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Abstract

Understanding the intrahost evolution of viral populations has implications in pathogenesis, diagnosis, and treatment and has recently
made impressive advances from developments in high-throughput sequencing. However, the underlying analyses are very sensitive to
sources of bias, error, and artefact in the data, and it is important that these are addressed adequately if robust conclusions are to be
drawn. The key factors include (1) determining the number of viral strains present in the sample analysed; (2) monitoring the extent
to which the data represent these strains and assessing the quality of these data; (3) dealing with the effects of cross-contamination;
and (4) ensuring that the results are reproducible. We investigated these factors by generating sequence datasets, including biological
and technical replicates, directly from clinical samples obtained from a small cohort of patients who had been infected congenitally
with the herpesvirus human cytomegalovirus, with the aim of developing a strategy for identifying high-confidence intrahost variants.
We found that such variants were few in number and typically present in low proportions and concluded that human cytomegalovirus
exhibits a very low level of intrahost variability. In addition to clarifying the situation regarding human cytomegalovirus, our strategy
has wider applicability to understanding the intrahost variability of other viruses.

Key words: human cytomegalovirus; congenital infection; intrahost evolution; sequence variability.

1. Introduction since the viruses characterised in the screened compartment may

not reflect those in the organ affected. As a result, there is con-
siderable interest in the variability and evolution of HCMV, both
in the long term within human populations (interhost evolution)
and in the short term within individuals (intrahost evolution).
Knowledge of both aspects has been informed predominantly by

Human cytomegalovirus (HCMV; species Human betaherpesvirus 5)
causes serious disease in transplant recipients and people with
immune deficiencies and is a leading cause of congenital infec-
tion worldwide (Manicklal et al. 2013). Licensed vaccines are not
yet available, but infections can be treated by timely therapy with

antiviral drugs. However, HCMV strains are capable of generating
drug-resistant variants that may become predominant and cause
significant clinical problems (Lurain and Chou 2010). The inherent
variability of HCMV strains that this exemplifies, in combination
with the occurrence of infections involving more than one strain,
creates the potential for HCMV to evolve within a patient and
contribute to the wide spectrum of disease conditions associated
with infection. In addition, the possibility that different variants
or strains may compartmentalize (Peek et al. 1998; Tarrago et al.
2003; Miller et al. 2006) has further implications in pathogenesis,
diagnosis, and treatment (Frange et al. 2013; Slyker et al. 2014),

high-throughput sequencing (HTS), initially of viruses isolated in
cell culture and then, usually by incorporating target enrichment,
directly of viruses present in clinical samples.

HCMYV has a double-stranded DNA genome of approximately
236 kbp that encodes at least 170 functional proteins (Dolan et al.
2004; Gatherer et al. 2011; Davison et al. 2013). These proteins
include a proofreading DNA polymerase and a suite of factors that
manipulate the hostimmune system to facilitate lifelong infection
(Van Damme and Loock 2014; Wilkinson et al. 2015). Knowledge of
the interhost evolution of HCMV rests on the identification of dif-
ferences between the consensus genome sequences of individual
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strains. Major discoveries include the presence of hypervariable
genes, each of which is apparent as several distinct genotypes,
the existence of huge numbers of recombinant strains presum-
ably promoted by multiple-strain infections, and the circulation
of strains containing disrupted, non-functional genes (Sijmons
et al. 2015; Lassalle et al. 2016; Suéarez et al. 2019a). In contrast,
knowledge of the intrahost evolution of HCMV depends on the
identification of strain variants, which, because they are often
present in low proportions, is particularly sensitive to the lim-
itations of HTS. Thus, although HTS has been used widely for
quantifying the diversity of HCMV and other viruses in clinical
samples (Beerenwinkel et al. 2012), it is important to address key
technical factors in order to ensure that the variants identified
are indeed due to intrastrain evolution and not artefactual (Ross
et al. 2013; Sato et al. 2019). For example, the extensive use of
polymerase chain reaction (PCR) makes HTS prone to generating
errors (Potapov and Ong 2017) that, via the amplification of mul-
tiple identical reads from a single target genome fragment (read
duplication or clonality), may result in overestimates of variabil-
ity and evolutionary rate (Smith et al. 2014; Kebschull and Zador
2015). Also, low-quality sequence data and non-systematic (ran-
dom) errors even in data that are of high quality overall may make
intrastrain variants difficult to differentiate from artefacts. The
former limitation should be controlled by screening datasets for
quality and the latter by analysing datasets generated from repli-
cate sequencing libraries (although this is rarely done). Several
other sources of artefact may also be introduced as the result of
additional technical factors (Dohm et al. 2008; Meacham et al.
2011; Nakamura et al. 2011).

Initial investigations of congenitally infected newborns led to
the surprising conclusion that HCMV exhibits a high level of intra-
host variability, thus implying that the virus evolves rapidly, at
a rate similar to that of RNA viruses (Renzette et al. 2011, 2013,
2014, 2017). In contrast, subsequent work indicated that intrahost
variability is much lower, as expected of a virus encoding a proof-
reading DNA polymerase, and that it is significantly perturbed
only by the selection pressure exerted by antiviral drugs or by
shifts in the relative sizes of HCMV populations in multiple-strain
infections (Hage et al. 2017; Cudini et al. 2019; Suérez et al. 2019a;
Suérezetal. 2020; Houldcroft et al. 2020; Jensen and Kowalik 2020).
It is possible that the initial investigations were affected by the
technical limitations of HTS or that some datasets represented
more than one HCMV strain, either because of multiple-strain
infection of the patient or as a result of cross-contamination
events. Both situations would lead to overestimates of the rate of
intrahost evolution, the first because of the contribution of arte-
facts and the second because the variability detected would reflect
interhost, rather than intrahost, diversity.

