IEEE Computer Architecture Letters

CPU Accounting in CMP Processors

Carlos Luque', Miquel Moreto', Francisco J. Cazorla?, Roberto Gioiosa®, Alper Buyuktosunoglu®, Mateo Valero!-2

!Universitat Politécnica de Catalunya

2Barcelona Supercomputing Center

3IBM T. J. Watson Research Center

Abstract— Chip-MultiProcessors (CMP) introduce complexities when accounting CPU utilization to processes because the progress done by a
process during an interval of time highly depends on the activity of the other processes it is co-scheduled with. We propose a new hardware
accounting mechanism to improve the accuracy when measuring the CPU utilization in CMPs and compare it with the previous accounting
mechanisms. Our results show that currently known mechanisms could lead to a 12% average error when it comes to CPU utilization accounting.
Our proposal reduces this error to less than 1% in a modeled 4-core processor system.

1. INTRODUCTION

The Operating System (OS) provides the user with an abstraction
of the hardware resources. The user application perceives this ab-
straction as if it is using the complete machine while, in fact, the OS
shares hardware resources among the users. Hardware resources can
be shared in two possible ways: temporarily and spatially. Hardware
resources are time shared between users when each process can make
use of a resource for a limited amount of time (for example, the
exclusive use of a CPU). Orthogonally, hardware resources can be
shared spatially when each process makes use of a limited amount
of resources, like the cache memory or the I/O bandwidth.

Even if the user application perceives to be alone in the system, its
execution time is affected by the amount of hardware resources shared
with the other running applications and for how long. However,
the time accounted to that application should always be the same
regardless of the workload" in which it is executed, i.e., regardless of
how many processes are sharing the hardware resources at any given
time. Unix-like systems differentiate the real execution time and the
time a process actually is running on a CPU. Commands like time
or top provide three outcomes: real, user and sys. real is
the total elapsed (wall clock) time used by the process; user is the
time the process used directly the CPU; and sys is the time spent in
kernel mode on behalf of the process. In these systems, sys+user
time is the execution time accounted to the process.

Figure 1 shows the total (real) and the accounted execution time
(sys+user) of the 459.GemsFDTD (or simply gems) SPEC CPU
2006 benchmark when it runs in different workloads. The time results
in this figure are normalized to the real execution time of gems
when it runs in isolation (16.52 minutes). For this experiment, we
use Linux 2.6.24 on an Intel Core 2 Duo 1.6 GHz machine, which
has a dual-core chip in which each core is single threaded (though
the general trends drawn from Figure 1 apply to all current CMPs).
We isolate one core to emulate a uniprocessor system (single thread
or ST mode): the OS activity was bound to the first core, leaving
the second core as isolated as possible from noise. When gems runs
together with other processes in the same core, its real execution
time increases up to around 2x due to context switches between all
running processes. Nevertheless, gems is accounted roughly the same
time (grey triangles) which is the time the process actually uses the
CPU. Processes may suffer some delay because they lose part of
the cache and TLB contents on every context switch, but this effect
is small in this case. Hence, even if gems’s total execution time
increases depending on the other application it is co-scheduled with,
the time accounted to gems is always the same. In uniprocessor
systems, each running process uses 100% of the processor’s resources
and its progress can be measured in terms of the time spent on the
CPU. We call this approach the Classical Approach (C A). The CA
has been proved to work well for uniprocessor and SMP? systems,

Manuscript submitted: 04-Feb-2009. Manuscript accepted: 18-Mar-2009.
Final manuscript received: 25-Mar-2009
' A workload is a set of processes running, simultaneously, on the CPU

2Symmetric Multi-Processors have single thread, single core chips. SMPs
share off-chip resources like the memory bandwith or the I/O channels. We
consider those resources less critical and only focus on on-chip resources.

o 2.25
£ —A-real (ST) A A
24 P A
; 1.75 | & sys+user(ST) /O
3 1
£ 5] e realcmp) o il
g 425 | ——sys+user (CMP)
2 1 r T T T 1
gems gems+wrf gems+bzip2 gems+libq
Fig. 1. Total (real) and accounted (sys+user) time of gems in

different workloads and processor (Intel Core 2 Duo) configurations

as the amount of shared resources is limited and the major task of
the OS scheduler is to time share the CPUs between the runnable
processes.

