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Unexpected microbial rhodopsin dynamics
in sync with phytoplankton blooms

Laura Gómez-Consarnau 1,2 , Babak Hassanzadeh2, Estefany Villarreal 1,
Miguel Cuevas-Cruz3, Javier Arístegui 4, Ramiro Logares 5,
Francisco Latorre 5, Asunción Lago-Lestón 6, Laura Steindler 7 &
Sergio A. Sañudo-Wilhelmy 2,8

The surface ocean is the largest sunlit environment on Earth where marine
microalgae are known as the main drivers of global productivity. However,
rhodopsin phototrophs are actually the most abundant metabolic group,
suggesting a major role in the biogeochemical cycles. While previous studies
have shown that rhodopsin-containing bacterioplankton thrive in the most
severely nutrient-depleted environments, growing evidence suggest that this
type of phototrophy may also be relevant in nutrient-rich environments. To
examine its role in productive waters, we investigated the monthly rhodopsin
dynamics in the upwelling system of the Southern California Bight by mea-
suring retinal–the photoreactive chromophore essential for rhodopsin
function–in seawater. Unlike oligotrophic regions, rhodopsin levels peaked
during the highly productive spring phytoplankton bloom, coincidingwith the
highest chlorophyll concentrations. Heterotrophic bacterial abundances,
particularly within the order Flavobacteriales, correlated strongly with rho-
dopsin concentrations, allowing us to build linearmodels to predict rhodopsin
distributions in a productive environment. Metagenomic data further showed
that Flavobacteriales also dominated the rhodopsin gene pool when the
highest rhodopsin levels were recorded, underscoring their key contribution
to light-driven energy capture. Overall, our findings reveal that rhodopsin
phototrophy plays a substantial role in productive marine systems, broad-
ening its recognized importance far beyond oligotrophic oceans.

Sunlight is the ultimate energy source fueling almost all of the Earth’s
biosphere1. Yet, life can only channel this energy through two funda-
mentally distinct transducing mechanisms–those based on chlor-
ophyll or retinal chromophores2–4.While chlorophyll photoautotrophy

(i.e., photosynthesis) relies on a complex light-harvesting apparatus
that drives organic matter synthesis, rhodopsin-based photo-
heterotrophy consists of simple light-driven ion pumps that do not
generate reducing power and therefore support bacteria in the inverse
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process: organic matter utilization. Rhodopsins’ structural
simplicity–requiring only six genes for their synthesis5–may be the key
to their high incidence in surface ocean microbes6. Although various
microbial rhodopsins perform distinct functions, ranging from light-
driven ion pumps to light sensors7, light-driven proton pumps are the
most widespread in marine systems8, potentially providing critical
amounts of previously unaccounted-for energy entering the ocean’s
biosphere9,10. However, their actual concentrations in distinct marine
regions and the broader ecosystem-wide implications of the incident
light energy they transduce remain largely unknown.

Because of their low biosynthesis costs, rhodopsin photosystems
play a substantial role in nutrient-depleted environments where pri-
mary productivity is low8,11,12. Multiple omics studies observed that the
relative abundanceof rhodopsin genes, transcripts, or proteins isoften
inversely related to chlorophyll concentrations in different marine
systems11,13,14. For instance, in the Atlantic Ocean, rhodopsin gene dis-
tributions were negatively correlated to chlorophyll, nitrate, ammo-
nium, silicate, and phosphate concentrations15. Similarly, a study from
the P-limited Eastern Mediterranean showed that most bacter-
ioplankton genomes (> 80%) contained rhodopsin genes16. Notably,
the fraction of rhodopsin-bearing microbes in the most oligotrophic
stations was the highest ever reported–highlighting that under-
standing these trends along productivity gradients is central to eluci-
dating rhodopsin phototrophy’s role in microbial niche adaptation.

Metagenomic studies across numerous marine environments
indicate that theSAR11 cluster andFlavobacteria are twoof theprimary
rhodopsin-containing bacterial clades in the ocean8,17. These photo-
heterotrophic taxa, however, exhibit very contrasting lifestyles: SAR11
are typically oligotrophic, whereas the Flavobacteria are generally
copiotrophic, thriving mainly during phytoplankton blooms18.
Laboratory studies on the Candidatus Pelagibacter ubique strain
HTCC1062 (a member of the SAR11 clade) showed that rhodopsin
phototrophy may partially replace aerobic carbon respiration as a
source of ATP under starvation19. Consistent with this, in situ SAR11
rhodopsin gene abundances were inversely related to the trophic
richness in oligotrophic areas within the Atlantic Ocean and Medi-
terranean Sea15. However, in more productive regions such as the
California upwelling regime, SAR11 rhodopsin genes showed no sig-
nificant correlation with chlorophyll levels20. While rhodopsins may
confer survival advantages under extreme oligotrophic conditions in
SAR1121, studies on the Flavobacterium Dokdonia sp. MED134 showed
that rhodopsin phototrophy enhances substrate uptake22 and yields
higher cell densities in natural seawater under light conditions com-
pared to darkness23. These findings in Flavobacteria suggest that rho-
dopsin phototrophy may play important roles beyond oligotrophic
environments, though its function inmore productive oceanic regions
remains poorly characterized.