The approaches taken to date in studies of the intrahost
evolution of HCMV have differed considerably, and their limi-
tations have been managed with varying degrees of attention.
In our study, we developed a stringent approach for identifying
HCMYV variants in clinical samples. We established this approach
using sequence data (including biological and technical replicates)
generated from samples collected longitudinally from different
compartments (blood, saliva, and urine) from a cohort of three
congenitally infected newborns. We also re-examined selected
published sequence data. In addition to providing a means of guid-
ing future studies, our findings confirm the view that reproducible,
high-confidence intrahost HCMV variants are rare and generally
present at low levels and therefore that the intrahost evolution of
HCMV is slow.

2. Materials and methods
2.1 Samples

A total of 33 clinical samples (whole blood, n=11; saliva, n=12;
and urine, n=10) were collected longitudinally from a cohort
of three confirmed HCMV-infected newborns (patients 1, 2, and
3) at four time points that corresponded approximately to the
first 3weeks (0M), 3months (3 M), 6 months (6 M), and 12 months
(12 M) of life. Viral loads in most samples (n=25) were measured
at the collection site as described previously (Gerna et al. 2006).
The titres ranged from <1.2x 10! (the lowest level detectable)
to 8.4x10* HCMV international units (IU)/ml in whole blood,
2.4x108-7.2x10° IU/ml in saliva, and 1.5 x 103-8.4 x 10® 1U/ml in
urine (Table 1 and Fig. 1). Patient 2 underwent antiviral ther-
apy with ganciclovir (6-16days after birth) and valganciclovir
(17-46 days after birth). Samples were collected with the approval
of the institutional review boards of Policlinico San Matteo, Pavia
(reference number 5908/2014).

2.2 Sequencing libraries and sequencing

DNA was extracted from 140 to 200 pl of sample using a QlAamp
DNA blood mini kit for whole blood samples, a QlAamp MinE-
lute virus spin kit for saliva samples, and a QlAamp viral
RNA mini kit for urine samples (QIAGEN, Crawley, UK). A 50 ul
aliquot of DNA was sheared acoustically using an LE220 soni-
cator (Covaris, Woburn, MA), aiming to achieve an average frag-
ment size of 500 bp. The fragmented DNA was prepared for
sequencing using a KAPA LTP library preparation kit (KAPA Biosys-
tems, London, UK), incorporating the SureSelect*T v1.7 target
enrichment system (Agilent Technologies, Santa Clara, CA) with
a custom RNA bait library as described previously (Hage et al.
2017; Suarez et al. 2019a). The libraries were single-indexed (with
indexes mimicking the standard Illumina set [Supplementary
Table S1]) using ultrapure (TruGrade) oligonucleotides (Integrated
DNA Technologies, Leuven, Belgium) and analysed using a MiSeq
DNA sequencer (Illumina, San Diego, CA) with a v3 reagent kit to
generate datasets consisting of 2 x 300 nucleotide (nt) paired-end
reads.

Matching saliva and urine samples collected from patient
2 at time point 3M and patient 3 at time point OM were
sequenced as replicates (Fig. 2). Briefly, DNA was extracted from
two aliquots of each sample (biological replicates), and the ini-
tial sequencing library prepared from the first extraction was
split into three technical replicates prior to pre-enrichment PCR
amplification, thus leading to three sequencing libraries (R1-R3).
Another sequencing library (R4) was produced from the second
extraction.

The datasets were coded as follows: (1) the compartment
(B, blood; S, saliva; and U, urine), (2) the patient number (1-3),
(3) the time point at which the sample was collected (0M, 3,
6M, or 12M), and when appropriate, (4) the replicate designa-
tion (R1-R4). For example, the code S2_3 M_R1 represents the first
replicate of the saliva sample collected from patient 2 at approx-
imately 3months old. The sequencing libraries were sequenced
in four separate runs. Each run contained HCMV sequencing
libraries belonging to other studies, and these were coded with
the prefix X and a consecutive number. Sequencing libraries were
prepared in batches of 16 using two 8-well tube strips (Supple-
mentary Fig. S1). Hypervariable HCMV genes were genotyped on
the basis of enumerating reads containing conserved genotype-
specific motifs, employing several motifs per genotype, using
GRACy v0.4.4 (Camiolo et al. 2021).
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Table 1. Clinical information on the cohort.
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Sample collection

Patient  Clinical findings at birth Antiviral regime Clinical findings at follow-up ~ Time point =~ Compartment Viral load (IU/mL)
1 Poor motility, germinolysis None No symptoms oM Saliva 2.6x10°
3M Blood? 2.5x 10"
Saliva NE
Urine 4.0x10°
6M Blood? 2.1x10?
Saliva NE
Urine 2.8x10°
12M Blood? 1.2x10"
Saliva NE
Urine 9.6x10°
2 IUGR, low platelet count, GCV, vGCV SNHL, hypotonia, tremors oM Blood 2.7x10%
hepatitis, poor motility Saliva 2.4x108
Urine 6.9%10°
3M Blood? 1.2x10?
Saliva 7.2x10°
Urine 8.4x10°
6M Blood? 1.2x10%
Saliva NE
Urine 41x10°
12M Blood? 2.4x10!
Saliva NE
Urine 1.5x103
3 Asymptomatic None No symptoms oM Blood 8.4x10%
Saliva 2.4x108
Urine 5.2x 108
3M Blood 2.2x10?
Saliva NE
Urine 2.3x10°
6M Blood? 8.7 x 10!
Saliva NE
Urine 6.2x10°
12M Blood? 1.2x 10!
Saliva?® NE

@Sequencing library not generated.

