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A B S T R A C T

Although technological heterogeneity between banks has been previously considered in the 
literature, less attention has been given to technological heterogeneity between branches of the 
same bank. This paper analyses the efficiency, returns to scale (RTS) and productivity growth of 
bank branches considering a stochastic frontier approach that includes unobserved technological 
heterogeneity between branches and time-varying efficiencies. Specifically, we propose a random 
parameters stochastic distance frontier model that includes multiple inputs and outputs. We as
sume a translog output distance function estimated in an objective Bayesian framework. The 
empirical analysis was carried out using data from 2011 to 2017 from a large Spanish commercial 
bank with 122 branches. The random parameters model adds, in general, flexibility to the esti
mates, allowing for the identification of periods with more extreme efficiencies, both high and 
low, which the fixed parameters model is unable to capture. The random parameters model also 
detects an increase in efficiency over time that the fixed parameters model fails to identify. The 
differences between the two models are sufficient to drastically modify the efficiency ranking of 
the branches. The random parameters model also found greater dispersion than the fixed pa
rameters model in estimation of the RTS and productivity growth.

1. Introduction

Although bank branch activities are generally homogeneous (e.g., providing similar management services for personal and business 
accounts and implementing policy decisions of their own bank), they can be also considered as decision-making units where managers 
can optimize input and output operations.

In this context, differences among bank branches may arise from both unobserved factors and technological heterogeneity. On the 
one hand, branches may exhibit technological disparities because they do not all operate under the same production possibility 
frontier. This heterogeneity can result from variations in the resources and capabilities applied to managerial practices—consistent 
with the resource-based view (RBV) of the firm (Wernerfelt, 1984; Barney, 1991; Conner, 1991; Peteraf, 1993). For instance, managers 
may adopt strategic behaviors that enable them to achieve institutional objectives (e.g., minimizing deviations from gross margin 
targets or enhancing value-based productivity) and to compete effectively within their respective local markets (e.g., against other 
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banks or fintech firms).
Such heterogeneity affects the demand for banking services and shapes the optimal strategic approach for each branch. Conse

quently, significant productivity differences may emerge across branches due to variations in technological configurations. These 
differences are often influenced by heterogeneous environmental factors such as geographic location (e.g., urban vs. rural; industrial 
vs. service-based), customer base, internal organizational structure, and life-cycle stage. For example, Eskelinen et al. (2014) addressed 
this issue by segmenting bank branches operating in diverse environments into homogeneous groups based on overlapping 
specifications.

On the other hand, unobserved (latent) heterogeneity may also exist and differ among branches in terms of production (cost) 
efficiency. This may occur due to unobserved, non-systematic management problems that can be resolved by bank branches in the 
short term (Cabrera-Suárez & Pérez-Rodríguez, 2021), or systematic (persistent) management problems that can be addressed by 
decision-making units (DMUs) over the long term (Colombi et al., 2014; Filippini & Greene, 2016).2

Therefore, the production technology for bank branches can be heterogeneous because bank branches cannot share the same 
common production (or cost) function, which is to say the same vector of parameters in the production (cost). This approach assumes 
that the structure of the production function and the set of inputs and outputs are identical across all branches, although the relative 
importance assigned to each input and output may vary among them (e.g., due to the degree of specialization of each branch). For 
instance, while all branches operate with the same general categories of inputs and outputs, they may emphasize these differently 
depending on their client base or the predominant loan types (e.g., consumer vs. business loans), among other factors. The assumption 
of a common set of inputs and outputs is standard in most of the literature on stochastic frontiers and stochastic meta-frontiers 
(Jondrow et al., 1982; Battese et al., 2004), although some recent studies have explored alternative formulations (Cook et al., 
2015; Li et al., 2016).

Ignoring technological heterogeneity can lead to either an overestimation or underestimation of inefficiency across branches, as 
well as to inconsistent parameter estimates when potential differences among branches are not accounted for in a panel data stochastic 
frontier model. Such misspecification may, in turn, distort branch rankings and hinder the accurate identification and evaluation of the 
most inefficient branches.

The empirical literature on bank branch efficiency has extensively used non-parametric methods to study technical or costs effi
ciency (see Paradi & Zhu, 2013; Cabrera-Suárez & Pérez-Rodríguez, 2020, for an overview), whereas the parametric approach based 
on stochastic frontier analyses has been less used. To our knowledge, only a few papers have analysed bank branch efficiency using 
stochastic frontier models. These include studies by Osiewalski and Marzec (1998) and Marzec and Osiewalski (2008, pp. 29–43), who 
assessed the cost efficiency of bank branches using a Bayesian framework, or, more recently, Cabrera-Suárez and Pérez-Rodríguez 
(2021), who studied unobserved heterogeneity and time-varying cost inefficiency of bank branches on a monthly basis.

Some studies in the literature have investigated technological gaps or group differences using the meta-frontier approach in a non- 
parametric framework (e.g., Goyal et al., 2019; Huang et al., 2022, for banks; and Noveiri and Kordrostami, 2022, for bank branches). 
However, no parametric models have been used to investigate the heterogeneity of technology in bank branches. One advantage of 
parametric models over non-parametric ones is that they allow for the explicit inclusion of the inefficiency term and the modelling of 
its determinants within a single-step procedure.

In this sense, the aim of this paper is to contribute to the literature on bank branch efficiency by proposing a model that accounts for 
technological heterogeneity across branches. Specifically, we address the following issues. First, we adopt a multi-input, multi-output 
production framework by specifying an output distance function modeled through a translog stochastic frontier approach, which 
provides a flexible representation of the underlying production technology. This framework enables us to account for the fact that bank 
branches operate with diverse resources and capabilities, which interact with the heterogeneity of local markets to shape their 
specialization strategies. To evaluate the effectiveness of these strategic choices, the output distance function captures the extent to 
which each branch approaches its optimal performance frontier, given its specific input configuration and operating environment.

Second, we employ a Bayesian random parameters model to explicitly incorporate technological heterogeneity among bank 
branches. The main advantage of this approach is that it can approximate “true” heterogeneous technologies and provide more ac
curate estimates of returns to scale (RTS) (Feng & Zhang, 2014). Furthermore, it allows us to disentangle unobserved technological 
heterogeneity from time-varying inefficiency in bank branches.

In this sense, our paper follows the methodology proposed by Feng and Zhang (2014) to model unobserved technological het
erogeneity. However, unlike these authors, we model time-varying inefficiency by incorporating time-varying covariates—such as 
market size for assets (e.g., deposits) and liabilities (e.g., loans)—as well as a quadratic time trend. In addition, we compute the RTS for 
each bank branch to assess whether branches operate at the optimal scale (constant RTS) or exhibit decreasing or increasing RTS, and 
we also estimate productivity growth across branches.

The empirical analysis carried out to evaluate the performance of the branches and their managers was performed using yearly data 
(2011–2017) for the 122 branches of a large Spanish commercial bank.

The subsequent sections of this paper are organized as follows. In the next section, a concise overview of the literature regarding 
technological heterogeneity in banks will be provided. Section 3 describes a random parameter distance stochastic frontier model in a 
Bayesian framework. Section 4 displays both the data and the empirical results, leading to the presentation of the main conclusions in 
Section 5.

2 For example, the error term in the panel data stochastic frontier model of Colombi et al. (2014) can be divided into four components that capture 
a firm's latent heterogeneity, persistent inefficiency, random shocks, and time-varying inefficiency.
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2. Technological heterogeneity and efficiency

2.1. An overview on modelling heterogeneity in production

Tsekouras et al. (2017) argue that an incorrect treatment of technological heterogeneity distorts the benchmarking process and 
affects performance scores. They note that the effect of the technological structure on production due to heterogeneous behaviour and 
productive performance can be studied using different frontier methods, highlighting several approaches. These include the evaluation 
of heterogeneous behaviour in the context of unobserved heterogeneity with fixed and random effects (Colombi et al., 2014; Filippini 
& Greene, 2016), the latent class stochastic frontier approach for an appropriate treatment of unobserved differences in production 
technology (Orea & Kumbhakar, 2004), and the meta-frontier approach to calculate technology gaps between different levels of 
technology aggregation (Battese & Rao, 2002; Battese et al., 2004; or O'Donnell et al., 2006; among others). Tsekouras et al. (2017)
introduced a new meta-frontier-based method to account for alternative technological hierarchies. They disentangled the layers of 
complexity triggering heterogeneous performance and introduced two types of heterogeneity, each referring to different stages of the 
performance evaluation process.