However, processors with shared resources, like CMPs, make CPU
accounting more complex because the progress of a process depends
on the activity of the other processes running at the same time.
Current OSs still use the CA for multithreaded processors, which
can lead to inaccuracy for the time accounted to each process. To
show this inaccuracy, in a second experiment, we use both cores of
the Intel Core 2 Duo processor. Next, we execute gems with several
workloads as shown by the x-axis in Figure 1. In this case, given that
the number of processes running is equal or less than the number of
virtual CPUs (cores) in the system, processes suffer no time sharing
and real time is roughly the same as sys+user. In Figure 1, the
grey circles show a variance up to 1.9x in the time gems is accounted
depending on the workload in which it runs. This means that (at least
with current known open source OSs like Linux) a process running
on a CMP processor may be accounted differently according to the
other processes running on the same chip at the same time. From
the user point of view this is an undesirable situation, as the same
application with the same input set is accounted differently depending
on the processes it is co-scheduled with.

CPU accounting affects several key componets of a computing
system: For example, if the OS scheduler is not able to properly
account the CPU utilization of each process, the OS scheduling
algorithm will fail to maintain fairness between processes. As a
consequence the scheduling algorithm cannot guarantee that a process
progresses with its work as expected. In data centers, customers are
charged according to the utilization of the CPU they use. Hence, an
accurate accounting is also critical in this scenario.

In this paper, we make for the first time a comprehensive analysis
of the CPU accounting accuracy of the CA that, as far as we know,
is the only accounting mechanism for CMPs. Next, we propose a
hardware mechanism, Inter-Thread Conflict-Aware (ITCA) account-
ing, that improves the accuracy of the CA for CMPs. In a 2-core
CMP architecture, ITCA reduces the inaccuracy to 1% (20% in the
worst five cases), while the CA presents an inaccuracy of 9% (120%
in the worst five cases). In a 4-core CMP processor, ITCA leads to
an inaccuracy less than 1% (9% in the worst five cases), while the
CA shows an inaccuracy of 12% (124% in the worst five cases).

2. FORMALIZING THE PROBLEM

Currently, the OS perceives the different cores in a CMP as
multiple independent virtual CPUs. With the CA the OS does
not consider the interaction between processes caused by shared
resources. However, the time running on a virtual CPU is not an

Posted tadholbEdlcdnéelDde tmidd 2000/ DE LAS PALMAS. Downloaded on February 16,2026 at 12:38:59 UTC from IEEE Xplore. Restrictions apply.

DOI 10.1109/L-CA.2009.3

1556-6056/09/$25.00 © 2009

Published by the IEEE Computer Society

IEEE Computer Architecture Letters

accurate measure of the amount of CPU resources the process has
received. The time to account to a process in a CMP processor does
not only depend on the time that process is scheduled onto a CPU,
but also on the progress, it makes during that time. In our view, in
CMPs, we have to maintain the same principle that rules today in
SMP and uniprocessor systems: Let’s assume that if a process X

runs for a period of time in a CMP, TR)C(%I; , in which it executes

Ix instructions. The actual time to account this process TA)C(%)}: , is
the time it would take this process to execute in isolation these Ix
instructions in the same architecture, denoted T'R%/, .1 - This would
make the CPU accounting independent from the rest of the workload.

With the CA, the time accounted to X in a uniprocessor system,
TASA ‘T» can be expressed as TAGA Ty = TR 1+ Next, let’s
assume that we run X in a workload on a multithreaded architecture
for TR)C(%I)I: units of time3, executing the same [x instructions. The
relative progress that process X has in this interval of time can be
expressed as P)?%(P = TRY Ix /TRCMP The relative progress
can also be expressed as P)C;I}IXP = IPC% I;/IPCX 1, in which
1 PCCM Pand I PC;?TIX are the IPC of process X when executing
the same [x instructions in the CMP and running alone, respectively.
Then, TASY Y = TRYMNE - PSP = TRY . that fulfills our
principle of workload-independent accounting.