Most existing studies of rhodopsin distributions relyonmolecular
data, offering only semi-quantitative estimates of their presence based
on genes, transcripts, and proteins within microbial communities6.
However, because each rhodopsin photosystem contains a single ret-
inal molecule, retinal concentration can serve as a quantitative proxy
of rhodopsin abundance inmicrobial biomass9. Despite the promise of
this direct approach to examine the importance of rhodopsin photo-
trophy in the ocean, field data remain scarce. To date, only three stu-
dies have used this direct quantification approach and showed that (i)
the highest rhodopsin levels are found in ultraoligotrophic regions of
the eastern Mediterranean Sea9, (ii) iron limitation appears to favor
rhodopsin phototrophy over photosynthesis in the high-nutrient low
chlorophyll areas of the Southern Ocean24, and (iii) rhodopsin photo-
trophy is widespread in polar environments25. These studies, however,
represent isolated snapshots, and none have addressed rhodopsin
distribution in coastal upwelling regions or its temporal dynamics.
Furthermore, no study has yet integrated quantitative rhodopsin data
with microbial community analyses, an essential step for identifying

the major rhodopsin-bearing microbial taxa and understanding how
this light-capturing function is regulated in situ.Ultimately defining the
factors controlling the twomajor phototrophicmechanisms in surface
waters remains essential not only for vast oceanic regions but also for
productive environments, which collectively comprise 44% of the
annual net primary productivity of the oceans26.

Some of the largest phytoplankton blooms occur in the world’s
four main coastal upwelling regions (California, Humboldt, Canary,
and Benguela ecosystems) when chlorophyll-a and inorganic nutrients
reach their annual maximum concentrations27. Within the California
upwelling regime, the Southern California Bight (SCB) exhibits oligo-
trophic conditions throughout most of the year, with seasonal wind-
driven upwelling in the spring that brings nutrients to surface waters,
resulting in increased productivity during thosemonths28–30. A study in
the SCB regime showed that rhodopsin genes and transcripts were
continuouslypresent year-round,with >90%of organisms smaller than
1μmcontaining thesegenes, evenduring theupwelling season20. Thus,
the importance of marine microbial rhodopsins may extend beyond
solely oligotrophic regimes. However, to date, there are no data on the
actual abundances of rhodopsin photosystems in microbial commu-
nities of any of the world’s upwelling regimes.

In this study, we investigated the temporal distribution of
microbial rhodopsins in a dynamic upwelling system at the San Pedro
Ocean Time Series in the Eastern North Pacific coast (Fig. 1). We found
that, in contrast to observations in oligotrophic systems, rhodopsin
concentrations peaked during the high productivity months. These
trends were largely driven by bacterioplankton abundance and the
incidence of Flavobacteriales–a microbial group typically associated
with phytoplankton blooms and the degradation of complex organic
matter–suggesting a link between rhodopsin light capture and com-
plex substrate utilization.

Results
Monthly samplings over 15 months at SPOT revealed shallow rho-
dopsin maxima located at or above the deep chlorophyll maxima
(Fig. 2A). Below the photic zone (60–250m depth), however, rho-
dopsin levels were undetectable, suggesting a strictly phototrophic
role in this coastal ocean system. Contrary to previous observations
linking rhodopsin distributions with oligotrophy9,15,16, the highest
rhodopsin abundances coincided with the spring phytoplankton
blooms (Fig. 2). Peak annual levels of both rhodopsin and chlorophyll
occurred in May, approximately one month after the onset of the 5-
month-long upwelling season (Supplementary Fig. S1).

Although the concentrations of both chromophores were not
significantly correlated (Fig. 3A), rhodopsin and chlorophyll-a pre-
sented their highest concentrations during the upwelling months
(March through July, Fig. 2). This apparent synchronization between
the increase of photoheterotrophs and the phytoplankton bloom
suggests that microbial rhodopsins are not merely restricted to oli-
gotrophic systems but may also play important roles in productive
settings. While their overall temporal variation was significantly less
pronounced than that of chlorophyll-a (from 490 to 6500pM; 13-fold
change; Supplementary Fig. S2 and Supplementary Data 1), total rho-
dopsin concentrations still varied substantially across the different
seasons, with peak concentrations differing by as much as ninefold
(from 13 to 120pM; Fig. 2A and Supplementary Data 1). In contrast to
these monthly patterns, daily and hourly rhodopsin concentrations
measured at the nearby coastal station off Catalina Island (Fig. 1 and
Supplementary Fig. S3A) revealed smoother temporal variation at
these narrower scales (Supplementary Fig. S3B). Diel measurements
performed over 60-h long periods (4-h sampling intervals) showed
that total rhodopsin concentrations varied only by 2.8-fold in spring
(between 18 and 51 pM) and by 2.2-fold in summer (10–22 pM) (Sup-
plementary Fig. S3). Consistent with the findings from SPOT, rho-
dopsin concentrations at Catalina Island were higher in the mid-

