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Abstract

Embryonic development represents a vulnerable life stage in marine organisms, yet its role in 
shaping the invasion success of non-native species under climate change remains understudied. 
In this study, we assessed the upper thermal sensitivity of embryogenesis of the blue crab Call-
inectes sapidus, a globally invasive species, by quantifying their physiological responses across a 
temperature gradient relevant to projected climate warming scenarios. Using Electron Transport 
System (ETS) activity as a proxy for aerobic metabolism, we evaluated respiration, egg size, 
hatching time, and larval morphology in brooding eggs incubated at 22 °C, 24 °C, 26 °C, and 
28 °C. Elevated temperatures induced increased ETS activity, indicating heightened metabolic 
stress, and were associated with reduced egg size and earlier hatching of malformed, non-viable 
larvae. Within the Oxygen- and Capacity-Limited Thermal Tolerance (OCLTT) framework, we 
identified a physiological pejus range (24–26 °C) beyond which embryonic performance de-
clined. These results suggest that moderate warming may accelerate development and facilitate 
invasion, but extreme temperatures constrain aerobic capacity and compromise larval viability. 
Our results highlight embryogenesis as a potential bottleneck for blue crab recruitment under 
future warming, with implications for predicting the invasive potential of marine species.
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Introduction

Phenological windows have been suggested as a part of a warning system enabling 
more targeted programs for monitoring invasive species (Giménez et al. 2020). 
Warming coastal waters have likely contributed to the recruitment and northward 
expansion of the invasive blue crab Callinectes sapidus Rathbun, 1896, beyond its 
historical range at Cape Cod, resulting in the establishment of permanent popu-
lations in new areas (Johnson 2015; Taylor et al. 2022; Crane et al. 2024). The 
American blue crab C. sapidus (Brachyura, Portunidae) is native to the Atlantic 
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coast, ranging from Nova Scotia, Canada, to northern Argentina, including the 
Gulf of Mexico (Squires 1990). Outside its original distribution, the species has 
established invasive populations in various regions of Africa, Asia and Europe 
(Nehring 2011). In the Iberian Peninsula, the first record of the species occurred 
in the Tagus Estuary in 1978 (Gaudencio and Guerra 1979). Since then, it has 
rapidly spread along the Spanish coasts, reaching the Guadalquivir Estuary in the 
Gulf of Cadiz by around 2017 (González-Ortegón et al. 2020).

The primary vector for the introduction of C. sapidus is thought to be bal-
last water releases, which can transport planktonic larvae during uptake (Nehring 
2011). Considering that larval development in C. sapidus lasts 37–69 days, the 
timeframe allows for plausible transoceanic transport, although secondary disper-
sal is also possible (Nehring 2011). The species’ successful establishment can be 
attributed to several ecophysiological and developmental traits, such as the larvae’s 
high resistance to abiotic and biotic conditions (Anger 2006; Morais et al. 2019), 
enabling adaptation to a wide range of environmental factors.

The larval ecology of C. sapidus is of particular interest, as adult population 
recruitment depends on the survival of larvae and juveniles to replenish the pa-
rental stock (Sandifer 1975), acting like a population bottleneck. Larval survival 
is a vulnerable life stage heavily influenced by environmental factors, particularly 
seawater temperature and salinity (Costlow and Bookhout 1959; Costlow 1967; 
Rosenberg and Costlow 1976; Rumrill 1990; Anger 2006). While numerous 
studies have been conducted on the biology and ecology of C. sapidus in its 
native range, most research has focused on its commercial importance and the 
environmental conditions in its original habitats (Olmi and Orth 1995; Daly 
et al. 2021). However, there is a notable lack of studies addressing the effects of 
environmental changes in invaded regions such as the Gulf of Cadiz.