Abbreviations: 0 M, within 3 weeks; 3 M, 3months; 6 M, 6 months; 12 M, 12 months; GCV, ganciclovir; vGCV, valganciclovir; IUGR, intrauterine growth restriction;

SNHL, sensorineural hearing loss; NE, viral load not estimated.

2.3 Genome sequences

Sequence assemblies were generated as described previously
(Sudrez et al. 2019a). Briefly, a dataset was prepared for analysis
using Trim Galore v0.4.0 (http://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/; length =21, quality=10, and strin-
gency =3). The trimmed dataset was aligned to the UCSC hg19
human reference genome sequence (http://genome.ucsc.edu/)
using Bowtie2 v2.3.1 (Langmead and Salzberg 2012). Nonmatch-
ing reads were assembled de novo into contigs using SPAdes
v3.5.0 (Bankevich et al. 2012) (—careful, which reduces the num-
ber of mismatches and short indels in the contigs generated—
k 21,33,55,77,99,127). The contigs were organised using Scaf-
fold_builder v2.2 (Silva et al. 2013), employing as a reference
the genome sequence of HCMV strain Merlin (GenBank acces-
sion number AY446894.2) with all but 100 nt of the terminal
repeat regions removed. An alignment of the dataset to the assem-
bled genome made using Bowtie2 was inspected using Tablet
v1.21.02.08 (Milne et al. 2013), and final adjustments were made
to generate the genome sequence, which was annotated using
GRACYy.

Sequencing libraries belonging to other studies that were
included in the runs were also genotyped using GRACy. Datasets
representing multiple HCMV strains were assembled into sets

of contigs, rather than complete genomes,
(—careful—cov-cutoff auto).

using SPAdes

2.4 Preprocessing

The original datasets were depleted of human reads as described
above and then preprocessed by four sequential filtering steps
(Fig. 3A). In the first step (Trim), adapters, poor-quality sequences,
and short sequences were removed using Trim Galore with default
parameters. In the second step (Dedupl), read clonality arising
during the pre- and post-enrichment PCR amplification steps was
minimized by deduplication using FastUniq v1.1 (Xu et al. 2012),
on the basis of read pairs having identical sequences. In the third
step (Qual), a stringent quality filter was applied using PRINSEQ
v0.20.4 (Schmieder and Edwards 2011) with the following criteria:
(1) reads were retained if their average quality score was >25, (2)
the 3’ end of each read was trimmed if the mean quality score was
<30, using a sliding window (—trim_qual_window) of 5 nt and a
step size (—trim_qual_step) of 1 nt, (3) homopolymeric sequences
of >20 nt were trimmed from the 3’ end of reads, and (4) only reads
with a residual length of >80 nt were retained. Thus, this step
was not limited to the removal of low-quality sequences but also
involved the removal of artefactual homopolymeric G-tracts with

20z Aienuer zz uo Josn e09)oliqig - PNies OO JIPT Aq L0LEL89/Y | LOBIA/Z/8/BI0IE/OA/WO0Y"dNO"DILSPED.//:SA)IY WO PAPEOJUMOQ


http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://genome.ucsc.edu/

4 | Virus Evolution

. 1.00E+10
Patient 1 o
__ 1.00E+08
-E-. O— O
2 1.00E+06 = —0
S
an
S 1.00E+04
£
el
8 1.00E+02 *//’;\.
E
> 1.00E+00
oM 3m 6M 12M
. 1.00E+10
Patient 2 //O
__ 1.00E+08
E o
£
2 1.00E+06
E:
oo
2 1.00E+04
£
o
8 1.00e+02 -0— =
f_L“ S
> 1.00E+00
oM 3m 6M 12M
. 1.00E+10
Patient 3
. 1.00E+08 ©
g. O —_—0
2 1.00E+06 =
S
oo
£ 1.00E+04
£
©
8 1.00E+02 = o
E —___'—-—_______-.
> 1.00E+00
oM 3m 6M 12M

—e—Blood —o-Saliva —o-Urine

Ganciclovir Valganciclovir

Figure 1. Viral population dynamics of the cohort samples. As indicated in the key, the colours of the lines represent the sample types, and the
duration of antiviral therapy is represented by the coloured blocks. Approximate sampling time points (M, months) are indicated on the x axis and

viral loads (log,, IU/mL) on the y axis.

high-quality values that have been reported to occur at the 3" end
of reads generated on the Illumina platform (https://sequencing.
qcfail.com/articles/illumina-2-colour-chemistry-can-overcall-
high-confidence-g-bases/). In the fourth step (Dedup2), read
clonality was minimized by deduplication using Picard (http://
broadinstitute.github.io/picard/) on the basis of read pairs hav-
ing identical mapping coordinates. For this, reads were aligned to
the relevant genome sequence using Bowtie2 (—end-to-end). The
resulting SAM file was converted to BAM format and sorted and
indexed using Samtools v1.3 (Li et al. 2009).

