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RGB, a Surrogate of Infrared Facial Videos for
Physiological Signs Estimations in Dark
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Abstract—Physiological signs are key indicators of cardio-
vascular health, which can be estimated using remote photo-
plethysmography. Their estimations in dark environments are
particularly important, where infrared based methods were
predominantly applied, since they are illumination resistant.
However, the extracted signals have poor pulsatile strength
with low signal-to-noise ratio, eventually resulting in spurious
estimates. Conversely, RGB based methods exhibits stronger pul-
satile strength, but hindered by poor illumination. To overcome
these limitations, we propose 2E1D-Net, trained using a self-
created database acquired in a dark environment with marginal
illuminance ≤ 1 lux. It comprises dual encoders that take paired
input images captured at different exposure levels, and project
them to a latent. The decoder then, elevates the noise (darkness)
component from the dark image, followed by multiscale feature
fusion, to produce enhanced images. 2E1D-Net was trained using
a linear combination of multiscale structured-similarity-index,
L1 and L2 losses, respectively. Subsequently, RGB heart rate
and oxygen saturation methods cascaded to trained 2E1D-Net,
were tested on self-created and public databases. Experimental
results proved the superiority of 2E1D-Net, over state-of-the-
art, which ensured the extended ability of RGB methods for
physiological measurements in dark, thereby proposing RGB as
reliable and clinically relevant alternative to infrared methods
without performance compromise.

Index Terms—Dark environments, Deep learning, Independent
component analysis, Physiological parameters estimations, Re-
mote photoplethysmography.

I. INTRODUCTION

PHysiological signs are critical indicators of the physiolog-
ical state of an individual. Their monitoring is vital for

various applications, including disease diagnosis, tracking the
immediate or long-term effects of surgery, medication therapy,
early identification of fatal disorders, and sleep analysis [1].
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A widely used approach for their estimation is remote photo-
plethysmography (rPPG) due to its non-contact nature, which
makes it suitable for unobtrusive monitoring over prolonged
periods in scenarios such as Neonatal Intensice Care Units
(NICU), skin sensitivity, non-contact sleep monitoring, and
nighttime driving. Typically, most rPPG methods use face
videos to measure subtle temporal colour variations that occur
due to blood flow in the arteries, synchronised with the cardiac
pulse.

Most real-time physiological sign estimation applications
require dim light or dark environments with a significantly
higher degree of motion, such as intensive care units and sleep
monitoring laboratories. These conditions can be detrimental
to the quality of rPPG signals, due to the challenges associated
with capturing substantial facial details [2]. Consequently, the
resultant signals have a weaker pulsatile amplitude with a
low signal-to-noise ratio, which eventually leads to spurious
estimates. To deal with such conditions, the infrared (IR)
spectrum has proven to be the best choice, as it is resistant
to illumination variations. However, the IR-extracted rPPG
signal exhibits poor pulsatile strength and is also susceptible to
motion artefacts (single channel) [3]. Increasing IR wavelength
channels can provide promising results [4], but also increases
associated costs and complexity.

Conversely, the RGB spectrum offer better pulsatile strength
and motion robustness [4]; however, it is sensitive to il-
lumination variations. In addition, poor illumination due to
dark environments makes the estimation of physiological signs
more challenging. To counter these challenges, the literature
suggests enhancing facial region of interest (ROI) by fine-
tuning camera exposure and gain [5], or using image enhance-
ment methods [6]. However, these approaches are limited in
the sense that not all cameras are equipped with these features,
for instance, embedded cameras on portable devices. Addition-
ally, selecting an efficient enhancement method is not trivial
and depends on the illumination condition. Furthermore, the
illumination conditions considered in the studies mentioned
above range between 1 and 104 lux, which are still far from
real-time scenarios, and are confined to the estimation of
heart rate (HR) only, despite the equal importance of other
physiological signs. Based on the above discussion, we aim
to highlight the following key questions with a focus on
physiological signs estimations in the dark real-time scenarios:

• What could be an optimal generalised light condition
threshold covering most clinical and non-clinical real-
time scenarios for physiological measurements in the
RGB colour space?

• Is it possible to provide a suitable enhancement method
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that ensures substantial extraction of ROI details to ex-
tract the rPPG signal accurately?

• Is it possible to estimate physiological signs other than
HR in dark environments?

Having identified the key questions, the next step is to find
answers to each of these questions in the literature, as outlined
in the following subsection.

A. Literature Review

As mentioned earlier, the feasibility of estimating physi-
ological signs in dark environments depends on preserving
the substantial facial ROI details from the captured dark
videos. In practice, the combination of image enhancement
and estimation of physiological signs can be a potentially
viable solution for this task. Therefore, the state-of-the-art
developments corresponding to both domains will be presented
and analysed in this section.

1) Image Enhancement: Conventional image enhancement
methods have inherent limitations, such as illumination blind-
ness, under- or overexposure, poor visual perceptibility, sus-
ceptibility to colour distortions, and high noise. To counter
these limitations, the first deep learning-based method, LLNet
by Lore et al. [7], was developed for image denoising and
contrast enhancement. Adopting a more principled approach,
several deep learning methods based on retinex theory were
also proposed in the literature, including KinD++ [8], PairLIE
[9], and Self-Calibrated Illumination (SCI) [10]. The novelty
of these methods stems from the unique capabilities of deep
learning architectures for image decomposition, illumination
enhancement, and reflectance restoration. However, their per-
formance depends on the assumptions of extracting illumi-
nance and reflectance components, such as piecewise smooth-
ing of illumination maps and degradation-free reflectance
components, except for KinD++, which does not hold in every
scenario.

Additionally, several generative modelling attempts, such as
EnlightenGAN [11], were also proposed to improve generalis-
ability and overcome the overfitting problem. Similarly, LED-
Net [12] was proposed to model different types of degradation
for effective enhancement.

To counteract the issue of limited labelled data for enhance-
ment, zero-shot learning was also explored for image enhance-
ment, resulting in methods such as Zero-DCE++ [13] and
BrightsightNet [14] (improved variants of Zero-DCE [15]).
These methods primarily learn the mapping between low-
light images and parameter maps based on quadratic curves.
Recently, context-aware mapping methods [16], [17] have also
been proposed to use text prompts for enhancement, which
rely on the accurate identification of style embeddings [16]
and text semantics [17], respectively.

All of the methods mentioned above belong to the category
of low-light enhancements; however, the literature lacks a con-
crete definition of the term low-light which needs to be quan-
tified for physiological sign estimations in dark conditions.
To counteract this ambiguity, after conducting experiments
under different light conditions, we found that a marginal
illuminance value of 1 lux or less is suitable for designing

estimation pipelines for applications ranging from sleeping
environments to night-time driving, which answers the first
question presented in the previous subsection.