The Gulf of Cadiz is a temperate and warm ecosystem enriched by river dis-
charges that inject nutrients and trace metals which stimulates primary and sec-
ondary production (Prieto et al. 2009; González-Ortegón et al. 2019), thus cre-
ating a potentially suitable environment for the development of invasive species 
like C. sapidus. The Gulf of Cadiz connected to the Mediterranean Sea through 
the Strait of Gibraltar, facilitates a two-layer water exchange: a surface inflow 
from the Eastern North Atlantic and deeper outflow of Mediterranean saline 
waters (Sánchez-Leal et al. 2017). This hydrodynamic regime, along with sig-
nificant anthropogenic transformation along the coast, including major ports 
like Algeciras and extensive aquaculture infrastructure (González-Ortegón and 
Moreno-Andrés 2021), may have facilitated the westward expansion of the in-
vasive Atlantic blue crab Callinectes sapidus from the Mediterranean into the At-
lantic. Genetic evidence supports a single invasion event into the Mediterranean 
followed by secondary spread into adjacent Atlantic waters (González-Ortegón 
et al. 2022). The potentially less extreme upper thermal limits in the Atlantic 
region may offer more favourable conditions for the species’ establishment and 
survival. This is consistent with the invasive success of C. sapidus, which gener-
ally exhibits wider thermal tolerance and may possess adaptive advantages over 
native species such as Carcinus maenas (Anger 2006; Nehring 2011).

Laboratory experiments suggested that C. sapidus requires high temperatures 
(above 21 °C) for optimal larval development (Hill et al. 1989; Bembe et al. 2017). 
Combined with the warm sea temperatures of the Gulf of Cadiz, this raises the 
question of how these conditions will affect its development and expansion in the 
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region. While most studies focus on estimates of critical thermal maxima (CTmax) 
or lethal limits (LT50) when exposed to thermal stress, insights on the intermediate 
physiological constraints are more relevant in ecological studies, especially in or-
ganisms with critical life stages as crustaceans. Exploring the animal Oxygen- and 
Capacity- Limited Thermal Tolerance (OCLTT) through their physiological per-
formance, could provide valuable information about their climate responses in a 
more realistic scenario of gradual rising temperatures (Pörtner et al. 2017).

In this sense, the objective of the present study is to assess the upper thermal 
limit constraining the embryogenesis performance of C. sapidus, as the global 
warming context in the Gulf of Cadiz could act as a bottleneck to population 
recruitment. Performance is explored through interlinked parameters char-
acterising embryonic thermal sensitivity and aerobic window, as the Electron 
Transport System (ETS) activity, egg size development, hatching success, and 
larval morphology. ETS activity assays, a potential indicator of respiration, is a 
common proxy for planktonic respiration (Packard 1971; Herrera et al. 2017), 
and has proven effective for estimating metabolic rates in crustaceans (Simčič 
and Brancelj 2004; Simčič et al. 2014; Ruiz-Delgado et al. 2019; Herrera et 
al. 2024). Exploring ETS activity on brooding eggs of C. sapidus exposed to 
different temperatures could provide insights into variations on the metabolic 
dynamics during embryonic development under warming conditions. Egg size 
dynamics over incubation time may be an indicator of development rates, which 
coupled with hatching time and larval morphology, provides valuable informa-
tion about larval fitness and survival success under warming conditions.

Methods

Egg collection and experimental design

Eggs masses of Callinectes sapidus were reared in the laboratory to assess the ef-
fects of increased seawater temperature on embryonic development prior to larval 
hatching. Eggs were obtained from six ovigerous females (referred as F1, F2, F3, 
F4, F5 and F6) at similar stages of embryonic development. These ovigerous fe-
males were manually collected by a local fisherman in a shallow inlet of the Gua-
dalquivir Estuary (Sanlucar de Barrameda, Gulf of Cadiz, Spain) during August 
2023. Genetic analysis was performed to determine the haplotype of each female, 
in order to explore whether the existence of possible outliers in the statistical anal-
ysis could be attributed to genetic differences between them. Two different hap-
lotypes of C. sapidus coexist in the studied area: CSWM1, predominant in Span-
ish Atlantic coast; and CSWM2, predominant in Spanish Mediterranean coast 
(González-Ortegón et al. 2022). In our study, F1, F2, F3, F5 and F6 belonged to 
CSWM1 haplotype, while F4 belonged to CSWM2.