To the above list of methods can be added the random parameter approach, in which production (or cost) technology can be 
heterogeneous between DMUs by considering a random coefficient stochastic frontier model (e.g., Tsionas, 2002, or Greene, 2005; 
among others).

Tsekouras et al. (2017) also highlighted productive performance differentials considering different technological and economic 
structures. These differentials in a country frontier setting are due to country-specific mechanisms and market imperfections that result 
in efficient or inefficient resource allocation mainly through turbulence (Bartelsman et al., 2013; among others), and in a sector 
frontier setting to the asymmetric effects of emerging technologies on different industrial structures (Los & Verspagen, 2000, 2006; 
among others).

2.2. Technological heterogeneity in banks

Technological heterogeneity in the banking sector has generally been studied in two ways. Firstly, using the meta-frontier approach 
which allows consideration of the technological gaps between banks or branches. For example, Goyal et al. (2019) studied the effi
ciency levels of the overall Indian banking sector and across different ownership structures such as public, private and foreign banks. 
Huang et al. (2022) examined the cost efficiency, technology gap ratio, and overall cost efficiency of 43 banks and 27 life insurance 
companies operating in Taiwan. With respect to bank branches, Noveiri and Kordrostami (2022) recently proposed the use of a sto
chastic data envelopment analysis (DEA) approach to estimate the meta-frontier cost and revenue performance of heterogeneous bank 
branches under the convex technology.

However, technological heterogeneity in a banking context has predominantly been analysed using random parameters in a sto
chastic frontier framework because this enables the introduction of cross-firm heterogeneity by relaxing the restrictive hypothesis that 
technology is common across banks (Tsionas, 2002; Greene, 2005). In this regard, the few papers that have been published include a 
study by Tecles and Tabak (2010). In their analysis of bank efficiency in Brazil using a Bayesian stochastic frontier approach, large 
banks showed superior cost and profit effectiveness compared to certain public banks. They concluded that ‘concentration favours 
efficiency’. In another study, this time employing a random parameter stochastic frontier cost function to analyse efficiency in 43 
Mexican banks from 1998 to 2006, Barros and Williams (2013) found that this model produces more precise estimated efficiencies. A 
third example is the study conducted by Goddard et al. (2014), who used data from 1985 to 2010 from banks in four Latin American 
countries (Argentina, Brazil, Chile, and Mexico). They found that average efficiency estimates obtained with random parameter 
models tended to be higher than those found using fixed or random effects models. Moreover, the evolution of efficiencies varied over 
time with no similar pattern of behaviour between countries. They concluded that the type of bank ownership, regulation and context 
had a different impact in each country before, during and after the 2007 sub-prime crisis.

Feng and Zhang (2014) highlighted, in their literature review, evidence that unobserved technological heterogeneity is common 
among large banks in the US for several reasons. For example, the diffusion of new technologies among banks is not quick, because 
banks implement new technologies based on issues such as bank size, organizational structure, profitability, geographic location, and 
market structure (e.g., Akhavein et al., 2005; Saloner & Shepard, 1995). Furthermore, banks with different organizational structures 
use varying production technologies (e.g., Berger et al., 2005; Canales & Nanda, 2012; Coles et al., 2004), and banks with different 
business models often use alternative production technologies (e.g., Rossi, 1998).

Based on the above, Feng and Zhang (2014) modeled the RTS of large banks in the US in the presence of unobserved technological 
heterogeneity. To do so, they estimated a random parameters model based on the output distance frontier model along the lines of 
Tsionas (2002) and Greene (2005, 2008) to avoid a distorted ranking of banks and incorrect RTS estimation. Their results provided 
evidence of technological heterogeneity: most large U.S. banks exhibit constant RTS, banks of similar size display different RTS levels, 
and no clear pattern emerges among large banks regarding the relationship between asset size and RTS. More recently, Cortés-García 
and Pérez-Rodríguez (2024) studied the Ecuadorian banking sector using a Bayesian framework to estimate time-varying efficiencies 
and RTS in a translog output stochastic distance model, considering the technological heterogeneity of banks. Results indicated that 
randomness affected only the constant term, but not frontier parameters (e.g., input and technological change coefficients).

Regarding branches operating in heterogeneous environments, Eskelinen et al. (2014) addressed heterogeneity within a 
non-parametric efficiency framework by subdividing bank branches into homogeneous clusters based on overlapping specifications. 
Each cluster was then analysed separately to account for the heterogeneity among bank branches.
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However, to our knowledge, no studies have been published that investigate unobserved technological heterogeneity in bank 
branches using a stochastic frontier analysis, allowing for differences in the production frontier due to heterogeneous environments or 
different groups (classes) of branches, among others.

3. Methodology

In this section, we define the random parameter models within a Bayesian framework, considering the output distance function and 
the translog specification.

3.1. A distance function stochastic production frontier model with random coefficients

The distance function with a translog production form allows measurement of the efficiency and productivity in different industries 
by analysing the relationship between multiple inputs and outputs in a flexible manner.

The general specification for this function is similar to that used in previous studies in the insurance and hotel industries. For 
example, the study by Eling and Luhnen (2010) used a similar distance function with a translog production form to examine the ef
ficiency levels of various insurance companies. They included inputs such as labour, capital, and administrative expenses, and outputs 
such as premiums earned, and claims paid. Similarly, Assaf and Magnini (2012) and Assaf and Barros (2013) applied the distance 
function with a translog production form in the hotel industry to assess the efficiency of different hotels. They considered inputs such as 
labour, capital, and operating expenses, and outputs such as revenue and occupancy rates.

In addition to the inputs and outputs, our model also includes a quadratic trend to represent technological progress. This trend 
captures the impact of advancements in technology on efficiency and productivity over time.

The general representation of the translog output distance function for the scenario with M outputs and K inputs, within a fixed 
parameters framework (i.e., without the bank branch-specific heterogeneity), can be expressed as follows (O'Donnell & Coelli, 2005): 

log D0(y, x, t)= α +
∑M

m=1
γm log ym +

1
2
∑M

m=1

∑M

p=1
γmp log ym log yp +

∑K

k=1

αklog xk +
1
2
∑K

k=1

∑K

j=1
αkjlog xklog xj +

∑K

k=1

∑M

m=1
δkmlog xk log ym

+ κ1t +
1
2

κ2t2 +
∑M

m=1
ηm t log ym +

∑K

k=1
θkt log xk.

[1] 

From Equation [1], Feng and Zhang (2014) derived an estimable form of the standard stochastic frontier model. In their approach, 
the coefficients were treated as fixed, i.e., identical across the entire sample. In contrast, in this paper we account for differences in the 
production frontier arising from heterogeneous environments or distinct branch groups by specifying a random-parameters model 
(Tsionas, 2002; among others).

The random parameters model allows for heterogeneous production technologies, which is evident when bank branches do not 
operate under a single efficient technology. Accordingly, all coefficients are permitted to vary across branches. It should be noted that, 
in our case, the random parameters model does not imply a different production function for each branch in terms of its structure; that 
is, the functional form of the production function (e.g., the translog output distance function) is identical for all branches. However, the 
parameter values may differ across branches, as assumed in our specification. Therefore, the translog output distance function with 
random parameters can be written as follows: 
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m=1
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ηm,i t log
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+
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k=1
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[2] 

where log represents the natural logarithm, i = 1,2, ..., n is the number of bank branches, t = 1, 2, ...,Ti is the number of time periods, 
m, p = 1,…,M − 1 is the number of outputs, k, j = 1,…,K is the number of inputs, ym,it is the output m of bank branch i in period t; and 
αi, γm,i, γmp,i, αk,i,αkj,i, δkm,i, κ1,i, κ2,i, ηm,i, and θk,i are unknown parameters. It is noteworthy that the behaviour of these parameters is 
random, as they depend on a random error term. As an example, the parameter γm,i in Equation [2] can be decomposed into its mean 
and a random vector which captures the bank branch-specific heterogeneity: 

γm,i = γm + ϵi, [3] 

where the vector of random parameters ϵ follows a multivariate normal distribution with a mean vector of zeros and covariance matrix 
Σ (ϵ ∼ N(0,Σ)). The standard fixed parameters model of Feng and Zhang (2014) is recovered by setting ϵ = 0.

