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Sara B. Armas-Quintana, 1 Emilio Vacas-Fumero, 6 Aitor Brito-Mayor, 2 Simon-Pierre Gilson, 7 Jacob Morales, 2 
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SUMMARY

Paleogenomic and radiocarbon data indicate that, excluding the temporal occupation of the islet of Lobos by 
Romans, the Canary Islands were permanently colonized by North Africans around the 3 rd century CE. The 
archipelago was seemingly forgotten in the following centuries by Western societies until the beginning of 
the European Age of Exploration in the 14 th century. In this study, we present 52 mitogenomes of ancient Can-

arian goats, including samples from the Roman site of Lobos, and the indigenous and colonial periods. We 
observe that the mitogenomes of indigenous goats are consistent with a North African origin for the human 
Canarian population. Goats from Lobos share the same haplotypes as the indigenous population, indicating 
that both settlements briefly overlapped, and goats in Lobos were probably taken from neighboring islands. 
We also detect temporal continuity from the indigenous period to the colonial and present-day goats, sug-

gesting European settlers exploited this well-adapted species.

INTRODUCTION

During the European Atlantic Expansion (14 th century CE), Med-

iterranean sailors came across the Canary Islands, 1 an archipel-

ago located off the southwestern coast of Morocco and the only 

one inhabited in the Macaronesia region at the time (Figure 1). 

Archaeological and linguistic evidence have confirmed that the 

geographic origin of the indigenous people of the Canary Islands 

is related to Berber populations in North Africa. 2–4 Archaeolog-

ical evidence from the islet of Lobos, at just 4 km from the island 

of Fuerteventura (Figure 1), has revealed that the archipelago

was already known by the Romans. The archaeological site of 

Lobos, dated between the 1 st century BCE and the 1 st century 

CE, has produced amphorae remains associated with the Ro-

man province of Baetica (southern Iberian Peninsula) and 

numerous shells of the mollusk Stramonite haemastoma, used 

to produce purple dye. 5 However, this workshop was aban-

doned after some time, leaving the Amazigh colonization as 

the first permanent settlement endeavor in the archipelago. 6 

The analysis of radiocarbon data using a chronometric hygiene 

protocol has indicated that, leaving aside the temporal settle-

ment in Lobos, 5 the time of the first arrival of human populations
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to the archipelago occurred around the beginning of the Com-

mon Era. 6 Although ethnohistorical and archaeological evidence 

suggest that the indigenous people lacked navigational skills at 

the time of the European arrival (14 th – 15 th centuries CE), 7 it is 

worth mentioning that they migrated with all the necessary 

means to survive, including domestic animals and crop plants: 

goat (Capra hircus), sheep (Ovis aries), pig (Sus scrofa domesti-

cus), cat (Felis catus), dog (Canis lupus familiaris), barley (Hor-

deum vulgare), wheat (Triticum durum), lentils (Lens culinaris), 

beans (Vicia faba), peas (Pisum sativum) and, in Gran Canaria, 

figs (Ficus carica). 8–11 Whether the Amazigh populations reached 

the islands by their own means or by the intervention of the Ro-

man Empire is still a matter of contention between experts. 4 

Due to its strategic location in the Atlantic Ocean, Europeans 

conquered the islands, starting in 1402 when Jean de Bethen-

court occupied the island of Lanzarote and ending in 1496 with 

the defeat of the indigenous people of Tenerife by the Crown 

of Castile. The military conquest and, probably, the introduction 

of unknown diseases to the islands carried by the Europeans 

produced a high mortality in the native population. 12 Additionally, 

the European colonization and the new sociopolitical order led to 

the beginning of an admixture process, which translated into a 

gradual loss of the indigenous culture and language. 13 Apart 

from the European contribution, the forced migration of African 

enslaved people to work in sugar cane plantations and the 

intense commercial contact with the American continent pro-

duced additional admixture with African and Amerindian 

contingents. 14,15

In the past two decades, the study of DNA preserved in 

ancient remains (ancient DNA or aDNA) has been revolutionized 

by next-generation sequencing techniques, representing a 

powerful tool for disentangling the history of past populations 

and leading to the development of the paleogenomics field. 

The indigenous people of the Canary Islands have been the sub-

ject of several paleogenomic studies 16–20 that have provided 

valuable data on their origin and evolution. These studies have 

indicated that ancient Canarians originated in North Africa and 

that insular populations were variable, both regarding their ge-

netic composition and diversity. An alternative way of obtaining 

information on the origin of an ancient human population, their 

migration patterns, and their contacts with other geographical 

regions can be by analyzing the remains of their domestic ani-

mals and plants. This indirect approach has already been 

applied to the Canary Islands’ indigenous population by 

retrieving aDNA from animal and plant domesticated species 

used in this period. For example, the analysis of mitochondrial 

DNA (mtDNA) on pre-Hispanic pigs from La Palma, Tenerife, 

Gran Canaria, and Lanzarote showed the presence of maternal 

lineages related to wild boars from North Africa, 21 confirming 

previous results based on human aDNA. Similarly, nuclear sin-

gle-nucleotide polymorphism (SNP) data from pre-Hispanic 

barley seeds suggested a North African origin for the crops culti-

vated by the indigenous people. This study also showed that the 

genetic composition of barley has been constant from the 7 th 

century to the present, evidencing that the islands were not 

affected by gene flow after the initial colonization process. 22,23 

Overall, goats represented one of the main livestock among 

the indigenous population of the Canary Islands. Although 

zooarchaeological evidence indicates sheep herding was impor-

tant in the central and western islands, it did not surpass the use 

of goats. 11,24–29 Goats played a key role in the human adaptation 

to the islands’ environments, which lacked native ruminants or 

medium-sized mammals suitable for hunting. The indigenous 

people used goats for multiple purposes (e.g., meat, fat, milk, 

hides, and fiber production), which significantly shaped their ma-

terial culture and household strategies, with dairy products play-

ing an important role. 30 Zooarchaeological evidence also sug-

gests that goats were relevant in ritual practices, as their

Figure 1. Location of the archaeological sites included in the present study

Codes are as follows: 1 – Cueva de la Herradura, 2 – Belmaco, 3 – Buracas, 4 – El Tendal, 5 – Tigalate, 6 – Cuevas Herrera Gonzá lez, 7 – La Cañ ada de la Gurona,

8 – El Lomito del Medio, 9 – Cuevas de Bencomo, 10 – El Chorrillo (CH7), 11 – Los Riscos de Ifara, 12 – Tubo Volcá nico-Los Roques de Garcı́a, 13 – Aguadulce, 

14 – Hospital de San Martı́n, 15 – Los Caserones, 16 – La Fortaleza, 17 – Playa Chica, 18 – Cueva de Villaverde, 19 – Punta del Mallorquı́n, 20 – Llano del Sombrero, 

21 – Lobos, 22 – Peñ a de las Cucharas - Fiquinineo and 23 – El Portaló n. Roman, indigenous, and colonial sites are indicated with squares, circles, and triangles, 

respectively.
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remains have been found among offering contexts and funerary 

sites. 31–36 The importance of goats persisted into the colonial 

period, highlighting their enduring value in regional adaptation 

strategies and conditions. 10,37 For all these reasons, paleoge-

nomic evidence on goats could provide an excellent opportunity 

to deeply explore the genetic origin of the human population and 

the evolution and adaptation of domesticated animals in the 

islands.