Each egg mass was removed from the female abdomen and its volume was 
evenly divided among four temperature treatments in individual containers 
(1000 ml): 22 °C, 24 °C (defined as control), 26 °C, and 28 °C. These tem-
peratures were selected based on the (i) available bibliography which settle the 
lower thermal limit for the successful embryonic development (> 21 °C) (Jivoff 
et al. 2007; Bembe et al. 2017), (ii) the mean summer water temperature at the 
sampling site of ovigerous females when brooding and spawning season occur 
(24 °C), and (iii) the IPCC RCP8.5 projected warming scenarios of +2 °C and 
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+4 °C for the end-of-century (Pörtner et al. 2019). One group was kept at a 
controlled temperature, while the others were gradually exposed to different ex-
perimental temperatures (22 °C, 26 °C, and 28 °C). After 24 hours at 24 °C 
(T0), they were gradually transferred to 22 °C and 26 °C (T1) over a 24-hour 
period, while another group, previously at 26 °C, was transferred to 28 °C one 
day later over a 24-hour period (T4), allowing the eggs time to adapt to the three 
new temperatures (Fig. 1). Filtered seawater (35 of salinity) was renewed daily, 
to prevent fungal, bacteria and other microorganism’s growth in the egg mass.

Embryonic development

During the experiment, a sample of eggs per treatment and female was collect-
ed for embryonic developmental analysis, in order to test the possible effects of 
temperature on egg size over time. Samples were stored in 2 mL Eppendorf tubes 
containing seawater at -20 °C. For each sample, the major diameters of twenty 
randomly selected eggs were measured under a stereo microscope (SMZ25/18, 
Nikon Instruments Inc.) using the NIS-elements Imaging Software v. 5.21.00. 
Thus, the median egg size (µm) and standard deviation were calculated. Images 
were captured at a scale of 250 µm.

Electron Transport System (ETS) assay

Egg samples (~15 mg) from each treatment and female were collected daily to 
measure respiratory ETS activity (in µL O2 · h

−1 · mg prot−1), reflecting cellu-
lar-level changes during embryonic development. Samples were preserved in 
Eppendorf tubes, frozen in liquid nitrogen (-196 °C), and stored at -80 °C prior 
to analysis. The ETS assay followed the method of Packard (1971), modified by 
Owens and King (1975), and adapted for microplate readings by Ruiz-Delga-
do et al. (2019). Eggs were homogenized in 0.5 mL of ice-cold homogenizing 
buffer solution (20 mM Trizma base, pH 7.8, Sigma-Aldrich) using an ultra-
sonic homogenizer (UP2005 Hielscher) set to 1 cycle at 25% amplitude for 60 
seconds. The homogenate was centrifuged at 3 °C for 10 minutes at 5,000 rpm 
(Eppendorf Centrifuge 5417R), and the supernatant was used for the ETS assay. 
In a microplate assay, 60 µL of supernatant (in duplicate) was incubated with 
180 µL of substrate solution (0.1 M phosphate buffer, pH 8.5, containing NA-
DPH 30 mM and NADH 1.76 mM, Sigma-Aldrich) or without substrate (con-
trol, containing only 180 µL of phosphate buffer, pH 8.5). Then, 60 µL of INT 
solution (0.2%, 4 mM, pH 8.5) was added to each sample, and absorbance was 
measured at 490 nm over 8 minutes using a microplate reader (BioTek Synergy 
H1) and Gen5 3.10 software. ETS activity was corrected for in situ temperature 
using an activation energy of 15 kcal·mol−1 (Packard 1971) and the Arrhenius 
equation to calculate in situ ETS activity (units: µL O2 · h

−1). To calculate ETS 
activity per unit biomass, protein biomass (mg protein) was determined using 
the bicinchoninic acid (BCA) method described by Smith et al. (1985). For 
this, 25 µL of each sample and standards were incubated with 200 µL of BCA 
working solution for 30 minutes at 37 °C, and absorbance was read kinetically 
at 562 nm. ETS activity was then normalized to protein content and expressed 
as ETS activity per unit protein (µL O2 · h

−1 · mg prot−1).
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Egg hatching time and larval viability

Egg mass cultures were maintained under different temperature treatments until 
larval hatching, which marked the end of the experiment for each sample condi-
tion. Hatching time was recorded as the number of days from day 0 (the start of 
incubation) until larvae appeared.

