* — 5¢ + 3.

Puesto que B'(q) = 0siq = % y ¢ = —3, tenemos que
el beneficio marginal es cero cuando g = % ya que no tiene
sentido econdmico una cantidad negativa. Finalmente, estu-
diando el signo de B’(q), se obtiene que ¢ = % €s un maximo
local. Luego, habra que producir y vender 0.5 unidades del

producto.
e) Elvalor del beneficio maximo resulta B (%) = % = 20.7917

unidades monetarias. -
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Ejercicios propuestos tipo test

1. La derivada de la funcién y = 2% + 22 es:
a) ¥y =2x+ 3.
b) v = 32% + 222

c) vy =z(3x+2).

2. La derivada de la funcion y = 22 + 23 en x = —1, esto es
y'(—1), es:
a) 1. b) 2. c) —1.

3. Laderivada de la funcion y = 82® — 22 + %x?’ —bHes:
a) y' = 24a® — 2z 4 z2* — 5.
b) v = 24x? — 2x + 322

_ 4,2 12

c) Y =24x° - 2x + za°.
4 Siy=8c% —a? 24P —5 " (%) esigual a:
- Siy=82% —a? 4 52’ — , entonces y' (1) es igual a:

61 61 23
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5. La derivada de la funcion y = 52 — L + 4,/ — 2 es:

)Y 3+1+2
a = — + —.
Y 2
1
b))y =5— =+ ——.
)y st
)y 5+1+2
c = — + —.
Y 2

1
6. Siy = 5xr — — + 4y/x — 2, entonces y’'(4) es igual a:
s

97 95 97
RS ") 16 T
. L 2202
7. Laderivadadey = = —l—? — —2+5x—\/5+9es:
x

4
a) y’:4x3+§+2x2+—+5

N

4
b =4 — +22° — —= +5.
)y = 4a° + S+ 7 2\/_—1—
c) y’:4x3—i+2x ———|—9
2\/x
8. Laecuacion de la recta tangente a f(z) = z°+2enx = —1
es:

a) y=—-2z+1. b) y=-20-2. ¢)y=3r—2
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9. La ecuacion de la recta tangente a la funcion f(x) = 23 —

20 + 3z enx = 5 es:

) 71
=-r—-.
VY=t
71

) 7]
=——x+-.
Y=ty

10. La ecuacion de la recta tangente a f(x) = 32% 4+ 2y/x — £

enx = 1les:
a)y=4—8x. b)) y=8r—4. «¢)y=8r—1L1
y , 1
11. La ecuacion de la recta tangente a f(x) = 2° + —enz = 2
x

€s:

15 15 39
a) y = 33:—Z. b) y=—z-3. ¢)y= %m—z.

5

4
12. La funcién f(z) = % — 22% + 42 — 3z + = os:

a) Creciente en (—oo, —3) U (1, +00).
b) Decreciente en (—oo, —3) U (1, +00).

c¢) Creciente en (—3,1).
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5 4
13. La funcién f(z) = % —22° +4a* — 3z + - tiene:

a) Un minimo local en x = —3 y un maximo local en
r =1

b) Dos minimos localesen x = =3y z = 1.

¢) Un maximo local en z = —3 y un minimo local en
r =1

1
14. La funcién f(z) = 2° + 5:1:2 — 2x + 5 tiene un maximo

local en:

15. La funcién f(z) = —32° + 2:

a) Es decreciente en (—o0, 0) y creciente en (0, 00).
b) Es creciente en su dominio.

c¢) Es decreciente en su dominio.
16. La funcion f(z) = 2% + 1:

a) Tiene un minimo local en z = 0.
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b) No tiene maximos ni minimos locales.

¢) Tiene un maximo local en = = 0.
17. La funcién f(z) = 223 + T2% — 122 — 1:

. 2 . .
a) Es decreciente en (—3, 5) y tiene un maximo en

r=—3.

. 2 . .
b) Esdecreciente en (—3, §> y tiene un minimo en z =

—3.

: 2 :
¢) Es decreciente en (—oo, —3) U (§’ oo) y tiene un

maximo en r = —3.
18. La funcién f(x) = 22° — 122 — 30z — 10 es:

a) Creciente en (—oo, —1)U(5, +00) y tiene un maximo

enx = b.

b) Creciente en (—oo0, —1)U(5, +00) y tiene un minimo

enx = b.

c¢) Creciente en (—1,5) y tiene un minimo en z = 5.
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19.

20.

21.