2.5 Variant detection

Single nucleotide variants (SNVs) present in minor genome pop-
ulations were identified in the preprocessed datasets using two
programs: (1) LoFreq v2.1.5 (Wilm et al. 2012) (-Q 30, so that
nucleotides calling the reference nucleotide were considered only
if their quality was >30; -q 30, so that positions at which an alter-
native nucleotide was called were considered only if their quality
was >30) and (2) VarDict v1.8.2 (Lai et al. 2016) (-q 30, so that
only nucleotides with a quality of >30 were considered). LoFreq
implements a quality-filtering step on SNVs by default (minimum
variant calling quality score =58, minimum coverage =10, and
a strand bias false discovery rate correction P value of >0.001).

VarDict reports all SNVs without additional filtering (although sev-
eral downstream filtering options are proposed in the software
documentation). Since HTS can lead to errors associated with
read directionality (Stoler and Nekrutenko 2021), only SNVs con-
firmed by at least two reads in each direction were included, thus
requiring a coverage depth of >4 reads/nt.

2.6 Detection of variants due to
cross-contamination

For each SNV, reads calling the alternative nucleotide were
identified using Sam2Tsv (http://dx.doi.org/10.6084/m9.figshare.
1425030). Reads presenting >1 mismatch to the consensus were
aligned using Bowtie?2 (with default parameters) to all other
genome sequences (complete or partial) assembled from samples
sequenced in the same run. Reads aligning without mismatches
to any of the other sequences were considered to have arisen from
contamination, on the basis that they were unlikely to have arisen
by error. The number of contaminating reads was computed for
each SNV in this category.

2.7 Reproducible detection of variants

Variants detected in at least three of the four replicate datasets
from patient 2 (S2_3M and U2_3M) and patient 3 (S3_0M and
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Figure 2. Schematic representation of the experimental design for generating biological and technical replicate sequencing libraries.

U3_0M) were categorised as reproducible SNVs. This threshold
allowed a reproducible SNV to be absent from one replicate
dataset due to low sequencing coverage or to the possibility that
the same pool of SNVs was not sequenced in all replicates of
samples with high viral loads.

2.8 Analysis of public datasets

Ten public Illumina datasets also generated by target enrichment
of HCMV from clinical samples in three separate studies were
processed as described above (Supplementary Table S2). These
datasets were selected on the basis of exhibiting high intrahost
variability of apparent single-strain infections in the correspond-
ing studies.

3. Results

3.1 Sequencing libraries and sequencing

A total of 33 longitudinal blood, saliva, and urine samples were
obtained from a cohort of three congenitally HCMV-infected new-
borns, of whom two (patients 1 and 2) were symptomatic and one
(patient 3) was asymptomatic (Table 1). Sequencing libraries were
produced for the 24 samples that had sufficient viral loads. Saliva
samples had the highest viral loads, followed by urine and then
blood samples (Fig. 1). Patient 2 presented the highest viral load
at time point 3M in saliva, despite having undergone antiviral

therapy during the first month. However, the viral load in blood
samples from this patient decreased from OM to 3 M. The symp-
tomatic patients presented higher viral loads in saliva samples
(S1.0M=2.6x10° IU/mL and S2_3M=7.2x10° IU/mL) than the
asymptomatic patient (S3_0M = 2.4 x 10% IU/mL).

In addition, 12 replicate sequencing libraries were produced
from matched saliva and urine samples from patients 2 and 3,
bringing the total number of sequencing libraries analysed to 36.
Information on the sequencing libraries and resulting datasets is
provided in Supplementary Table S3. There were 21,306-4,316,790
trimmed reads per dataset, with 27-93 per cent mapping to the
HCMYV strain Merlin reference genome at an average coverage
depth of 6-3,920 reads/nt.

Genotyping of 13 hypervariable genes for the 36 datasets
demonstrated that each of the three patients was infected by a
single HCMV strain (Supplementary Fig. S1). This was in contrast
to several of the datasets (prefixed by X in Supplementary Fig. S1)
that were included in the sequencing runs but belonged to other
studies, for which the detection of additional genotypes indicated
that multiple strains were present.

3.2 Genome sequences

The complete HCMV genome sequences for patients 1, 2, and
3 were determined from datasets S1_0M, S2_6M, and U3_6M
and had sizes of 235,481, 235,825, and 235,405 bp, respectively.
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Figure 3. Application of preprocessing steps to the cohort datasets. (A) Schematic representation of the filtering steps (see text for details), in which
each line represents a paired-end read. (B) Correlation between the proportion of reads removed and the number of PCR cycles performed during the
post-enrichment amplification step. The proportions of reads removed for sequencing libraries undergoing the same number of PCR cycles were
averaged. (C) Number of SNVs detected using LoFreq after each filtering step and the number remaining after application of the Cov>9 threshold. (D)
Violin plots showing the distribution of the number of reads identifying the SNVs detected using LoFreq after applying the filtering steps at each time

point. The number of supporting reads was set to 20 when >20.

These sequences were used as references to assess variability
as described below. Two genes were disrupted in the genome
sequences (Supplementary Fig. S2), namely UL9 (encoding a
hypervariable membrane glycoprotein) in patient 1 and UL111A
(encoding an interleukin-10 homologue) in patients 2 and 3.
Disruptive mutations causing premature translational termi-
nation in these two genes have been reported previously in
clinical HCMV strains, and the precise disruption in patient
3 has been identified in several other strains (Sudrez et al.
2019a).