The approximate number of newly hatched larvae was counted for each treat-
ment and female. Observations on the morphological condition and motility 
of the larvae were documented to assess their viability. This included noting the 
presence or absence of aberrant zoea, and evaluating their phototactic swimming 
behavior, according to Jivoff et al. (2007). In this study, aberrant zoea is defined 
as an individual at a morphological stage similar to prezoea but that is immobile, 
exhibits sinking behaviour, and subsequently dies. In contrast, under optimal con-
ditions, prezoea molts into the first zoeal stage within the first 3 minutes of life 
after their release (Costlow and Bookhout 1959; Davis 1965).

Statistical analysis

The relationship between predictors with the ETS activity (µL O2 · h
-1 · mg prot-1) 

and egg size (µm) of C. sapidus embryos was examined through a Generalized Ad-
ditive Model (GAM) with lognormal and normal distribution, respectively, based 
on the distribution of the dependent variables (Zuur et al. 2009). The GAM model 
was selected as it assumes no functional form between dependent and independent 
variables and describes both linear and non-linear effects, and was performed on 
RStudio software v.2024.12.0. A variance inflation factor (VIF) with a threshold 
of 3 was used to identify possible collinearity between predictors in the data set, 
before fitting models to the data (Zuur et al. 2010). This analysis indicated no 
multicollinearity as all explanatory variables had VIF < 3 (see Suppl. material 1: 
tables S1, S2), so the general form of the GAM was:

g(y) ~ α + f1(xi) + εt + εf

Figure 1. Experimental design. Schematic diagram of the temperature treatment design and accli-
mation protocol applied to C. sapidus embryos across the experimental period (T0-T10). Dashed line 
indicates control at 24 °C.
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where g() is the link function, y is the response variable (ETS activity or egg size), 
f1 is the smooth function for the xi continuous explanatory variable (incubation 
time), εt is the categorical effect of the temperature treatments, and εf is the ran-
dom effect of female origin of embryos, capturing its intrinsic variability. Also, 
due to the unbalance representation of haplotypes, this factor was not included 
in the GAM analysis. Estimated R2 and explained deviance were used to evaluate 
the predictive performance of the model. The residuals were graphically evaluated 
with QQ-plots, histograms, and plots of residual response against fitted values to 
explore any patterns in the residual errors (see Suppl. material 1: figs S2, S3).

Post-hoc analysis using the Tukey test for varying family sizes was performed for 
identifying significant differences between specific levels of the categorical factor 
affecting embryo ETS activity and egg size.

Results

Temperature-dependent variation in egg size

A general pattern of decreasing egg size over development time was observed across 
all temperature treatments (see Suppl. material 1: fig. S1). Under control condi-
tions (24 °C), among all females, eggs at the very early stage of embryonic devel-
opment had a mean diameter of 273.4 ± 13.8 µm, which decreased to 241.5 ± 
12.8 µm just before hatching, a reduction of approximately 11.7%.

The global median egg size resulted in 247.59 µm. Smaller egg sizes, below 245 µm, 
were found under warmer conditions of 26 °C and 28 °C; while larger eggs, above 245 
µm, resulted in colder temperatures of 22 °C and 24 °C, reaching the maximum at 
control conditions of 24 °C (306.40 µm) (Table 1). These results suggest that elevated 
temperatures negatively affect embryonic development by reducing egg size.