2) Physiological signs estimations: IR spectra are robust
to poor illumination or corresponding variations. Therefore,
several methods such as TURNIP [18] and AutoSparsePPG
[4] were used for dark driving scenarios at night and at
NICUs, respectively. To account for weaker pulsatile strength
and motion susceptibility, Wang, Woster, and Brinker [19]
introduced multichannel IR spectra for robust motion-resistant
HR estimations in dark environments. A more sophisticated
approach, combining RGB and near infrared (NIR) was also
proposed in numerous studies such as Lie et al. [20], Park et al.
[21], Kado et al. [22], respectively. However, these approaches
significantly increased the data dimensionality and complexity,
resulting in sophisticated data processing pipelines.

Conversely, several RGB-based non-contact estimation
methods were also proposed for physiological measurements
in low-light environments. Concretely, the following studies
[2], [5], [6], [23] proposed a cascaded combination of en-
hancement and estimation for HR estimations in illumina-
tion environments ranging between 1 and 400 lux. These
studies were confined to HR estimations only. Furthermore,
the results showed the suboptimal performance of the HR
estimations under low illuminance conditions. Interestingly,
Oxygen saturation (SpO2) estimations have not been attempted
so far in dark / low light environments, possibly due to their
dependence on infrared wavelengths. Therefore, this study
does not only attempt to estimate HR but also SpO2 based
on the conventional Ratio of Ratios (ROR) approach using red
and blue channels, from videos acquired in dark environments.

B. Contributions

In line with the limitations presented in Sections I-A1 and
I-A2, the main contributions of this work are as follows:

• Assuming an average illuminance ≤ of 1 lux, a new dark
video data set was acquired using the data acquisition
system presented in Fig. 6, with characteristics presented
in Table I.

• A deep learning architecture two encoders-One decoder
Network (2E1D-Net), comprising two encoders and a
decoder with a weighted loss function, was proposed to
enhance the image frames of dark videos.

• 2E1D-Net being the best performing enhancement
method (see Table II, and Fig. 7) was cascaded to state-
of-the-art (SOTA) non-contact estimation methods to es-
timate HR and SpO2 in the proposed dark environment.

• The combination of 2E1D-Net with U-LMA, and ROR
outperformed all RGB and IR based HR, and SpO2
estimation methods.

II. PROPOSED METHODOLOGY

The notion of RGB-based physiological measurements in
dark environments represents a relatively new concept, diverg-
ing from the conventional reliance on IR spectra to estimate
physiological signs [4], [18], [19], [24], [25]. Furthermore,
the absence of a publicly available database that addresses the
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Fig. 1: A flow diagram of the proposed method for extracting HR and SpO2 estimations in dark environments.

specific conditions considered in this study adds to the novelty.
Existing studies typically operate within an illuminance range
of 1 to 400 lux, different from the assumed low-light condi-
tions in our study. Consequently, we propose a new database to
explore the feasibility and reliability of the proposed approach.

The proposed approach for physiological measurements
in the assumed environment involves two main steps: 1)
enhancing the quality of facial video frames and 2) estimating
physiological signs (HR and SpO2). Fig. 1 visually outlines
this process. Effective enhancement of image frames requires
an efficient enhancer capable of revealing details hidden in
darkness. Subsequently, a method for estimating physiological
signs should accurately extract the rPPG signal, facilitating
correct HR and SpO2 estimations.

Given the limitations of existing image enhancement meth-
ods in providing substantial improvements, we introduce a
new deep learning-based image enhancement method called
2E1D-Net. This method uses a paired sample of images
captured at different exposure levels for enhancement. The
structure of 2E1D-Net is inspired by the concept of colour
information propagation proposed by Welsh et al. [26], with
the difference that instead of an image, the feature represen-
tations of the images at the multi-scale level are transferred
for image enhancement. The trained model is then integrated
with SOTA non-contact estimation methods for HR and SpO2,
respectively. The subsequent sections present the details of the
proposed approach.

A. Mathematical Formulation of the Enhancement Task

The videos acquired under the assumed dark conditions
consist of a sequence of poorly illuminated frames, making
it challenging to extract sufficient facial details, and conse-
quently to track temporal colour variations due to pulsatile
blood flow, required for extracting Photoplethysmography
(PPG) signals for physiological measurements. Therefore,

these image frames need to be enhanced for physiological
measurements. Assuming darkness as D and cleaner image
as I ′, poorly illuminated or dark image Id, can be defined as
follows:

Id = I ′ +D (1)

Since the distribution of darkness is unknown, approxi-
mating D and subtracting it from Id, results in Ĩ , which is
an approximation of I ′. To introduce this inversion, we will
need a substantially cleaner version of Id, that can provide
chromatic and textural prior, to learn an enhancement function
G, that reconstructs a noise suppressed and illumination-
consistent image Ĩ to preserve temporal colour variations for
extracting rPPG signal as:

Ĩ = G(Id ∥ Ia) (2)

a) 2E1D-Net design rationale: Unlike generic enhance-
ment frameworks optimised for perceptual aesthetics, our
objective is to ensure that the reconstructed image frames
should retain the subtle colour variations critical for rPPG,
that requires constant global tone and contrast for stable facial
region tracking and precise reconstruction of local fine-scale
variations corresponding to periodic skin reflectance changes.
An encoder-decoder architecture satisfies these requirements
by supporting hierarchical abstraction and progressive recon-
struction, i.e. coarse-scale features govern global illumination
balance, while fine-scale features capture local physiologically
relevant chromatic oscillations. We therefore propose a dual
encoder, single decoder configuration (2E1D-Net), in which
one encoder processes low signal-to-noise ratio (SNR) input Id

to extract structural and temporal cues, and the second encoder
processes Ia to propagate illumination and colour priors.

b) Dual-encoder and multi-scale residual fusion: Let
G

(d)
En and G

(a)
En denote encoders for Id and Ia, respectively,

and GDe the decoder. Furthermore, both encoders extract hi-
erarchical features at multiple spatial resolutions, essential for
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handling the non-uniform illumination and spatially varying
noise due to dark environments. The coarse level captures
global illumination structure, and fine features preserve tex-
ture, colour, and shape variations. The multi-scale feature
representations for both encoders can be represented as:

Fd,i = G
(d)
En,i(I

d), Fa,i = G
(a)
En,i(I

a). (3)

The decoder reconstructs Ĩ by progressive upsampling.
After each transposed convolution Ti(·), illumination-context
features from the reference encoder are injected through resid-
ual learning, followed by a convolutional refinement block
ψi(·):

Fdec,i = ψi

(
Ti(Fdec,i−1)

⊕
res

Fa,i

)
, (4)

where
⊕

res denotes element-wise addition across number
of kernels, and ψi comprises the convolution and activation
layers. The multi-scale features extracted at each scale (G(d)

En,i)
was propagated to the decoder based on dimensionality con-
straints. After the n decoder stages, the enhanced image is
obtained as:

Ĩ = GDe({Fdec,i }ni=1)