3.3 Preprocessing

The datasets generated from the three blood samples that had suf-
ficient viral loads were relatively small, and one of these (B3_3M)
presented with low coverage depth and high read clonality (Sup-
plementary Table S3). As a result, all datasets generated from
blood samples were excluded from variant detection, and only 33
datasets (including the 12 replicates), all derived from saliva and
urine samples, were processed.

To reduce the impact of biases and sources of error inherent in
the sequence data, four filtering steps were applied sequentially
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to the datasets after depleting human reads (Fig. 3A): Trim, which
removes adapters and poor-quality sequences; Dedupl, which
removes clonal reads on the basis of sequence identity; Qual,
which stringently removes poor-quality sequences; and Dedup?2,
which removes duplicate read pairs on the basis of mapping
location. The order of these steps and the parameters used in
each were determined on the basis of extensive experimentation.
The effects on read numbers are summarised in Supplementary
Table S4. The Trim filter removed a small proportion (<0.02 per
cent) of reads from each dataset, the Dedup1l filter removed up
to 34.12 per cent of reads, the proportion correlating strongly with
the number of post-enrichment PCR amplification cycles (Spear-
man r=0.8, P<0.001; Fig. 3B), the Qual filter removed up to
10.77 per cent of reads and resulted in many fewer mismatches
and much higher mapping quality scores (Supplementary Fig. S3),
and the Dedup2 filter removed up to 99.80per cent of reads.
The final average coverage depth varied widely (2.73-3,047.13
reads/nt).

3.4 Variant detection

Two widely used programs (LoFreq and VarDict) were used for
SNV detection because they may be performed at various levels of
accuracy and sensitivity. LoFreq uses a conservative approach and
has been reported to outperform other tools in terms of accuracy
when analysing large DNA viruses (Deng et al. 2020), whereas Var-
Dict is more sensitive (Bian et al. 2018) (Supplementary Table S5).
The effects on SNV numbers are summarised in Supplementary
Table S6 and Fig. 3C. The Qual filter tended to increase the num-
ber of SNVs identified by both programs, presumably because of
its effects on the number of mismatches and the average map-
ping quality scores. The overall impact of the four filtering steps
varied widely from increasing the number of SNVs several-fold to
reducing it to zero.

3.5 Detection of variants due to
cross-contamination

Preprocessing lends greater confidence to variant detection but
does not indicate whether variants are due to intrastrain or
interstrain variability. Genotyping is capable of identifying inter-
strain variation due to the presence of multiple HCMV strains
but does not indicate whether variants are due to multiple-strain
infection or cross-contamination. However, variants due to cross-
contamination during a run may be identified by taking into
account the sequences of the other samples analysed in the same
run. This was done by identifying reads that contain >1 SNV and
match exactly the consensus HCMV sequence from one of the
other samples included in the same run. Among the datasets from
patients 1-3, >50 per cent of reads supporting 11 per cent (n=275)
of SNVs identified using LoFreq after the Dedup? filter (n=2,432)
were in this category. Also, although SNV detection was affected
by the coverage depth at the corresponding site (Supplementary
Table S6 and Fig. S4), a high proportion of SNVs (95 per cent) was
supported by only a small number of reads (<9). This threshold
(Cov>9) was then applied to all datasets, resulting in the exclu-
sion of SNVs supported by <9 reads as being potentially due to
contamination and in the discounting of 1,656 (68.09 per cent) and
76,237 (96.45 per cent) low-abundance SNVs identified by LoFreq
and VarDict, respectively (Supplementary Table S6 and Fig. 3C).
After preprocessing and applying the Cov>9 threshold to the
SNVs detected by LoFreq, a total of 96 (Supplementary Table S7),
364 (Supplementary Table S8), and 180 (Supplementary Table S9)
SNVs were detected in the datasets from patients 1, 2, and 3,
respectively, with no major longitudinal changes in frequency. The
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corresponding numbers of SNVs detected by VarDict were greater,
at 229, 1,762, and 810, respectively (Supplementary Table S6).

3.6 Reproducible detection of SNVs

For the saliva and urine samples from patients 2 and 3 for which
four replicate sequencing libraries were analysed, reproducible
SNVs were defined on the basis of their detection in at least three
datasets. In patient 2 and 3, respectively, those detected by LoFreq
numbered 9 and 3 (Table 2), those detected by VarDict numbered
20 and 5 (Table 3), and those detected by both programs num-
bered 7 and 2. All SNVs were present in low proportions (<2.2 per
cent, with many at <1per cent, especially using VarDict), with
the exception of two (location 94,382 in patient 2 and location
94,348 in patient 3) that are effectively the same SNV (i.e,, they
are in the same sequence context but differ in relative location
because the genome sequences are different) and were detected
at approximately 5 per cent by LoFreq but not detected by VarDict.
Five SNVs (3 in patient 2 and 2 in patient 3) were detected in both
compartments, and the remaining seven were identified in a sin-
gle compartment. Nonsynonymous substitutions were detected
by both programs in three genes in patient 2 (UL49, UL80, and
UL97) and one gene in patient 3 (UL10). The substitution (A58T) in
gene UL97, in which antiviral resistance may occur, was detected
in the only patient receiving antiviral therapy (patient 2).

