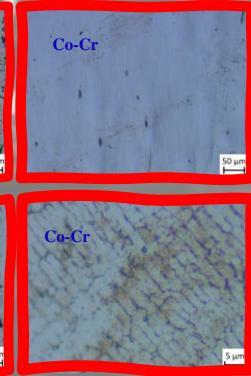
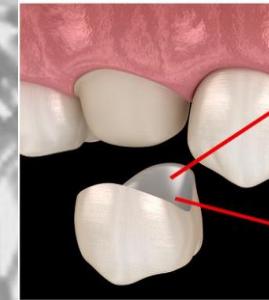
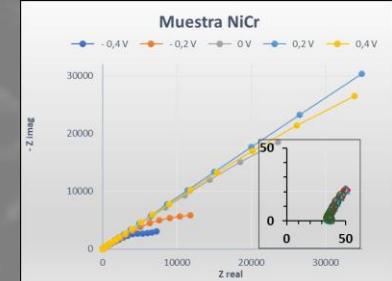
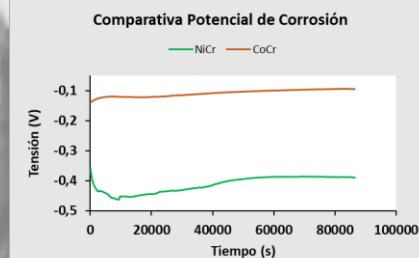


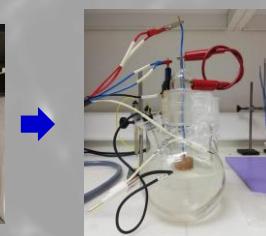
Corrosion Behavior of Some Old Dental Alloys




Haonan Tian¹, Jianzheng Cui², Jing Zhao², Cristina Jimenez Marcos³, Julia Claudia Mirza Rosca³¹Department of Energy, Aalborg University, Aalborg, Denmark²Department of Mechanical Engineering, Shenyang University of Technology, Shenyang, China³Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain

The use of dental alloys as a material for bridges, crowns and prostheses is currently being investigated, taking into account their biocompatibility, as the material must be non-toxic and not cause allergies, inflammation or other reactions affecting the body. In this field, Co-Cr and Ni-Cr based alloys are often used, as they have good corrosion resistance and high wear resistance due to the crystalline nature of cobalt and nickel. In addition, Ni-Cr and Co-Cr alloys have been used in the field of dentistry for porcelain or porcelain-fused-to-metal crowns due to their good biocompatibility, wear resistance, long service life, good mechanical properties and superior corrosion.



EXPERIMENTAL MATERIALS


RESULTS

SURFACE PREPARING

METALLOGRAPHY ANALYSIS

After electrochemical etching, the metallographic test is carried out by taking images with the metallographic microscope and by electrochemical test consisting in inserting a specimen into an electrochemical cell together with Saturated Calomel Electrode (SCE) as reference and Pt electrode as counter electrode. Corrosion potential (E_{corr}) was measured and Electrochemical Impedance Spectroscopy (EIS) was applied.