= GDe

(
{ψi(Ti(Fdec,i−1)

⊕
res

Fa,i) }ni=1

)
(5)

A low pass filtering (a few convolution operations) was also
applied to counter the chromatic overcompensation (Fig. 9(b)),
which occurred due to disproportionate amplification of red
and green colour channels, then green.

c) Interpretation and architectural innovation: Equa-
tions (4)–(5) formalise the multi-scale residual fusion process,
where features from the reference encoder progressively guide
the decoder at different resolutions. This cross-branch con-
ditioning enables illumination correction and noise suppres-
sion, while preserving the fine chromatic details that encode
physiological pulsations. In particular, unlike Retinex-based or
single-encoder U-Net architectures, 2E1D-Net performs phys-
iologically constrained enhancement through residual cross-
illumination fusion, explicitly designed to maintain both global
photometric consistency and local temporal colour fidelity
essential for rPPG signal estimation in dark environments.

d) Objective: The network parameters are optimised
using a composite loss:

min
G

L(G) =
∑
j

αj Lj , (6)

where Lj represents individual loss components: L1, L2 and
MS-SSIM, and αj are the corresponding weighting coeffi-
cients.

B. Loss Function

In the absence of appropriate ground truth, a loss function
with well-defined constraints is key to the generalisability and
robustness of unsupervised deep learning models. Fortunately,
a paired image sample with different exposure levels with
carefully designed loss components can efficiently guide the

network training process, which eventually must result in
enhanced images. These images, when temporally aligned,
should be able to preserve substantial ROI details, which
would facilitate the temporal extraction of subtle colour
variations for the extraction of the rPPG signal. Therefore,
enhanced images should be able to preserve substantial image
details, such as colour, shape, and texture.

Therefore, assuming that the paired image sample [Id,Ia]
shares a similar object of interest, the proposed loss func-
tion aims to exploit the similarity of image samples. Colour
information can be preserved with channel-wise pixel in-
tensity differences between the enhanced image, that is,
L1 =

∥∥∥Ĩ − Ia
∥∥∥
1
. Furthermore, the higher degree of distortions

in Id resulted in shape irregularity, as shown in Fig. 2(d)
(the reflectance map is shown for a better representation),
which can be alleviated by restoring the edges of the object.
Based on a study by Zhao et al. [27], it was found that
mean squared error (MSE) can efficiently preserve edges.
Therefore, edge preservation can be achieved using MSE

between the Ĩ and Ia as L2 =
∥∥∥Ĩ − Ia

∥∥∥2
2
. Finally, texture

or structural similarity can be improved by calculating the
structural similarity index, also known as structured similarity
index metric (SSIM) [28], therefore the following equation
SL = (1−SSIM(Ĩ , Ia)) could be used to train the network.
However, the flatter regions of the image cannot be improved
by using the conventional SSIM, as the network could not
preserve the local structure, and splotchy artefacts will also
be reintroduced due to a substantially low standard deviation
in those regions. This problem can be resolved using multi-
scale SSIM [27]; therefore, the above equation is modified to
(1−MS − SSIM(Ĩ , Ia)). Based on the above analysis, the
loss function can be defined as:

min
G

loss(G) = (α1L1 + α2L2 + α3SL) (7)

where α1, α2, and α3 are the balancing factors of L1, L2,
and SL. Eq. (7) is optimised with an Adamax algorithm [29]
with a learning rate of 1e − 4, to minimise the loss function
proposed to enhance the images.

C. 2E1D-Net

Based on section II-A, a two encoder, one decoder network
named 2E1D-Net is proposed, which takes paired image sam-
ples, each captured at different exposure levels. In particular,
2E1D-Net relaxes the condition of equal pairwise low-high
combinations for enhancement, as it needs only one reference
image to enhance the whole dark video. Also, the reference
image used for contextual information propagation is not
the ground truth but an approximation with better perceptual
visibility than dark image frames of the video. The schematic
diagram illustrating the 2E1D-Net architecture is presented
in Fig. 3. The encoder-decoder framework alleviates the dark
component of the dark image. On the other hand, the additional
encoder improves the enhancement process by extracting and
transferring the contextual information at a multi-scale level
from the high-exposure level image using residual learning.
Additionally, the feature representations of the last convolution
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((a)) ((b))

((c)) ((d))

Fig. 2: Original images (a,b), and corresponding reflectance
map (c,d) from fine-tuned Kind++. Note that the distortions
are neither visible in original images nor illumination maps,
so reflectance maps are used to show the distortions in the
random image samples.

blocks of both encoders are fused before being passed to
the decoder. Subsequently, the feature maps of the additional
encoder, at different scales, are fused with the deconvoluted
feature map of the respective deconvolution block through
residual connections. The decoder also possessed a refinement
block to avoid the effect of minute colour distortions causing
chromatic overcompensation and preservation of image details,
followed by a sigmoid activation to produce an enhanced
image. A detailed explanation of various components of the
proposed 2E1D-Net is presented in the following subsections.

1) Encoder architecture: The encoder aims to encode the
images to their equivalent feature representations for image
enhancement tasks: 1) to efficiently segregate the noise from
the information of interest due to their different distributions,
and 2) to ensure appropriate contextual information propaga-
tion for improved enhancement.

The 2E1D-Net encoders share a similar architecture consist-
ing of five convolution blocks (CBs), as illustrated in Fig. 4.
The first CB consists of four convolution layers, the last two
incorporating Rectified Linear Unit (ReLU) activations. The
convolution layers extract features, while ReLU activations
help to learn complex patterns. In contrast, the other CBs
consist of ReLU-activated convolution layers and a maximum
pooling layer to sub-sample the prominent features of the
feature map. All convolution layers have a kernel size of 3
with stride 1, while maximum pooling has a kernel size and
stride of 2, respectively.

2) Decoder architecture: The decoder decodes the feature
representations by hierarchically decoding the features from
the encoders. The input to the decoder architecture is the
aggregated set of features of both encoders. It consists of three
deconvolution Blocks (DCBs), each consisting of a deconvolu-
tion followed by ReLU-activated convolution layers (Fig. 5).
The deconvolution layer decodes feature representations by
maintaining the same connectivity pattern as during encoding.
The respective ablation study demonstrated that the encoder-
decoder framework (ED-Net) could not preserve colour infor-
mation and suffers from shape irregularity. Therefore, having
shared the object of interest by paired image samples [Id, Ia],
the respective feature maps of Ia (from the additional encoder)
are fused with the deconvoluted feature maps at different scales
using residual learning. Subsequently, the fused feature map
is passed through a ReLU-activated convolution layer of DCB
for feature extraction. Following, a refinement block was also
used to elevate the effect of minute colour distortions that
cause chromatic overcompensation and preserve image details.
It consists of four convolution layers with ReLU activation,
except for the last, where a sigmoid activation is applied
to generate the enhanced image. The contributions of these
components of 2E1D-Net are demonstrated using carefully
designed ablation studies in the following sections.