Article https://doi.org/10.1038/s41467-025-67474-1

Nature Communications |          (2026) 17:790 2

www.nature.com/naturecommunications


upwelling season (June 2018; 33 ± 9 pM, n = 15) compared to later in
July-August, when the upwelling event started to relax (August 2018;
14 ± 4 pM, n = 16), Supplementary Figs. S1 and S3). Thus, hourly chan-
ges in light availability did not significantly alter rhodopsin abun-
dances when compared to longer monthly variations.

Of all seawater samples collected in the photic zone at SPOT, 80%
of themicrobial rhodopsin content was found in the picoplankton size
fraction (0.2–3.0 µm, Supplementary Data 1 and Supplementary
Figs. S4 and S5), whereas most of the chlorophyll content (57%) was
detected in size fractions >3 µm (Figs. S4 and S6). These results align

with previous studies showing that rhodopsins in the global ocean are
predominantly a prokaryotic light-capturing feature of free-living
bacteria9,24,31. Nevertheless, 35% of the total rhodopsin signal was in the
>10 µm size-fraction during the spring phytoplankton bloom peak
(Supplementary Data 1), suggesting that rhodopsins were also present
in some particle-associated bacteria24,31,32 or even in eukaryotic
phytoplankton25–33. These observations support the notion that rho-
dopsin photoheterotrophy may boost multiple and diverse organic
matter utilization processes8, including extracellular hydrolytic enzy-
matic activities to breakdown largeparticles34, substrate uptake across
a wide molecular size range, and organic matter catabolism itself,
which also requires ATP at initial catabolic steps22,35.

To further examine the environmental variables underlying these
temporal patterns, we evaluated potential drivers of rhodopsin dis-
tribution.While nitrogen levels appeared to be unrelated to rhodopsin
concentrations (Fig. 3A, Supplementary Data 2, and Supplementary
Fig. S7), some biotic parameters, such as the abundance of total het-
erotrophic and high nucleic acid (HNA) bacteria36, showed significant
and strong correlations (Fig. 3A and Supplementary Data 2). Total
rhodopsin distributions also correlated weakly but significantly with
photosynthetic active radiation (PAR), water temperature, and low
nucleic acid (LNA) bacterial abundance. Although phytoplankton bio-
mass (as chlorophyll-a) and rhodopsin concentrations showed syn-
chronizedpeakdynamicsduring the spring season, the correlationwas
not statistically significant (ρ =0.04, p = 0.8; Fig. 3A and Supplemen-
tary Data 2). Similarly, small picophytoplankton groups potentially
present in the 0.2–3.0 µm size fraction (e.g., Synechococcus, Pro-
chlorococcus, and picoeukaryotes) did not covary with rhodopsin
levels. Rhodopsin concentrations in the picoplankton fraction and
total heterotrophic bacteria showed the strongest correlation among
all biological indicators (ρ =0.96, p <0.01, Fig. 3A and Supplementary
Data 2), suggesting that rhodopsins are persistent amongmostmarine
bacteria in this marine environment year-round.

To explore these temporal trends, we built a linear model to
estimate the environmental concentration of rhodopsins found in
picoplankton (i.e., all cells between 0.2 and 3.0 µm) as a function of
heterotrophic bacterial abundance. The slope of this linear regression
(Fig. 3B) represents the number of rhodopsin molecules per hetero-
trophic bacterial cell in the photic zone at SPOT, providing a cellular
quota of ~ 10,000 rhodopsins per cell–consistent with previous cul-
ture- and field-based estimates9,10,37,38. Furthermore, using the regres-
sion intercept (5.3 × 105 heterotrophic bacterial cells ml−1 at zero
rhodopsin) and the 15-month average (1.78 × 106 heterotrophic bac-
terial cells ml−1), we infer that, on average, ~70% of heterotrophic
bacteria contained rhodopsins. Overall, the association between rho-
dopsin and bacterial abundance suggests that rhodopsins are wide-
spread among fast-growing bacteria that are stimulated during
phytoplankton blooms.