Most aDNA studies on domesticated animals, including goats, 

have been performed using the mtDNA. There are several advan-

tages of using this molecule: a) it is inherited through the 

maternal line without recombination, which allows for an easier 

reconstruction of the genealogy of a population; b) it has a rela-

tively high mutation rate, suitable for identifying structure within 

populations; and c) it is a multicopy locus that provides a higher 

recovery of aDNA. In goats, mtDNA lineages are currently orga-

nized into six highly divergent haplogroups 38,39 : A, B, C, D, F, and 

G. Haplogroup F, exclusive nowadays of the bezoar ibex (Capra 

aegagrus aegagrus), is the lineage that radiated first. 39 Hap-

logroup A, that is almost fixed in present-day goats, diversified 

around 12,800 years ago (ya), coinciding with the beginning of 

the Neolithic transition. 39 Paleogenomic data generated by 

Daly et al., 40 including individuals from the western, eastern, 

and southern regions of the Fertile Crescent, indicate that goat 

domestication in the Near East was a process dispersed in 

space and time, rather than radiating from a central core. During 

the Neolithic, the mtDNA diversity was highly structured between 

western, eastern, and southern goats. This evidence suggested 

that domestication in the Near East happened in multiple events 

or involved multiple populations, producing genetically and 

geographically distinct Neolithic goat populations. 40 From that 

area, goats expanded and reached the edges of North and 

West Europe, as well as Asia and North and sub-Saharan Africa 

∼7,000 ya. 41,42 Following the Neolithic period, mtDNA differenti-

ation between regions decreased substantially, with haplogroup 

A becoming as widespread as observed in current goat 

populations.

Today, goats represent the most important and abundant live-

stock in the Canary Islands and play a crucial role in producing 

high-quality dairy products such as milk, cheese, butter, and 

yogurt. 43 Goats are exceptionally well adapted to the subtropical 

climate of the islands, including different arid and more humid 

microclimates. 44 There are three official breeds of Canarian 

goats: Palmera, Majorera, and Tinerfeñ a. 45 The Palmera breed 

is adapted to humid and abrupt areas, while the Majorera breed 

is adapted to arid and semiarid climates. Two different ecotypes 

exist for the Tinerfeñ a breed: South Tinerfeñ a, adapted to dry 

areas, and North Tinerfeñ a, adapted to humid areas. 44 Addition-

ally, there are several semi-feral populations, including Ajú i, Es-

quinzo, Pozo Negro, Cofete, and Pinalera. 46 Extensive genetic 

analyses have been performed on present-day Canary Islands 

goats, focusing both on the official breeds and the semi-feral 

populations. The first genetic study of Canarian goats was based 

on the PCR amplification and Sanger sequencing of the mtDNA 

D-loop and showed that present-day goats from the Canary 

Islands belong to haplogroup A 47 . Although an introduction of 

Iberian goats during the colonial period could be expected, 

this study demonstrated that the Canarian goats are character-

ized by a strong differentiation from the rest of the Spanish 

breeds, with a C to T substitution at position 641 that is exclusive 

to the Canary Islands. 47 A more in-depth analysis showed that 

current insular populations exhibit extensive haplotype sharing 

between them, indicating a common founder effect. 48 In fact, 

the most common ancestral mtDNA D-loop haplotype in pre-

sent-day goats was found by Ferrando et al. 48 in ancient individ-

uals by sequencing a small portion of the D-loop (112 bp). This 

suggests that modern goats could have descended from those 

brought to the islands by the indigenous people. Low diversity 

values have also been observed in present-day goats for micro-

satellites 46,49,50 and genome-wide data, 51,52 which imply a lack 

of gene flow in the islands. Regarding their origin, genome-

wide data align with results obtained from the indigenous human 

populations and other domesticates such as barley, 23 pointing to 

an affiliation of current Canarian breeds with African goats. 51–53 

Although mtDNA data have already been obtained from indig-

enous goats of the Canary Islands, 48 these were generated using 

PCR and Sanger sequencing, and focused on a small portion of 

the D-loop that excluded the Canarian-specific 641C>T variant 

identified by Amills et al. 47 Given the high rate of parallel and 

back mutations in the D-loop, this small portion of the mtDNA 

sequence on its own does not allow for a refined classification 

within A sub-haplogroups, 39 which could be instrumental for 

determining the lineages’ geographical origin. Instead, applying 

paleogenomic techniques has the advantage of providing com-

plete mtDNA genomes that allow a better geographic assign-

ment compared to those obtained from partial D-loop se-

quences. Another limitation of previously obtained aDNA data 

is that it only provided information on four individuals from the 

islands of La Palma, Gran Canaria, and Lanzarote, which is insuf-

ficient to characterize the whole population.

In this study, we performed a paleogenomic study of complete 

mitogenomes of ancient Canarian goats. With the aim of deter-

mining if goat insular populations were structured in the indige-

nous period, we obtained complete mitogenomes from goats 

from several archeological sites from the seven main islands. 

To determine if the Roman settlement produced an admixture 

event with the indigenous breeds, we also analyzed individuals 

from the islet of Lobos and another Roman site for comparison. 

Finally, we obtained complete mtDNA sequences from individ-

uals excavated in colonial sites (15 th to 18 th centuries CE) to 

ascertain if Canarian breeds were used after the European 

conquest.

RESULTS AND DISCUSSION

DNA conservation

The average endogenous DNA content for the entire sample set 

is 6.30% ± 10.28% (median = 1.72%, IQR = 0.35%–6.25%), with 

the maximum value reaching 50.5%. We observed heterogeneity 

in the endogenous values for the different locations and also 

within archaeological sites (Table S1). Despite analyzing faunal 

samples that are part of waste and cooked remains, the average 

endogenous rate is only slightly lower than that observed for hu-

man remains. 20 After removing low-endogenous samples 

(values below 0.5%; n = 36), we used edit distances to classify 

samples at the species level, identifying 104 goats and 47 sheep
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(Table S1). Among the samples classified as goats, we selected 

the best-preserved ones from each archaeological site for com-

plete mtDNA enrichment and sequencing.