178

La funcion de beneficios mensuales por la fabricacion y
venta de ¢ unidades de un producto viene dada por

3 32
B(q):—%+%+10q—40,

medida en unidades monetarias (u.m.). Entonces la canti-
dad ¢ que maximiza los beneficios, asi como el beneficio

maximo vienen dados por:
a) q =5, beneficio maximo igual a 5 U
35 S
b) ¢ = 5 beneficio maximo igual a 5 u.m.

50
¢) q = 5, beneficio maximo igual a 3 wm

Sean las funciones de ingresos y de costes I(q) = 2¢* — ¢,
Clq) = 2¢® + 5q + 400, respectivamente. Entonces, los
ingresos y costes marginales cuando la cantidad vendida es

q = 2, son respectivamente:

a) 29y 7. b) 7y 14. c) 7y29.

La demanda de un producto en una empresa es funcion del
precio de venta de ese producto. A un precio de p euros la
empresa vende una cantidad de ¢ = 30 — 2p unidades de

ese producto al dia. Entonces, el precio al que debe vender
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el producto para maximizar los ingresos, asi como el ingreso

maximo vienen dados por:

a) p=112.5€, Ingreso = 7.5€.
b) p="T.5€, Ingreso = 112.5€.
c) p=T%€,Ingreso = 112.5€.
22. La funcion de costes mensuales por la fabricacion y venta

de ¢ unidades de un determinado producto viene dada por

q3
C(q) = o 25q + 280.

Entonces, la cantidad que hay que producir y vender para
que el coste mensual sea minimo asi como el coste minimo

vienen dados, respectivamente por.
a) q=>5,Coste = 196.667.
b) ¢ =5, Coste = 195.5.
c) q =3, Coste = 196.667.
23. La demanda diaria de viajeros de una compafiia aérea es-

ta en funcidn del precio de venta del trayecto estrella que

oferta. La funcion de demanda viene dada por p = 18 — %q,
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donde p es el precio (en euros) y ¢ la cantidad de viajeros
que transporta al dia (en miles). La funcion de costes total

de la empresa viene dada por

3

Clq) = % ~ 1000.

Entonces, el precio (en euros) al que deberia vender el tra-
yecto estrella para maximizar el beneficio, asi como el be-

neficio diario vienen dados, respectivamente, por:

a) p = 13.5€, Beneficio maximo = 1031.5€.
b) p = 3€, Beneficio maximo = 1000 €.

¢) p = 13.5€, Beneficio maximo = 10310.5 €.

24. Lademanda semanal de una empresa viene dada por la fun-

cion p = % (1 — q), donde ¢ son las unidades demanda-

das de un producto. Entonces, la cantidad que maximiza el
ingreso semanal asi como dicho ingreso maximo semanal,

medido en u.m., vienen dados por:
r . o 1
a) q = = unidades, Ingreso maximo = g .
b) ¢ = 1 unidad, Ingreso maximo = 0 u.m.

r . o
c) q= 3 unidades, Ingreso maximo = 8 u.m.
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25. A un precio de p euros una empresa vende ¢ = 100 — 2p
unidades de un producto mensualmente. Entonces, el precio
al que debe vender el producto para maximizar el ingreso

mensual y el ingreso maximo mensual es, respectivamente:
a) p = 1250 €, Ingreso maximo = 25<€.
b) p = 25%€, Ingreso maximo = 1250€.

c) p = 25 <€, Ingreso maximo = 50€.
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CAPITULO 6

INTRODUCCION A LA ESTADISTICA



Ejemplar para autor



Del estudio de los fendémenos aleatorios se ocupa la parte de las
matematicas que se denomina Estadistica. Esta disciplina a su vez
aparece dividida en tres grandes bloques denominados Estadistica
Descriptiva, Calculo de Probabilidades y Estadistica Inferencial.
De las dos primeras nos ocupamos brevemente en este Gltimo ca-

pitulo.

La Estadistica, conocida también como la Ciencia de los da-
tos, es la parte de las Matematicas que describe y estudia los datos,
que pueden tener procedencias diversas, datos econdmicos, bio-
logicos, médicos, actuariales, etc. Basicamente esta disciplina se
ocupa del tratamiento de los datos para, después de analizarlos e
interpretarlos, tratar de predecir resultados futuros que ayuden al

investigador en la toma de decisiones Optimas.
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Por su parte, la probabilidad trata de modelizar los fendmenos
del azar. El desarrollo del calculo matematico de los fenomenos
aleatorios comenz6 en los siglos XVI y XVII cuando Fermat y
Pascal tratan de resolver problemas relacionados con los juegos
de mesa, como los juegos de cartas, relacionados con el azar.