Next, we analyzed the microbial communities present at SPOT to
identify potential rhodopsin-containing bacteria, in particular the taxa
associated with the periods of high chlorophyll and high rhodopsin
levels (Figs. 2 and 4A). 16S rRNA sequencing of picoprokaryotes
revealed that the major heterotrophic groups were SAR11 (relative
abundance of 15–44%) and Flavobacteriales (relative abundance of
14–42%, Fig. 4A), consistent with prior studies at this location28,29

(Supplementary Fig. S8). Rhodopsin concentrations were independent
of SAR11 or SAR86 clade abundance (Supplementary Fig. S9) but
showed a strong positive covariance trend with Flavobacteriales
(r2 = 0.75, p = <0.01; Fig. 4B). This relationship (Fig. 4B) suggests a
higher rhodopsin content per cell (~ 30,000) within Flavobacteriales
compared to the community average (~ 10,000; Fig. 3B). The larger cell
size of Flavobacteriales relative to other bacterioplankton39 may pro-
vide additional membrane area to house more photosystems.

To better understand the taxon-specific trend, we further
explored the taxonomic affiliation of rhodopsin genes in four
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metagenomes from the spring bloom (May 2017, surface and the Deep
Chlorophyll maximum, DCM) and oligotrophic season (November
2017, surface andDCM) (Fig. 5). Rhodopsin gene composition revealed
that SAR11 and Flavobacteriales dominated the rhodopsin gene pool in
all four metagenomes (Fig. 5A). SAR11 rhodopsin genes were most
abundant overall (25–42%), except inMay-DCM,when Flavobacteriales
genes predominated (with 26%of all rhodopsin sequences), coinciding
with the highest rhodopsin concentrations. Furthermore, the relative
abundance of Flavobacterial rhodopsin was significantly correlated
with retinal levels (Supplementary Fig. S10), whereas no clear patterns
were observed for SAR11, SAR86, or any other group. Eukaryotic and
viral rhodopsin geneswerealsodetectedbut comprised less than 3%of
the total sequences (Supplementary Data 4). Together, these results
reinforce our conclusion that the order Flavobacteriales drove the
temporal variations in rhodopsin levels.

Other relevant features of the rhodopsin gene pool include their
spectral tuning and functional motifs. As previously observed in sam-
ples of this coastal region20, most of the rhodopsin genes encoded the
amino acids leucine or methionine at position 105, characteristic of
green-tuned rhodopsins (Fig. 5B). Interestingly, though, the propor-
tion of green-tuned rhodopsin genes was significantly lower in
November (63% ±0.5) than during the May bloom (76% ±3). This dif-
ference between seasons likely reflects a stronger attenuation of blue
and UV light by chlorophyll and dissolved organic matter (DOM)
during phytoplankton blooms. Nearly all recovered rhodopsin
sequences (> 97%) contained the DTE, DTK, and DTV motifs, char-
acteristic of light-driven proton pumping rhodopsins7,40–42 (Fig. 5C),
suggesting energy-harvesting functions.

Metagenome Assembled Genome (MAG) reconstruction yielded
74 high-quality genomes (completeness ≥70% and contamination
≤5%). The best-represented taxa in the MAG collection belonged to
Bacteroidota (n = 26), 84% of which contained rhodopsin genes
(Fig. 5D and Supplementary Data 5). The next best-represented taxa
were classified within Gammaproteobacteria (n = 17) and Alphapro-
teobacteria (n = 15), both with a 53% incidence of rhodopsin genes.

MAGs within the Bacteroidota, a phylum that contains the order Fla-
vobacteriales, recruited the most reads during the spring bloom of
May 2017, particularly at the DCM (82 and 124 RPKM at surface and
DCM, respectively; Fig. 5D), when rhodopsin chromophore levels were
also highest (Fig. 4). In contrast, Alphaproteobacteria and Gamma-
proteobacteria MAGs were most abundant in samples with lower
rhodopsin levels, such as May at 5m (122 RPKM for Alphaproteo-
bacteria) and November 5m (77 RPKM for Gammaproteobacteria,
Fig. 5D). Another interesting observation was that, regardless of
taxonomic affiliation, the combined read sequences of MAGs con-
taining rhodopsin genes were highest in May at the DCM, while MAGs
without rhodopsin genes presented the lowest number of reads in that
particular sample (Fig. 5D).

Discussion
The importance of understanding rhodopsin spatial and tem-
poral dynamics
Chlorophyll quantifications have traditionally been used to study
phytoplankton dynamics, a crucial parameter for the ocean’s carbon
cycle43. As a result, suchmeasurements are routinely collected in all the
oceanographic cruises aimed at understanding the biogeochemical
cycles that control ecosystem functioning and, ultimately, our climate.
Yet, equivalent data regarding rhodopsins remain rare, limiting our
ability to identify the rules that control their distribution in the ocean4.
Given that rhodopsins are the gates to significant additional amounts
of solar energy entering the marine ecosystems9, their temporal and
spatial dynamics are likely to influence carbon biogeochemistry as
well. In this study, our goal was to quantify rhodopsin photosystems in
a dynamic coastal upwelling system and identify the environmental
factors potentially controlling their seasonality.