3.7 Analysis of public datasets

Ten public datasets (Supplementary Table S2) were also sub-
jected to preprocessing and SNV detection. Preprocessing led to
a reduction in the number of reads that was particularly marked
after the Dedupl and Dedup? steps (Supplementary Table S10),
amounting up to 62.17 and 69.39 per cent of reads, respectively.
Preprocessing also resulted in a decrease, in some instances dra-
matic, in the number of SNVs detected (Supplementary Table S11
and Fig. 4A). Application of the Cov>9 filtering step resulted
in almost complete depletion of SNVs (>99per cent) for several
datasets. Although these final low numbers were in line with those
registered for our cohort, some datasets retained a high num-
ber of SNVs (>1,000), which were supported by more than 15
reads (Fig. 4B), and presented the lowest average coverage depth
of SNVs (<51 reads/nt), thus indicating the presence of additional
HCMYV strains in the relevant samples (Supplementary Fig. S5).

4, Discussion

Understanding the degree of genetic variability, and therefore the
rate of intrahost evolution, of viruses is important for developing
and implementing efficient strategies for management and ther-
apy. HTS has afforded the opportunity to investigate this subject
in an unprecedented level of detail. However, in order to arrive
at sound conclusions, it is necessary to address the sources of
bias and error that operate during the derivation and analysis of
sequence data. These fall into four broad areas: (1) the presence
of multiple viral strains represented in a dataset; (2) the extent
to which a dataset represents the viral genome and the quality of
the reads that it contains; (3) the identification of reads likely to
be due to cross-contamination; and (4) the degree to which vari-
ant detection is reproducible. The varying levels of attention that
these factors have received in studies of the intrahost evolution of
HCMYV to date prompted us to take a structured approach, apply-
ing it initially to the datasets from a cohort of three congenitally
infected patients. First, we determined how many HCMV strains
were represented in each patient. Second, we used read prepro-
cessing to improve the datasets. Third, we defined a threshold for
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Table 2. Proportions of SNVs detected in replicate datasets using LoFreq.

Patient Location® SNVs in saliva dataset (%)

SNVs in urine dataset (%) Effects of SNV

S2_3M_R1 S2_3M_R2 S2_3M_R3 S2_3M_R4 U2 _3M_R1 U2_3M_R2 U2_3M_R3 U2_3M_R4 Gene Coding change
2 72,388 - - - - 0.6 0.5 0.4 1.0 UL49 L339Q
87,491* - - 0.6 - 0.5 0.4 - 0.8 Intergenic  None
94,382* 6.0 7.3 5.3 - 5.3 5.7 5.8 - Intergenic  None
99,587* 0.7 0.9 0.9 0.8 1.1 0.7 1.1 1.5 UL69 None
117,428 - - - - 0.7 0.5 0.4 - UL80 P327T
141,655 - - - - 1.0 1.0 1.2 - Intergenic® None
141,906 2.2 1.5 1.5 1.7 - - - - UL97 AS58T
184,947 - - - - 1.6 0.8 1.1 1.8 UL141 None
210,231 0.5 - 1.1 0.6 - - - - Us15 None
S3_0M_R1 S3_0OM_R2 S3_OM_R3 S3_OM_R4 U3_OM_R1 U3_OM_R2 U3_O0OM_R3 U3_OM_R4
3 17,725 0.8 1.0 1.1 - - - - - UL10 M11d
41,993* 0.9 0.9 1.2 - - - - 0.8 UL32 None
94,348* 5.2 - - - 4.6 3.3 4.9 5.6 Intergenic  None

2In the corresponding HCMV genome, SNVs detected in both the saliva and urine datasets are marked by asterisks; SNVs also detected using VarDict are in italic

font (see Table 3).

bAbsent.

€85 nt upstream of gene UL97.
dChange in initiation codon.

Table 3. Proportions of SNVs detected in replicate datasets using VarDict.

Patient Location? SNVs in saliva dataset (%) SNVs in urine dataset (%) Effects of SNV
S2_3M_R1 S2_3M_R2 S2 3M_R3 S2_3M_R4 U2 3M_R1 U2 3M_R2 U23M_R3 U2 3M_R4 Gene Coding change

2 28,992 0.5 b 0.5 0.4 - - - - UL23 None
30,213 - - - - - 0.3 0.2 0.5 UL24 None
36,565 - - - - 0.3 - 0.2 0.5 UL29 None
39,277 - - - - 0.2 0.2 0.3 - UL31 None
65,231 0.5 0.4 - 0.3 0.6 0.4 - - UL48 L201P
72,388 - - - - 0.6 0.6 0.4 0.9 UL49 L339Q
73,852 - - - - 0.3 0.2 0.2 - UL50 None
87,491" - 0.4 0.5 - 0.6 0.6 0.4 0.9 Intergenic None
99,587* 0.9 1.1 0.9 1.1 1.0 0.8 1.2 1.2 UL69 None
103,608 - - - - 0.3 0.3 0.2 - UL70 R350H
111,480 0.4 0.4 - 0.5 - - - - Intergenic None
117,428 - - - - 0.8 0.6 0.4 0.4 UL80 pP327T
128,505 0.4 0.3 - 0.4 - - - - UL86 None
141,906 2.2 1.6 1.8 1.9 - - - - UL97 AS58T
149,661* 0.6 0.4 - 0.4 0.3 0.3 0.2 - UL102 None
154,724* 0.3 - 0.3 0.5 - 0.4 0.4 0.5 UL105 None
184,947 - - - - 1.6 1.3 14 1.6 UL141 None
202,826" 0.5 0.4 - 0.8 - 14 0.9 - us7 S128P
210,231" 0.5 0.4 1.1 0.7 0.4 - - - Us15 None
226,566 0.5 - 0.6 0.4 - - - - Intergenic None