GAM analysis showed significant effect of incubation time, temperature treat-
ment, and maternal origin on egg size (see Suppl. material 1: table S1). The model 
explained a moderate portion of the variability in egg size (R2 = 0.282; deviance ex-
plained = 28.7%), with all predictors showing significant effects (p < 0.001). The ef-
fect of incubation time on egg size was non-linear and highly significant (edf = 7.37, 
F = 70.02, p < 0.001). The smooth function in Fig. 2A indicated a sharp decline in 
egg size during the early stages of embryo development, followed by a period of stabi-
lization and a secondary decline around T8. Confidence intervals around the smooth 
term suggested a precise estimation of this temporal pattern, with wider intervals 
in later stages, where data density is lower due to different larvae hatching times. 
The random effect of maternal origin was significant as well (edf = 4.78, F = 20.71, 
p < 0.001), indicating that individual females contributed to variability in egg size, 
justifying its inclusion as a random smoother in the model. Although the genetic 
background of females could be a factor contributing to the variability in egg size, the 
presence of outliers was not restricted to a single female (F4 belonged to CSWM2 
haplotype), but rather distributed across several individuals.

Temperature treatments also significantly affected egg size (F = 39.51, p < 0.001). 
Compared to the reference level (22 °C), egg size decreased significantly at higher 
temperatures of 26 °C and 28 °C (estimates of -6.77 µm and -4.17 µm, respective-
ly; p < 0.0001 for both cases), and to a lesser extent at 24 °C (Estimate = -1.73 µm; 
p = 0.016). The Tukey-adjusted post hoc comparisons confirmed that all pairwise 
differences were significant, except between 22 °C and 24 °C temperature groups 
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(see Suppl. material 1: table S1). These results indicated that small increments in 
temperature beyond the optimal range can influence egg development. The vio-
lin plot in Fig. 2B supported these findings, providing a visual summary of both 
central tendency and data distribution. The boxplots nested within the violins 
highlight the central tendency of decreasing median egg size with increasing tem-
perature, as well as increasing outlier prevalence at 26 °C and 28 °C, suggesting a 
stress-related developmental constraint.

Electron Transport System (ETS) activity assay

Embryos ETS activity, a proxy for potential respiration rates and expressed as 
log-transformed specific ETS activity, was significantly influenced by incubation 
time, temperature treatment, and maternal origin (see Suppl. material 1: table S2). 
The GAM explained 61.4% of the deviance in ETS activity (R2 = 0.584), indicat-
ing strong explanatory power of those selected variables and reinforcing the biolog-
ical relevance of thermal and maternal influences on embryonic metabolic perfor-
mance. The smooth effect of incubation time was significant (edf = 2.80, F = 33.14, 
p < 0.001), indicating a non-linear increase in ETS activity throughout the incu-
bation period (Fig. 3A). The fitted smooth term suggested a gradual acceleration 
of ETS activities over time, with a pronounced increase around T4 (4th day), when 

Table 1. Egg size (µm) summary by temperature treatment. Median egg size (µm), standard devia-
tion (SD), and range (maximum and minimum values) per temperature treatment.

Temperature (°C) Median ± SD (µm) Maximum (µm) Minimum (µm)

22 248.22 ± 13.21 296.06 215.03

24 250.55 ± 17.34 306.40 211.15

26 244.49 ± 12.64 291.90 218.21

28 244.84 ± 13.24 301.26 220.66

Figure 2. Graphical representation of the effects of the incubation time and temperature on C. sapidus egg size (µm). Results of the GAM 
analysis showing A. Partial effect of incubation time (during 10 days) on egg size, where the black solid line indicates the modelled relation-
ship, and the grey band denotes the 95% confidence interval about the estimated relationship, and B. Violin plot showing the distribution 
of egg size under tested temperature treatments (22 °C, 24 °C, 26 °C, and 28 °C), where boxplots embedded within the violins indicate 
the interquartile ranges and central tendency.
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the experimental increase in temperature to 28 °C was performed. This point of 
inflection indicates a metabolic shift, followed by continued increasing of ETS and 
widening confidence intervals toward the later stages of development. The effect 
of maternal origin was also highly significant (edf = 4.75, F = 17.31, p < 0.001), 
underlining individual female variability in the baseline metabolic activity during 
embryogenesis. Although the genetic background of females could be a factor con-
tributing to the variability in ETS activity, the presence of outliers was not restrict-
ed to a single female (F4), but rather distributed across several individuals.