Rhodopsins are widespread and most abundant during the
upwelling months in the California system
A defining feature of the California upwelling regime is the annual
phytoplankton bloom, which we identified by the increased
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chlorophyll levels (up to 13-fold) in the spring season. During this
period, wind-driven upwelling transports macronutrients from deep
waters to the photic zonewhere primary productivity ismostly limited
by low nitrate concentrations (Supplementary Fig. S7). In our study,
the upwelling season began in March, and the annual chlorophyll
maxima occurred between April and June, with the highest peak
occurring in May. In contrast to previous observations from oligo-
trophic systemswhere rhodopsins have an inverse distribution pattern
to chlorophyll9,15,24, the annual rhodopsin maximum co-occurred with
the spring phytoplankton bloom when both chromophores reached
their highest concentrations over the 15-month sampling period. This
apparent synchronization to phytoplankton biomass indicates that
microbial rhodopsins are regulated differently in nutrient-poor versus
rich environments. Thus, rhodopsins are notmerely restricted to open
ocean oligotrophic systems. This, in turn, suggests that rhodopsin
phototrophy plays a relevant role in energizing organic matter pro-
cessing in productive settings, broadening the known range of retinal-
based photoheterotrophy to include coastal environments.

Rhodopsin levels can be explained by bacterioplankton
abundance
Rhodopsin dynamics were directly associated with total heterotrophic
bacterioplankton abundance. Thus, the greater the number of bac-
terioplankton cells in the water column, the more rhodopsin mole-
cules can be found. This relationship aligns with genomic evidence

showing that most bacterioplankton contain rhodopsin genes in this
dynamic coastal environment20. Measuring of rhodopsin concentra-
tions in natural bacterioplankton communities provides a quantitative
view of their role in the coastal environment–something that gene or
transcript measurements cannot achieve. Among the correlations we
found, the strongest was between rhodopsin concentrations and
bacterial abundance. If this relationship is consistent across other
environments, rhodopsin distributions could then be estimated from
bacterial abundance, offering a more complete picture of sunlight
utilization in the marine ecosystem.

Rhodopsins are related to non-oligotrophic fast-growing bac-
teria in productive marine systems
The positive trend showing that rhodopsin levels increase with bac-
terial abundance as phytoplankton biomass develops suggests that
rhodopsins are widespread among fast-growing bacteria that are sea-
sonally stimulated during the bloom seasons. Notably, rhodopsin
concentrations were also correlated with the abundance of high HNA
cells, which typically represent bacteria with larger genomes and non-
oligotrophic lifestyles. Thus, rhodopsin utilization is not limited to low-
nutrient-adaptedphotoheterotrophs acting on reduced levels ofDOM.
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Although some eukaryotic phytoplankton species at SPOT contained
rhodopsin genes, as previously reported in other marine systems and
cultures25,33,44,45, our data indicate that rhodopsin-containing bacteria
contribute the most to the total rhodopsin phototrophy in this
upwelling environment.

Flavobacterial rhodopsins are the dominant types at SPOT,
suggesting the use of light for complex organic matter
utilization
The dominant heterotrophic taxa in the SCB during our study were
SAR11 and Flavobacteriales, two of the primary rhodopsin-bearing
bacterial clades in the ocean8,17. SAR11 abundance varied only by
fourfold between upwelling and non-upwelling months (range:
2.5 × 105–1.0 × 106 cells.ml−1) and showed no clear relationship with the
ambient rhodopsin levels. In contrast, Flavobacteria abundance
(range: 1.0 × 105–1.5 × 106 cells.ml−1) increased by 15-fold during
upwelling and correlated positively with measured rhodopsin con-
centrations in picoplankton. These observations suggest a baseline
rhodopsin pool year-round, likely dominated by SAR11 bacteria, with a
sharp increase during upwelling driven by Flavobacteriales. Cellular
rhodopsin estimates for the bacterioplankton community support a
seasonal shift in the rhodopsin-containing bacterial groups. The
average rhodopsin content per cell at SPOTwas in the order of 10,000
molecules per cell, which corresponds to levels reported for the SAR11
clade17. Yet, the amount of rhodopsin per cell increases by a factor of
three during upwelling associated with the increase in Flavobacter-
iales. Thus, the rhodopsin temporal dynamics can be explained by the
contrasting lifestyles of these twobacterial clades, aswediscussbelow.