The main issue to address is how to determine dynamically (while
a process X is simultaneously running with other processes) at the end
of each context switch, the time (or IPC) it would take X to execute
the same instructions if it had been alone in the system. An intuitive
solution is to provide hardware mechanisms to determine the IPC in
isolation of each process in a workload by periodically running each
process in isolation [3], [6]. However, as the number of processes
simultaneously executing in a multithreaded processor increases to
dozens or even hundreds, this solution will not scale, as the number
of isolation phases increases linearly with the number of processes
in the workload. As a consequence, the time the processor runs in
multithreaded mode is reduced, affecting the system performance.

3. INTER-THREAD CONFLICT-AWARE (ITCA) ACCOUNTING

In this paper, we refer to inter-thread resource conflicts to those
resource conflicts that a thread* suffers due to the interference of the
other threads running at the same time. For example, a given thread
X suffers an inter-thread L2 cache miss when it accesses a line that
was evicted by another thread, but would have been in cache, if X
had run in isolation. Likewise, intra-thread resource conflicts denote
those resource conflicts that a thread suffers even if it runs in isolation.

The CA leads to over estimation in CMPs (meaning that they are
accounted more time than the time they require to make the same
progress when running in isolation) since for a process X, we have

AX Ix = TRCMP > TR .15 - In our baseline processor setup
(see Figure 2(a)). The data and instruction caches are private to each
core and the L2 is shared. The main source of over estimation are
inter-thread conflicts and, in particular, inter-thread L2 misses, which
delay the threads with respect to their isolated execution.

The idea of our proposal is to account a thread for only those
cycles in which the thread is not stalled due to an inter-thread L2
cache miss. That is, we want to account a thread only when it is
progressing or it is stalled because of an intra-thread L2 miss.

L2 data misses: In order to do so, we consider a thread is in one
of the following states: (s1) It has no L2 cache misses or it has only
intra-thread L2 misses in flight; (s2) It has only inter-thread L2 misses
in flight; and (s3) It has both inter-thread and intra-thread L2 misses
in flight simultaneously. We consider that a thread is not progressing

31In Unix-like systems, we have TR%%I; = user+sys.
“In the paper, we interchangeably use the terms of process and thread

mshr entry empty,

Itmiss_mshrg
InterThreadMiss

L2 cache

Stop

miss O Zccounting

(a) Baseline processor arch.
Fig. 2. Hardware required for the ITCA accounting approach

(b) Logic to determine the accounting

and hence should not be accounted in state (s2). That is, we stop
accounting that thread when the thread experiences an inter-thread
miss and it cannot overlap its delay with any other intra-thread miss.
We resume accounting for the thread when the inter-thread miss is
resolved or the thread experiences an intra-thread miss, in which case
the thread is able to overlap the memory latency of the inter-thread
miss with at least one intra-thread miss.

In the state (s3), we do a normal accounting because the inter-
thread miss overlaps with another intra-thread miss. However, when
the inter-thread miss becomes the oldest instruction in the Reorder
Buffer (ROB) and the ROB is full, the thread loses an opportunity to
extract more Memory Level Parallelism (MLP). That is, let’s assume
that there are Y instructions between the inter-thread L2 miss in the
top of the ROB and the next intra-thread L2 miss in the ROB. In this
situation, if the thread had not experienced the inter-thread L2 miss
it would have executed the Y instructions after the last instruction
currently in the ROB. Any L2 miss in these Y instructions would
have been sent to memory, increasing the MLP. We take care of this
lost opportunity of extracting MLP by stopping the accounting of a
thread while the instruction in the top of the ROB is an inter-thread
L2 miss and the ROB is full. We call this situation (s4).

L2 instruction misses: Another situation in which we stop the
accounting of a thread, is when the ROB is empty because of an
inter-thread L2 cache instruction miss (s5). In our processor setup
instruction cache misses do not overlap with other instruction cache
misses. That is, at every instant, we have only 1 in flight instruction
miss per thread. Hence, on an inter-thread instruction L2 miss we
consider that the thread is not progressing because of an inter-thread
conflict, and hence, we stop its accounting.