The error terms capture the statistical noise vit ∼ N
(
0, σ2

v
)

and the inefficiency uit ∼ Exp (λit), with Exp denoting an exponential 
distribution with parameter λit = Exp(βʹzit) depending on the vector of environmental variables zit. It should be noted that the expected 
inefficiency in this study is computed as E[uit] = 1/λit = 1

Exp(βʹzit)
.
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From the translog function, it is possible to obtain other measures of interest. Thus, from Equation [1] it is straightforward to obtain 
the elasticity of the output distance function with respect to each input, xk, defined as: 

εk,it =
∂log D0(y, x, t)

∂log xk,it
= αk,i +

∑K

j=1
αkjlog xj,it +

∑M

m=1
δkm,i log

(
ym,it

yM,it

)

+ θk,it, [4] 

and the output-distance-function-based measure of RTS, defined as (Caves et al., 1982; Orea, 2002): 

RTSit = −
∑K

k=1
εk,it . [5] 

In addition to RTS, we can also estimate two related measures: technical change (TC) and efficiency change (EC). These can be 
calculated, respectively, as the differences in the distance frontier and in efficiency between periods t and t-1 (Assaf et al., 2013): 

TCit =
∑M− 1

m=1
ηm,i log

(
ym,it

yM,it

)

+
∑K

k=1

θk,ilog xk,it + κ1,i +
1
2

κ2,i
(
t2 − (t − 1)2)

+ (uit − ui(t− 1)). [6] 

ECit = exp(− uit) − exp( − ui(t− 1)). [7] 

Finally, we obtain the productivity change by taking the sum of TC and EC.

3.2. Bayesian procedure

In this subsection, we specify the Bayesian estimation of the translog stochastic distance frontier for two models: the standard fixed 
parameters model, which has been widely used in the stochastic frontier literature (Koop & Steel, 2003; O'Donnell & Coelli, 2005; for 
example), and the random parameters model, which considers individual-specific unobserved heterogeneity across all inputs (Tsionas, 
2002; Feng & Zhang, 2014).

For both models, and to facilitate comparisons and ensure robustness, we specify identical priors for the parameters that are shared 
across models. The priors employed in the Bayesian model are non-informative, as we assume an objective Bayesian approach. A 
Normal distribution with mean 0 and variance sufficiently large to express disinformation is usually assumed for the coefficients of the 
model. However, a small variation is needed to ensure that the conditions of monotonicity are satisfied. These conditions require that 
∂log D0(y,x,t)

∂log xk
≤ 0 and ∂log D0(y,x,t)

∂log

(

ym,it
yM,it

) ≥ 0 in Equation [2]. For the random parameters model, the expression of these derivatives are given in [4] 

and: 

∂log D0(y, x, t)

∂log

(

ym,it
yM,it

) = γm,i +
∑M− 1

p=1
γmp,i log

(
yp,it

yM,it

)

+
∑K

k=1
δkm,ilog xk,it + ηm,it. [9] 

To simplify these nonlinear constraints and following O'Donnell and Coelli (2005) and Feng and Zhang (2014), we deflate the 
sample data so that all output and input variables have a sample mean of one, and the-time trend has a sample mean of zero. Therefore, 
the monotonicity conditions at the mean can be expressed as αk,i ≤ 0 and γm,i ≥ 0 for k = 1,…,K and m = 1, …, M. To guarantee 
compliance with these conditions, we specify flat gamma prior distributions for these parameters. In summary: 

• αi, γmp, αkj,i,δkm,i, κ1,i, κ2, i, ηm,i, θk,i ∼ N
(
0,106) (as in Tsionas, 2002; Feng & Zhang, 2014).

• γm,i, − αk,i ∼ G (0.01,0.01) (as in Lambert et al., 2005).

In Equation [2], the compound error (vit +uit) is asymmetric, where vit is assumed to be i.i.d. N
(
0,σ2

v
)
, with 1/ σ2

v ∼ G(0.01,0.01),
and uit is a non-negative component and one-sided component error (inefficiency term), which is assumed to be an i.i.d. random 
variable defined by the exponential distribution (as, for example, in Koop et al., 1997) with parameter λit = Exp(βʹzit), where λit de
pends on the vector of environmental variables, źit, and the vector of unknown parameters, β. The β parameters also follow a prior 
Normal distribution with mean 0 and variance 106.

The random parameters model includes bank branch-specific parameters. Each parameter can be decomposed into its mean and a 
random vector with zero mean which captures the bank branch-specific heterogeneity. We assume the same prior distributions for the 
means as assumed in the standard fixed parameters model. The random vector ϵ follows a multivariate normal distribution with a 
vector of zeros as mean and covariance matrix 

∑
. A prior inverse Wishart density is assumed for the variance matrix 

∑
, with r = 1 

degrees of freedom and scale matrix Ω = 10− 6 ⋅ I, where I denotes the identity matrix (
∑

∼ IW(r,Ω)) (Tsionas, 2002).
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4. Empirical analysis

4.1. Data

In this study, two sources of bank branch data were used for a Spanish commercial bank. Profit and loss statements were used to 
compile the annual accounting information for the period 2011–2017 (seven years), along with supplementary information from 
internal departments (e.g., management control and human resources, among others). These branches are widely distributed across 
Spain and provide the same types of service, handling both personal and business accounts. They include small and large branches and 
are located in rural and urban areas (including street branches, shopping centers, among others), some of which have a high con
centration of branches. For reasons of confidentiality, no further identification is provided.

The original sample size of branches to be studied was 151 and the sample was not winsorized. However, 29 branches presented 
some problems. For example, some branches presented extreme values for certain input and output variables due to accounting ad
justments. Some others were closed or merged with other nearby branches during the study period. These circumstances could have 
influenced the estimation procedure and, to prevent distortion from these sources, the branches in question were therefore eliminated 
from the sample. After filtering the database in this way, a total of 122 out of 151 bank branches remained for analysis. It should also be 
noted that part of this data period (2011–2014) was previously employed by Cabrera-Suárez and Pérez-Rodríguez (2020, 2021) to 
evaluate the effectiveness of branch operations and managerial conduct in a large Spanish commercial bank. The panel is balanced, 
with a total number of observations equal to 854.

The literature on banking efficiency has traditionally distinguished between two theoretical frameworks for modeling the pro
duction function of financial institutions: the production approach and the intermediation approach (Berger & Humphrey, 1997). In 
this study, we adopt the production approach, which conceptualizes the branch as an operating unit whose primary function is the 
provision of transactional services to customers. From this perspective, and in line with Paradi and Zhu (2013), branches transform 
inputs—such as labor (e.g., number of employees) and physical capital (e.g., fixed assets or office space)—into outputs reflecting their 
activity, such as the number of deposit transactions, the volume of transactions processed, or newly opened accounts.

The adoption of the production approach is methodologically appropriate for this study, as the objective is to assess operational 
efficiency at the branch level, rather than the efficiency of managing the institution's overall financial balance sheet.

Below, we describe the outputs, inputs and environmental variables used in our analysis (see Table A1 in the Appendix for their 
definitions and sources of data) at the bank branch level. In general, these variables are common in many DEA studies on banks (see 
Camanho & Dyson, 1999, 2006; Paradi & Zhu, 2013, among others).

4.1.1. Outputs
The outputs used in this study have also been employed by other authors, such as Camanho and Dyson (1999, 2006) and Giokas 

(2008). Specifically, we consider the value of savings (savings deposit accounts) and the value of loans—including mortgages for both 
consumer and business accounts—at the branch level. It is important to note that our analysis does not incorporate account activity 
(calculated by the total number of transactions) due to data only being available from 2013.