En la actualidad la teoria de la probabilidad proporciona herra-
mientas a la Estadistica Descriptiva y constituye la base de las apli-
caciones estadistica que tiene, entre otras, una importancia funda-

mental en la toma de decisiones.

6.1 Estadistica descriptiva

La Estadistica descriptiva se ocupa del tratamiento de datos re-
lacionados con todo tipo de fendmenos, los colecciona, los analiza
e interpreta, tratando de predecir resultados futuros para la toma
optima de decisiones. Una vez recogidos los datos es posible ha-
cerse una idea de los resultados a partir de una tabla estadistica. En
ella se ordenan los valores observados en orden creciente y acom-
panados de sus respectivas frecuencias (el nimero de veces que
se repite). La variable observada es la caracteristica que se desea
estudiar: altura de un determinado grupo de personas, nimero de

varones en familias con mas de un hijo, peso de un determinado
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grupo de personas, salario de un grupo de trabajadores, etc. Asi,
si la variable observada X toma los valores x1, x», . . ., x,, la tabla
estadistica correspondiente a estos datos se muestra en la Tabla

6.1. donde f; es el numero de veces que se repite el dato x1, f; es

Tabla 6.1: Tabla de frecuencias

Variable observada Frecuencia
X1 f 1
T2 f 2
T, I

Total => "  fi=N

el nimero de veces que se repite el dato x, etc. El simbolo ) )",
se lee sumatorio desde ¢ igual a 1 hasta n, y se usa para indicar
una suma que consta de n sumandos, siendo n un numero natural.
Estos datos pueden resultar en ocasiones mas ilustrativos median-
te una representacion grafica. Algunos de ellos son el diagrama

de barras y el diagrama de sectores. En el siguiente ejemplo se

muestran estos dos tipos de graficos.
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Ejemplo 6.1
La Tabla 6.2 muestra la distribucion de las rentas en euros percibi-

das por las 20 personas que trabajan en una empresa de transporte.

Tabla 6.2: Rentas percibidas por 20 trabajadores en una empresa

de transporte

Rentas (en €) 750 800 900 1200

Numero de trabajadores 6 7 4 3

Puede observarse que hay 6 trabajadores que perciben 750 €,
7 trabajadores que perciben 800 €, 4 trabajadores que perciben
900 € vy 3 trabajadores que perciben 1200 €. A partir de dicha
Tabla podemos configurar la siguiente Tabla de frecuencias abso-
lutas y relativas (Tabla 6.3),

Obsérvese que la columna porcentaje se ha obtenido de la co-
lumna anterior multiplicando por 100. En la Figura 6.1 se mues-
tra el diagrama de barras o de rectangulos correspondiente a esos
datos. Consiste este diagrama en representar las distintas modali-
dades (rentas en este caso) en el eje de abscisas y dibujar sobre
cada una de las modalidades un rectangulo cuya altura sea igual a

la correspondiente frecuencia absoluta o relativa.
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Tabla 6.3: Tabla de frecuencias

Variable Frecuencia Frecuencia i
Porcentaje

observada absoluta relativa

750 6 6/20 = 0.30 30%

800 7 7/20 = 0.35 35%

900 4 4/20 = 0.20 20%

1200 3 3/20 =0.15 15%

N =20 Total = 1 Total = 100%

Por otro lado, la Figura 6.2 muestra el diagrama de sectores
de los datos. En este diagrama se representa sobre un circulo las
diferentes modalidades (rentas) en diversos sectores con un area

proporcional a la correspondiente frecuencia absoluta o relativa.

6.2 Medidas de centralizacion

Las medidas de centralizacion, también llamadas medidas de
tendencia central, tratan de resumir los datos recogidos en unos
pocos nimeros que nos proporcionen una idea del comportamien-

to de todos los datos recogidos. Son:
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34 |

30%
30 - 1

26 - 1

24 - _

Frecuencia relativa

22 - 1

20%
20 - % *

18 | *

16 |-

15%

750 800 900 1200
Renta (€)

Figura 6.1: Diagrama de barras correspondiente al ejemplo 6.1

* Media, denotada por z, es la medida central mas utilizada
como representante de los datos recogidos. Se calcula utili-

zando la expresion,

> i Tifi _ nfitxafot -+ anfa
o fi h+fo++fn

T =

(6.1)

* Moda es el valor o valores que presenta mayor frecuencia.

