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Kinship Verification in the Wild: The First Kinship Verificat ion Competition

Anonymous IJCB 2014 submission

Abstract

Kinship verification from facial images in wild condi-
tions is a relatively new and challenging problem in face
analysis. Several datasets and algorithms have been pro-
posed in recent years. However, most existing datasets are
of small sizes and one standard evaluation protocol is stil-
l lack so that it is difficult to compare the performance of
different kinship verification methods. In this paper, we
present the Kinship Verification in the Wild Competition:
the first kinship verification competition which is held in
conjunction with the International Joint Conference on Bio-
metrics 2014, Clearwater, Florida, USA. The key goal of
this competition is to compare the performance of different
methods on a new-collected dataset with the same evalua-
tion protocol and develop the first standardized benchmark
for kinship verification in the wild.

1. Introduction

Kinship verification via face images is a relatively new
problem in biometrics. Compared to most existing conven-
tional facial image analysis such as face recognition [37, 33,
34, 4, 15, 27, 20, 32, 5, 26], facial expression recognition [6,
12, 38], facial age estimation [16, 13, 17, 24, 14, 24], gen-
der classification [28, 29] and ethnicity recognition [30, 19],
there are very limited attempts on kinship verification from
facial images in the literature. There are many potential ap-
plications for kinship verification such as family album or-
ganization, social media mining, and missing child search.

Recently, the performance of kinship verification by hu-
mans has been studied in psychology [2, 7, 8, 9, 21, 22],
and one important observation was found: human faces can
convey some important cues to identify the kin relations of
persons. Inspired by this observation, computer vision re-
searchers started to investigate the problem of kinship ver-
ification from facial images in recent years, where the ob-
jectives is to develop computational models and algorithms
to verify human kin relations.

Several benchmark datasets for kinship verification are
available [11, 35, 25]. However, the sizes of most existing
kinship datasets are small. Moreover, one standard evalua-

tion protocol is still lack so that it is difficult to compare the
performance of different kinship verification methods. To
this end, we organize the Kinship Verification in the Wild
(KVW’14) Competition: the first kinship verification com-
petition which is held in conjunction with the Internation-
al Joint Conference on Biometrics 2014, Clearwater, Flori-
da, USA. The key goal of this competition is to compare
the performance of different methods on a new-collected
dataset with the same evaluation protocol and develop the
first standardized benchmark for kinship verification in the
wild.

The remaining of this paper is organized as follows: Sec-
tion 2 overviews the existing works on kinship verification
via face images. Section 3 introduces the newly collect-
ed dataset and experimental protocol. The baseline method
and results are presented in Section 4. Section 5 presents
the evaluation results of all participants’ methods. Section 6
summarizes the results obtained by different participantsof
the competition. Finally, Section 7 concludes the paper.

2. Overview of Existing Works

Over the past five years, several kinship verification vi-
a face images approaches have been proposed in computer
vision and biometrics [11, 35, 31, 39, 36, 18, 40, 23, 10,
25]. Generally, these methods can be categorized into t-
wo streams: descriptor-based [11, 39, 40, 18] and similarity
learning-based [35, 36, 31, 25]. For descriptor-based meth-
ods, some important cues such as skin color [11], histogram
of gradient [11], Gabor gradient orientation pyramid [40],
salient part [23], self-similarity [18], and dynamic expres-
sions [10], are usually employed for face representation.
For similarity learning-based methods, subspace and met-
ric learning are used to learn a semantic feature space to
better measure the similarities of face samples. Representa-
tive such algorithms include transfer subspace learning [36]
and neighborhood repulsed metric learning [25]. Table 1 re-
views existing kinship verification methods which were p-
resented over the recent five years, where their performance
is evaluated by the mean verification rate. While the per-
formance of different methods cannot be compared directly
because of different datasets and protocols, we still see that
there has been substantial improvement in kinship verifica-
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Table 1. Performance comparison of recent kinship verification methods.