Enrichment

Regarding the recovery of reads mapping to the mtDNA refer-

ence genome, shotgun libraries show endogenous rates around 

0.0085%. After the bleach treatment, the endogenous mtDNA 

rate increases almost four times, reaching an average value of 

0.033%. When the mtDNA capture methodology was used, we 

retrieved a mean endogenous mtDNA rate of ∼7% for both the 

libraries treated and non-treated with bleach, almost 850 times 

higher than the average value observed for the original shotgun 

libraries. As expected, the use of bleach increases the percent-

age of damage at the end of the molecules, but with the applica-

tion of the partial uracil-DNA-glycosylase (UDG) treatment, 54 this 

disadvantage can be easily managed. Finally, the use of mtDNA 

capture dramatically increases the rates of duplicates compared 

to shotgun data (1.69% vs. 77.0%). However, given that the 

improvement in the endogenous mtDNA rate is higher than 

800×, the loss of complexity is not a limitation for the recovery 

of high-coverage mitogenomes.

After enrichment, we obtained a total of 74 complete mitoge-

nomes from 23 different archaeological sites (Table S2). Mitoge-

nomes show an average depth value of 63.9× ± 52.7× (median = 

46.6×, IQR = 32.9–78.1×), with the maximum value reaching 

306.4× and the minimum 15.5× (Table S2). Successfully 

analyzed Roman individuals come from both Lobos (n = 17) 

and El Portaló n (Spain; n = 1) sites. 53 complete mitogenomes 

derived from the Indigenous period (Figure 1): three from El Hi-

erro (Cueva de la Herradura site), six from La Palma (Belmaco, 

Buracas, El Tendal and Tigalate sites), nine from La Gomera 

(Cuevas de Herrera Gonzá lez, Lomito del Medio and Cañ ada 

de la Gurona sites), four from Tenerife (Cuevas de Bencomo, El 

Chorrillo, Los Riscos de Ifara and Tubo Volcá nico-Los Roques 

de Garcı́a sites), 10 from Gran Canaria (Aguadulce, Los Case-

rones, La Fortaleza and Playa Chica sites), 20 from Fuerteven-

tura (Cueva de Villaverde, Llano del Sombrero and Punta del 

Mallorquı́n) and one from Lanzarote (Fiquinineo site). Finally, 

three colonial-era mitogenomes were successfully recovered 

from Hospital de San Martı́n in Gran Canaria.

Data authentication

All samples meet the standard aDNA authentication criteria, 

including DNA fragmentation and damage patterns due to cyto-

sine deamination toward the 5 ′ ends of molecules (Table S2). The 

average contamination rate is 3.48% ± 2.63% (median = 3.06%, 

IQR = 1.82%–4.53%) (Table S2). All individuals show contamina-

tion rates below 10%, except for CHIC-0026 from Hospital de 

San Martı́n (10.47%) and CHIC-0051 from Punta del Mallorquı́n 

(14.47%). After carefully reviewing the samples by visual inspec-

tion, the haplotypes for those two individuals were retained in the 

dataset. Briefly, we inspected the BAM file using Tablet 55 to 

explore the potential effect of contamination site by site. Based 

on the phylogenetic reconstruction of the goat’s mitogenomes, 

we confirmed that all the mutations leading to the individuals’ 

haplogroup were present, and those characteristic of other line-

ages were absent or minoritarian.

Mitochondrial DNA network reconstruction

We then reviewed the samples’ haplotypes and available 

archaeological data (Table S1) and removed potential duplicated 

specimens, leaving a total of 53 mitogenomes for haplotype 

network building and genetic diversity estimation (Data S1, 

Table S2). Phylogenetic analyses of the Canarian ancient goat 

mitogenomes (Data S1) indicate that they belong to two different 

clades. Two samples from Fuerteventura (one from Cueva de Vil-

laverde and one from Llano del Sombrero), one from La Palma 

(Belmaco), and two from the Roman site of Lobos belong to 

the A2a clade, defined by the 7213 mutation. 39 It is interesting 

that both goats from Lobos and Fuerteventura share the 257 

and 14750 mutations (defining the new clade A2a2), while the in-

dividual from La Palma is classified within A2a* with five private 

mutations (Data S1). The remaining Canarian goats are classified 

within the newly defined clade A8, characterized by mutations 

1237, 1541, and 6504 (Data S1). Within A8, individuals are clas-

sified into two groups. Seventeen goats belong to the A8* clade, 

including two from La Palma, two from La Gomera, two from 

Tenerife, six from Gran Canaria (one from the colonial site), and 

five from Fuerteventura, while it is absent in Lobos. The remain-

ing 30 individuals are classified within the newly identified A8a 

clade, characterized by a transversion in 1119. This lineage is 

observed in the indigenous populations of most islands and 

the islet of Lobos. Remarkably, while Roman individuals from Lo-

bos show lineages similar to those in the Canary Islands, the in-

dividual from El Portaló n in the Iberian Peninsula belongs to the 

A4 clade defined by Colli et al., 39 which has been observed 

exclusively in European goats (Data S1).

Phylogenetic analysis of indigenous individuals

The reduced-median network, including our dataset and previ-

ously published present-day and ancient sequences from clades 

A2, A4 and A8, is shown in Figure 2. As mentioned above, most 

indigenous samples belong to the A8* and A8a clades, while 

some individuals are in the A2 cluster (Figure 2, Data S1). Hap-

logroup A2 has been observed mostly in present-day goats 

from the Middle East and North Africa, and once in the Iberian 

Peninsula. 39 Additionally, A2a was present in Middle Eastern in-

dividuals from the Bronze and Iron Age periods. 40 Haplogroup 

A8* has also been observed in present-day goats from the Mid-

dle East 39 and one Middle Eastern sample from the Chalcolithic 

period, 40 while A8a seems to be restricted to the Canary Islands. 