S3_.0M_R1 S3_OM_R2 S3_OM_R3 S3_0OM_R4 U3 OM_R1 U3 OMR2 U3 O0MR3 U3O0MR4 Gene Coding change

3 17,725 0.7 14 1.0 - - - - - UL10 M1I¢
41,993" 0.8 0.8 1.1 - - - - 0.7 UL32 None
87,448 - - - - 0.5 0.6 0.5 0.6 Intergenic None
99,554* 0.9 - - - 0.9 - 1.0 0.4 UL69 None
190,102* 0.7 - 0.7 - 0.8 0.6 - 0.9 UL133 V152A

2In the corresponding HCMV genome, SNVs detected in both the saliva and urine datasets are marked by asterisks; SNVs also detected using LoFreq are in italics

font (see Table 2).
bAbsent.
¢Change in initiation codon.

ruling out variants likely to be due to cross-contamination. Fourth,
we used data from replicate experiments to identify reproducible
variants in two of the patients. Fifth, we applied our approach to
a selection of public datasets.

We commenced our study by using genotyping to show the
presence of a single strain in each cohort patient, thus obviating
all but low-level multiple-strain infection or cross-contamination
as a confounding factor representing interhost variability in work

aimed at investigating intrahost variability. Determining how
many strains are represented in an HCMV dataset principally
involves the genotyping of a selection of hypervariable genes by
enumerating short genotype-specific motifs in the datasets. Meth-
ods were developed initially for detecting a single, distinct motif
for each genotype (Suérez et al. 2019a,b) and were then extended
in GRACy for detecting multiple motifs for each genotype, thus
enhancing sensitivity (enabling the detection of minor strains
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Figure 4. Application of dataset filtering steps to the public datasets (Supplementary Table S2). (A) Number of SNVs detected using LoFreq grouped by
patient after each step. The colour of each point indicates the patient, and the shape indicates whether the dataset represented a single-strain (dot) or
a multiple-strain (star) infection. (B) Violin plots showing the distribution of the number of reads identifying the SNVs detected using LoFreq for each

dataset. The number of supporting reads was truncated to 25 when >20.

present at 2per cent) and specificity (Camiolo et al. 2021). It
is likely that methods for enumerating HCMV strains will con-
tinue to improve, perhaps involving the genotyping of a larger
range of hypervariable genes and the determination of the genome
sequences of individual strains present in sufficient proportions
(Goldstein and Wagers 2018; Cudini et al. 2019). The unrecognised
presence of multiple strains in initial studies of HCMV variabil-
ity may not have adequately distinguished intrastrain variability
from interstrain variability, thereby contributing to the conclusion
that HCMV evolves rapidly within infected individuals. Indeed,
the large number of SNVs detected in these studies corresponds
well with the average number of nucleotide differences (6,296)
existing between pairwise interstrain comparisons of randomly
selected public HCMV genome sequences (Supplementary Fig. S6
and Table S12).

We continued our study by using preprocessing to improve the
quality of the datasets by four sequential read filtering steps. Two
of these steps (Trim and Qual) involved the quality filtering of
reads, which is important in the reliable detection of viral vari-
ants (Pfeifer 2017). The other two steps (Dedupl and Dedup2)
involved reducing read clonality. We then employed two widely
used programs (LoFreq and VarDict) to detect SNVs. Although
most programs for this purpose exclude low-quality data, it is
important to understand their default settings. The more accurate
program (LoFreq) subjects the reads to a default quality-filtering
step and only considers nucleotides with Phred quality scores of
>20. This corresponds to a 1per cent probability that a variant

resulted from a sequencing error (Ewing and Green 1998). How-
ever, this setting may be problematic when coverage depth is high
(e.g. >1,000 reads/nt) because the probability of reporting errors
as SNVs is enhanced. Indeed, previous studies have demonstrated
the challenges of distinguishing genuine SNVs present in propor-
tions of <1 per cent from errors occurring during PCR amplification
or sequencing when coverage depth is high (Orton et al. 2015;
McCrone, Lauring, and Dermody 2016). To reduce this problem,
we considered only Phred quality scores of >30, as suggested pre-
viously (McCrone, Lauring, and Dermody 2016). The more sensitive
program (VarDict) reports all SNVs without a quality-filtering step,
although we implemented additional thresholds for read direc-
tionality and coverage depth. As anticipated, VarDict reported
more SNVs than LoFreq.