* Mediana es el valor que ocupa el lugar central, si hay un
nimero impar de datos, o la media de los valores interme-

dios, si el nimero de datos es par. De un modo mas preciso,
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800 €

1200 €

900 €

Figura 6.2: Diagrama de sectores correspondiente al ejemplo 6.1

la mediana es aquel valor que deja por debajo de si y por

encima de si el 50% de las observaciones.

Ejemplo 6.2

Calcular la media, mediana, moda para los datos del ejemplo 6.1.

Solucion: Disponemos los datos como se muestra en la Tabla 6.4
y aplicamos la expresion dada en (6.1).

Luego, la media viene dada por

17300
iy 1,1, V=3
T o0

Luego, el salario medio de los trabajadores es de 865€. La

moda corresponden al dato con mayor frecuencia, que es 7. Luego

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA 191



INTRODUCCION A LA ESTADISTICA

Tabla 6.4: Tabla de frecuencias

Variable Frecuencia

x-f

observada, absoluta, f
750 6 4500
800 7 5600
900 4 3600
1200 3 3600

N =20 Total = 17300

la moda es 800 €, que es por tanto el salario mas frecuente entre

los 20 trabajadores.

Finalmente, ordenando los datos de menor a mayor tenemos
que puesto que existe un nimero par de datos quedan dos en el
centro que corresponden a 800 y 800. Luego la mediana es la se-
misuma de estos dos valores, w = 800 €. Este valor nos in-
dica que un 50% de los trabajadores perciben salarios por encima

de 800 € y otro 50% por debajo. O
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6.3 Medidas de dispersion

Cuando los datos estan muy concentrados alrededor de la me-
dia se dice entonces que la media es una medida representativa
de los datos. Sin embargo, si los valores estan muy dispersos, la
media es poco representativa.

Por ejemplo, supongamos que disponemos de dos conjuntos
de datos relativos a las notas obtenidas en cinco controles por un
alumno en el primer y segundo cuatrimestre en la asignatura de

Matematicas, que son los siguientes:

Tabla 6.5: Notas en dos cuatrimestres

Primer cuatrimestre 2 6 8 7 2

Segundo cuatrimestre 1.1 6.5 6.2 6.1 5.1

Es facil calcular la nota media obtenida en ambos cuatrimes-
tres, que resulta 5. Esté claro que aunque la media sea igual para
ambos cuatrimestres la evolucion del alumno no ha sido la misma.
Parece que en el segundo cuatrimestre su evolucion ha sido mas
homogénea que en el primer cuatrimestre, donde salta a la vis-

ta que los datos estdn muy dispersos. Necesitamos, pues, de una
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medida que nos indique el grado de dispersion de los datos en rela-

cion a la media. Dos medidas de esta naturaleza que estudiaremos

son la varianza y la desviacion tipica, que pasamos a exponer a

continuacion.

194

* Varianza, denotada como o2, es la media de los cuadrados

de las desviaciones de los datos respecto a la media. Se cal-

cula como,
o? = %;(L —z)*f;
- % (21 =2’ fi 4+ (w0 =2 fa] . (62)

donde o se ha de leer como ’sigma”. Obsérvese que tal y
como estd definida la varianza esta siempre es una canti-
dad positiva. Un valor de la varianza cercano a cero indica-
ria que todos los datos estan agrupados en torno a la media
mientras que un valor elevado sefialaria una alta dispersion

de los mismos.

En la practica resulta muchisimo mas facil obtenerla a partir

de la expresion,

1 n
2 Z 2 2
o = N Z; fz — X,
=1
que puede comprobarse que es equivalente a la expresion

(6.2).
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 Desviacion tipica es la raiz cuadrado positiva de la varianza.

Esto es, 0 = Vo2.

Ejemplo 6.3
Calcular las dos medidas de dispersion estudiadas para los datos

del ejemplo 6.1.

Solucion: Ampliamos la Tabla 6.4 en la forma que se muestra en
la Tabla 6.6. Utilizando la expresion (6.2) se tiene que la varianza

viene dada por,

Tabla 6.6: Tabla de frecuencias

x f x-f 22 f
750 6 4500 3375000
800 7 5600 4480000
900 4 3600 3240000
1200 3 3600 4320000