Method Feature representation Classifier Dataset Accuracy (%) Year
Fanget al. [11] Local features of face parts KNN Cornell KinFace 70.7 2010
Xia et al. [35] Transfer subspace learning KNN UB KinFace 60.0 2011
Zhouet al. [39] Spatial pyramid local feature SVM 400 pairs (N.A.) 67.8 2011
Xia et al. [36] Context feature with transfer learning KNN 296 pairs (N.A.) 79.9 2012
Kohli et al. [23] Self similarity of Weber face SVM 272 pairs (N.A.) 74.1 2012
Lu et al. [25] Local feature with metric learning SVM KinFaceW-I / II 69.9 / 76.5 2012
Dibekliogluet al. [10] Dynamic spatio-temporal appearances SVM 228 pairs (N.A.) 72.9 2013

tion in recent years. Moreover, we believe there is consid-
erable space for further improvement.

3. Dataset and Protocol

In this competition, we collected a large face kinship
dataset by the online web search, where several hundreds of
public figures’ face images and their parents’ or children’s
face images were crawled. The face images were collected
without restriction in terms of pose, expression, illumina-
tion, background, age, ethnicity, and occlusion. We define
kinship as a relationship between two persons who are bio-
logically related with overlapping genes. Therefore, we ex-
amine four different kin relations: Father-Son (F-S), Father-
Daughter (F-D), Mother-Son (M-S) and Mother-Daughter
(M-D). We provided three sets in this competition: train-
ing set, validation set and testing set. In the training set,
we construct 300 positive and 300 negative pairs of kinship
images for each of the four relations. In the validation set,
we provided 50 positive and 50 negative pairs of kinship
images for each of the four relations. In the testing phase,
we provided 600 image pairs for each kinship relation for
evaluation. There is no overlap between different sets. For
ease of use, we manually labeled the coordinates of the eye-
s position of each face image, and cropped and aligned fa-
cial region into64× 64 so that the competition participants
can focus more on the kinship verification algorithms de-
velopment rather than face alignment because face images
in our dataset were captured in the wild and it is challeng-
ing to precisely localize facial fiducial points. Figures 1 and
2 show some positive and negative image pairs for differ-
ent kin relation in our dataset, where images from top to
bottom are from the F-S, F-D, M-S and M-D kin relations,
respectively.

Generally, there are two protocols in verification tasks:
closed-set and open-set [3]. In this competition, we de-
signed an open-set verification protocol because we expect
the designed kinship verification systems can verify where
there is a kinship relation for a new face pair without re-
designing the verification system. Specifically, the training
set is used to learn the model and the validation set is em-
ployed to tune the parameters of the models. The testing set
is used to evaluate the generalization capability of the de-

veloped kinship verification methods. The verification rates
and receiver operating characteristic (ROC) curves of dif-
ferent kinship verification methods are compared for evalu-
ation.

4. Baseline Results

In our competition, we provide a baseline method which
uses the LBP feature representation and the cosine similari-
ty for kinship verification. For each face image, we densely
sampled16×16 blocks with the stepsize of 8 pixels, and we
can obtain 49 blocks in each whole face. For each block, we
extracted a 59-dimensional uniform pattern histogram fea-
ture by following [1] to describe each image block. Then,
we concatenated features extracted in all blocks to form a
2891-dimensional feature vector for final feature represen-
tation. Figure 3 shows the verification rate and ROC curve
of our baseline method.

5. Participants’ Results

In total, four participants contributed to the competition.
Then, we briefly describe the submitted methods.

Kou et al. proposed a similarity learning based kinship
verification method. They used the HOG feature descriptor
to describe each face image. Specifically, each face image
was divided into8 × 8 non-overlapped blocks and the size
of each block is8 × 8. For each block, they extracted a 9-
dimensional histogram feature. Then, they concatenated the
features extracted from each block into a 576-dimensional
feature vector for face representation. In order to effectively
measure the kin similarity for a given pair of facial images,
they proposed to explicitly learn a similarity function in-
stead of the commonly-used distance metric. Specifically,
the similarity function was represented by a bi-linear func-
tion parameterized by a transform matrixW, which is not
necessary to be semi-positive define or symmetric. The ob-
jective to learnW is to minimize a hinge loss of the labeled
triplets from the training set, combined with a low-rank reg-
ularization ofW. Finally, W is obtained by a stochastic
gradient descent algorithm.