D. Physiological Signs Estimations

The trained 2E1D-Net is cascaded with SOTA RGB spectra-
based non-contact physiological sign estimation methods for
HR and SpO2 measurements in the dark environment (illu-
minance ≤ 1 lux) to achieve two objectives: 1) investigate
the ability of 2E1D-Net to preserve substantial image details
for accurate extraction of PPG information, and 2) test the
conjunctions mentioned above for non-contact estimations of
HR and SpO2, in dark environments. This work compares nine
SOTA HR estimation methods and ROR method for SpO2
estimations, operating in the RGB colour space, respectively.
Finally, the best conjunction was also compared with SOTA
IR-based methods to investigate if the proposed conjunctions
operating in the RGB colour space could provide performance
comparable to IR-based methods, satisfying the darkness con-
straint. Since darkness conditions were not reported in the
respective IR spectra-based studies, the relevant studies were
selected if the proposed methods were tested in dark envi-
ronments. In addition, the default conditions for each method
were maintained for better performance and fair comparisons.

E. Dark-Video Dataset

Due to the entirely different and challenging real-time
darkness conditions assumed in this work, a database, namely,
the Dark-Video dataset, is proposed. This can be considered
a step to alleviate the limitation of limited publicly available
datasets for rPPG signal extraction with an emphasis on dark
environments. The data set was collected considering factors
such as age, ethnicity, sex, etc., which affect the quantity and
quality of the extracted rPPG signal.

The proposed Dark-video dataset captured by the system
presented in Fig. 6 consists of an image captured in ambient
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Fig. 3: Architecture of Proposed 2E1D-Net. The dimensions of feature maps of the decoder can be determined from Encoder,
due to the requirement of same dimensions for feature aggregation.

Fig. 4: Encoder architecture consists of two types of convolu-
tion blocks (1st CB) and (CB). 1st CB consists of 4 convolu-
tion layers with ReLU activations (Yellow with orange color);
CB consists of a convolution layer with ReLU activation,
followed by a max-pooling layer (dark orange).

light, a video for 90 seconds in a dark environment using a
webcam embedded on a laptop, synchronised with ground-
truth HR and SpO2 values using a CMS60C pulse oximeter
for each subject. A schematic representation of the image
and video acquisition system is shown in Figs. 6(a) and
6(b), respectively. The dark environment, characterised by an
average illuminance value ≤ 1 lux, is measured and maintained
using a lux metre XFUK-881F with a resolution of 0.1 Lux /
Fc and a range of 1 to 400 000 lux. The proposed value of 1 lux
was empirically found based on data collection under different
illuminance values, ensuring dark environments, where the
dark environment is defined as conditions infeasible to extract

Fig. 5: Decoder architecture consists of deconvolution blocks
(DCB) and refinement blocks (RFB). DCB consists of a
transposed convolution layer (gray) and a ReLU-activated
convolution layer. RFB has the first three ReLU-activated
convolution layers, followed by sigmoid activation (purple).

the face regions for physiological measurements. The data
set will be made available to researchers upon email request,
followed by signing the database usability agreement 1. The
data set comprises 57 compressed RGB images and videos
collected from 55 subjects with diverse ethnic regions (45
European, 5 Asian and 5 African) and gender (41 males and
14 females), aged between 18 and 61 years. The video and
image samples were captured using five different webcams:
720p Face Time HD camera (Apple Macbook Pro), HD web-
cam 720p (Asus Vivobook S15 S530F), Logitech C170-480p,
Logitech hd720, to account for different camera characteristics
and variable frame rates, respectively. Each participant was

1http://dark-video.biesalab.org/
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((a)) ((b))

Fig. 6: Acquisition System: (a) Image acquisition consisting
of a person facing the camera with illumination source for
high exposure image capturing,(b) Video Acquisition system
consisting of laptop camera with an internal source of light,
and oximeter sensor attached to the index finger of the subject.
(Video and high exposure image capturing share a common
object of interest, i.e., facial region of the subject).

TABLE I: Proposed Database Summary

Features Values
Participants 55
Age Range 19-61 years
Ethnicity 45 European, 5Asian, 5 African
Data Image, Video (90 seconds), Heart rate and SpO2

values
Gender 14 females and 41 males
conditions Ambient (image) and dark (video)
HR range 46-93 bpm
SpO2 range 94-99%

asked to sign the informed consent, approved by the ethical
and data protection committee of the University of Madeira
by the identification number 1 / CEUMAI / 2021, before
participating in the data collection process. The summary of
the proposed database is presented in Table I.

It is important to mention that the study by Xi et al. [2]
has also proposed a data set that includes some video samples
that partly correspond to the illumination condition considered
in this study. Specifically, unlike Xi et al. [2], the video
samples of the proposed Dark-Video dataset were collected
in extremely dark environments (≤ 1 lux), which correspond
to sleeping and night-time driving environments, such as unlit
highways or rural roads. Therefore, the novelty of the proposed
data set can be explained based on the application-specific
context that corresponds to driving environments at night and
at sleep. Furthermore, the data set proposed by Xi et al. [2]
consists of video samples ranging between 1 lux and 100
lux to analyse the effect of various illumination conditions
on physiological measurements, while the proposed Dark-
Video data set was explicitly created considering physiological
measurements in extremely dark conditions.

III. RESULTS

This section first presented details on the implementation of
the proposed image enhancement method, as well as the HR
and ROR methods. The analysis is divided into four parts:
1) a comparative analysis of image enhancement methods; 2)
another comparative analysis of RGB-based HR and SpO2
estimation methods, cascaded to best image enhancement
method; 3) analysis of the best enhancement-estimation com-
bination under different illumination conditions using a pub-
licly available dataset; and 4) compare the best combination
from 2), with existing IR-based methods. In addition, a root
mean square error (RMSE) analysis was also performed for
all HR estimation methods, to provide insights about the
estimation performance.

A. Implementation details

A data set comprising 57 videos was used to design experi-
ments for image enhancement and estimation of physiological
signs. For image enhancement, videos were transformed into
sequential image frames, resulting in 43, 534 images, which
were randomly sampled in the 50:25:25 ratio (%), to form
training, validation, and testing data sets, ensuring subject
independence. This resulted in a training set comprising
21, 767 images, while the validation and testing data set
consisted of 10, 884 and 10, 883 images, respectively. The
image enhancement network 2E1D-Net was trained using a
batch size of 8 with image dimensions 256× 256× 3 for 60
epochs using the Adamax optimiser with a learning rate of
1e−4. An early stopping criterion with a patience value of five
was also used as a termination criterion to stop training. For
HR and SpO2 measurements, the default conditions reported in
the respective studies were maintained for better performance
and fair comparisons.