N =20 Total =17300 Total = 15415000

, 15415000
o' = —

— 8652 = 22525.
20
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La desviacion tipica resulta o = /22525 = 150.083. Como se
aprecia, los datos de la renta en esta empresa tienen una varianza

bastante alta lo que sefala una elevada dispersion de la misma. O

6.4 Coeficiente de variacion

Nos planteamos ahora si tiene sentido usar magnitudes, de cen-
tralizacion y dispersion, para comparar dos variables diferentes.
Supongamos que pretendemos comparar la altura de los alumnos
de una clase con el peso de los mismos. Tanto la media como la
desviacion tipica se expresan en las mismas unidades que la varia-
ble. Por ejemplo, en la variable altura podemos usar como unidad
de longitud el metro y en la variable peso, el kilogramo. Com-
parar una desviacion (con respecto a la media) medida en metros
con otra en kilogramos no tiene ningtn sentido. El coeficiente de
variacion permite evitar estos problemas, pues elimina la dimen-
sionalidad de los datos y tiene en cuenta la proporcion existente
entre medias y desviacion tipica. Suele representarse por medio

de las siglas C.V., y viene dado por:

CV. =

SRS

Uno de sus usos mas comunes consiste en expresar la desvia-

cion estandar como porcentaje de la media aritmética, mostrando
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una mejor interpretacion porcentual del grado de variabilidad de
los datos. A mayor valor de C.V. mayor dispersioén de los datos;
y a menor C.V., menor dispersion y, por tanto, mayor homoge-
neidad en los mismos. Se puede expresar por tanto en porcentaje,

calculando entonces como,

C.V. = — x 100%.

SIES]

Ejemplo 6.4

Calcular el coeficiente de variacion para los datos del ejemplo 6.1.

Solucion: Se obtiene de forma inmediata,

150.083,

Vo= = 17.35%.
C.V. 365 %o 7.35%

6.5 Introduccioén a la probabilidad

Se denominan sucesos o experimentos aleatorios o estocasti-
cos aquéllos en los que repitiéndose en las mismas condiciones
cuantas veces se quiera pueden presentar resultados distintos, no
pudiendo con seguridad asegurarse el resultado que se obtendra.
Por otro lado, un experimento es determinista si se sabe con cer-

teza el resultado que se obtendra al llevarlo a cabo.
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Son ejemplos de experimentos aleatorios el lanzamiento de un
dado o de una moneda. Por contra, un objeto seguro que cae si
no hay nada que lo soporte, tratdndose éste de un experimento

determinista.

La probabilidad se ocupa de medir o cuantificar la incertidum-
bre que se tiene sobre el resultado de un experimento aleatorio.
Son ejemplos de experimentos aleatorios, el lanzamiento de un
dado no trucado, la extraccion de cartas de una baraja, el resulta-

do de una loteria, etc.

Las siguientes definiciones resultan fundamentales en el desa-

rrollo del calculo de probabilidades.

a) Se denomina espacio muestral al conjunto de todos los po-
sibles resultados del experimento aleatorio, usualmente de-

notado mediante S.

b) Se denomina suceso a cualquier subconjunto del espacio
muestral, usualmente denotados mediante letras mayuscu-
las. Por ejemplo, en el lanzamiento de un dado son sucesos
”obtener nimero par”, “obtener numero impar”, ~obtener

un nimero mayor que 3”, etc.
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¢) Se denomina suceso seguro al que siempre ocurre al reali-
zar el experimento aleatorio. Por ejemplo, es seguro que al
lanzar una moneda al aire se obtendra una cara o una cruz,
o bien que al lanzar un dado se obtendra un nimero menor

que 7.

d) Suceso imposible al que nunca ocurre. Suele denotarse este
ultimo mediante () (conjunto vacio). Por ejemplo, en el lan-
zamiento de una moneda una vez es imposible que se ob-
tengan dos caras, o en el lanzamiento de un dado que pueda

obtenerse un 9.

En el siguiente ejemplo se ilustran todos los conceptos intro-

ducidos anteriormente.

Ejemplo 6.5

Se lanza una moneda tres veces, se pide:

a) Escribir el espacio muestral y dar el nimero de elementos

que lo componen.
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b) Escribir los sucesos

A = {obtener tres caras},
B = {obtener tres cruces},

C' = {obtener dos 0 mas cruces consecutivas }

y dar el nimero de elemenos que lo componen.

Solucion:

a) Denotando por ¢y x los eventos cara y cruz, respectivamen-

te, es claro que el espacio muestral vendra dado por

S ={(c,c,c),(c,c,x), (¢, x,c), (¢, x,x),

(x,c,c), (x,c,x), (x,z,¢), (x,2,2)},
que se compone de 8 elementos, esto es n = 8.
b) En este caso se tiene,

A={(c,c,c)}, quetiene | elemento,
B = {(xz,z,x)}, quetiene 1 elemento,

C=A{(c,x,z),(z,x,c),(x,x,2)}, que tiene 3 elementos.