Castrillón-Santanaet al. proposed a local feature based
kinship verification approach. Specifically, they used three
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Figure 1. Several positive examples of our dataset. From topto bottom are the F-S, F-D, M-S and M-D kin relations, and the neighboring
two images in each row are with the kin relation, respectively.

                          

                          

                          

                          

Figure 2. Several negative examples of our dataset. From topto bottom are the F-S, F-D, M-S and M-D kin relations, and the neighboring
two images in each row are without the kin relation, respectively.

local features including LBP, Local Salient Patterns and
HOG for face representation, where each face image was
divided into 5 × 5, 5 × 5, and8 × 8 blocks, respective-
ly. The intersectional kernel was employed to computer the
similarity of each face pair. Finally, the SVM classifier was
used for classification.

Bottinoet al. proposed an attribute combination method
for kinship verification, where geometric and both glob-
al and local textural features are defined as the attributes.
In their method, Planar Projection Summation Invariants
(PPSI), Weber Local Descriptor (WLD) and SIFT features
extracted for each face image. They further employed

three feature selection methods including the minimum-
Redundancy-Maximum-Relevance (mRMR), optimal m-
RMR, and the modified Sequential Forward Floating Selec-
tion method to select the most informative features. Finally,
the SVM classifier was used for classification.

Ghahramaniet al. proposed a local feature based kinship
verification approach. They employed Uniformly-sampled
Thresholds for LBP (UTLBP) to extract features from faces.
Since conventional LBP does not fully capture the detailed
information of the relative pixel information, UTLBP can
extract information of the surrounding pixels intensity tothe
centre pixel to reflect facial similarity among faces in a fam-

3
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(a) Verification rate
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Figure 3. The verification rate and ROC curve of our baseline method, respectively.

ily. They used different thresholds in the step function. The
vector size of each LBP was also reduced by implement-
ing LMNN and selection of the top 20 features. Another
shortcoming of using histograms is lack of spatial location.
Due to low resolution of photos, they divided the image into
four rectangles by using the Perpendicular bisector of thex

andy dimension. The top 20 features of UTLBP descrip-
tor are then concatenated from each of four divisions. The
threshold adjustment is the uniform sampling in the range
[−50, 50]with the step of 25. Hence they got 200 features in
the end for each face that is smaller than using the conven-
tional LBP on the whole face. The scores were calculated
using SVM.

Table 2 tabulates the verification rates of different par-
ticipants on our kinship dataset, and Figure 4 shows the
ROC curves of different participants obtained on different
subsets, where “CNU”, “ULPGC”, “POT”, and “Oulu” de-
note Capital Normal University, Universidad de Las Palmas
de Gran Canaria, Politecnico di Torino, and University of
Oulu, respectively. According to the results shown in Ta-
ble 2 and Figure 4, we are pleased to announce that the
winners of this competition are the participants from CNU
and ULPGC as they achieved the same mean verification
rate. Moreover, one of them achieved the best verification
rate on two subsets (F-S and M-D) and another obtained the
best results on the other two subsets (F-D and M-S).

6. Discussion

The first kinship verification in the wild competition has
been a great community effort. We expect to have estab-
lished a new benchmark for kinship verification via face
images, which will allow researchers in this field to further
investigate this problem. To keep this benchmark available

in the future, the KVW 2014 organizers are keeping the
dataset available through their online repository, and they
will continue to update the new progress on this dataset in
the future.

One important message to convey in this competition is
that one can learn what are the current trends and state-of-
the-arts in this field. For instance, three teams participated
in this competition used the SVM classifier and the other
one used the similarity learning technique. According to the
results, it is derisible to combine both of these techniquesto
further improve the verification performance.

7. Conclusion

This paper describes the kinship verification in the wild
competition: the first kinship verification competition held
in conjunction with the International Joint Conference on
Biometrics 2014, Clearwater, Florida, USA. The main chal-
lenge of the competition is to verify whether there is a kin
relation for a given pair of face images which were cap-
tured in the wild. In this competition, the largest face kin-
ship dataset is provided and a standard protocol and bench-
mark is presented. In total four participants submitted to
this competition, we can see that current technology is still
not enough to produce reasonably good results and there is
much space for further improvement.
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