B. Image Enhancement

The performance of 2E1D-Net is compared with its variant
ED-Net (single encoder-decoder, taking only dark image as
input) and nine SOTA image enhancement methods, which
included zero-shot learning (Zero-DCE++ [13], BrightsightNet
[14]), Retinex theory (PairLIE [9], and KinD++ [8]), LYT-
Net [30], generative modelling (EnlightenGAN [11]), and full
low-light image-based methods (NerCO [31], Self-Calibrated
Illumination (SCI) [10], LEDNet [12]), respectively. The key
component of the methods included for the comparative anal-
ysis was that they used the encoder-decoder framework as the
baseline. All methods were analysed using the proposed Dark-
Video data set, focussing on the specific problem addressed
in this work, i.e., HR and SpO2 estimations in the dark
environment considered using RGB videos.

All SOTA image enhancement methods were fine-tuned
based on the default conditions reported in the respective
articles. Subsequently, their performance was analysed qualita-
tively and quantitatively, using visual comparisons and the fol-
lowing metrics: peak signal-to-noise ratio (PSNR) [32], SSIM
[33], naturalness image quality evaluator (NIQE) [34], and
learned perceptual image patch similarity (LPIPS) [35]. Fur-
thermore, different ablation studies were designed to further
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((a)) ((b)) ((c)) ((d)) ((e)) ((f)) ((g)) ((h)) ((i)) ((j)) ((k))

Fig. 7: Comparative analysis of image enhancement methods, depicting image samples from European (top), Asian (middle),
and African (bottom) ethnic groups: (a) original, (b) Zero-DCE++, (c) BrightsightNet, (d) PairLIE, (e) KinD++, (f)
EnlightenGAN,(g) NerCO, (h) SCI, and (i) LEDNet, and (j)2E1D-Net (Proposed).

investigate the performance of the constituting components of
2E1D-Net, and the visual results are presented in the following
subsections.

The qualitative comparisons are presented in Fig. 7, while
Table II presents the quantitative comparisons for all image
enhancement methods. The suboptimal performance of zero-
shot learning methods is attributed to parameter map esti-
mation using quadratic light curves. Due to the presence of
vivid colour and texture distortions in the low-light images,
the estimated parameter maps, even after fine-tuning, could
not provide substantial enhancement. An illustration in Fig.
8(a) illustrates this fact. Additionally, since BrightsightNet
and Zero-DCE++ are both based on the same baseline, i.e.,
Zero-DCE, this finding is assumed to hold for both methods.
Similarly, the Retinex theory-based methods (PairLIE and
KinD++) could not provide substantial enhancement due to
the underlying assumptions of the Retinex theory. Specifically,
Retinex theory assumes a degradation-free reflectance map,
which is not always feasible in practical situations, as also
pointed out in the original KinD++ study [8]. Addition-
ally, since the low-light images were highly distorted, the
mechanisms used for illumination refinement and reflectance
restoration in these methods could not substantially elevate
the effect of these distortions, ultimately resulting in distorted
images. Fig. 8(b) presents an illustration of the reflectance
map, produced by layer decomposition Net of KinD++, fine-
tuned by the proposed data set (the illuminance component is
not shown since it is a full black image).

The substandard performance of EnlightenGAN, NerCO,
SCI and LEDNet is also apparent in Fig. 7 and Table II,
respectively. The suboptimal performance of EnlightenGAN
is due to the poor performance of its self-regularised attention
mechanism, which is dependent on the illuminance of the low-
light image samples. Specifically, the attention mechanism was
unable to accurately identify darker regions (only the facial
and upper region were identified as dark regions), resulting
in enhancement to only these regions, as shown in Fig.
8(c). However, the slight enhancement was due to carefully
designed losses and a global-local discriminator. Upon critical
analysis of the architecture of NerCO and LEDNet, it was

TABLE II: Comparative analysis of image enhancement meth-
ods.

Methods PSNR SSIM NIQE LPIPS
Zero-DCE++ 9.96 0.28 0.18 5.5E-05

BrightsightNet 10.30 0.34 0.18 5.3E-05
PairLIE 10.81 0.39 0.28 6.1E-05
KinD++ 10.17 0.28 0.57 6.2E-05
LYT-Net 16.63 0.61 0.40 5.3E-05

EnlightenGAN 10.31 0.37 0.74 3.37E-05
NeRCo 8.76 0.18 0.51 6.7E-05

SCI 10.72 0.37 0.37 5.8E-05
LEDNet 10.48 0.40 0.05 5.3E-05
ED-Net 10.83 0.35 0.14 3.27E-05

2E1D-Net 34.19 0.97 0.41 1.00E-06

((a)) ((b)) ((c)) ((d)) ((e)) ((f))

Fig. 8: Visual results of SOTA methods depicting potential
reasons for suboptimal performances:(high images (top), and
visual results (bottom)): (a) Parameter map from ZeroDCE++
Parameter Map (b) KinD++ reflectance map,(c) Enlighten-
GAN attention map, (d) NerCO’s encoder feature map, and
(e) LEDNet feature map, (f) LYT-Net feature map, combining
all components.

found that their image enhancement capability is driven by
efficient and accurate feature map extraction. Furthermore,
feature map extractors of these methods are based on residual
nets. The qualitative and quantitative performance of these
methods is attributed to inefficient feature extraction. For
instance, NerCO used a Resnet-based encoder for feature map
extraction in Mask Extractor (ME) and Neural Representation
Network (NRN), while LEDNet used Resnet blocks, compris-
ing Residual downsampling and upsampling blocks. To further
prove this reason, an illustration of feature maps extracted
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from the fine-tuned versions of NerCO (feature map from
the ME and NRN encoders) and LEDNet (LE encoder, post-
feature fusion at multi-scales) were presented in Figs. 8(d)
and 8(e), respectively, which shows inefficient feature extrac-
tion (extracted features are highlighted in yellow). Therefore,
replacing Resnets with powerful deblurring networks might
improve the performance of these methods.

On the other hand, SCI’s consideration of enhancing low-
light images based on a single enhancement block could not
work well, which contradicts their consideration of substantial
image enhancement with only one enhancement block, only
[10]. It is apparent from Fig. 7(h) that the output looks dis-
torted and visually unpleasing due to the presence of extreme
distortions in the low-light images. In addition, the enhanced
images also consisted of haze and halo artefacts. Therefore,
adding subsequent image enhancement blocks might provide
better enhancement results.

The above mentioned methods performed enhancement in
RGB colour space. However, LYT-Net proposed by Brateanu
et al. [30] used a more robust YUV colour space for en-
hancement, where the illuminance channel was used to extract
relevant feature maps for enhancement, while the chromi-
nance channels were denoised independently. Although its
performance was better than other state-of-the-art methods,
the enhanced samples showed shape irregularity and colour
distortions, as shown in Fig. 7(j). To find potential reasons,
the feature representations of the individual components of
LYT-Net were investigated. We found that the colour and
shape distortions were due to inability to extract robust and
invariant relevant features, resulting from object obfuscation
in extreme darkness. Consequently, multi-headed self-attention
mechanism could enhance the portions corresponding to rich
feature representations, followed by feature fusion from all
components. A sample of feature representations after the
fusion of all components is presented in Fig. 8(f), where the
left portion of the image comprises fewer details than the other
side.