Estoes,ng =np=1ync = 3.
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Si un experimento tiene un numero finito de resultados posi-
bles y no hay razén que privilegie un resultado frente a otro, para
cualquier suceso A se tiene que la probabilidad del mismo se cal-

cula mediante la regla de Laplace,

numero de casos favorablesa A  nu4

A) = = — 6.3
p(4) numero de casos posibles n’ (6.3)

siendo n 4 el numero de elementos de A y n el nimero de elemen-
tos de .S, el espacio muestral.

Es evidente, a partir de (6.3) que la probabilidad de un suceso
es un namero comprendido entre 0 y 1, esto es 0 < p(A) < 1,
tomando el valor cero para el suceso imposible y el valor 1 para

el suceso seguro.

Ejemplo 6.6
Para los datos del ejemplo 6.5 se pide calcular las probabilidades
de los sucesos S, A, B, C asi como la del suceso D, obtener cuatro

caras.

Solucion: Utilizando la regla de Laplace obtenemos

n 8 ny 1

ng 1 ng 3

B = — = — C —_ —_— = =
p(B) = "2 =, pC) =5 = <
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Finalmente el suceso D no consta de ningtin elemento (se tra-
ta de un suceso imposible) y su probabilidad es por tanto cero,

p(D) =0/8 =0. O

Ejemplo 6.7
Se lanza una vez un dado no trucado. Calcular la probabilidad de

los siguientes sucesos:

a) Obtener un cinco.

b) Obtener un numero par.

c¢) Obtener un nimero mayor que dos.

Solucién: Elespacio muestrales F = {1,2, 3,4, 5,6}, que consta

de 6 elementos, n = 6. Entonces.

a) Sea A el suceso obtener un cinco; luego como este numero
solo puede salir una sola vez al lanzar el dado una vez se

tiene que aplicando la regla de Laplace obtenemos,

namero de casos favorables a A 1

p(A) =

nimero de casos posibles 6
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b) En este caso se tiene A = {2,4,6}, con ny = 3. Luego,

aplicando (6.3) resulta,
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Ejercicios propuestos tipo test

1. Sia1 = ]_,CLQ = 3,&3 = 2,@4 = O,bl = bg = 2,b3 =
—1y by = 1, entonces Zle(ai + b)), Zle(ai — b))%y

2?:1(% + b;)? vienen dados, respectivamente, por:

a)12,10y36.  b) 10,12y36. ¢) 12,15y 30.

2. Si el diagrama de sectores de un determinado conjunto de

datos con atributos A, B, C, D y E viene dado por

A

10%

40%

10%

C E
15%
D
entonces la moda esta en:
a) El atributo C. b) Los atributos A y E.

c¢) El atributo D.
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3. Siel diagrama de barras de un determinado conjunto de da-

tos con atributos A, B, C, D y E viene dado por

409
40 %

30%

)
St

N}
S
T

Frecuencia absoluta

15
12%

ol 10%

A B C D E
Atributos

entonces la moda esta en:

a) El atributo B. b) Los atributos A y E.

c¢) El atributo E.

4. Sean los salarios mensuales en euros de 10 personas son
1200, 800, 950, 3000, 560, 1000, 750, 2600, 1500, y 700.
Entonces, el salario medio, la mediana, la varianza, la des-
viacion tipica y el coeficiente de variacion son, respectiva-

mente:

a) 1306, 975, 793.86, 630224, 60.78%.
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b) 1306,975, 630224, 793.86, 60.78%.

c¢) 1306,975, 630224, 793.86, 63.78%.

5. Al lanzar un dado 100 veces se ha obtenido las siguientes

206

frecuencias para cada uno de los puntos del mismo: Enton-

Puntos 1 2 3 4 5 6
Frecuencia 16 17 14 15 20 18

ces, la media de puntos y la mediana son, respectivamente:

a) 3.5y3.6. b) 3.5y3.5. ) 3.6y4.

Si la cotizacién de las acciones de una determinada empresa
durante los cinco dias de la semana han sido 35 €, 40 €, 38

€, 38 € y 41 €, entonces la cotizacion media ha sido de:

a) 34.8 €. b) 35 €. c) 384€.

La media aritmética de los seis primeros numeros pares es:

a) 10. b) 7. c) 6.

. Los accidentes, X, sufridos por 20 asegurados de una com-

pafiia de seguros se recogen en la siguiente tabla. tabla. En-
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Accidentes 0 1 2 3 4

Frecuencia &8 6 3 1 2

tonces, la media, la desviacion tipica y el coeficiente de va-
riacion vienen dados por:

a) T=0,0=127,CV. =110.11%.

b)

&I
Il

1.15, 0 = 1.15, C.V. = 111%.
¢) T=1150=127CV.=111%.