4.1.2. Inputs
To specify the model, a set of input variables is defined to represent the discretionary resources that branch management employs in 

the production process. These primarily include labor (e.g., number of employees) and physical capital (e.g., fixed assets).
Following Camanho and Dyson (1999, 2006) and Cabrera-Suárez and Pérez-Rodríguez (2020), we use the following branch-level 

inputs: the total number of full-time equivalent employees (including branch and account managers, administrative and commercial 
staff, and tellers, who account for the majority of branch costs); the floor space utilized by each branch (measured in m2); the number of 
external ATMs associated with each branch; and the operational costs incurred (including the total costs of materials, space, and 
information systems, but excluding personnel costs).

It should be noted that, in line with common practices in the Spanish banking sector, the bank operates a network of ATMs located 
outside its branches, referred to as “displaced ATMs.” These are situated in strategic, high-traffic locations—such as shopping malls, 
airports, and large business centers—with the aim of maximizing network coverage and customer accessibility. Over the past decade, 
however, there has been a general trend toward reducing the ATM fleet. This structural adjustment is primarily driven by two sector- 
specific factors: (a) the accelerated digitalization of financial services, which has decreased dependence on cash and reduced the 
demand for transactions at physical terminals, and (b) bank consolidation processes, which have promoted the optimization and 
rationalization of service networks to eliminate redundancies and lower operating costs. Such strategies are part of ongoing cost- 
optimization processes conducted during annual reviews.

4.1.3. Environmental variables
Furthermore, a vector of environmental variables is incorporated to obtain robust estimates in the stochastic frontier analysis, as 

branches are exposed to exogenous, non-discretionary factors that define their operating environment. These factors—such as 
competitive pressure, local macroeconomic conditions, or demographic characteristics—are beyond the branch's control but can in
fluence its ability to transform inputs into outputs. Their inclusion is therefore necessary to avoid bias in the efficiency scores.

Due to data availability, we include only a few environmental variables to explain efficiency. Specifically, we consider the market 
share of loans and deposits (Tecles & Tabak, 2010), which serve as proxies for branch size in terms of assets and liabilities, respectively. 
Previous studies, such as Williams (2004), also used market-share indicators to account for organizational structures in savings banks 
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when explaining cost inefficiency. Larger market sizes can enable branches to achieve economies of scale, potentially lowering average 
costs per unit of output and improving efficiency. In this study, we calculate the market share of loans as branch loans divided by total 
institutional loans in a given year, yielding a value between 0 and 1 that indicates the relative prominence of the branch in lending. 
Similarly, market share of deposits is computed as branch savings divided by total institutional savings.

In addition, we include linear and quadratic time trends in the frontier and efficiency models to capture technical change.
Table 1 shows descriptive statistics for the outputs, inputs and environmental variables used in the efficiency model. All data values 

are reported in constant 2011 euro, calculated using the consumer price index of the local market with respect to the base period 2011.
The most notable feature revealed by the table is the extreme heterogeneity of the sample, which provides the primary empirical 

justification for the use of a random parameters model. 

• Outputs: Both product variables (deposits and loans) exhibit a strong right skew. This is evident when comparing the mean with 
the median (e.g., for loans, €33.6 million vs. €26.0 million), indicating that the sample includes a small number of branches with 
substantially higher turnover than the typical branch.

• Inputs: Heterogeneity is even more pronounced in the inputs. 
o The number of employees and operating costs also show a clear positive skewness.
o The most notable variable is branch area. The standard deviation (306 m2) is nearly as large as the mean (343 m2), resulting in a 

coefficient of variation (CV = SD/Mean) of approximately 0.89. A CV so close to 1 indicates substantial dispersion. Branch sizes 
range from very small (90 m2), typically in rural areas, to exceptionally large (1,594 m2), usually in urban areas with high traffic 
and commercial activity. This provides compelling evidence that branches operate at different scales and possibly under different 
production technologies.

• Environmental variables: The distribution of market shares is also skewed, with maximum values (5.51 % and 3.18 %) several 
times higher than the mean (0.82 %). This confirms that some branches are strategically far more important to the bank than the 
majority.

The mean total value of deposits per branch is approximately €11 million, while the mean total value of loans reaches €34 million. 
On average, each branch operates 3 ATMs and employs 4 staff members. It is noteworthy that the minimum number of employees is 1, 
corresponding to a branch located in an area of low commercial activity. Such branches are often maintained due to historical 
agreements or traditional locations, reflecting the bank's interest in preserving these sites.

Current trends in the financial sector, however, favour the establishment of larger branches in urban or metropolitan centers, 
enabling them to serve a broader segment of clients and host specialized sales forces, for example in Small and Medium Enterprises 
(SMEs). To compensate for areas without physical branches, banks are increasingly developing more digital services to reach un
derserved locations.

The average branch size is approximately 343 m2, with an average market share of 0.82 % for both deposits and loans, and average 
operational costs of €154,000 per branch. During the period analysed, there was a general trend toward a reduction in the number of 
employees and ATMs, as well as the closure of some branches. These descriptive statistics reflect a snapshot of a period of restructuring 
for the institution.

The coexistence of branches with only one employee alongside others with more than ten, as well as the variation in physical size, 
illustrates a diversified branch portfolio that was being optimized during the years studied. Between 2011 and 2017, the Spanish 
banking sector underwent profound restructuring, marked by the aftermath of the financial crisis, the 2012 European bank bailout, 
and regulatory mandates to improve efficiency. This period saw intense sector consolidation and an unprecedented adjustment in 
capacity, with the branch network shrinking by over 30 % from its peak.

Consequently, the high heterogeneity observed in the sample—evident in the coefficient of variation in branch size and employee 
numbers—reflects not only statistical variation but also a commercial network in full transformation. Some branches were in the 
process of closure, others were merging with nearby units, and larger branches served as consolidation centers within the new post- 

Table 1 
Descriptive statistics for bank branches over the period 2011–2017.

Variable Mean Standard deviation Min. 25th percentile Median 75th percentile Max.

Outputs
y1: Value of deposits (million euros) 10.9 1.09 0.71 4.27 6.5 13.7 72.1
y2: Value of loans (million euros) 33.6 23.7 4.2 17.0 26.0 44.0 140.0
Inputs
x1: Number of ATMs 2.9344 1.3782 1 2 3 4 8
x2: Number of full employees 3.7695 2.4975 1 2 3 4 13
x3: Operational costs (€) 154,221.63 89,076.76 9,887.12 94,106.08 127,255.50 183,328.78 561,597
x4: Floor space of the branch (in m2) 343.4344 306.3668 90 175 225 350 1,594
Environmental variables
z1: Market share of deposits 0.0082 0.0082 0.0006 0.0032 0.0050 0.103 0.551
z2: Market share of loans 0.0082 0.0058 0.0011 0.0042 0.0063 0.109 0.318

Notes: This table presents the descriptive statistics for the pooled sample over the period 2011–2017. The statistics reported include the mean, 
standard deviation, minimum, 25th percentile, median, 75th percentile, and maximum.
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crisis commercial structure.

4.2. Time-varying efficiency

Bayesian estimation results were obtained using the OpenBUGS program. The Markov chain Monte Carlo (MCMC) algorithm ran for 
200,000 iterations, with the first 100,000 discarded during the ‘burn-in’ phase. The MCMC simulation for the random parameters 
model was performed with a thinning interval of 5 to ensure convergence. Chain stability was assessed using the Geweke (1992)
convergence test which compares the initial and final 20 % of the MCMC simulation. Test results and graphs were obtained with the 
STATA 17 software package.

Table 2 shows the Bayesian results for the translog stochastic distance production frontier defined by Equation [2]. Table 2 (Panel 
A) shows the posterior mean, statistical relevance, MC error, and the probability associated with Geweke's convergence test for the 
coefficients of the fixed and random parameters models. Both models consider the inclusion of several covariates in the (in)efficiency 
model (Panel B), such as the market share of deposits and loans in the local market and a quadratic trend representing the change over 
time. Note that input and output parameter estimates were restricted to maintain monotonicity conditions valid for our distance 
production function, namely positive values for output coefficients and negative values for input coefficients (see Feng & Zhang, 2014, 
and references therein).