3.1. Implementation

Detecting inter-thread misses: We keep an Auxiliary Tag Direc-
tory (ATD) [10] for each core (see Figure 2(a)). The ATD has the
same associativity and size as the tag directory of the shared L2
cache and uses the same replacement policy. It stores the behavior
of memory accesses per thread in isolation (ST mode). While the
tag directory of the L2 cache is accessed by all threads, the ATD
of a given thread is only accessed by the memory operations of that
particular thread. If the thread misses in the L2 cache and hits in its
ATD, we know that memory access would hit in cache if the thread
was running in isolation. Thus, it is identified as an inter-thread miss.

Tracking inter-thread misses: We also add one bit (inter-thread
bit or IT bit) in each entry of the Miss Status Hold Register (MSHR),
which is set to O when the entry is allocated. Each entry of the MSHR
keeps track of an in-flight memory access from the moment it misses
in the data L1 cache until it is resolved.

On a data cache miss, we have to access the L2 cache. We access
the tag directory and the ATD of the thread in parallel. If we have a
hit in the ATD and a miss in the L2 tag directory, we know that this is
an inter-thread L2 cache conflict and the IT bit of the corresponding
entry in the MSHR is set to 1. Once the memory access is resolved
we free its entry in the MSHR.

When the ROB is empty due to an inter-thread instruction cache
miss, we stop accounting cycles to this thread. For our purpose, we

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on February 16,2026 at 12:38:59 UTC from IEEE Xplore. Restrictions apply.

IEEE Computer Architecture Letters

use a bit, [Tinstruction, that indicates whether the thread has an inter-
thread L2 cache instruction miss or not.

Accounting CPU time: We stop the accounting of a given thread
when: First, the ROB is empty because of a L2 cache instruction miss
(gate (1) in Figure 2(b) that implements situation (s5)). RobEmpty is a
signal that is already present in most architectures, while ITinstruction
indicates whether or not a thread has an L2 cache instruction miss.
Second, the ROB is full (signal already present in most architectures)
and the oldest instruction in the ROB is a data inter-thread L2 miss,
which can be implementing adding 1 bit per ROB entry (gate (2)
in Figure 2(b) that implements situation (s4)). Third, when all the
occupied MSHR entries belong to inter-thread misses. To compute
this, we check for every entry k of the MSHR if an entry is not
empty (mshr_entry_empty; = 0) and contains an inter-thread miss
(InterThreadMiss;) (gates (3.1) and (3.2) in Figure 2(b) that
implement situation (s2)). By making an AND operation with the
output for each MSHR entry and a signal showing whether the entire
MSHR is empty, EmptyM SHR (3.1), we determine if we have to
stop the accounting of the thread. Finally, if any of the gates (1), (2)
or (3.1) returns 1, we stop the accounting.

To summarize, in a 2-core CMP, ITCA accounts every spent cycle
in three possible ways: (1) Each thread is accounted for the cycle
when both threads progress (the cycle is accounted twice, one for each
thread). (2) Only one thread is progressing and the cycle is accounted
only to it. (3) The cycle is not accounted to any thread when none
is progressing. In our processor setup, the memory bandwidth is not
identified as a main source of interaction between threads. Otherwise,
we should consider it as an other resource to be tracked by ITCA.
The CPU accounting done to each thread in each core can be
communicated to the OS by a special purpose register that counts
cycles, like the Time Stamp Counter in Intel architectures.