The presence of A2 and A8 in a North African archipelago can be 

explained by the expansion of goats, along with Neolithic people, 

coming from the Near East since the second half of the 8 th millen-

nium cal BP, 41,56 and later with the subsequent colonization of 

the islands by a North African population. This would be consis-

tent with previous evidence from genome-wide data from pre-

sent-day goats from the Canary Islands, which found a closer 

affinity with populations from North Africa. 53 It also mirrors pale-

ogenomic evidence obtained for the indigenous people of the 

Canary Islands, which show that they were similar to Late 

Neolithic populations from Morocco. 20

Phylogenetic analysis of colonial individuals

The colonial individuals from the Hospital de San Martı́n site 

analyzed in the present study belong to two different periods. 10
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Sample CHIC-0024 belongs to Phase I, corresponding to the 

initial construction of the hospital from 1480 to the first half of 

the 17 th century, while samples CHIC-0025 and CHIC-0026 

belong to Phase II, from the second half of the 17 th century to 

1780. All colonial samples fall within A8, pointing to temporal 

continuity within indigenous and colonial times and up to the 

18 th century. This result is consistent with the maintenance of 

the indigenous caprine herds after the European conquest, 

with the new colonizers taking advantage of the fact that indige-

nous goats were adapted to the islands’ environment. 44 Actually, 

Brito et al. 10 determined that goats were one of the main sources 

of meat in the Hospital de San Martı́n. This pattern diverges from 

contemporary sites in the Caribbean, where meat production 

from native fauna and cattle outweighs that of caprines. The 

importance of goat consumption during the colonial period dem-

onstrates that European settlers exploited this well-adapted 

species and the indigenous management knowledge. 10 More-

over, the inclusion of indigenous domesticates into the colonial 

economy by Europeans has already been observed for other 

species such as barley 22,23 and lentils. 57

Phylogenetic analysis of Roman individuals

Regarding the Roman goats, individuals from Lobos belong to 

the same clades as the indigenous Canarian goats, while the Ibe-

rian goat from El Portaló n falls within the European A4 clade 

(Figure 2, Data S1). The haplotype sharing between Roman 

goats from Lobos and the indigenous goats from the Canary 

Islands points to a common North African origin for both popula-

tions. This could be the result of the contribution of Roman goats

from Lobos to the indigenous herds or vice versa, or due to a 

shared geographic origin for both populations in North Africa. 

The analysis of ceramic remains in Lobos has determined that 

the most abundant types are classified within the Dressel 7–11 

amphorae. 5 These cylindrical two-handled amphorae were pro-

duced in southern Spain and distributed around the western 

Mediterranean and across the north-west provinces during the

1 st and 2 nd centuries CE. 58 In addition, there has been evidence 

of the production of this type of amphorae in North Africa, more 

concretely in the Thamusida site (Sidi Ali ben Ahmed, present-

day Morocco), a Roman city in the province of Mauretania Tingi-

tana. 59 The second most-frequent typology of amphorae in Lo-

bos is Haltern-70. 5 These amphorae were widespread in the 

western Mediterranean and North Atlantic, from Portugal and 

Spain to Britain, Germany, France, Italy, and North Africa. 58 

The fact that the lineages observed for Lobos cluster with Middle 

Eastern, North African, and Canarian populations implies that, 

regardless of the geographical origin of the Roman individuals 

who operated the purple dye workshop in Lobos, the goats 

they consumed had a North African origin. Interestingly, archae-

ologists have found evidence of surface accumulations of Stra-

monita haemastoma shells, occasionally associated with un-

equivocally Roman ceramics, along the Moroccan coastline 

between Agadir and Fum Asaca. 60 At the latter site, indications 

suggest that S. haemastoma was exploited by the Romans in a 

context dated between the 2 nd century BCE and the 1 st century 

CE, contemporaneous with the site of Lobos. 61 This evidence 

implies that the Romans were present not only in the Canary 

Islands at these latitudes but also along the nearby African coast.
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Figure 2. Mitogenome median-joining network of ancient and present-day individuals belonging to haplogroups A2, A4, and A8
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A recent radiocarbon data analysis using strict radiometric hy-

giene methods and Bayesian methodologies has determined 

that the dye workshop and the indigenous occupation phase 

of the islands could have overlapped. 6 Moreover, the discovery 

of potential Roman artifacts at the indigenous sites of El Bebe-

dero and Buenavista in Lanzarote suggests interactions between 

Roman and Amazigh populations. 62 Although it would be plau-

sible that the goats in the main Canary Islands and the islet of Lo-

bos had a common origin in North Africa and resulted from inde-

pendent arrivals to the archipelago, it is more probable that both 

Roman and Amazigh settlements briefly overlapped, and the 

goats in Lobos were taken from the neighboring islands. This 

represents a more likely scenario as it would be easier for the 

Romans to take the goats from Fuerteventura or Lanzarote 

(2 and 8 km away, respectively), than to transport them 100 km 

from the North African coast. In favor of this hypothesis, there 

is evidence of the seasonal workers in Lobos taking advantage 

of local resources by consuming the eggs of shearwaters. 63

Haplogroup distribution analysis in Canarian goats 

When considering the Canarian populations exclusively 

(Figure 3), the network shows that the A8 is the most frequent 

clade in all islands, pointing to a common founder event. The 

basal A8a haplotype appears at the highest frequency, and it is 

present in all islands, except for Lanzarote. Given that the sam-

ple size for Lanzarote is just one, this result is not conclusive. The 

second most frequent haplotype is the basal A8*, and it is pre-

sent in both the western islands of La Palma and Tenerife, and 

the eastern islands of Gran Canaria and Fuerteventura. As previ-

ously mentioned, lineages in Lobos belong exclusively to basal 

haplotypes (Figure 3), attesting to the short period during which 

the dye workshop was operated. Conversely, A8* and A8a have 

a star-like shape when considering the indigenous goats, indi-

cating that both lineages radiated after their arrival on the islands 

(Figure 3). It is possible that both A8* and A8a were the founder 

lineages in the indigenous population. However, as only A8* has 

been observed outside of the Canary Islands, it is also possible 

that the mutation leading to A8a arose locally. However, A8 indi-

viduals from Lobos belong exclusively to the basal A8a hap-

logroup, pointing to the existence of this lineage already between 

the 1 st century BCE and the 1 st century CE. 5 It is also worth 

noting that lineages derived from the basal motifs are not shared 

between different islands, except for a haplotype shared by Lan-

zarote and Fuerteventura (Figure 3). Although a larger sample 

size would be needed to confirm this result, it could point to 

the absence of domesticates’ gene flow among islands during 

the indigenous period, with the exception of the two easternmost 

islands. This scenario aligns with the broader archaeological re-

cord, which documents frequent inter-island interactions be-

tween Lanzarote and Fuerteventura, 64 but the relative isolation 

of the remaining islands following their initial colonization. 3

The A2a2 clade is only represented in individuals from 

Lobos and Fuerteventura, with the sequences from Lobos also 

restricted to the basal haplotype (Figure 3, Data S1). The 

absence in our sample of A2a2 in other islands would agree 

with a connection between the indigenous goats from Fuerte-

ventura and those from Lobos. As stated before, it is possible 

to explain this result by the Roman purple dye workers taking 

goats from the North African settlers in the neighboring islands. 