Focusing on Table 2 (Panel A), several parameter coefficients are statistically significant considering the centered credible interval 
in both models. Although the estimates vary, certain similarities can be observed regarding the sign and statistical relevance of the 
coefficients in both models. All the coefficients pass the Geweke convergence test at a 5 % significance level. It is noteworthy that, 
when comparing the two models, the deviance information criterion (DIC) indicates that a random parameters model is preferable to 
the fixed parameters model. This result supports the relevance of incorporating unobserved technological heterogeneity for the bank 
branches.

Regarding the determinants for expected inefficiency (1/ λit) (Table 2, Panel B), the coefficients for market share of deposits and 
loans are positive. In our model, this implies that as the market share for deposits and loans increases, expected inefficiency decreases, 
indicating a corresponding increase in efficiency. This result is in line with some papers in the empirical literature on bank branches (e. 
g., Cabrera-Suárez & Pérez-Rodríguez, 2021). Furthermore, the fixed parameters model does not detect variations in efficiency over 
time, whereas the random parameters model does detect a non-linear increase.

To illustrate the behaviour of overall efficiency estimates and their temporal patterns, Fig. 1 presents the posterior expected 
technical efficiency distribution, along with the year-by-year evolution of the empirical distributions for both models. More specif
ically, Fig. 1a shows the kernel density estimates for the overall efficiencies, which are high, in general, in both models, and mostly 
concentrated over 0.95. The DIC statistic indicates that the random parameters model is statistically preferable. Therefore, we can 
examine the consequences of failure to allow for technological heterogeneity between branches. As Fig. 1a shows, higher efficiencies 
are observed in the random parameters model, suggesting that the random parameters model allows for a more accurate adjustment of 
the frontier for each branch. Thus, for example, the proportion of efficiencies above 95 % estimated by the fixed parameters model is 
45.08 %, compared to 67.33 % in the random parameters model. However, Fig. 1a also shows, as expected, that efficiencies are skewed 
to the left with a slightly longer tail for the random parameters model. Estimating a particular frontier for each bank branch allows for a 
better appreciation of the more efficient and more inefficient periods of the branches, whereas the joint analysis with a unique pro
duction function cannot capture these extremes. It is noteworthy that the maximum observed difference between the average annual 
efficiencies estimated by the two models occurred in 2017, reaching 0.0752.

Fig. 1b shows the efficiencies by year. The differences are markedly present at the end of the sample (2016–2017, when the In
ternational Financial Reporting Standard (IFRS) was revised).3 There is a clear increase in technical efficiency compared to the pre
vious years in the random parameters model which is not observed in the fixed parameters model.

Table 3 shows the descriptive statistics for posterior expected technical efficiency obtained from the fixed and random parameters 
models. Mean efficiency varies only slightly over the study period in the fixed parameters model, with the lowest technical efficiency 
recorded at 0.8646 in 2011. The highest efficiency is observed in the random parameters model, reaching 0.9801 in 2017.

Although the estimated efficiencies vary between models, the ranking of branches by efficiency is not drastically altered. The 
Spearman correlation between both efficiencies is above 0.95 for the period 2011–2016, with 2017 being the only year with a slightly 
lower Spearman correlation (0.8815).

4.3. Returns to scale

The production technology for each bank branch can exhibit increasing, constant and decreasing RTS, expressing the correlation, or 
lack thereof, between variations in output after altering all inputs in equal measure.

Fig. 2 shows the RTS for both models considering the kernel density estimates (Fig. 2a) and the RTS by year (Fig. 2b). Two notable 
observations regarding bank branches emerge from these figures.

First, Fig. 2a highlights marked differences between the two models due to the presence of technological heterogeneity. Although 
the mean RTS over time is similar for both models (1.07 for the fixed parameters model and 1.12 for the random parameters model), 

3 Under International Financial Reporting Standard 9 (IFRS9) (see International Accounting Standards Board (2014a, b)), the role of provisions is 
to cover for anticipated losses in the future. Since 2018, European banks have followed the IFRS9 approach.
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Table 2 
Panel data estimates with covariates of mean inefficiency for the translog input stochastic distance frontier model. Fixed and random parameters 
models.

Variable Fixed parameters model Random parameters model

Coefficient MC error Geweke Coefficient mean MC error Geweke Standard deviation MC error Geweke

Panel A: Translog stochastic distance production function

Intercept − 0.0049 0.0003 − 0.3554 0.0223 0.0006 0.0439 0.0651** 0.0001 0.9028
log y1/y2 0.2997** 0.0002 0.4393 0.2377** 0.0004 − 0.1185 0.0734** 0.0001 0.4604
(log y1/y2)2 − 0.0527 0.0004 0.0803 − 0.0391 0.0009 − 0.0228 0.0397** 0.00007 0.0677
log x1 − 0.1673** 0.0006 0.2868 − 0.2383** 0.0008 − 0.4006 0.0231** 0.00009 1.0452
log x2 − 0.6222** 0.0005 0.5027 − 0.5620** 0.0006 0.1174 0.0104** 0.00006 1.0342
log x3 − 0.2918** 0.0005 0.1029 − 0.2997** 0.0007 0.1582 0.0156** 0.00007 0.3575
log x4 − 0.0043** 0.0006 − 0.7913 − 0.0082 0.0007 − 0.0991 0.0015** 0.00005 0.6837
(log x1) × (log x2) 0.1801* 0.0019 − 0.1866 0.2227** 0.0035 0.1174 0.0047** 0.00005 1.4113
(log x1) × (log x3) 0.0715 0.0035 0.1418 − 0.0298 0.0051 0.1593 0.0232** 0.00008 0.2453
(log x1) × (log x4) − 0.1107 0.0013 0.5117 − 0.1980** 0.0027 − 0.2304 0.0379** 0.00007 − 0.4826
(log x2) × (log x3) − 0.1334 0.0031 0.1315 − 0.0962 0.0041 − 0.0718 0.0489** 0.00009 0.3579
(log x2) × (log x4) 0.0029 0.0011 − 0.3065 0.0176 0.0017 − 0.1716 0.0188** 0.00004 0.6927
(log x3) × (log x4) 0.2185** 0.0011 − 0.1765 0.2979** 0.0022 0.2208 0.0623** 0.0001 0.5007
(log x1) × (log x1) − 0.2281 0.0041 − 0.3163 0.1526 0.0067 0.0819 0.0196** 0.00007 0.3345
(log x2) × (log x2) 0.0024 0.0030 0.1613 − 0.1034** 0.0046 0.0230 0.0334** 0.0001 − 0.7205
(log x3) × (log x3) − 0.0187 0.0032 − 0.3147 − 0.0258 0.0041 0.0230 0.0153** 0.00005 0.8600
(log x4) × (log x4) − 0.2243** 0.0009 0.5916 − 0.2970** 0.0018 0.0979 0.0652** 0.0001 0.5582
(log x1) × (log y1/y2) 0.0802 0.0011 − 0.2127 0.0875 0.0018 0.1595 0.0157** 0.00007 0.3748
(log x2) × (log y1/y2) 0.0014 0.0009 0.0774 0.0061 0.0013 0.1256 0.0018** 0.00003 0.9603
(log x3) × (log y1/y2) − 0.2170** 0.0012 0.3129 − 0.2372** 0.0015 0.0582 0.0164** 0.00007 − 0.7821
(log x4) × (log y1/y2) 0.1328** 0.0005 − 0.2052 0.0909* 0.0013 − 0.2094 0.0985** 0.0001 0.2603
t 0.0221** 0.00006 − 0.2324 0.0207** 0.0001 − 0.1925 0.0279** 0.0001 − 0.3960
t2 0.0062 0.00006 0.6218 0.0152** 0.00009 0.1205 0.0286** 0.00006 0.0721
t × (log y1/y2) − 0.0076 0.00007 − 0.1801 − 0.0165* 0.0001 0.2010 0.0377** 0.00009 − 0.0385
t × (log x1) − 0.0036 0.0001 0.0186 − 0.0298* 0.0003 0.1857 0.0542** 0.00009 0.0690
t × (log x2) 0.0384** 0.0001 0.0485 0.0498** 0.0003 − 0.0380 0.0194** 0.0001 − 0.4390
t × (log x3) − 0.0327** 0.0002 − 0.0637 − 0.0463** 0.0004 0.0739 0.0118** 0.00006 − 0.2884
t × (log x4) − 0.0117 0.00006 0.2015 − 0.0095 0.0001 − 0.0719 0.0152** 0.00006 − 0.3633