In conclusion, the image samples of the proposed Dark-
video dataset were intrinsically distorted in terms of texture,
colour, and shape, which contributed to the suboptimal perfor-
mance of SOTA image enhancement methods, and ED-Net.
This observation is consistent with the proposed 2E1D-Net,
which will be explained later in the ablation studies. Therefore,
to alleviate the effect of these distortions, prior knowledge is
required. For instance, PairLIE assumed that a pair of low-
light images could provide better insight into enhancement
tasks. This supported the fact that the enhancement process
needed to be guided by contextual information, as mentioned
in Section II-A. 2E1D-Net was designed based on this obser-
vation, thus taking image pairs captured at different exposure
levels) as input to enhance low-light images. The multi-
scale cross-illumination residual fusion mechanism provided
by 2E1D-Net, ensured relatively better enhancement, as proved
by its superior quantitative metrics and visual representations
in Fig. 7 and Table II, respectively. For further investigation,
two ablation studies corresponding to its architectural and loss
function components are presented in the following subsec-
tions.

((a)) ((b)) ((c))

Fig. 9: Ablation studies analysing the contributions of loss
functions components: (a)w/o second encoder,(b) w/o Refine-
ment block, and (c) With all components.

C. Ablation studies

1) Architectural Components Ablation Study: This ablation
study tested the contribution of an additional encoder and
the refinement block of the 2E1D-Net for image enhance-
ment. Therefore, 2E1D-Net was retrained after removing
these components, one at a time, resulting in two models:
one without an additional encoder (ED-Net) and the other
without a refinement block. It is apparent from Fig. 9(a)
that the additional encoder contributes significantly to the
enhancement process by elevating the effect of distortion by
knowledge transfer from similar high-exposure images. This
observation also justified the suboptimal performance of SOTA
methods due to the absence of prior information during the
enhancement process. Fig. 9(b) presents the impact of the
refinement block in 2E1D-Net on elevating the effect of colour
distortions. As mentioned earlier, these distortions could be
removed by applying low-pass filtering operations using a
stack of convolution layers with non-linear activations (ReLU
and sigmoid). Therefore, the components mentioned above
contributed significantly to ensure superior performance (9(c)).

2) Loss Functions Ablation Study: A similar ablation study
was also designed to investigate the contribution of vari-
ous components of the proposed loss function. Specifically,
2E1D-Net was trained by removing one loss component at a
time, resulting in three trained models. The visual illustrations
of these models are presented in Figs. 10(a), 10(b), and 10(c),
respectively. It is apparent from these figures that the absence
of L1 resulted in colour distortions, increased haze, and halo
artefacts (rooftop region of the image), while the absence of
L2 caused illuminance degradation, resulting in poor contrast
and motion blur. On the other hand, the absence of MS-SSIM
resulted in severe colour and shape distortions, both locally
and globally, with colour overspreading (chromatic overcom-
pensation). The combination of the functions mentioned above
ensured the superior performance of 2E1D-Net by alleviating
the effect of the distortions mentioned above.

D. Physiological signs Estimation

1) HR Estimation: The performance of RGB spectra-based,
non-contact SOTA HR and SpO2 estimation methods is depen-
dent on the extraction of ROI details, which requires sufficient
light conditions. Therefore, their applicability was limited in
the case of low-light conditions. This work demonstrated their
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((a)) ((b)) ((c)) ((d))

Fig. 10: Ablation studies analysing the contributions of loss
functions components::(a) w/o L1 loss, (b) w/o L2 loss, (c)
w/o MS-SSIM, (d) With full loss function.

ability to be applicable in extremely dark conditions when
cascaded with an efficient image enhancement method.

Specifically, seven SOTA conventional HR estimation meth-
ods cascaded with 2E1D-Net were quantitatively compared us-
ing six performance metrics: RMSE, Mean Absolute Percent-
age Error (MAPE), mean error, standard deviation, accuracy,
and Pearson correlation coefficients below the significance
level of 0.01 (α). The following HR estimation methods, ICA-
Poh [36], CHROM [37], POS [38], KernelICA [39], FastICA
[22], and ICA-Neg and U-LMA [40], were included in this
analysis, based on the study by Gupta et al. [40]. Additionally,
the RMSE of the POS method reported in the study by Xi et al.
[2] was also included for the comparative analysis (RMSE is
reported only for the illumination condition partly resembling
this study, i.e, 1.0 lux). We included only conventional meth-
ods for benchmarking physiological measurements in dark
environments, providing a consistent baseline against which
advanced rPPG methods designed for ambient environments
can be compared. The conventional methods were chosen for
several reasons:i) they are well-specified, widely implemented
and yield consistent results across datasets and illumination
conditions; ii) they offer a domain-neutral baseline that does
not rely on training under bright conditions, allowing us to
isolate the contribution of our enhancement step under ≤ 1
lux; iii) they remain standard benchmarks in both classical
and modern literature, facilitating fair comparisons; and iv)
their transparent failure behaviour (e.g. substantial ROI details,
colour preservation), is particularly valuable for feasibility
studies in extreme low-light conditions.

Table III demonstrates the average performance metrics of
the methods mentioned above. The substandard performance
of ICA-Poh is attributed to video compression and similar
pulse and artefact spectra magnitudes, which resulted in a
corrupted rPPG signal [36]. The same observation was also
proved by the CHROM method, as its alpha-tuning procedure
suffered due to similar pulse artefact spectra [37]. However,
POS performed relatively better than CHROM due to different
projection planes based on physiological information, unlike
CHROM, where projection planes were based on specular
components (challenging to estimate) [37], [38]. The perfor-
mance of the aforementioned methods was notably impacted
by the significantly similar magnitudes of the pulse signal
and artefact spectra. It is potentially due to the prevalence
of colour distortions resulting from non-rigid head movement
and illumination variations, resulting from the inevitable effect

TABLE III: Performance metrics for HR estimation methods.