However, another scenario would be that the Romans also intro-

duced goats—intentionally or accidentally—to Fuerteventura, 

leaving feral descendants that the Amazigh encountered in the

2 nd – 3 rd century CE. A similar pattern is documented in the Med-

iterranean, 65,66 where feral goats of Near Eastern origin were 

found on uninhabited islands. Explorers commonly left goats in 

remote territories for food: Captain Cook introduced them to
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New Zealand and Hawaii in the late 18 th century, and Admiral 

Perry abandoned goats on the Ogasawara islands in 1853. 67,68 

Although larger sample sizes would be needed to confirm this 

result, the sharing of A2a2 exclusively in the eastern islands 

could be reflecting the same phenomenon observed for humans. 

Briefly, the human indigenous populations of the western and 

eastern islands showed similar genetic backgrounds but with 

slight differences, with the eastern islands showing a higher 

contribution from a component associated with Bronze Age ex-

pansions in Europe. 20

Comparison of ancient and present-day goats from the 

Canary Islands

One limitation of this study is that previously generated data from 

ancient and present-day goats from the Canary Islands was 

based on the sequencing of the mtDNA D-loop, while our anal-

ysis was directed at the mtDNA coding region following Colli 

et al. 39 To overcome this limitation, we obtained the D-loop 

haplotype from mitogenomes with high coverage and compared 

them to the data generated by Amills et al. 47,69 and Ferrando 

et al., 48 including present-day goats from the Canary Islands, 

the Iberian Peninsula and North Africa. In total, we obtained D-

loop data from 26 indigenous goats (two from El Hierro, five 

from La Palma, five from La Gomera, two from Tenerife, six 

from Gran Canaria, five from Fuerteventura, and one from Lan-

zarote), three from colonial goats, and five from the Roman site 

of Lobos. When compared with previously published data 

(Figure 4), we determined that the most frequent lineage in pre-

sent-day goats is the basal A8 haplotype, coinciding with the 

most frequent D-loop motif in the indigenous goats and with 

one sequence from the colonial period. This comparison also al-

lows us to confirm that the polymorphism specific to Canarian 

breeds identified by Amills et al. 47 corresponds with a mutation 

that is present in goats belonging to the A8 haplogroup, which 

is also the founder haplotype identified by Ferrando et al. 48 in 

both modern and ancient Canarian goats. The only A2a2 individ-

ual analyzed for the D-loop (from Lobos) shares the same D-loop 

haplotype with 14 present-day samples, demonstrating the

presence of sequences related to A2a2 in the current population. 

Finally, the A2a lineage observed in an ancient goat from La 

Palma does not share the same motif with any present-day indi-

vidual, but it is two mutations away from a present-day goat from 

the Canary Islands. All these results allow us not only to attest to 

the temporal continuity of indigenous goat lineages from the 

initial colonization until colonial times, but also to confirm the 

sharing of mtDNA lineages between indigenous and present-

day goat herds as previously proposed by Ferrando et al. 48 

This scenario, corroborated by archaeological findings and pri-

mary written sources, 10 posits that incoming European settlers 

utilized indigenous caprine herds to enhance their livestock 

over the following centuries. Their choice was likely driven by 

the animals’ adaptive traits, 53 which made them particularly 

well-suited to the Canary Islands’ semiarid environment.

One characteristic of the present-day goat populations in the 

Canary Islands is a low genetic diversity, a strong differentiation, 

and high inbreeding values. 49,50,53,69 Both the coding region and 

D-loop networks indicate an extensive haplotype sharing in 

ancient and present-day goat populations. The haplotypic diver-

sity based on the D-loop sequence for the present-day popula-

tion of the Canary Islands reaches a value of 0.9115 ± 0.0002 

when all breeds are considered together, which is slightly lower 

than that of North Africa (0.9333 ± 0.0099) and the Iberian Penin-

sula (0.9848 ± 0.0009). The indigenous goats present an even 

lower value of just 0.2892 ± 0.0133, pointing to the effects of 

isolation during the indigenous period. The colonial goats show 

an intermediate value between pre-conquest and present-day 

times (0.6667 ± 0.0740), although this value is based on only 

three sequences.

Conclusions

In this study, we applied paleogenomic techniques to analyze 

goat populations in the Canary Islands across a temporal tran-

sect ranging from the 2 nd century CE to the 18 th century CE. 

The indigenous goat samples are classified into two distinct 

clades, A2 and A8, mainly observed in ancient and/or current 

populations from the Middle East, which agrees with a North

Figure 4. D-loop median-joining network of ancient and present-day individuals from the Canary Islands, and present-day individuals from 

North Africa and the Iberian Peninsula
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African origin for the Canarian goat populations. The same 

clades are present in the Roman workshop in Lobos, while the 

Roman sample from the Iberian Peninsula is similar to lineages 

observed in European individuals. This suggests a shared origin 

between the goat populations of the islet of Lobos and the other 

Canary Islands. Colonial and present-day individuals belong to 

the A8 haplogroup, indicating temporal continuity in the manage-

ment of livestock herds from indigenous to colonial and modern-

day periods, as has been observed in other species.

In the Canarian indigenous goat populations, haplogroup A8 is 

the most prevalent, with the basal autochthonous A8a subclade 

being present in all the islands except for Lanzarote (but from a 

sample size of 1), while A8* is found on both eastern and western 

islands of the archipelago. The star-shaped median-joining 

network suggests an initial introduction of the A8a and A8* line-

ages, followed by subsequent radiation. Additionally, the pres-

ence of unique haplotypes on individual islands, except for Lan-

zarote and Fuerteventura, indicates genetic isolation across the 

archipelago after the initial colonization event. The sharing of 

haplogroup A2a2 by Fuerteventura and Lobos indicates a 

possible connection, but it may also reflect a different genetic 

background between eastern and western islands, as it has 

been observed for human populations. Low diversity values in 

the indigenous goats compared to the colonial and contempo-

rary samples from the Canary Islands and North Africa are sug-

gestive of the extreme isolation of indigenous goat herds.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will 

be fulfilled by the lead contact: Rosa Fregel (rfregel@ull.edu.es).

Materials availability

This study did not generate new reagents.

Data and code availability

• Raw sequencing data generated in this study have been deposited at 

the European Nucleotide Archive (ENA) under accession number 

PRJEB90261 and are publicly available as of the date of publication.

• This article analyzes existing, publicly available genotype data, acces-

sible at ENA: https://www.ebi.ac.uk/ena/browser/home.

• This article analyzes existing mtDNA sequence data, accessible at 

NCBI: https://www.ncbi.nlm.nih.gov/.

• This article does not report original code.