Panel B: Efficiency

Intercept 3.690** 0.0090 0.4402 3.856** 0.0131 − 0.1344 ​ ​ ​
log z1 1.665** 0.0036 0.5162 1.781** 0.0055 − 0.0133 ​ ​ ​
log z2 0.7802** 0.0050 0.1609 0.6139** 0.0081 − 0.3181 ​ ​ ​
t 0.0257 0.0006 − 0.1915 0.1898** 0.0018 − 0.1451 ​ ​ ​
t2 0.0041 0.0003 0.7946 0.1217** 0.0009 0.3067 ​ ​ ​

DIC − 372.4 ​ ​ − 945.1 ​ ​ ​ ​ ​

Bank branches 122 ​ ​ 122 ​ ​ ​ ​ ​
Observations 854 ​ ​ 854 ​ ​ ​ ​ ​

Notes: DIC = deviance information criterion; ** 95 % centered credible interval (CCI) does not contain 0; * 90 % CCI does not contain 0.

Fig. 1. Posterior expected technical efficiencies and time-path distribution of technical efficiencies per year for fixed and random parameter models. 
Note: This figure shows two graphs which allows identification of the distribution of efficiencies and the patterns of efficiencies over time estimated 
using the translog input stochastic distance frontier, considering the fixed and random parameters models and employing a Bayesian framework. To 
do so, we plotted the kernel density estimates for efficiencies and the time-varying boxplots of efficiencies for both models.
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dispersion is greater in the random parameters model. Ignoring technological heterogeneity when modelling bank branch efficiency 
could therefore lead to misleading conclusions, including underestimation of RTS dispersion. A similar finding regarding higher 
dispersion in random parameters models was reported by Feng and Zhang (2014) for large banks in the USA.

Second, Fig. 2b shows that this dispersion persists over time in the random parameters model and reveals a more pronounced trend 
than in the fixed parameters model. This temporal pattern suggests that branch rankings could differ significantly if technological 
heterogeneity is ignored, particularly regarding increasing (RTS>1), constant (RTS = 1), and decreasing (RTS<1) returns to scale.

To analyse this issue, we calculate the percentage of bank branches exhibiting increasing, constant and decreasing RTS, for both the 
fixed and random parameters models. Following Feng and Zhang (2014), these percentages are calculated by counting the number of 

Table 3 
Descriptive statistics for posterior expected technical efficiency.

TE Fixed parameters model Random parameters model

Mean Median SD Z2.5 % Z97.5 % Mean Median SD Z2.5 % Z97.5 %

2012 0.8646 0.8647 0.01328 0.8382 0.8904 0.9174 0.9175 0.01385 0.8896 0.9445
2013 0.8742 0.8744 0.01107 0.8523 0.8956 0.9080 0.9082 0.01041 0.8873 0.9281
2014 0.8883 0.8885 0.00982 0.8685 0.9071 0.9129 0.9131 0.00853 0.8958 0.9293
2015 0.8810 0.8813 0.01059 0.8596 0.9012 0.9021 0.9022 0.00987 0.8826 0.9212
2016 0.8836 0.8838 0.01053 0.8623 0.9036 0.9209 0.9210 0.00935 0.9022 0.9390
2017 0.9009 0.9011 0.00986 0.8809 0.9195 0.9583 0.9587 0.00755 0.9425 0.9721

Notes: TE: Technical efficiency. SD: Standard deviation. Z2.5 %: Posterior 2.5 % percentile. Z97.5 %: Posterior 97.5 % percentile.

Fig. 2. Posterior expected returns to scale (RTS) for the study period (2011–2017). 
Note: This figure shows two graphs which allow identification of the distribution of returns to scale (RTS) and the patterns of RTS over time 
estimated using the translog input stochastic distance frontier, considering the fixed and random parameters models and employing a Bayesian 
framework. To do so, we plotted the kernel density estimates for efficiencies and the time-varying boxplots of RTS for both models.

Table 4 
Percentage of bank branches with increasing, constant and decreasing returns to scale (RTS).

Year n Increasing RTS (%) Constant RTS (%) Decreasing RTS (%)

Panel A: Fixed parameters model
2011 122 8.20 91.80 0
2012 122 15.57 84.43 0
2013 122 30.33 69.67 0
2014 122 31.97 68.03 0
2015 122 36.06 63.94 0
2016 122 31.97 68.03 0
2017 122 27.05 72.95 0
Average ​ 25.88 74.12 0
Panel B: Random parameters model
2011 122 23.77 60.66 15.57
2012 122 37.70 52.46 9.84
2013 122 52.56 43.44 4.10
2014 122 55.74 42.62 1.64
2015 122 59.02 40.16 0.82
2016 122 59.84 40.16 0
2017 122 59.84 40.16 0
Average ​ 49.77 45.67 4.56

Notes: This table presents the returns to scale (RTS) estimated from the translog input stochastic distance frontier, using both the fixed- and random- 
parameters models within a Bayesian framework. The table reports the percentage of branches exhibiting increasing, constant, and decreasing RTS, 
respectively. The variable n denotes the number of branches each year.
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cases where the 95 % credibility interval is strictly above 1 (increasing RTS), includes one (constant RTS), and is strictly lower than one 
(decreasing RTS).

Table 4 presents these results. According to the fixed parameters model (Panel A), the branch network appears to operate largely at 
an optimal scale. 

• Dominance of Constant RTS: On average, 74 % of branches exhibit constant returns to scale, suggesting that they have reached their 
optimal size.

• Absence of Excessive Scale Inefficiency: Notably, this model does not identify any branch with decreasing returns to scale (0 %) 
over the entire period.

In summary, relying on the fixed parameters model would lead managers to conclude that the branch network is well-sized, with 
limited opportunities for efficiency improvements through adjustments in scale.

The random-parameters model (Panel B), which is statistically superior according to our study, presents a markedly different and 
more complex picture. 

• Dominance of Increasing RTS: This model indicates that a majority—and an increasing proportion—of branches operate with 
increasing returns to scale, reaching nearly 60 % from 2015 onward. Specifically, the percentage of branches with increasing RTS 
rises from 23.77 % in 2011 to 59.84 % in 2016 and 2017, suggesting substantial potential for efficiency gains if these branches 
expand their size and business volume.

• Detection of Scale Inefficiency: In contrast to the fixed-parameters model, the random-parameters approach identifies a share of 
branches experiencing decreasing returns to scale (e.g., 15.6 % in 2011), which the fixed model completely masked.

Given that failed branches were excluded from the analysis, the predominance of increasing RTS provides an insightful perspective 
on banking consolidation. Branches exhibiting increasing RTS indicate that the average production cost decreases as output (e.g., 
loans, deposits) expands, highlighting the potential for branch consolidation. The divergence between the two models leads to con
trasting strategic implications: the fixed-parameters model suggests an optimal status quo, whereas the random-parameters model 
reveals a network with substantial opportunities for improvement. Most branches appear undersized and could benefit from expan
sion, while a minority—particularly at the beginning of the period—operate at inefficiently large scales.

This finding underscores that ignoring technological heterogeneity is not merely an econometric oversight but may also result in 
misguided management and policy decisions. Notably, the subsequent evolution of the bank's commercial network aligns with the 
predictions of the random parameters model. The bank's de facto consolidation strategy—closing smaller branches in low-density or 
geographically redundant locations and reinforcing branches with increasing returns to scale—reflects the resource optimization 
suggested by the model's results. This ex-post evidence provides additional robustness to the study's main conclusions.