9. La temperatura medida durante 36 dias a las 17 horas en
un mismo punto de Gran Canaria aparece recogida en la

siguiente tabla. Entonces, la media y la varianza es:

Temperatura 20 22 24 26 28

Frecuencia 2 7 15 8 4

a) T =24.27,02=206. b) T =2.06,02=4.25.
¢) T =24.27, 0% =4.25.

10. Tras entrevistar a los 20 estudiantes de una clase acerca del
nimero de libros que habia leido el afio anterior se obtuvo

la siguiente tabla de frecuencias:
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Numero de libros 0112345

Namerode estudiantes | 8 | 51|14 1

Entonces, el nimero medio de libros leidos asi como la mo-

da y el coeficiente de variacion son:

a) Media = 1.55, moda = 8, C.V. = 107.110%.
b) Media = 1.35, moda = 0, C.V. = 93.85%.
¢) Media = 1.55, moda = 0, C.V. = 110.76%.
11. El juego de dados del casino se basa en las probabilidades

de la suma de dos dados. Después de 10 lanzamientos los

resultados han sido los siguientes:

Suma 41516891011
Frecuencia | 1 |2 |2 1|1 | 2 1

Entonces, la media, la mediana y el coeficiente de variacion

son:
a) Media = 7, mediana = 7.5, C.V. = 33.82%.
b) Media = 7.4, mediana = 7, C.V. = 32.10%.

¢) Media = 6.5, mediana = 7, C.V. = 295.64%.
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12. En una residencia en la que hay 20 ancianos con minus-
valia se ha anotado, durante el dia, el nimero aproximado
de metros que cada uno de los mismos anda, seguido y sin
cansarse, obteniéndose al final del dia la siguiente tabla de

informacion:

Numero de metros 5 7 8 15 20

Nuomero de ancianos 2 4 3 5 6

Entonces, la media, la moda y el coeficiente de variacion

son, respectivamente:

a) 12.85,20y 44.72%. b) 12.85,20y 47.42%.

c) 20,6y 44.72%.

13. Preguntamos el nimero de zapato a 30 nifios de dos clases

de primaria y obtenemos la siguiente tabla de frecuencias:

Numero 3113233 |34
Frecuencia | 1 |14 |11 | 4

Entonces, la media, la mediana y el coeficiente de variacion

son:
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a) Media = 32.6, moda = 33, C.V. = 4.14%.
b) Media = 32, moda = 32, C.V. = 12.72%.
¢) Media = 32.6, moda = 32, C.V. = 2.32%.
14. Se han seleccionado 20 numeros entre los seis primeros de

un juego de loto y el nimero de veces que han aparecido en

las ultimas semanas se muestra en la siguiente tabla:

Numeros seleccionados 1 2 3 4 5 6

Frecuencia 3 4 3 5 4 1

Entonces, la media, la mediana y el coeficiente de variacion

son, respectivamente:

a) 3.30,3y45.05%. b) 3.30,4y 48.05%.

c) 3.14,3 y 45.05%.

15. Sélo uno de estos experimentos es aleatorio:

a) El lanzamiento de un dado.
b) El lanzamiento de un dado trucado.

¢) Extraer una bola de una urna que tiene sélo bolas

blancas.

210 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA



EMILIO GOMEZ DENIZ Y CHRISTIAN GONZALEZ MARTEL

16. Sélo uno de estos experimentos es aleatorio:
a) Extraer una bola de una urna con 2 bolas blancas.
b) Sumar los angulos de un triangulo y anotar el resultado.

c¢) Extraer una bola de una urna con 2 bolas blancas y 1

negra.

17. Sélo uno de estos experimentos es aleatorio:
a) Mezclar agua y aceite y observar lo que ocurre.

b) El resultado de una quiniela de futbol.

c¢) Contar el nimero de numeros pares que hay entre 100

y 200.

18. En el experimento que consiste en lanzar dos monedas al ai-
re y observar el nimero de caras que se obtienen, el espacio

muestral consta de:

a) 8 elementos.  b) 4 elementos. ¢) 12 elementos.