Methods RMSE MAPE SD* µ Accuracy ρ*
ICA-Poh [36] 27.52 30.51 19.15 19.92 19.30 0.09
CHROM [37] 15.25 17.39 10.39 11.25 35.09 0.41

KernelICA [39] 12.26 12.52 9.37 8.00 56.14 0.56
POS [38] 10.84 11.46 7.02 8.30 42.10 0.74

FastICA [22] 5.87 6.29 4.09 4.25 70.17 0.86
ICA-Neg [40] 4.36 3.16 3.63 2.46 87.72 0.94
Xi et al. [2] 12.42 - - - - -

U-LMA 3.50 2.90 2.91 1.98 91.23 0.95
µ: Mean error; SD*: Standard Deviation;r*:Pearson correlation is
calculated at the 0.001 significance level; Accuracy is defined as the
percentage of achieving the error difference with ±5 bpm.Accuracy
and MAPE metrics are average percentage values, while other
metrics are reported in terms of bpm. a stands for RMSE value cor-
responding to the illuminance conditions of this study (illuminance
value of 1 lux)

.

of the darkness component in the original videos. In con-
trast, the study by Xi et al. [2] demonstrated the suboptimal
performance of the POS under poor illuminance conditions
despite enhancement. The better performance in this study
is attributed to the robust image enhancement process of
2E1D-Net. Specifically, it was proved that under a complex
dark environment, as considered in this study, it is equally
important to address the distortions present in the reflectance
components of the image (Fig. 2). However, the enhancement
procedure applied in the study by Xi et al. [2] focused on
improving the illumination component of the image frames
without addressing distortions in the reflectance components,
which resulted in the poor performance of POS in their study.

In contrast, KernelICA performed better than the methods
mentioned above, due to its kernel density-based Independent
Component Analysis (ICA) [41], which is resistant to similar
pulse artefact spectra. However, the higher error metrics re-
ported by the method could possibly be due to the assumption
of smoothness and continuity of independent components,
which is not always possible in practical scenarios, especially
in dark environments, despite substantial enhancements.

On the other hand, entropy-based ICAs performed sig-
nificantly better, since entropy ensured better statistical in-
dependence than kurtosis [42]. Specifically, the negentropy-
based cost functions of FastICA and ICA-Neg ensured their
better performances, unlike other methods. However, ICA-Neg
performed slightly better than FastICA, especially in terms of
error metrics. This proved that the entropy maximization of
cumulative distributions of raw RGB signals ensures better
statistical independence than signals themselves. Finally, U-
LMA outperformed other methods in all performance metrics
due to the observation mentioned above, with support of robust
optimisation and faster convergence provided by Levenberg-
Marquardt Algorithm (LMA) for entropy maximisation. Con-
sidering the recent extension of large language models in re-
mote health care, we have also included Period-LLM by Zhang
et al. [43], which is fine-tuned to learn periodic properties from
the videos for HR estimations.

For further insights into the superior performance of the
2E1D-Net and U-LMA combination, its performance was also
analysed using Bland-Altman analysis, as presented in Fig.
11. The mean bias reported by the Bland-Altman plot (Fig.
11) is −0.4737 beats per minute (bpm), while the upper and
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Fig. 11: Bland-Altman plot of 2E1D-Net cascaded to U-LMA.

lower statistical limits defined by µ ± 1.96std are −7.4645
and 6.5172, respectively. Furthermore, the agreement between
ground truth and estimated values is slightly lower, covering
91% of data points within the statistical thresholds, according
to the Bland-Altman analysis. This agreement can be improved
by considering more video samples for analysis. Additionally,
the Pearson correlation coefficient (ρ) of 0.9504, closer to 1
at 0.01% significance, justified the superior performance of
U-LMA in conjunction with 2E1D-Net.

2) RMSE Analysis: Fig. 12 presents the RMSE analysis of
HR estimation methods used in this study. From the methods,
it is apparent that ICA-Poh performed worst, producing the
highest magnitude of RMSE. In contrast, CHROM, fastICA,
and KernelICA performed relatively better than ICA-Poh. In
addition, these methods have shown almost similar perfor-
mances, as can be seen by almost similar error medians.
However, the difference lies in the third and fourth quartile,
which can be explained by the reasons listed in Section
III-D1. POS has shown slightly better performance than the
above methods, due to its robustness in low illumination
environments compared to other methods.

Furthermore, U-neg and U-LMA performed substantially
better due to their robust cumulative density-based objective
function, allowing better statistical dependence of the resultant
independent component. However, slightly better performance
by U-LMA was due to efficient and robust unmixing matrix
updates by customised LMA-based method. Although all
methods were prone to outliers, due to inevitable illumination
artefacts even after enhancement, the difference lies in the
error magnitudes of these outliers. Specifically, U-LMA man-
aged to keep RMSE magnitudes within 10 bpm (including
outliers), while other methods failed to do so. Although U-
LMA outperformed other methods, its error magnitude proved
that it is not possible to fully remove distortions by image
enhancement, which raises the need for further improvements.

3) Comparative Analysis with IR-based Methods: Since
IR spectra are robust to illumination variations, they have

Fig. 12: RMSE analysis of HR estimations study.

TABLE IV: Comparative analysis results of 2E1D-Net-ULMA
with IR spectra-based HR estimation methods.

Studies RMSE µ Accuracy
Nowara et al. [45] 11.2 - 64.7
Comas et al. [38] 4.8 - -
Wang et al. [46] 4 4.04 -
Guo et al. [47] - - 82

Van Gastel et al.[48] - 1.5 87
Jinji et al. [44] 2.09 - -

2E1D-Net-ULMA 3.50 1.98 91.23

been conventionally used in dark environments. To prove the
applicability of RGB spectra in such environments, the best
combination, that is, 2E1D-Net and U-LMA, was also com-
pared with SOTA IR spectra-based HR estimation methods.
These methods were selected on the basis of their applicability
in dark conditions. Therefore, following HR estimation studies
by Nowara et al. [4], Comas et al. (TURNIP) [18], Wang,
Vosters and Brinker [19], Guo et al. [24], Van Gastel et al.
[25] and Jinji et al. [44] were included. Specifically, Table
IV presents the performance comparison of IR-based HR
estimation methods with the proposed combinations based
on reported RMSE, mean error, and accuracy, respectively.
The comparable performance of the proposed combination
is apparent from the respective table, which suggests the
applicability of RGB spectra as an alternative to IR spectra
without compromising the performance.

4) SpO2 Estimations: Due to the predominance of the
ROR method for SpO2 estimations, it was also cascaded with
2E1D-Net to demonstrate the possibility of non-contact SpO2
estimations in extremely dark environments, considered in this
study. However, this analysis was restrictive to a normal SpO2
value range, i.e., 94-99%, due to the associated complexity
in acquiring abnormal SpO2 value ranges. Additionally, to
overcome the problem of limited samples for two SpO2
values, 94% and 95%, nine samples corresponding to these
values, were also included from the VIPL-HR database [49].
Subsequently, a regression model was trained to map the
ROR values to the ground truth SpO2 values for which the
performance metrics are reported in Table V. Furthermore, the
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Fig. 13: Bland-Altman Plot of 2E1D-Net cascaded to ROR.

TABLE V: Comparative analysis of contactless SpO2 estima-
tion methods.