4. EXPERIMENTAL RESULTS
4.1. Experimental Environment

We use MPsim [1], a trace driven CMP simulator to model two
processor setups: a dual-core and a quad-core CMP. Each core is
single threaded, has a 12-stage-deep pipeline and can fetch up to 8
instructions each cycle (ICOUNT 1.8). Each core has 6 integer (1), 3
floating point (FP), and 4 load/store functional units; 64-entry integer,
load/store, and FP instruction queues; 512-entry reorder buffer and
196 I/FP physical registers. We use a two-level cache hierarchy with
128B lines with a separate 16KB, 4-way instruction cache and a
64KB, 4-way data cache and a unified 2MB, 16-way L2 cache that
is shared among all cores. The latency from L1 to L2 is 12 cycles, and
from L2 to memory 300 cycles. We feed our simulator with traces
collected from the whole SPEC CPU 2000 benchmark suite using
the reference input set. Each trace contains 300 million instructions,
selected using SimPoint [11]. From these benchmarks, we generate
2- and 4-thread workloads. In each workload, the first thread in
the tuple is the Principal Thread (PTh) and the remaining threads
are considered Secondary Threads (SThs). In every workload, we
execute the PTh until completion. The other threads are re-executed
until PTh completes. We characterize the results of our proposal
based on the type of the PTh and SThs. We generate all possible
2-thread combinations, leading to a total number of 676 workloads.
Running all 4-thread combinations is infeasible as the number of
combinations is too high. Hence, we classify benchmarks in two
groups depending on their memory behavior. Benchmarks in the
memory group (denoted M) are those presenting a bad L2 cache
behavior (mainly art, equake, lucas, mcf and swim), while
benchmarks in the ILP group (denoted /) have a low L2 cache miss
rate (mainly bzip2, crafty, eon, gcc and gzip). From these
two groups, we generate 8 workload types denoted V_W'Y Z, where

175%
5 150% A\
£ 125% -
100% -
75%
50%
25% Axsscerecs

0%

Off Estimati

0 10 20 30 40 50 60 70 80 90 100

(a) 100 highest Off estimations (2-core CMP)
S 30% 1=
£ 25%4 {oca mircal
£ 20% -
g 18% o fe -
10% -4 feeeeeeed fommeeee
=
F R 1 | e) SR T || P S p—
0% : : L - {
e
H H = - §
= B =

(b) Off estimation in the 4-core CMP configuration

Fig. 3. Off estimation of each approach for 2- and 4-core configurations.

V is the type of the PTh and WY Z the type of the three SThs, e.g.
M _MMT indicates that the PTh and two of the SThs are memory
bound, while one STh is ILP.

As the main metric, we measure how off is the estimation
done by an accounting approach for the PTh (TAg%f Iprn)s
which allows us to break down the results according to the
type of PTh (ILP/MEM) and type of the SThs, from the actual
time it should be accounted (7' Rf;?hy Ippy). We call off estima-
tion to the ratio |1 — (TABH 1, /Tng;?‘h,IpTh”' This ratio is
‘1 — (TRIC;%EIP” /TR;?MJP”) for the CA. For each accounting
policy, we also report the average off estimation of the five workloads
with the worst off estimation, denoted AvgSWOE.

h

4.2. Accuracy Results in a CMP processor

Our results show that for the 2-core CMP configuration, when
ITCA takes into account only the conflicts in the L2 cache (gates
(1), (3.1) and (3.2) in Figure 2(b)), it provides a good measure of the
progress each process makes with respect to its execution in isolation.
While on average, the CA has an off estimation of 9%, ITCA reduces
it to 3%. More importantly, ITCA reduces the inaccuracy in the worst
five cases: the AvgSWOE metric is 120% for the CA and only 34%
for ITCA. If in addition to inter-thread conflicts in the L2, ITCA is
also aware of when a thread loses opportunities of exploiting MLP
(gate (2) in Figure 2(b)), the off estimation reduces down to 1% and
the AvgS5WOE reduces to 20%.

Figure 3(a) breaks down the results of ITCA and CA and shows the
100 workloads with the highest off estimation sorted in descending
order. We observe that the CA has higher dispersion than ITCA in the
first 50 workloads. This high variability in the CPU accounting may
neglect the work of the OS of providing fairness among running
processes. ITCA instead provides more stable results: the worst
observed off estimation is 25% and this value rapidly converges.