• Any additional information required to reanalyze the data reported in this 

article is available from the lead contact upon request.

ACKNOWLEDGMENTS

This research was financed by the European Research Council under the Eu-

ropean Union’s Horizon 2020 research and innovation program (grant agree-

ment number 851733) and the Spanish Ministry of Science, Innovation, and 

Universities grants PGC2018-094101-A-I00, PID2021-123080NB-I00, and 

PID2021-122355NB-C31, funded by MCIN/AEI/10.13039/501100011033; 

the ‘‘ERDF A way of making Europe’’ project. CDP and SBAQ were funded 

by fellowships (TESIS2022010015 and FPI2024010099, respectively) co-

financed by the Canarian Agency for Research, Innovation and Information So-

ciety of the Counseling of Universities, Science and Innovation and Culture and 

by the European Social Fund Plus (ESF+) Integrated Operational Program of 

the Canary Islands 2021–2027, Axis 3 Priority Theme 74 (85%). JS was also 

funded by the Spanish Ministry of Science, Innovation, and Universities grants 

RYC2019-028346 and CNS2022-136039. KD conducted research with the

financial support of Taighde E ´ ireann – Research Ireland under Grant number 

21/PATH-S/9515(T). TG and PMM were supported by a grant from the Swed-

ish Research Council (2017-05267). Ancient DNA data generation for 

APOR012 was performed by the SciLifeLab Ancient DNA unit, and the 

sequencing of APOR012 was carried out by the SNP&SEQ Technology Plat-

form in Uppsala, part of the National Genomics Infrastructure (NGI), Sweden, 

and Science for Life Laboratory. The SNP&SEQ Platform is also supported by 

the Swedish Research Council and the Knut and Alice Wallenberg Foundation. 

JM work was carried out in the frame of the project PID2023-151226NB-I00 

funded by MICIU/AEI/10.13039/501100011033 and by FEDER, UE. We want 

to acknowledge Juan Capote for fruitful discussions about goats from the Ca-

nary Islands. We thank M a del Carmen del Arco Aguilar, Mercedes del Arco 

Aguilar, and Celia Siverio-Batista for providing samples from the sites of Lobos 

and Villaverde. Per their request, we declare that, although invited to partici-

pate in this study, they declined due to methodological disagreements 

regarding radiocarbon data analyses. Specifically, they do not agree with us 

on the need to apply strict chronometric hygiene to the study of the chronology 

of the human colonization of the Canary Islands. We thank the companies Ser-

vicios Integrales de Patrimonio Histó rico S.L.U. (Arqueometra) and Prored So-

ciedad Cooperativa for their technical assistance. Most of the computing an-

alyses were conducted using the Teide High-Performance Computing 

facilities (TeideHPC), provided by the Instituto Tecnoló gico y de Energı́as Ren-
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Gobierno de Canarias).
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18. Fregel, R., Ordó ñ ez, A.C., Santana-Cabrera, J., Cabrera, V.M., Velasco-
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Ancient fauna skeletal element This study Cueva de la Herradura - PGULL-1962

Ancient fauna skeletal element This study Cueva de la Herradura - PGULL-1965

Ancient fauna skeletal element This study Cueva de la Herradura - PGULL-2202

Ancient fauna skeletal element This study Cueva de la Herradura - PGULL-2203

Ancient fauna skeletal element This study Belmaco - PGULL-2197

Ancient fauna skeletal element This study Burracas - PGULL-2201

Ancient fauna skeletal element This study El Tendal - PGULL-1964

Ancient fauna skeletal element This study El Tendal - PGULL-2228

Ancient fauna skeletal element This study El Tendal - PGULL-2230

Ancient fauna skeletal element This study Salto de Tigalate - PGULL-2146

Ancient fauna skeletal element This study Cuevas de Herrera Gonzá lez - PGULL-0529

Ancient fauna skeletal element This study El Lomito del Medio - PGULL-0515

Ancient fauna skeletal element This study El Lomito del Medio - PGULL-0518

Ancient fauna skeletal element This study El Lomito del Medio - PGULL-0523

Ancient fauna skeletal element This study La Cañ ada de la Gurona - PGULL-0533

Ancient fauna skeletal element This study La Cañ ada de la Gurona - PGULL-0535

Ancient fauna skeletal element This study La Cañ ada de la Gurona - PGULL-0537

Ancient fauna skeletal element This study La Cañ ada de la Gurona - PGULL-0539

Ancient fauna skeletal element This study La Cañ ada de la Gurona - PGULL-0540

Ancient fauna skeletal element This study Cueva de Bencomo - PGULL-1786

Ancient fauna skeletal element This study El Chorrillo - PGULL-2220

Ancient fauna skeletal element This study Los Riscos de Ifara - PGULL-2143

Ancient fauna skeletal element This study Tubo Volcá nico - Los Roques de Garcı́a - PGULL-