Members of the SAR11 clade are streamlined oligotrophs that con-
stitutively express many of their genes, including proteorhodopsin19,37.
Using this strategy, they optimize cell and genome size, minimizing the
energy dedicated to replicating genomes with few gene regulatory
elements21. In contrast, Flavobacteria are versatile heterotrophs capable
of using organic matter of diverse complexities and broader con-
centration ranges46. Consistent with our results, Flavobacteriales are
found to be the major contributors to in situ community rhodopsin
transcripts during the annual chlorophyll maximum in other coastal
waters (e.g., northeast Atlantic; Arandia‐Gorostidi et al.47). Thus, among
other features of Flavobacteriales, the additional light energy harvested
by rhodopsins may help them to establish their ecological niche and
outcompete other bacteria lacking this light-transducing mechanism.

Previous studies have shown that some Flavobacteriales grow
better in the light because they become more efficient at resource
acquisition through rhodopsin photoheterotrophy. For instance,
Dokdonia sp. MED134 achieves higher cell yields in the light under low
organic matter concentrations23, partly due to light-induced uptake of
vitamin B1

22, an essential coenzyme for organic matter degradation.
Similarly, Polaribacter sp. MED152, can take up substrates at higher
rates in the light, even during growth in rich conditions48. Our micro-
bial community structure and metagenomics data show that both
Flavobacteriales and their rhodopsin genes, dramatically increase with
rhodopsin concentrations during the spring phytoplankton bloom.
Furthermore, althoughMAGs represent only a fractionof the genomes
present in the microbial community, most Flavobacteriales MAGs had
rhodopsin genes and exhibited their highest abundance in May. Other
in situ data indicate that photoheterotrophs may use sunlight to out-
compete other bacteria at organic matter utilization in oligotrophic
systems49,50. Yet, the extent of rhodopsin-enhanced substrate uptake
and the potential competitive advantage to bacterioplankton at high
organic matter concentrations remains unknown.

Traditionally, heterotrophic bacterial dynamics have been viewed
as tightly coupled to phytoplankton production, which serves as their
primary organic carbon source. However, the concentrations and
composition of this organic matter fluctuate throughout the seasons
and over the courseof a bloomevent18,46, especially as algal cells decay.

Thepresenceof rhodopsins in Flavobacteria suggests that lightmaybe
a complementary mechanism to boost the utilization of a wide range
of organic molecules (including complex ones) in the surface marine
environment, with still unknown implications for the carbon cycle.

Overall, our findings shows that rhodopsin distribution patterns
in upwelling systems can be shaped by nutrient availability and com-
munity composition–particularly the abundance of Flavobacteriales.
Combined with prior studies revealing the importance of rhodopsin
phototrophy in oligotrophic regimes, these results highlight the cen-
tral role of microbial rhodopsins across a broad range of nutrients
regimes, validating their global importance in solar energy and organic
carbon acquisition in the surface ocean.

Methods
Seawater sampling
Samples were collected at the San Pedro Ocean Time Series (SPOT)
station (33°33’N, 118°24’W) (Fig. 1A) monthly with Niskin bottles
attached to a rosette equipped with a CTD or in Go-Flo’s (12 L
capacity) when the rosette was unavailable. Seawater was generally
collected at 5, 20, 40, and 60m depth (Supplementary Data 1).
However, to prioritize the deep chlorophyll maximum (DCM) sam-
pling, the depth closest to the DCMwas replaced by the actual DCM,
which was determined using the in situ fluorescence reading of the
CTD. On the same day, 3–7 L of seawater were serially filtered using a
peristaltic pump9, through 10, 3, and 0.22 μm pore-size filters at a
rate of 75mL/min. Filters were immediately stored at −80 °C until
analysis. Two liters of seawater were separately filtered formicrobial
community analysis.

Chromophore extraction and quantification
Chromophores were extracted from filters, one replicate for each
depth, in methanol9,24. Chlorophyll-a was quantified fluorometrically
using the non-acidification method51, and rhodopsin was measured
using the retinal chromophore as a proxy by means of a previously
established liquid chromatography tandem-mass spectrometry (LC-
MS/MS) protocol9,24 using triple injections for each extract. This rho-
dopsin extraction and quantificationmethod has been previously used
in bacterioplankton and phytoplankton cultures9,25, natural microbial
plankton samples9,24,25,34. Chromophore distribution plots and themap
shown in Fig. 1 were generated using Ocean Data View52.

Ancillary environmental parameters
10mL aliquots of seawater were fixed with 200μL of formalin (37%
formaldehyde, BDH® histology/cytology grade) and stored at −80 °C for
flow cytometry cell count analysis, using a Becton–Dickinson
FACSCalibur36. Specifically, heterotrophic bacteria, picoeukaryotes, and
Prochlorococcus sp. and Synechococcus sp. type of cyanobacteria, were
enumerated using a FACScalibur (Becton and Dickinson) flow
cytometer36. Subsamples (400 µL) were stained with SYBR Green I,
Molecular Probes Inc. (final concentration 1000× dilution of the com-
mercial product) for heterotrophic bacterial counts. High nucleic-acid
content (HNA)bacteria and lownucleic-acid content (LNA)bacteriawere
identified in bivariate scatter plots of side scatter versus green fluores-
cence. Cyanobacteria and eukaryotes were discriminated in plots of
orangefluorescence versus redfluorescence. Additionally, 50–100mLof
0.22μm filtered seawater was stored at −20 °C for dissolved nitrite and
nitrate analyses using a standard colorimetric protocol53.