Temperature treatments strongly affected ETS activity of embryos. Compared to the 
reference level of 22 °C, ETS activities were significantly higher at major temperature 
regimes of 24 °C (Estimate = 0.39, p < 0.001), 26 °C (Estimate = 0.82, p < 0.0001), 
and 28 °C (Estimate = 0.79, p < 0.0001). Post hoc Tukey-adjusted comparisons con-
firmed significant pairwise differences between 22 °C and all other treatments, as well 
as between 24 °C and both 26 °C and 28 °C (see Suppl. material 1: table S2). ETS ac-
tivity seemed to become constant at the two highest temperatures, with no significant 
difference between 26 °C and 28 °C (p = 0.998), suggesting a threshold effect where 
ETS activity ceases to increase despite additional warming. The Fig. 3B corroborated 
this pattern with wider distributions and higher medians under warmer conditions, 
consistent with thermally enhanced metabolic rates. The shape of the violins indicates 
relatively symmetric distributions, contrasting with the right-skew observed in egg size.

Hatching time

A general pattern of early larval hatching at higher temperatures was observed 
(Table 2), which was also confirmed by the photographic analysis of the morpholog-
ical characteristics on egg development samples (Fig. 4). In all females, early hatching 
occurred between 6–7 days at the highest temperatures (26–28 °C), while hatching 
at lower temperatures (22–24 °C) was delayed, taking up to a maximum of 11 days.

Figure 3. Graphical representation of the effects of the incubation time and temperature on ETS activity (µL O2 · h−1 · mg prot−1) of 
C. sapidus embryos. Results of the GAM analysis showing A. Partial effect of incubation time (during 10 days) on ETS activity, where the 
black solid line indicates the modelled relationship, and the grey band denotes the 95% confidence interval about the estimated relation-
ship, and B. Violin plot showing the distribution of ETS activity under tested temperature treatments (22 °C, 24 °C, 26 °C, and 28 °C), 
where boxplots embedded within the violins indicate the interquartile ranges and central tendency.
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In general, lower temperatures resulted in a higher number of hatched larvae, 
although there were differences among females. Only a small number of larvae 
from females F2 and F3 hatched at lower temperatures (22–24 °C), but these 
larvae exhibited active and phototactic swimming behaviour, similar to those from 
other females under the same temperature treatments. In contrast, at 26–28 °C, 
early hatching often produced > 50 larvae initially, but many were aberrant or 
non-viable. Thus, thermal stress likely induced premature hatching, leading to 
malformations in larvae morphology (Fig. 5).

Table 2. Hatching time. Eggs hatching day per female and temperature treatment. The plus symbol 
in brackets indicates samplings where massive larvae hatching occurred (> 50 larvae hatched of total 
egg volume, similar across all temperature treatments and females). The asterisk symbol indicates the 
presence of aberrant larvae.

Female
Temperature (°C)

22 24 26 28

1 8 (+) 7 (+) 6* 6*

2 7 (+) 6 6* 6*

3 7 6 6* 6*

4 11 (+) 10 (+) 7* 0

5 11 (+) 10 (+) 7 (+) 7 (+)*

6 9 (+) 8 (+) 6* 7 (+)*

Figure 4. Comparative morphological analysis of eggs’ development between temperature treatments. Embryonic development of blue 
crab eggs from female F4 at two different temperatures A. 22 °C, and B. 28 °C, over three different times: 4-day-old embryos, 5-day-old 
embryos, and 7-day-old embryos. At stage 1, egg attachment stalks are visible; at stage 2, eye pigment is developing; and at stage 3, abdo-
men and fully formed eyes are visible, embryos are ready to hatch (Jivoff et al. 2007). Scale bar: 250 µm.
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Discussion

This study provides a comprehensive analysis of the upper thermal limits in C. sapi-
dus embryogenesis, under warming conditions in the Gulf of Cadiz, using interlinked 
physiological and developmental parameters. Egg size, metabolic activity (ETS), hatch-
ing time, and larval morphology were all significantly influenced by temperature treat-
ments, collectively highlighting the constraints of elevated seawater temperatures on ear-
ly life stages. Based on the results of this study, a schematic model showing the thermal 
window dynamics of Callinectes sapidus embryonic development is proposed (Fig. 6).