Next, we developed a threshold from the cohort datasets for
excluding SNVs likely to be due to low-level cross-contamination
during the runs. Cross-contamination occurs commonly during
HTS and, if present at a low level, may escape detection by
genotyping. This was exemplified in the cohort by the detec-
tion of low-level cross-contamination in two datasets but not
in datasets from replicate sequencing libraries (Supplementary
Fig. S1; compare run 4 tubes 5 and 6 [contamination] with run
3 tubes 1 and 2 [no contamination]). Low-level SNVs may also be
due to multiple-strain infection rather than cross-contamination.
For example, public dataset ERR3014559 was classified initially
(Suérez et al. 2019a), and by our genotyping analysis, as rep-
resenting a single-strain infection (Supplementary Fig. S5) but
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exhibited a relatively large number of SNVs. To investigate fur-
ther, we extracted the reads supporting the SNVs and searched for
identity with datasets generated from the same patient at differ-
ent time points that were classified as multiple-strain infections
(ERR3014557 and ERR3014558; Suarez et al. 2019a). These reads
showed perfect matches with reads from the additional datasets,
thus suggesting that a minor strain was represented in all three
datasets but in a too low proportion in dataset ERR3014559 to be
detected by genotyping. We used a single threshold (Cov>9) for
all the cohort and public datasets but recognise that it may be
more appropriate to calculate the threshold for future projects
rather than generalising it. Also, our impression was that cross-
contamination was more likely to be detected in datasets from
samples with a low viral load, which require a higher number of
PCR cycles during sequencing library preparation, thus increas-
ing the probability of amplifying contaminating HCMV fragments.
This suggests that a threshold determined across a cohort may
be too low for such datasets. In addition, although random bar-
codes (unique molecular identifiers) or unique dual indexes were
not used to generate the sequencing libraries, they may assist in
detecting within-run cross-contamination in future studies.

Finally, we used replicate sequencing libraries to define repro-
ducible SNVs for cohort patients 2 and 3. These SNVs were rare
and present at low levels, with only seven detected in patient 2
and two in patient 3. The observation that some were detected
in datasets generated from either the saliva or urine sample, but
not both, may indicate compartmentalization, but the low level
of occurrence indicates that this conclusion should be drawn
with caution. The detection of an SNV in gene UL97 in patient 2,
who underwent antiviral drug therapy, was provocative, but this
SNV was identified in samples collected long after antiviral ther-
apy had been discontinued at 46 days after birth and remained
detectable at 6 months of age. In addition, it is not specifically
known to cause resistance. The application of preprocessing and
the Cov>9 threshold to the public datasets had marked effects.
For example, a large proportion (approximately 50 per cent) of the
SNVs reported in public dataset ERR3014544 (Suarez et al. 2019a)
turned out to have been derived from duplicate reads. Similarly,
a marked reduction was evident in the number of SNVs reported
in public datasets ERR1279060 and ERR1279061 (Houldcroft et al.
2016), including known or potential antiviral resistance muta-
tions. However, the reported antiviral drug resistance mutations
were confirmed in other samples from this patient, with the excep-
tion of one novel mutation (E235K in gene UL54). This SNV was
likely to be due to a PCR error, as it was present in only a single
dataset from this patient (ERR1279058), in which it was supported
only by 14 clonal reads. In addition, this SNV corresponded to a
C/T transition, which is the most frequent systematic error of the
DNA polymerase used commonly to generate sequencing libraries
(Potapov and Ong 2017).

Our study involved applying quality filters and thresholds
to our cohort and public datasets, in order to detect HCMV
intrastrain variants with relatively high confidence and a degree
of reproducibility. However, as is always the case in such stud-
ies, this analysis involved the choice of tools and parameters at
each step and could not guarantee an absolute discrimination
between intrastrain variants and artefacts. Indeed, it is proba-
ble that some of the high-confidence SNVs were artefactual and
some of the SNVs categorised as artefactual represent genuine
intrastrain variants. For example, certain trinucleotide sequences
are associated with systematic (nonrandom) sequencing errors on
the [llumina platform (Schirmer et al. 2016; Stoler and Nekrutenko
2021). Although such errors are directional and are generally

managed by most variant detectors by controlling strand bias, it
is possible that the motifs will occur on both strands in some
locations, thus creating contexts that are susceptible to high
error rates (Ma et al. 2019). For example, two SNVs detected in
patients 2 and 3 at locations 99,587 and 99,554, respectively, rep-
resent the same variant, which is located on both strands in
association with motifs that are among those overrepresented at
error sites.

5. Conclusion

The potential sources of bias, error, and artefact in HTS data
should be addressed adequately if robust conclusions are to be
drawn about the intrahost genetic diversity of viruses. In the
absence of careful scrutiny, the results of such studies, while
provocative, may be of unresolved scientific merit. We assessed
a range of the factors involved by using clinical samples obtained
from a cohort of congenitally HCMV-infected patients to develop
an approach for identifying intrahost variants of HCMV. We found
that the variants detected were few in number and commonly
present in low proportions and concluded that HCMV exhibits a
very low level of detectable intrahost variability. These findings
should be set within the limitations of the methods used, which
are unlikely to detect variants that arise during HCMV replication
unless they are represented in a sufficient proportion of the viral
population, either because they are selected and out-compete the
parental strain (e.g., antiviral drug resistance mutants) or because
they benefit from stochastic events that are not necessarily related
to their ability to out-compete (e.g., replication bottlenecks).

Data availability

The datasets generated for this study were deposited in the
European Nucleotide Archive (ENA; project no. PRJEB48078), and
the annotated consensus genome sequences were deposited in
ENA (accession nos. ERZ4195000, ERZ4195185, and ERZ4195400).
A conda environment with all the tools and resources used
in the pipeline is available (https://github.com/josephhughes/
HCMVmut).

Supplementary data

Supplementary data are available at Virus Evolution online.
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