DNA extraction and microbial community structure analysis
Filters for genomic DNA extraction were removed from the cryovial
tubes with sterile forceps, and in the case of the SterivexM (GV) car-
tridges, were broken to retrieve the filter54. All extractions were per-
formed using the QIAGEN® “DNeasy PowerWater” kit. DNA
concentration was estimated spectrophotometrically with the Nano-
drop 2000 equipment (Thermo Scientific®).
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Libraries of the V4-V5 region of the 16S rRNA gene were con-
structed using the primers 515FY/926R55. The PCR products were
cleaned and normalized with the SequalPrep™ Normalization Plate kit
(Invitrogen). A second PCR reaction attached the Illumina dual indices
and sequence adapters. The PCR products were then purified, and
their concentrations normalized using the SequalPrep™Normalization
Plate kit (Invitrogen). dsDNA concentrations were determined using a
Qubit® fluorometer (Thermo Fisher Scientific) and the labeling HS
detection kit (Thermo Fisher Scientific). PhiX was used as an internal
control library. Sequencing was performed using paired-end strategy
on the Illumina®MiseqTM platform at CICESE (Ensenada, BC, Mexico).

Microbial community structure analyses basedonampliconswere
carried out with DADA2 in R to assess read quality, filter, pair read,
remove chimeras, and make taxonomic assignments, using the Silva
138 database (2020 prokaryote update) as a reference. The Phyloseq
library was used to combine the resulting Amplicon Sequence Variant
and create the microbial diversity and taxonomy graphs.

Rhodopsin gene presence in Metagenomes
Four environmental samples (Nov 2017, 5m; Nov 2017 DCM;May 2017
5m; May 2017, DCM) were sequenced on the Illumina PE150 platform
(Novogene Bioinformatics Technology Co., Ltd.), with quality assess-
ment performed using FastQC v0.11.956 retrieving 52,803,862 to
86,313,956 150-bp paired-end reads per sample after quality control.
Raw reads were trimmed using Trimmomatic v0.3657 and assembled
usingMEGAHIT v1.2.958. Assembly settings included aminimumcontig
length of 2000 bp and were optimized for meta-sensitive analyses, all
conducted on the KBase platform59. Contigs produced by MEGAHIT
were analyzed with EukRep v0.6.560 to classify the contigs into
Eukaryotes and Prokaryotes, generating one fasta file for the contigs of
each group. Each file was processed independently.

For prokaryotic gene prediction, MetaGeneMark v3.3861 and
Prodigal v2.6.362 were used on prokaryotic contigs from individual
samples. Predicted genes (ORFs) shorter than 250bp were excluded
before concatenating all predictions from different samples. Redun-
dancies were removed by clustering using linclust from MMseqs2
v.15c776263 at 99% identity and 80% coverage. This generated the
prokaryotic gene catalog. Predicted genes were then translated into
amino acids using transeq from EMBOSS v6.6.064, and rhodopsin-like
geneswere identified and classified using diamond v2.0.14 blastp65 and
the UniRef90 database (version 202402)66, using a percentage of
identity >90%.

For eukaryotic gene prediction, MetaEuk v1-ea903e567 was used
on the eukaryotic contigs from the different samples. Predicted genes
shorter than 250bp were excluded before concatenating all genes
from the different samples. Redundancy was removed by clustering
genes at 99% identity with 80% coverage using linclust fromMMseqs2
v.15c776263. This resulted in the Eukaryotic Gene Catalog. Predicted
genes from the eukaryotic gene catalog were translated into amino
acids using transeq from EMBOSS v6.6.064 and searched against a
UniRef90 database (version 202402)66 of rhodopsins genes using
diamond v2.0.14 blastp65 and a percentage of identity >90% to recover
all rhodopsin-like genes.

Taxonomy was assigned to genes from both prokaryotic and
eukaryotic catalogs using MMseqs2 v.15c776263, with the MarFERReT
v1 database68 for eukaryotic and GTDB release 8969 for prokaryotic
taxonomy. Gene abundance was estimated by mapping clean reads
against the catalogs using bwa-mem2 v2.2.170. Samtools v1.871 was used
to generate the filtered BAM files. Fasta files were converted to GFF
formats for counting hits with HTSeq v2.0.472. Finally, abundance
tables including raw counts from HTSeq were generated, providing
detailed insights into gene distribution across samples.