Egg size, a key proxy for development progress, decreased significantly at higher 
incubation temperatures of 26 °C and 28 °C, consistent with previous research 
(Jivoff et al. 2007; Epifanio 2019). This reduction in egg size, particularly evi-
dent at later developmental stages and higher temperatures, may reflect a tempera-
ture-induced acceleration of embryogenesis and increased yolk consumption per 
day, potentially at the cost of somatic growth and compromising hatching success. 
Similar trends have been reported in other brachyuran species, including C. sapidus 
(Amsler and George 1984; Jacobs et al. 2003; Graham et al. 2012; Styf et al. 2013). 
However, a general trend of decreasing egg size over incubation time was observed 
across all treatments, in contrast to previous studies on C. sapidus (Graham et al. 
2012). This discrepancy highlights the variability of egg size in crustaceans, which 
could be influenced by other factors not included in the analysis, such as spawning 
season, maternal parity, and environmental conditions, especially seawater salinity 
(Davis 1965; Kobayashi and Matsuura 1995; Brante et al. 2003).

Embryonic ETS activity, used as a proxy for potential aerobic respiration, showed a 
temperature-dependent non-linear increase throughout development time, with pro-
nounced elevations at higher temperatures (26–28 °C), reflecting embryonic thermal 
stress and accelerated metabolism rates (Herrera et al. 2017, 2019). These suboptimal 
conditions were also evidenced by the high variability in ETS responses, with wider data 

Figure 5. Comparative morphology between newly hatched larvae from different temperature treatments. Comparison between A. Newly 
hatched larva of C. sapidus from female 1 under control conditions at 24 °C, and B. Aberrant newly hatched larva from the same female at 
28 °C treatment. Hatching day corresponding to T8 and T6, respectively. Morphological abnormalities observed in aberrant larva include 
the absence of the erect carapace spine, a fully formed telson, and appendages. Scale bars: 250 µm.
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distribution at extreme temperatures. In contrast, ETS activity increased more gradu-
ally and consistently at lower temperatures (22–24 °C), indicative of stable metabolic 
performance and better embryonic condition. This pattern aligns with the OCLTT 
framework (Pörtner et al. 2017), which proposes that aerobic scope narrows beyond 
optimal temperatures due to a mismatch between oxygen demand and delivery capac-
ity. In this context, the observed peak and variability in ETS at elevated temperatures 
could indicate the onset of pejus conditions, where metabolic performance declines 
prior to lethality. The steady state reached in ETS levels between 26 °C and 28 °C, 
despite continued temperature rise, suggests the approach to a physiological threshold 
beyond which metabolic performance can no longer be upregulated. This supports the 
concept of an upper thermal limit, where additional warming fails to produce further 
metabolic gains and may instead incur developmental costs.

The observed trend of increasing embryonic ETS activity prior to larval hatching, 
likely correlates with the mechanical action by the larva’s abdomen and telson. This 
behaviour enables the rupture of the outer membrane and larval emergence, a pro-
cess requiring significant metabolic energy (Davis 1965). Hatching dynamics and 
larval morphology provided further evidence of this thermal stress. ETS activity in 
embryos under optimal temperatures (22–24 °C) resulted in higher hatching success 
and viable larvae, indicating that optimal development likely occurs within a narrow-
er thermal window (Costlow and Bookhout 1959; Hill et al. 1989; Jivoff et al. 2007; 
Bembe et al. 2017). In contrast, larvae exposed to higher temperatures (26–28 °C) 
hatched earlier, often within 6 to 7 days, as seen in previous studies (Zheng and 
Kruse 2000; Orensanz et al. 2004; Marochi et al. 2021). Premature hatching before 
fully embryonic maturation, often resulted in fewer viable larvae. These larvae exhib-
ited aberrant forms (prezoea stage), indicative of poor physiological condition. These 
morphological alterations included the absence of an erect rostral spine, incomplete 
formation of the telson, and missing appendages, features that distinguish them from 
the fully developed Zoea I stage, as described by Costlow and Bookhout (1959). 