19. Se lanzan al aire al mismo tiempo tres monedas iguales. En-
tonces, la probabilidad de que salgan dos cruces y una cara

Cs:
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a) b)

c)

col w
co| Ut

=

20. Se dispone de una bolsa que contiene 3 bolas blancas y 2
rojas. Si se extrae una bola al azar, entonces la probabilidad

de que la misma sea blanca es:

a) b)

)

ot W
W ot
ol Do

21. Se extrae una carta al azar de una baraja espafiola. Entonces
la probabilidad de que la carta extraida sea una figura (sota,

caballo o rey) es:

a) —. b)

C) 1—0

W

22. Se extrae una carta al azar de una baraja espafiola. Entonces
la probabilidad de que la carta extraida sea copa y figura

(sota, caballo o rey) es:

23. Laprobabilidad de que al lanzar dos dados simultaneamente

la suma de los puntos obtenidos sea menor que 10 es:

a) b) —. c)

[GVIN )
—_
S
S| Ot
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24. Disponemos para enviar de tres cartas con sus sobres co-
rrespondientes e introducimos al azar cada carta en uno de
los sobres. Entonces, la probabilidad de que al menos una

carta vaya en el sobre que le corresponde es:

Wl N

a) b) 0. c)

| =

25. La ventaja de que el equipo de futbol A gane al equipo B es
5 a 3. Entonces la probabilidad de que ganen A y B vienen

dadas respectivamente por:

ol W ool ot
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SOLUCIONES A LOS EJERCICIOS PROPUESTOS

CAPITULO

1 2 3 4 5 6
l.a 1.b l.a 26.c 1.b l.c 1.b
2.b 2.c 2.a 270 2.c 2.a 2.a
3.c 3.a 3.b  28b 3.a 3.c 3.a
4.c 4.b 4a 29.a 4.a 4.b 4.b
5.c 5.a 5.c  30.b 5.c 5.c 5.c
6.0 6.a 6.a 3l.a 6.a 6.c 6.c
7.a 7.b T.c 32.c 7.a 7.b 7.
8.c 8.c 8.a 33.a 8.c 8.a 8.c
9.b 9.c 9.b  34.a 9.a 9.b 9.c
10.c | 10.b | 10.b 35.a | 10.a | 10.b | 10.c
1l.a | 11.a | 11.c 36.b | 11.b | 11.b | 110
12.a | 126 | 12.a 37.c | 12.b | 12.a | 12.a
13.c | 13.c | 13.a 38.a | 13.c | 13.c | 13.c
146 | 140 | 140 390 | 14.a | 14.a | 14.a
15.c | 15.a | 15.c 40.c | 15.a | 15.c | 15.a
16.a | 16.c | 16.a 4l.a | 16.b | 16.b | 16.c
176 | 17.c | 17.b 426 | 17.b | 17.a | 170
18.b | 18.a | 18.c 43.c | 18.b | 18.b | 18.b
19.b | 19.c | 19.a 44.b | 19.c | 19.a | 19.b
20.c | 20.b | 20.c 45.a | 20.a | 20.c | 20.a
2l.a | 216 | 21.c 46.a | 21.b | 21.b | 21.c
22.a | 22b | 22b 47.c | 22.b | 22.a | 22.b
23.c | 23.c | 23.c 48b | 23.a | 23.a | 23.c
24.a | 24.a | 24d.a 49.a | 24.c | 24.a | 24.a
25.b | 25.a | 25.c  50.b | 25.c | 25.b | 250
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En los ditimos tiempos uno de los retos mas enriquecedores en educa-
cién ha sido la implantacion del acceso a la universidad por criterios de
edad.

Hace ya mas de dos décadas, la Universidad de Las Palmas de Gran
Canaria, consciente de la importancia que esta modalidad de acceso
podia suponer para nuestra sociedad, puso en marcha un atractivo plan
de estudios y un curso preparatorio para la prueba de acceso a la Unica
modalidad que por entonces existia, el acceso para mayores de 25 afos
sin estudios previos. Posteriormente, se amplié el sistema a otros nuevos
colectivos de acceso por criterio de edad: mayores de 45, y mayores de
40 anos con experiencia laboral y profesional.

Dada la peculiaridad de las personas que podrian interesarse por este
tipo de acceso, la Universidad de Las Palmas de Gran Canaria fue mas alla
y publico unos manuales con los contenidos basicos del curso adaptados
al nivel exigible y al tiempo de duracion del mismo. Este trabajo implico
a un gran numero de profesionales universitarios de las distintas ramas
del saber. A través de estos afios estos materiales han sido renovados
en funcién de la exigencia y de la legislacién vigente. Continuamos en
este momento adaptando y redefiniendo los objetivos y contenidos del
curso con el fin de integrar este singular sistema de acceso en el Espacio
Europeo de Educacion Superior.
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