Figure 3(b) shows the off estimation of ITCA and the CA proposal
for the 4-core setup. In this case, we show the average results of each
group as we presented in the experimental environment section. The
CA obtains the worst results when the PTh thread has high ILP and
any of the SThs is memory bound. In this case, the PTh suffers a lot
of inter-thread conflicts that are not taken into account by the CA.
In those cases, the ITCA approach reduces the off estimation of the
CA from 12% to 1%. In the five worst cases, the CA has an off
estimation of 124% while ITCA has an off estimation of 12%.

ATD: Our baseline ATD has a size of 30KB (15-bit tag, 1024 sets,
16 ways per set). In order to reduce the area requirements, we also
implement two simplified versions of the ATD. In the first proposal,
in the ATD, we save a subset of the address’ tag bits for each memory
operation. This proposal introduces false hits when the subset of the
tag of the memory operation coincide with the bits of the ATD, but the
other bits of the tag (not saved in the ATD) are different. The second
version is the sampled ATD, that monitors a subset of the cache
sets and has been shown to provide similar results to the ATD [10].

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on February 16,2026 at 12:38:59 UTC from IEEE Xplore. Restrictions apply.

IEEE Computer Architecture Letters

Normalized value w.r.t

O Off Estimation increment . 2 1.00
1.40 W Avg5WOE increment ,/’1 00 -1 095
OATD area L ’—11 . L1090 2
093, o085 g
--------- - 0.80 £
- ﬂ - ﬂ 4075
i i T 0.70
galgel|lammp ammp| art
8bitTag-SD2 6bitTag-SD2 8bitTag-SD4 applu|ammp| - art |bzip2

Fig.4 Effect on accuracy of
different ATD configurations

Fig 5. Progress of the PTh and
fairness of four pairs of benchmarks

Figure 4 shows the area reduction and accuracy degradation of the
simplified versions of the ATD with respect to our baseline ATD. A
good tradeoff is when we sample every 2 sets and the ATD has 6 bits
of tags (6bitTag-SD2). In this case, we reduce the size of the ATD to
6KB, and increase the average off estimation and the AvgSWOE to
4% and 37%, respectively. Recall that in this configuration, the CA
leads to an average off estimation and AvgSWOE of 9% and 120%,
respectively. Depending on the hardware budget available, different
tradeoffs are possible. For example, if 8KB of area can be afforded
by core, we can reduce the average off estimation and AvgSWOE to
1% and 9%, respectively. For the 4-core setup the results are similar.
Cache partitioning algorithms: ATDs are also used in cache
partitioning algorithms (CPA). CPAs dynamically partition the shared
L2 cache among running threads and significantly improve metrics
like throughput [10] and fairness [8]. An accounting mechanism
is required in the presence of a CPA as running processes suffer
slowdowns in their progress since the CPA assigns them only a part
of the L2 cache. The cache partition a process receives changes
dynamically, so the progress of the process (and hence the CPU time
to account to it) also changes. Our ITCA proposal can be applied to
systems with a CPA with no changes. The only conceptual difference
is that the running processes do not suffer inter-thread conflicts as
each process has a separate partition of the cache. However, we
consider that a process is not progressing due to the CPA when it
suffers a miss in the L2 cache and a hit in its ATD. Notice that, in
systems with CPAs, the ATD is already present and our accounting
algorithm can make use of it. In such case the only hardware cost
of ITCA is the logic shown in Figure 2(b). Moreover, due to the
wide use of the ATD, some authors have already proposed versions
of the ATD that require dozens of bytes per thread [7], rather than
thousands as it is the case in our baseline architecture. We plan to
use this new ATD scheme as a part of the ITCA proposal.
Hardware proposals to provide fairness: Several hardware ap-
proaches deal with the problem of fairness in multithreaded archi-
tectures. However, even if fairness is a desirable characteristic for
a system, it cannot be used to provide accurate CPU accounting.
There are two main flavors of fairness. First, it is assumed that an
architecture is fair when it gives the same amount of resources to
each running thread. However, ensuring a fixed amount of resources
to a thread, does not translate into a CPU utilization that can be
computed to that thread because the relation between the amount
of resources assigned to a thread and its performance is different
for each thread [2], [6], [9]. Second, some proposals consider that an
architecture is fair when all threads running on that architecture make
the same progress. For example, assume a 2-core CMP with processes
A and B. The system is said to be fair if in a given period of time,
P4 = Pp. However, this approach does not provide a quantitative
value that can be given to the OS to account CPU time to each
process. That is, knowing that P4 = Pp does not provide any
information about CPU accounting as P4 can be any value lower
than 1. Figure 5 shows the progress of the PTh and the fairness
(1= (]Pa— Pavel|+|Ps— Paval)/2), where Pav g is the average
progress made by A and B, of four different pairs of benchmarks. We
observe that, in the two workloads in the left (galgel+applu and