Figure 6. Schematic model for the thermal window dynamics of C. sapidus embryonic develop-
ment. The interlinked phenomena characterizing development performance of egg size, ETS activity, 
hatching time, and larval morphology is represented against temperature treatments, graphically 
supporting the existence of an upper thermal limit for successful embryogenesis and larval fitness. 
Pejus temperature (Tp = 24 °C) highlight the temperature threshold in which a gradual decrease of 
performance occurs in the pejus range, until reaching the critical temperature (Tc > 26 °C).
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Aberrant larvae were immobile, exhibited sinking behaviour, and subsequently died, 
likely due to their inability to maintain active vertical swimming for feeding (Foxon 
1934; Sulkin 1984; Young 1995; Sulkin et al. 2000).

The significant effect of maternal origin further supports the influence of in-
trinsic variability in shaping embryonic responses, as there could be several fac-
tors affecting female fecundity, including body size, resource availability, tempera-
ture, salinity, photoperiod, and brood aeration during embryogenesis (Jivoff et 
al. 2007; Bembe et al. 2017). This suggests that, despite having the same genetic 
background, embryos can modulate their growth and metabolism in response to 
environmental temperature (Giménez 2023). However, care must be taken when 
extrapolating experimental results beyond the studied population, as the relatively 
small sample size used in this study (n = 6 ovigerous females) imposes limitations 
on the statistical power of our analyses and the generalizability of the results.

These findings suggest that moderate increases in seawater temperature, such as 
a rise of 2 °C, could enhance the invasiveness potential of C. sapidus by accelerating 
development, but compromising larval fitness, while extreme temperatures could 
impose physiological constraints potentially reducing recruitment success (Zheng 
and Kruse 2000; Orensanz et al. 2004; Wernberg et al. 2013; Marochi et al. 2021). 
Consequently, this may lead either to the limiting of the local persistence of C. sapi-
dus population or to changes in the geographical distribution north of its current 
range, as this species has evolved specific behaviours to adapt to colder waters in the 
native area (Johnson 2015; Glandon et al. 2019; Crane et al. 2024). However, results 
in this study are of limited application to acknowledge this expansion, so further 
research on exploring lower thermal limits (below 21 °C) may help to assess the over-
wintering survivorship between European populations, as in Molina et al. (2021).

This study aims to compare our results with embryos from other crustacean 
species, especially with the native ones (e.g. the European green crab, Carcinus 
maenas). This could offer key findings in order to explore species-specific responses 
and ecological implications of thermal stress on early developmental stages, in a 
climate warming context.

Conclusion

This study provides experimental evidence that increasing temperatures above 24 
°C constrain embryo performance in Callinectes sapidus, demonstrating an optimal 
thermal window between 22 °C and 24 °C for successful embryogenesis.

The study shows that ETS activity increases and fluctuates at temperatures 
above 22–24 °C, indicating metabolic stress and a narrowing of aerobic perfor-
mance capacity in C. sapidus embryos. This is supported by reduced egg size and 
early hatching of abnormal larvae. Elevated temperatures speed up development 
and may aid invasiveness but also reduce larval fitness and survival, affecting pop-
ulation recruitment. Maternal effects contribute to developmental variability, al-
though genetics alone do not explain all the differences. Future research should 
include direct oxygen consumption measurements and stress biomarkers to refine 
our understanding of thermal limits during early developmental stages.

Given projected seawater warming by 2100, these insights are crucial for pre-
dicting species resilience and future population dynamics. While this study test-
ed temperatures up to 26 °C, previous research on Carcinus maenas larvae has 
focused on temperatures up to 24 °C, showing variable responses among popu-
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lations that may reflect local adaptations (Šargač et al. 2022). Further research 
should extend thermal gradients beyond 26 °C and compare responses with na-
tive crustaceans (e.g. C. maenas) to better evaluate competitive interactions and 
species resilience under future climate scenarios.
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