In addition, these results show that unobserved technological heterogeneity in inputs could be useful in identifying the branches 
that do not operate at the optimal size level and, subsequently, in defining specific bank branch policies to address this situation.

4.4. Productivity growth

In this subsection, we present the results of estimated productivity growth for the bank branches, along with its decomposition into 
technical and efficiency changes, following the expressions proposed by Feng and Zhang (2014, p. 143).

Table 5 shows the results for the fixed and the random parameters models. More specifically, the table shows productivity growth 
and its decomposition between technical change and efficiency change.4 Comparing the fixed and random parameters model esti
mates, we can see significant differences in the estimated magnitudes, although the signs of the magnitudes that are statistically 
relevant coincide. Focusing on the random parameter estimates, productivity growth oscillates around zero, with an annual increase of 
3.917 % in 2016, and a decrease of 4.145 % in 2014. As observed, the contribution of efficiency changes to productivity growth is 
consistently positive and exceeds that of technical change. This effect exhibits considerable temporal stability, with an increase in 
efficiency in 2013, a slight decline in 2014, followed by a sustained upward trend, reaching the highest annual growth rate of 3.756 % 
in 2016.

The finding that efficiency change was the primary driver of productivity growth, while technical change was often zero or 
negative, provides important insight into the entity's corporate strategy during the study period. This result goes beyond a mere metric, 
reflecting a fundamental strategic decision.

These findings suggest that management prioritized intensive operational rationalization rather than an expansive innovation 
strategy—that is, they focused on optimizing existing resources and processes rather than developing or adopting new technologies to 
shift the production frontier. In practice, this strategy involved: 

• Dissemination of Best Practices: Processes from the most efficient branches were identified and replicated across the network 
through internal benchmarking. For example, sales managers with the highest performance ratios were analysed to understand 

4 Table A2 shows the data envelopment analysis using Malmquist indices. Comparing both Malmquist and random parameter model estimates, 
significant differences in the estimated magnitudes can be seen.
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their methods in customer acquisition, counseling, and retention. These successful techniques were then transformed into stan
dardized protocols and training programs for broader staff implementation.

• Physical Network Optimization: Branches operating with diminishing returns to scale, as identified in the RTS analysis, were 
resized or closed.

• Process Standardization: Redundancies were eliminated and operations simplified to reduce costs and transaction times. This 
included the creation of administrative units, such as OPPLUS,5 to offload lower-value processes from branches.

Essentially, productivity gains arose not from acquiring new capabilities but from the more disciplined and effective use of existing 
resources.

Under regulatory pressure to increase solvency and the need to restore profitability, investments in operational efficiency offered a 
more predictable and shorter-term return than higher-risk innovation initiatives. Notably, investments in technological innovation 
gained momentum in the years following the study period, once the branch network had been optimized. Therefore, the observed 
patterns in productivity growth reflect the entity's strategic focus during the post-crisis period, where survival and consolidation were 
prioritized over technological expansion.

5. Conclusions

This paper contributes to the existing literature on bank branches by considering unobserved technological heterogeneity and time- 
varying efficiency. To do so, we estimated a random parameters model following the study carried out by Feng and Zhang (2014), 
which could avoid an inconsistent parameter estimation when this randomness is not considered in a panel data stochastic frontier 
model.

The empirical data from 2011 to 2017 was drawn from branches of a large Spanish commercial bank with different specialities, 
located in different local markets, and with varying branch size in terms of market share. These branches could have different pro
duction functions and time-varying returns to scale (RTS).

Our results, using a translog stochastic distance frontier function estimated in a Bayesian random parameter model, confirm 
substantial technological heterogeneity across the branch network, a finding with important theoretical and managerial implications.

Below, we briefly describe the theoretical and management implications of our paper.

5.1. Theoretical implications

A random parameters model may be a valuable approach in identifying and modelling time-varying branch-specific inefficiencies 
that may not be captured by fixed parameters models, and that can be separated for technological heterogeneity. By accounting for the 
variability and potential importance of certain inefficiency drivers across branches (e.g., market share), the model specification en
ables a more precise estimation of efficiency and can help distinguish branches based on their unique characteristics. In general, the 
random parameters model estimated higher efficiencies, but also greater dispersion in the estimates of efficiencies and RTS. Similar 

Table 5 
Productivity growth.

Fixed parameters model Random parameters model

Period Average annual 
productivity 
growth (%)

Technical change (% 
contribution)

Efficiency change (% 
contribution)

Average annual 
productivity 
growth (%)

Technical change (% 
contribution)

Efficiency change (% 
contribution)

2011–2012 1.516 [-2.666, 
5.751]

0.554 [-2.248, 3.372] 0.962 [-0.946, 2.913] − 0.969 [-4.355, 
2.404]

− 0.043 [-2.527, 
2.446]

− 0.615 [-1.646, 
0.683]

2012–2013 1.784 [-2.158, 
5.761]

0.376 [-2.121, 2.861] 1.408 [-0.333, 3.171] 0.671 [-2.466, 
3.810]

0.183 [-1.863, 2.240] 0.823 [-0.330, 2.045]

2013–2014 − 3.905 [-7.733, 
− 0.132]

− 3.176 [-5.532, 
− 0.851]

− 0.729 [-2.345, 
0.875]

− 4.145 [-7.156, 
− 1.191]

− 3.064 [-4.905, 
− 1.225]

− 0.792 [-2.025, 
0.527] 
1.969 [0.967, 3.092] 
3.756 [2.448, 4.806] 
2.051 [1.336, 2.810]

2014–2015 − 1.999 [-5.845, 
1.835]

− 2.254 [-4.598, 
0.097]

0.255 [-1.405, 1.905] 0.993 [-1.979, 
3.993]

− 0.885 [-2.710, 
0.943]

2015–2016 1.243 [-2.617, 
5.150]

− 0.487 [-2.933, 
1.975]

1.730 [0.021, 3.456] 3.917 [0.960, 
6.950]

0.176 [-1.751, 2.149]

2016–2017 − 4.090 [-8.106, 
− 0.154]

− 3.986 [-6.664, 
− 1.307]

− 0.104 [-2.037, 
1.747]

− 1.709 [-4.390, 
1.016]

− 3.882 [-6.197, 
− 1.550]

Note: This table presents productivity growth estimates based on the fixed and random parameters models, using the translog input stochastic 
distance frontier within a Bayesian framework. The results report the average annual productivity growth, along with its decomposition into technical 
change and efficiency change. Credibility intervals at the 5 % level are shown in square brackets.

5 Developed by Operations and Services, SA, OPPLUS focuses primarily on 1) optimizing business processes (back office): It handles operational 
tasks so that offices can concentrate on their core activities (customer management) and 2) Consulting and advisory services: It provides internal 
consulting solutions to improve efficiency and quality in business processes.
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results were also found by Tsionas (2002) and Feng and Zhang (2014). It is important to consider these unobserved heterogeneities 
when evaluating efficiency, and the random parameters model appears to be a useful tool in doing so. Therefore, explicitly modeling 
unobserved heterogeneity is essential to avoid biased assessments of branch performance.

5.2. Practical implications

Results show that, in general, bank branches have high efficiencies but different RTS over time. Branches with increasing RTS 
predominate during many years of the sample (2013–2017) when considering technological heterogeneity using the random pa
rameters model, but they are not adequately identified by the fixed parameters model. This result indicates that a bank branch's 
average production cost decreases as its output (e.g., loans, deposits) increases. For instance, if a branch doubles its inputs (such as 
personnel and technology) and its output (e.g., the number of loans processed) more than doubles, it experiences increasing returns to 
scale. Finally, bank branch productivity growth varies in the study period, with efficiency change being the main factor that explains 
the growth.