2131

Ancient fauna skeletal element This study Agua Dulce - PGULL-1960

Ancient fauna skeletal element This study Agua Dulce - PGULL-1961

Ancient fauna skeletal element This study Caserones - PGULL-2144

Ancient fauna skeletal element This study Caserones - PGULL-2145

Ancient fauna skeletal element This study Hospital de San Martı́n - PGULL-1664

Ancient fauna skeletal element This study Hospital de San Martı́n - PGULL-1677

Ancient fauna skeletal element This study Hospital de San Martı́n - PGULL-1688

Ancient fauna skeletal element This study La Fortaleza - PGULL-1404

Ancient fauna skeletal element This study Playa Chica - PGULL-1968

Ancient fauna skeletal element This study Playa Chica - PGULL-2205

Ancient fauna skeletal element This study Playa Chica - PGULL-2207

Ancient fauna skeletal element This study Playa Chica - PGULL-2208

Ancient fauna skeletal element This study Playa Chica - PGULL-2210

Ancient fauna skeletal element This study Playa Chica - PGULL-2211

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1233

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1235

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1236

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1238

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1239

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1240

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1241

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1244

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1246

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1247

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1249

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1251

Ancient fauna skeletal element This study Cueva de Villaverde - PGULL-1256

Ancient fauna skeletal element This study Llano del Sombrero - PGULL-1969

Ancient fauna skeletal element This study Llano del Sombrero - PGULL-1971

Ancient fauna skeletal element This study Llano del Sombrero - PGULL-1972

Ancient fauna skeletal element This study Llano del Sombrero - PGULL-2235

Ancient fauna skeletal element This study Punta del Mallorquı́n - PGULL-1974

Ancient fauna skeletal element This study Punta del Mallorquı́n - PGULL-2217

Ancient fauna skeletal element This study Punta del Mallorquı́n - PGULL-2218

Ancient fauna skeletal element This study Punta del Mallorquı́n - PGULL-2219

Ancient fauna skeletal element This study Fiquinineo - PGULL-1963

Ancient fauna skeletal element This study Lobos - PGULL-1295

Ancient fauna skeletal element This study Lobos - PGULL-1296

Ancient fauna skeletal element This study Lobos - PGULL-1299

Ancient fauna skeletal element This study Lobos - PGULL-1300

Ancient fauna skeletal element This study Lobos - PGULL-1301

Ancient fauna skeletal element This study Lobos - PGULL-1302

Ancient fauna skeletal element This study Lobos - PGULL-1304

Ancient fauna skeletal element This study Lobos - PGULL-1305

Ancient fauna skeletal element This study Lobos - PGULL-1307

Ancient fauna skeletal element This study Lobos - PGULL-1308

Ancient fauna skeletal element This study Lobos - PGULL-1309

Ancient fauna skeletal element This study Lobos - PGULL-1314

Ancient fauna skeletal element This study Lobos - PGULL-1315

Ancient fauna skeletal element This study Lobos - PGULL-1316

Ancient fauna skeletal element This study Lobos - PGULL-1317

Ancient fauna skeletal element This study Lobos - PGULL-1319

Ancient fauna skeletal element This study Lobos - PGULL-1868

Ancient fauna skeletal element This study El Portaló n - APOR012

Chemicals, peptides, and recombinant proteins

2-Propanol Merck Cat#1.09634.1000

Absolute ethanol molecular biology grade Merck Cat#493546

AmpliTaq Gold® DNA Polymerase Applied Biosystems Cat#N8080247

ATP Solution (100 mM) Thermo Scientific Cat#R044

Bst DNA Polymerase New England Biolabs Cat#M0275L

dNTPs mix (25 mM each) Thermo Scientific Cat#R1121

PE buffer QIAGEN Cat#19065

PEG 4000 Thermo Scientific Cat#EL0012

Proteinase K Fisher BioReagents Cat#BP1700-500

Sodium Acetate (3 M), pH 5.5, RNase-free Invitrogen Cat#AM9740

Sodium Hypochlorite Solution 6–14% Merck Cat#13440-500 ML

T4 DNA ligase Thermo Scientific Cat#EL0012

T4 DNA Polymerase Thermo Scientific Cat#P0062

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

T4 Polynucleotide Kinase Thermo Scientific Cat#M0201L

Tango Buffer (10X) Thermo Scientific Cat#BY5

ThermoPol® Reaction Buffer New England Biolabs Cat#B9004S

Tween® 20 VWR Chemicals Cat#437082Q

UltraPureTM 0.5M EDTA, pH 8.0 Invitrogen Cat#15575020

UltraPureTM 1M Tris-HCl Buffer, pH 7,5 Invitrogen Cat#15567027

UltraPure TM DNase/RNase-Free Distilled Water Invitrogen Cat#10977015

UltraPure TM Guanidine Hydrochloride Invitrogen Cat#15502016

Uracil Glycosylase Inhibitor New England Biolabs Cat#M0281L

USER® Enzyme New England Biolabs Cat#M5505L

KAPA HiFi HotStart ReadyMix Roche Cat#7958935001

Critical commercial assays

myBaits Mito Goat Arbor Biosciences Cat#303008

MinElute PCR Purification Kit QIAGEN Cat#28006

QIAquick Nucleotide Removal Kit QIAGEN Cat#28306

Select-a-Size DNA Clean & Concentrator 

MagBead Kit

Zymo Research Cat#D4085

Qubit TM 1X High sensitivity dsDNA quantitation kit Invitrogen TM Cat#Q33231

Deposited data

Sequencing data This study European Nucleotide Archive (ENA) - Project: 

PRJEB90261

Curated haplotype data This study Table S1

Oligonucleotides

IS1 adapter: A*C*A*C*TCTTTCCCTA 

CACGACGCTC

Kircher et al. 70 Macrogen

IS2 adapter: G*T*G*A*CTGGAGTTC 

AGACGTGTGCT

Kircher et al. 70 Macrogen

IS3 adapter: A*G*A*T*CGGAA*G*A*G*C Kircher et al. 70 Macrogen

IS4: AATGATACGGCGACCACCGAGATC 

TACACTCTTTCCCTACACGACGCTCTT

Kircher et al. 70 Macrogen

IS5: AATGATACGGCGACCACCGA Kircher et al. 70 Macrogen

IS6: CAAGCAGAAGACGGCATACGA Kircher et al. 70 Macrogen

Software and algorithms

AdapterRemoval v2.3.3 Schubert et al. 71 https://github.com/MikkelSchubert/ 

adapterremoval; RRID: SCR_011834

bamUtil v1.0.15 Jun et al. 72 https://github.com/statgen/bamUtil

BCFtools v0.1.19 Li et al. 73 https://www.htslib.org; RRID: SCR_002105

bcl2fastq v2.19.1 N/A https://support.illumina.com/content/dam/ 

illumina-support/documents/downloads/software/ 

bcl2fastq/bcl2fastq-2-19-1-release-notes-

1000000035330-00.pdf; RRID: SCR_015058

BWA v0.7.17-r1188 Li and Durbin 74 https://github.com/lh3/bwa; RRID: SCR_010910

iTaxoTools v0.1 Vences et al. 75 https://github.com/iTaxoTools/iTaxoTools-

Executables/releases

MapDamage v2.2.1 Jó nsson et al. 76 https://github.com/ginolhac/mapDamage/ 

releases; RRID: SCR_001240

R v4.3.2 R Core Team 77 https://www.r-project.org/; RRID: SCR_001905

Samtools v1.15.1 Li et al. 73 https://www.htslib.org; RRID: SCR_002105

Tablet v1.17.08.17 Milne et al. 55 https://ics.hutton.ac.uk/tablet/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Permissions needed to analyze ancient faunal remains were granted by the local authority (Direcció n General de Patrimonio Cultural 

del Gobierno de Canarias; ref. 51/2020–0717115014). Fauna samples consisted of well-preserved teeth, bone and horn remains ob-

tained in excavations at indigenous and colonial sites across the Canary Islands and in two Roman sites (Lobos and El Portaló n). 

Given the difficulties in differentiating goat and sheep remains, most of the samples were first labeled as Ovis/Capra. In collaboration 

with local zooarchaeologists, we examined 271 well-preserved Ovis/Capra remains and selected 190 for aDNA analyses (Table S1). 

Among them, 32 samples come from the Roman sites of Lobos 5 (n = 31) and El Portaló n 78 in Burgos (Iberian Peninsula, n = 1). The 

Canarian Indigenous sample consisted of 142 samples from 34 different archaeological sites from the seven main islands (Table S1). 