Studies Spectra RMSE ρ∗ MAE
Casalino et al. [22] RGB 1.64 0.53 1.33

Shao et al. [54] IR 1.3 0.94 -
Akamatsu et al. [55] RGB 0.88 0.45 0.55

Guazzi et al. [32] RGB - 0.81 2.08
2E1D-Net-ROR RGB 0.76 0.92 0.43

performance of the proposed combination is also demonstrated
using the Bland-Altman plot, presented in Fig. 13.

Noably, one data point in the figure corresponds to more
than one video sample due to the restrictive SpO2 value
range. From Fig. 13, the mean bias between ground truth and
estimated values is −0.1343 with upper and lower statistical
limits (µ ± 1.96 ∗ std) as 1.3791 and −1.6477, respectively.
Furthermore, 95% of the data points lie between the statistical
bounds, which is consistent with the recommendation of the
Bland-Altman analysis [50]. In particular, the statistical thresh-
olds were fairly lower than the acceptable error difference,
which is critical for the commercial viability of the method.
In addition, the Pearson correlation value of 0.92 at the
significance level of 0.01% justified a stronger correlation
between ground truth and estimated SpO2 values. Hence, the
proposed combination of 2E1D-Net and ROR demonstrated
the potential for accurate non-contact SpO2 measurements in
dark environments.

5) SpO2 comparative analysis: The proposed non-contact
SpO2 measurement combination was also compared with
SOTA RGB and IR-based estimation methods. The following
methods Akamatsu, Onishi and Imaoka [51], Casalino, Castel-
lano, and Zaza [52], and Guazzi et al. [53] were compared
using MSE, Pearson’s correlation, and mean absolute error
(MAE). Table V shows that the proposed combination per-
formed much better than other methods. However, the better
performance could be due to the restrictive normal range
considered in this work. Therefore, it is important to test this
combination using a wider range of SpO2 values, to reach a

TABLE VI: Effect of illumination conditions on HR estimation

Metrics 1.0 lux 1.6 lux 2.5 lux
RMSE 8.78 7.25 3.33
MAPE 7.12 6.83 3.03

ME 4.54 4.69 2.23
SD 7.83 5.76 2.59

Correlation 0.69 0.78 0.95
Accuracy 84.62 76.92 92.31

conclusion.

E. Effect of illuminance conditions on HR/SpO2 estimations
To investigate the effect of illuminance conditions on the

accuracy and robustness of HR and SpO2 estimations, this
study used a publicly available database proposed by Xi et al.
[2], which comprises video samples collected under various
illuminance conditions (measured in lux ranging between
100.0 and 102.0). To match the context of the study, we
empirically tested the conditions under which ROI extraction
was infeasible without enhancement. Therefore, we used video
samples collected under three different illumination conditions
(100.0,100.2,100.4), i.e., illuminance value with lux 1.0, 1.6,
and 2.5 lux, respectively. Since 2E1D-Net requires a reference
image, the first image frame of the video sample collected
at 100 lux was extracted and used as a reference image
for enhancement purposes. The performance metrics of U-
LMA cascaded to 2E1D-Net are presented in table VI. It
is apparent that the proposed combination achieved higher
error and lower accuracy and correlation values in lower
illuminance, respectively, while these metrics improved at
higher illuminance values. This is attributed to the presence
of minute but inevitable distortions under lower illuminance,
which could not be alleviated or removed even by the enhance-
ment procedure. Alternatively, these distortions were relatively
less under higher illuminance, resulting in lower error metrics
and higher correlation.

Similarly, a performance analysis of SpO2 estimation was
also conducted, and the performance metrics were presented
in Table VII. It is important to mention that accuracy has
not been reported for SpO2 analysis due to the unavailability
of metrics related to clinical relevance. However, an error
difference of ± 2-3% is considered for commercial viability.
All error differences between subjects were within this range
and, therefore, were not considered for this analysis. The
results show a similar trend for SpO2 estimations as HR, for
the same reason.

TABLE VII: Effect of illumination conditions on SpO2 esti-
mation

Metrics 1.0 lux 1.6 lux 2.5 lux
RMSE 0.68 0.48 0.28
MAPE 0.32 0.24 0.08

ME 0.31 0.23 0.08
SD 0.63 0.44 0.28

Correlation 0.95 0.94 0.97

F. Key Observations and Limitations
Extensive experiments demonstrated that in addition to IR,

RGB spectra can also be a viable solution to estimate HR and
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SpO2 in scenarios such as NICUs and sleeping environments.
However, the illumination environment, i.e., illuminance ≤ 1
lux assumed in this work, is empirically selected and does not
necessarily conform to the environments mentioned above. As
mentioned earlier, several previous attempts, employing RGB
spectra, had been made to test the feasibility of HR estimations
in dark environments [6], [5], [23]; however, this work has
proven its novelty in terms of illumination conditions, and
demonstrating the ineffectiveness of existing SOTA image
enhancement methods for extremely dark scenarios. Further-
more, this work also demonstrated the extended ability of
conventional non-contact RGB-based HR / SpO2 estimations
in conjunction with an efficient and robust image enhancement
method.

However, this work has certain limitations: first, although
2E1D-Net was able to enhance dark images substantially, it has
a dependence on the quality of its slightly illuminated coun-
terparts; second, HR and SpO2 estimations in some scenarios
require additional image processing for accurate assessments;
and third, due to the complexity associated with SpO2 values
acquisition, this study considered the normal SpO2 range
94− 99%; and finally, deep learning models like rPPG-MAE
[56], and PhysFormer++ [57], CodePhys [58], and Period-
LLM [43], and approaches integrating explicit and implicit
prior knowledge [59] have been developed and validated
primarily under well-lit or ambient conditions. Adapting such
models to extreme low-light conditions (≤1 lux) would require
substantial architectural and training modifications; therefore,
using them naively in this study could led to misleading
comparisons. Addressing these limitations forms the basis of
our future research directions.

IV. CONCLUSION

This study proved the feasibility and reliability of the
RGB colour space to estimate HR and SpO2 estimations in
extremely dark environments (luminance ≤ 1 lux) by cascad-
ing an efficient and robust image enhancement method with
conventional HR and SpO2 estimation methods. Identifying
the reasons for the suboptimal performance of existing image
enhancement methods in the proposed illumination condition,
a two-encoder and one-decoder architecture was proposed and
trained with a novel loss function (weighted combination of
L1, L2 and multi-scale SSIM). The encoder-decoder frame-
work aimed to alleviate the darkness component in low-light
images, while the feature representations of the slightly better
exposed counterpart, extracted from the additional encoder,
were propagated and fused post-deconvolution (in the decoder)
at a multi-scale level. Subsequently, 2E1D-Net was cascaded
with conventional SOTA RGB-based HR and SpO2 estimation
methods and compared and analysed to demonstrate their ap-
plicability in extremely dark environments, with an additional
Bland-Altman analysis for the best combinations. In addition,
the study also proved the reliability and efficacy of the best
HR and SpO2 combinations compared to IR-based methods
in dark environments.
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