Using these results, we can describe three management implications. First, managers can focus on the results of random parameters 
model for the assessment of efficiency and RTS of bank branches in the short term. The results could serve to determine a ranking of 
inefficient branches as well as for calculation of RTS for all branches. In this way, they can determine at any point of time which bank 
branches are performing worst. Internal policies to favour constant RTS (which operates at the optimal scale) can be undertaken, 
provoking increasing scale (IRS) and reducing scale (DRS).

The findings of this study enable the formulation of differentiated internal policy recommendations based on the RTS of each 
branch. The detected heterogeneity justifies a management approach that is not uniform but tailored to each unit's position along its 
production path. Based on the empirical analysis, the entity can implement an expansion policy for branches with increasing returns to 
scale (IRS), guided by two strategic lines of action: 

• Commercial Expansion: Implement localized marketing campaigns, cross-selling programs with incentives for branch staff to in
crease the number of products per customer, and business development initiatives to attract more clients and operations.

• Selective Investment: Provide technology, training, and staff specialization to manage more complex products or serve specific 
customer segments (e.g., SMEs, personal banking), thereby attracting higher-value and higher-volume business.

Conversely, the detection of decreasing returns to scale (DRS) in a segment of the network indicates that these branches have 
exceeded their optimal efficient scale, incurring diseconomies of scale. For this group, the analysis suggests a rationalization strategy 
focused on reducing complexity and optimizing the cost structure through: 

• Process Reengineering: Simplifying operations and specializing branches in specific market niches (e.g., managing investment 
portfolios or complex mortgages) to reduce management overhead. Dedicated HUBs for complex products, such as mortgage 
transactions, exemplify this strategy.

• Channel Optimization: Promoting digital channels for low-value transactions to decongest physical operations and free up human 
capital for higher-value advisory tasks. This also leverages digital investments to serve the mass customer segment efficiently and 
profitably, optimizing the bank's overall service strategy.

• Network Consolidation: Restructuring the branch network through mergers or, if necessary, closures to eliminate costs associated 
with inefficient scale.

Second, productivity estimators derived from the model enable the entity to adopt a dynamic performance evaluation system that 
transcends traditional budget variance controls. Specifically, branch efficiency scores can be incorporated into key performance in
dicators (KPIs) to weight commercial activity not by volume, but by its marginal contribution to the firm's Net Present Value (NPV), 
considering the type, term, and risk rating of each transaction. This approach aligns managerial incentives with long-term value 
creation and supports a more efficient allocation of capital and human resources across the network, thereby enhancing competi
tiveness and sustainability.

Third, the model identifies market share (both loans and deposits) as a key endogenous determinant of efficiency, although its 
impact varies depending on branch scale. For branches operating with IRS, strategic expansion of market share directly improves 
efficiency. This can be achieved through competitive commercial policies and by adjusting product offerings—in volume, price, term, 
and risk—to capture profitable business opportunities.

However, this strategy entails a fundamental trade-off between growth and risk. Aggressive credit expansion may increase market 
share in the short term but must be carefully managed to maintain portfolio quality and prevent an increase in the non-performing 
loans (NPLs) ratio, which would negatively impact efficiency. Risk management remains a critical area for any financial institu
tion, ensuring survival and stability. Therefore, management's objective is not simply to maximize market share but to optimize it 
under rigorous risk constraints, adhering to regulatory capital frameworks (e.g., Basel III/IV) to safeguard long-term sustainability.

Finally, several limitations of this study should be acknowledged. First, the analysis was constrained by data availability, which 
limited the inclusion of additional covariates and prevented expansion of the database due to difficulties in obtaining branch-level 
information from the bank. Second, the Bayesian models could be extended by employing alternative prior distributions to model 
inefficiency, such as truncated normal distributions, representing a potential avenue for future research. Third, future studies could 
explicitly model the determinants of technological heterogeneity, moving beyond its identification. While the present study 
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successfully establishes the existence and magnitude of this heterogeneity, the next step is to investigate the underlying factors that 
drive and sustain it, including local market characteristics, branch-specific attributes, and strategic focus.
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Appendix 

Table A1 
Definitions of variables and sources.

Variable Definition Source

Outputs
y1: Value of deposits 

(euros)
Represents the total value of deposits in the bank branch in euros for each year Profit and loss statements for 

each branch
y2: Value of loans (euros) Represents the total value of loans in the bank branch in euros for each year Profit and loss statements for 

each branch
Inputs
x1: Number of ATMs Total number of automated teller machines per branch for each year Management control 

department
x2: Number of full 

employees
Total number of full employees per branch for each year Human resources department

x3: Operational costs (€) Represents the total value of operational costs in the bank branch in euros for each year Profit and loss statements for 
each branch

x4: Floor space of the 
branch (in m2)

Total surface area of each branch for each year Management control 
department

Environmental variables
z1: Market share of 

deposits (%)
Represents the relative market size of each bank branch in terms of deposits for a given year. It is 
calculated as the branch's total deposits divided by the sum of deposits across all branches in that 
year.

Own calculations

z2: Market share of loans 
(%)

Represents the relative market size of each bank branch in terms of loans for a given year. It is 
calculated as the branch's total loans divided by the sum of loans across all branches in that year.

Own calculations

Note: This table shows the definitions and sources of variables used in our study.

Table A2 
Productivity growth using Malmquist-DEA.

Period Malmquist index summary

Average annual productivity growth Technical change Efficiency change

2011–2012 6.652 6.319 1.053
2012–2013 1.287 0.786 1.637
2013–2014 1.330 1.364 0.974
2014–2015 1.726 1.530 1.128
2015–2016 1.454 1.395 1.042
2016–2017 1.111 1.646 0.675

Data availability

The data that has been used is confidential.
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I. Cabrera-Suárez et al.                                                                                                                                                                                               International Review of Economics and Finance 106 (2026) 104947 

15 

http://refhub.elsevier.com/S1059-0560(26)00060-2/sref3
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref3
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref4
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref5
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref6
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref6
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref7
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref7
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref8
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref9
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref9
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref10
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref10
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref11
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref11
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref12
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref12
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref13
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref13
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref14
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref14
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref15
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref15
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref16
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref16
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref17
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref17
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref18
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref18
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref19
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref19
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref20
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref20
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref21
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref21
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref22
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref22
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref23
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref24
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref24
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref25
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref25
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref26
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref26
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref27
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref27
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref28
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref28
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref29
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref29
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref30
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref30
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref31
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref32
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref32
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref33
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref33
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref34
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref35
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref36
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref36
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref37
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref38
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref38
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref39
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref39
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref40
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref40
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref41
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref42
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref43
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref44
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref44
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref45
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref46
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref47
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref48
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref49
http://refhub.elsevier.com/S1059-0560(26)00060-2/sref49


Paradi, J., & Zhu, H. (2013). A survey on bank branch efficiency and performance research with data envelopment analysis. Omega, 41, 61–79.
Peteraf, M. A. (1993). The cornerstones of competitive advantage: A resource-based view. Strategic Management Journal, 14(3), 179–191.
Rossi, C. V. (1998). Mortgage banking cost structure: Resolving an enigma. Journal of Economics and Business, 50, 219–234.
Saloner, G., & Shepard, A. (1995). Adoption of technologies with network effects: An empirical examination of the adoption of automated teller machines. Random 

Journal of Economics, 26(3), 479–501.
Tecles, P. L., & Tabak, B. M. (2010). Determinants of bank efficiency: The case of Brazil. European Journal of Operational Research, 207(3), 1587–1598.
Tsekouras, K., Chatzistamoulou, N., & Kounetas, K. (2017). Productive performance, technology heterogeneity and hierarchies: Who to compare with whom. 

International Journal of Production Economics, 193, 465–478.
Tsionas, E. G. (2002). Stochastic frontier models with random coefficients. Journal of Applied Econometrics, 17, 127–147.
Wernerfelt, B. (1984). A resource-based view of the firm. Strategic Management Journal, 5(2), 171–180.
Williams, J. (2004). Determining management behaviour in European banking. Journal of Banking & Finance, 28(10), 2427–2460.
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