The rhodopsin gene functional classification was guided by a
motif analysis to identify key structural features associated with spe-
cific rhodopsin families. All sequences were screened for the presence

of the retinal-binding lysine in helix G73 and characteristic motifs in
helix C, critical for functional differentiation74,75. DTK and DTE motifs
were indicative of proteorhodopsins, xanthorhodopsins, and
actinorhodopsins41. In addition, TAT domains were used to identify
pH-dependent light sensors42, the ETX motif for sensory eukaryotic
rhodopsins or heliorhodopsins76, and the DTV motif for viral
rhodopsins77. Finally, sequences containing leucine or methionine in
helix C (105 amino acid position) were classified as green-absorbing,
whereas those with glutamine were classified as blue-absorbing rho-
dopsins, based on known color-tuning properties23,38,78. Following this
motif-based classification, a comprehensive phylogenetic analysis was
performed to refine and validate the sequence grouping. Multiple
sequence alignment was conducted using MAFFT79, trimmed with
Gblocks80, and used to build a Hidden Markov Model (HMM) with
HMMER 3.481. A maximum likelihood (ML) phylogenetic tree was
inferred using RAxML 8.2.1282, applying the WAG substitution matrix
and a Gamma model of rate heterogeneity to account for among-site
rate variation.

Metagenome-assembled genome (MAG) reconstruction and
annotation
Four metagenomes were co-assembled using Megahit. Contig abun-
dances across samples were calculated by mapping reads from indi-
vidual metagenomes to the co-assembly using BWA-MEM2 version
2.2.170. The resulting alignments were sorted with SAMtools version
1.1971. Contig coverageprofiles across all sampleswerecalculatedusing
jgi_summarize_bam_contig_depths. Binning was performed using
MetaBAT2 v 2.1583, CONCOCT v 1.1.084, and SemiBin285. A minimum
contig length of 2500 base pairs was applied in all cases. Bins were first
refined and merged using the bin-refinement module of MetaWRAP
v1.386. This resulted in 174 metagenome-assembled genomes (MAGs)
with completeness > 50% and contamination <10% and an
N50 ≥ 10,000bp. Dereplication was conducted with dRep version
3.5.087 using identity thresholds of 90 and99percent todefineprimary
and secondary clusters, respectively, retaining the highest-quality
genome per group. A final set of 74 High-Quality MAGs (99% derepli-
cated) were used in downstream analyses. Gene prediction was per-
formed using Prokka version 1.14.688, and functional annotation was
carried out with eggNOG-mapper version 2.1.989. Taxonomic classifi-
cation was assigned with GTDB-Tk version 2.4.069. Relative abundance
of eachdereplicatedMAGacross the four sampleswas estimated using
CoverM v 0.7.090 in genome mode, with alignments performed using
BWA-MEM270. Only read alignments with a minimum of 95% identity
and 80% read coverage were considered. Abundancemetrics included
read counts, RPKM, CPM, and covered bases. Finally, a stricter filtering
step was applied to retain only high-quality MAGs with a threshold of
≥ 70% completeness, ≤ 5% contamination and an N50 ≥ 10,000bp.

Statistical analyses
Significant correlations between environmental variables (shown in
Fig. 3A and Supplementary Data 2) were determined with Spearman’s
correlations (p-values < 0.05) using data from ≤45meters depth, after
testing for data distribution normality with the Shapiro-Wilk test.
Preliminary analyses, including data at the edge of the euphotic zone
(60 meters depth, ≤1% PAR; Supplementary Data 1), unrealistically
magnified correlations reflecting a drop in multiple parameters asso-
ciateddirectly or indirectly to phototrophy. This couldbe explainedby
the bottom of the euphotic zone being a critical depth limit for pho-
totrophic processes and all naturally associated parameters, such as
chlorophyll levels, bacterioplankton and phytoplankton cell abun-
dances. Since the extreme values biased the correlation patterns, we
limited the analysis to depths ≤45m to better observe the temporal
interactions between parameters measured during the different
months of the year. A likelihood ratio statistical test was used to
compare variances among groups of samples shown in Supplementary
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Fig. S2 (n = 48), while a Welch’s t-test was used to compare average
values of smaller sample sizes (n < 20) shown in Supplementary Fig. S3.
Linear regression analyses were used to further examine the co-
variance of different parameters against rhodopsin concentrations,
shown in Figs. 3B and 4B and Supplementary Figs. S9 and S10.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. 16S rDNA amplicon and
shotgun sequencing data are available on Genbank (https://www.ncbi.
nlm.nih.gov/genbank/) under the Bioproject PRJNA1040444. Meta-
genomeAssembledGenomes (MAGs) are available on Figshare https://
doi.org/10.6084/m9.figshare.2985686691 Source data are provided
with this paper.
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