Finally, we included 16 colonial samples from the Canary Islands. Most of them were obtained from the archaeological site of the old 

Hospital de San Martı́n in Gran Canaria (n = 13). This site is dated from the late 15 th to the 18 th centuries and it is characterized by high 

Ovis/Capra consumption. 10 In addition, samples were collected from the European occupation phase of the indigenous sites of 

Cueva de Herrera Gonzá lez (La Gomera; n = 2) 27 and Peñ a de las Cucharas - Fiquinineo (Lanzarote; n = 1) (Gilson, personal 

communication).

METHOD DETAILS

Ancient DNA laboratory work

DNA extraction and library preparation steps were performed in the clean lab facilities at the Paleogenomics Lab at Universidad de La 

Laguna (Canary Islands, Spain), except for those of the APOR012 sample that were carried out in the SciLifeLab Ancient DNA unit at 

Uppsala University (Sweden). Measures to avoid and monitor contamination from modern DNA were applied during sample manip-

ulation. Ancient DNA was extracted from teeth, bones or horns following Dabney et al. 79 and built into double-stranded indexed li-

braries following Kircher et al. 70

Shotgun sequencing data processing

Ancient DNA libraries were sequenced on an Illumina NextSeq 550 using a paired-end protocol, except for the APOR012 sample that 

was sequenced as part of an Illumina NovaSeq SP flow cell. Paired-end reads were merged and trimmed to remove adapters and 

low-quality bases (BASEQ <20) using AdapterRemoval v2.3.3. 71 Reads shorter than 30 bp were also discarded during the adapter 

removal step. Merged reads were then mapped to the goat (RefSeq: GCF_001704415.2) and sheep (RefSeq: GCA_000298735.2) 

reference genomes using BWA v0.7.17. 74 Low quality (MAPQ<30) and duplicate reads were removed using SAMtools v1.15.1. 73 

The percentage of endogenous DNA was calculated by dividing the number of reads remaining after filtering by the total number 

of trimmed reads. Duplicate rates were assessed by comparing reads before and after the duplicate removal step. Finally, 

MapDamage v2.2.1 76 was used to visualize misincorporation and fragmentation patterns. MtDNA contamination estimates were 

calculated based on the average number of mismatches observed in basal variable positions within our dataset. Briefly, we prepared 

a list of all the mutations considered as basal for the A8 and A2 lineages (194, 257, 1119, 1237, 1541, 6594, 7117, 7213 and 14740). 

Then, we performed SNP calling on all the samples using SAMtools mpileup, filtering the list of positions previously mentioned. Gen-

otyping data were used for estimating the mismatch rate per site, calculated as the number of reads with the minor allele (or alleles) 

divided by the total number of reads. The mean contamination value considering all sites and the 95% confidence interval were esti-

mated using R v4.3.2. 77 To minimize the effect of postmortem damage on the contamination estimation, we use the trimBam option 

from BamUtil 72 to trim 3 bp at both ends of the ancient DNA reads before the SNP calling step. In spite of that, we must acknowledge 

that this method potentially produces an overestimation of the real contamination value, as the observed mismatches can also be 

caused by postmortem damage and sequencing errors.

Species assignment was performed by calculating the edit distance of mapped reads to the goat and sheep genomes and 

choosing the species with the lowest value. Briefly, we used SAMtools view to generate the number of mismatches per read and 

then calculated the mean value using AWK. All individuals classified as goats with endogenous DNA rates higher than 0.5% were 

selected for downstream mtDNA analyses.

Library enrichment

Given that the remains of domesticated animals usually appear highly fragmented and could have been subjected to thermal 

alteration from food processing or other human activities, we anticipated low percentages of endogenous DNA due to DNA 

degradation. To overcome these limitations, we applied two different methods to enrich for goat mtDNA reads: one capture 

method targeting the whole goat mitogenome (myBaits Expert Mito kit; User Manual v5.00; Arbor Biosciences) and a bleach 

treatment prior to extraction to reduce exogenous DNA, 80 followed by a partial UDG treatment to repair deaminated cyto-

sines. 54 The treatment applied to each sample is detailed in Table S2. After the enrichment steps, the libraries were sequenced 

to saturation in an Illumina NextSeq 550 using a paired-end protocol. To explore the performance of the two enrichment 

methods, we compared the results obtained for the samples that were subjected to the mtDNA capture, the bleach treatment 

and the two protocols combined.
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QUANTIFICATION AND STATISTICAL ANALYSES

Mitochondrial DNA analysis

We observed a high divergence between the mtDNA reference and our samples that affected the mapping of endogenous reads to 

the control region. To overcome that limitation, we created an ancestral A mitogenome by combining the mutations expected for a 

basal A lineage in the coding region based on Colli et al. 39 with the ones observed in the control regions for the Canarian indigenous 

goats by Ferrando et al. 48 and used it as the reference sequence for mapping.

For those individuals with a coverage higher than 15×, mtDNA consensus sequences were generated using SAMtools and 

BCFtools v0.1.19. 73 A list of variants was then obtained using SAMtools mpileup, with a minimum depth of 5. MtDNA haplotypes 

were manually curated by visual inspection using Tablet v1.17.08.17. 55 Haplogroup classification was performed by phylogenetic 

analysis based on the complete mtDNA tree published by Colli et al., 39 which was built using mutations observed in the coding region. 

Briefly, after retrieving all available mtDNA genomes belonging to the haplogroups of interest from the NCBI (https://www.ncbi.nlm. 

nih.gov), median-joining networks were obtained using iTaxoTools v0.1. 75 Haplotypic diversity at population level was calculated ac-

cording to Nei and Tajima 81 using the hap.div function from the pegas package (v0.14). 82 Sampling the same bone or tooth was not 

always possible as, in most cases, remains were fragmented. Because of that, our strategy was focused on selecting the best-pre-

served remains rather than ensuring all samples corresponded with different individuals (although we tried to select remains from 

well-defined stratigraphic positions when possible). Given this, when constructing networks and calculating diversity values, we 

considered samples from the same archaeological site and the same stratigraphic unit with identical haplotypes as belonging to 

the same individual (Table S2). To take advantage of previously generated data from the Canary Islands, we retained the D loop 

haplotype of high-coverage mitogenomes, in such a way that D loop information was only considered for samples with a coverage 

higher than 99.5% and a depth higher than 30× in that region. D loop sequences were then combined with sequencing data from 

present-day goats generated by Amills et al. 47,69 and Ferrando et al. 48 and constructed median-joining networks as previously 

discussed.
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