ammp+ammp), the PTh does the same progress while the fairness
is different. In the two workloads on the right (ammp+art and
art+bzip2), both workloads present the same fairness while the
progress done by the PTh is different.

5. RELATED WORK

In [5], whenever the OS detects that a process does not make the
progress it is supposed to do, the OS increases its time quantum,
giving more temporal resources to it and, thus, allowing it to catch
its expected performance. The proposed solution is divided in two
components: During a sample phase the OS runs a process with all
the possible co-runners and uses a model to estimate the process’
Fair IPC. During the scheduling phase, the OS scheduler adapts the
time quantum of the application in order to provide good performance
isolation. In our proposal instead we do not use a model to estimate
the isolated performance of a process but we provide hardware
support to the OS in order to accurately account each process for
the progress it makes. Once the accurate accounting is available, the
OS scheduler proposed in [5] can be used on top of our mechanism
to compensate the quantum.

Other accounting approaches have been proposed for SMTs [4].
Combining our proposal with these solutions is left for future work.

6. CONCLUSIONS

CMPs complicate the CPU accounting because the execution
progress done by a process during a given interval of time varies
depending on the activity of the other co-scheduled processes. The
current accounting mechanism, the CA, introduces inaccuracies when
applied in CMP processors. This accounting inaccuracy may affect
several key elements of the system like the OS task scheduling or the
charging mechanism in data centers. We presented a hardware support
for a new accounting mechanism called Inter-Thread Conflict Aware
(ITCA) accounting that improves the accuracy of the CA. In a 2- and
4-core CMP architecture, ITCA reduces the off estimation down to
1% while the CA presents a 9% and 12%, respectively.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Science and
Technology of Spain under contract TIN-2007-60625 and grants
BES-2008-003683 and AP-2005-3318, by the HIPEAC Network of
Excellence (IST-004408) and a Collaboration Agreement between
IBM and BSC with funds from IBM Research and IBM Deep
Computing organizations. The authors would like to thank Pradip
Bose and Chen-Yong Cher from IBM for their technical support.

REFERENCES
(1]
[2]
[3]
[4]
[5]
[6
(7
[8]

[9]
[10]

Acosta et al. The MPsim simulation tool. Technical Report UPC-DAC-
RR-2009-7, 2009.

Cazorla et al. Architectural support for real-time task scheduling in SMT
systems. In CASES, 2005.

Cazorla et al. Predictable performance in SMT processors: Synergy
between the OS and SMTs. IEEE Trans. Computers, 2006.

Eyerman et al. Per-thread cycle accounting in SMT processors. In
ASPLOS, 2009.

Fedorova et al. Improving performance isolation on chip multiprocessors
via an operating system scheduler. /n PACT, 2007.

Iyer et al. QoS policies and architecture for cache/memory in CMP
platforms. In SIGMETRICS, 2007.

Jaleel et al. Adaptive insertion policies for managing shared caches. In
PACT, 2008.

Kim et al. Fair cache sharing and partitioning in a chip multiprocessor
architecture. In PACT, 2004.

Nesbit et al. Virtual private caches. In ISCA, 2007.

Qureshi et al. Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches. In MICRO,
2006.

Sherwood et al. Basic block distribution analysis to find periodic
behavior and simulation points in applications. In PACT, 2001.

=

(11]

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on February 16,2026 at 12:38:59 UTC from IEEE Xplore. Restrictions apply.

