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Abstract 

 
Understanding how wild populations adapt to rapid environmental change requires linking phenotypic 
evolution to its genomic basis over contemporary timescales. This remains challenging because genetic 
and environmental effects are often intertwined. Here, we leverage a 30-year study of Swiss barn owls 
(Tyto alba) to explore this process. During this period, owls have evolved darker plumage and increased 
spottiness, two melanin-based traits associated with fitness. Whole-genome sequencing of 3,102 
individuals reveals that these traits are largely controlled by few loci of major effect with partially 
overlapping architectures. Temporal allele frequency analyses show subtle but consistent shifts at 
these loci. Simulations indicate that genetic drift alone cannot explain these changes, whereas models 
incorporating selection do. Our findings demonstrate that selection on a small number of loci can drive 
rapid phenotypic evolution in the wild. This work underscores the adaptive potential of natural 
populations and the value of long-term genomic monitoring under accelerating climate change.  
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Introduction 

 
Understanding how populations evolve, what mechanisms drive micro-evolutionary changes in 
phenotypic traits, and how genetic variation translates into variation in fitness are central questions in 
evolutionary biology. These questions have intrigued evolutionary biology for decades 1–4. Addressing 
these questions is not only essential to evolutionary theory but also critical for understanding how 
populations can rapidly adapt to changing environments. Achieving such comprehensive 
understanding of short-term evolution requires detailed knowledge of the links between genotypes, 
phenotypes, and fitness 5–7. 
 
Evolutionary theory predicts that genetically encoded traits evolve toward their optimal values 
through natural selection, favoring individuals best suited to their environments 1,3. In practice, 
however, identifying adaptive phenotypic change across generations and linking it to the underlying 
genotypes remains a major challenge. Traditional quantitative genetics approaches can detect 
heritable changes in life history traits8 but often fail to pinpoint specific causal loci. Conversely, 
population genetics approaches can identify genomic regions associated with phenotypic traits9, 
though their application to wild, non-model species has been limited by cost and logistical constraints. 
Recent advances in whole-genome sequencing and downstream analyses 10 now enable the study of 
large cohorts in wild populations 11,12. By combining quantitative genetic methods with high-quality 
genomic data, we can explore the genomic basis of phenotypic evolution in the wild with 
unprecedented resolution. 
 
Among phenotypic traits, coloration offers a powerful system for studying the genotype-phenotype 
fitness relationship, as well as their joint evolution 13. Extensive research on the genetic basis of animal 
coloration spans humans 14–16, model organisms 17–19 and non-model species 20–23, yielding deep insight 
into both the molecular and evolutionary mechanisms of color variation 24,25. However, most studies 
focus on discrete color polymorphisms 20–23,25 while continuously varying color traits, which are 
common in natural populations, remain underexplored 24,25. This is largely due to the challenges of 
disentangling environmental and genetic influences on continuous traits, which often result from 
numerous variants, ranging from large to small effect sizes, frequently located in regulatory regions 24–

26 (with a few exceptions 27–29). Yet, these traits are evolutionary relevant because coloration often 
directly influences fitness by affecting courtship, predator-prey interactions, thermoregulation, 
immunity, and other ecological interactions 30. Consequently, an individual’s color is commonly under 
multiple selective pressures, often related to both interspecific and intraspecific interaction 13,31.  
 
Color polymorphism in the barn owl (Tyto alba) offers a particularly suitable system to explore the 
genomic basis of fitness-related trait. In Central Europe, barn owls exhibit continuous variation in two 
melanin-based traits on the ventral body: plumage coloration (ranging from white to rufous) and 
spottiness (number and size of black feather spots) (Figure 1A). Both traits are related to fitness: 
plumage coloration is linked to fecundity 32,33 and hunting success 34,35. Spottiness, in turn, is related to 
testosterone levels 36, stress response 37,38 and immunity 39,40. Both traits are heritable, and a genetic 
correlation between them suggests shared genomic underpinning 41. Females tend to be more melanic 
(redder and spottier) than males 42, and spottiness shows higher heritability in males 41 suggesting 
potential sex-linked genetic effects 43. 
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A recent continental-scale GWAS identified two loci associated with plumage coloration: a major SNP 
in the MC1R gene on chromosome 11 (autosome), and a second locus on the Z sex chromosome 29. 
While these loci explain much of the variation in coloration, ~20% remains unexplained. Moreover, the 
genetic basis of spottiness is still unexplored. This gap highlights the importance of investigating 
whether these two traits share common genetic determinants, if sex-specific effects contribute to their 
architecture, and how these factors shape their evolutionary trajectories. 
 
Taking advantage of over 30 years of phenotypic and life-history monitoring in a wild barn owl 
population in western Switzerland, we investigated the microevolutionary dynamics of coloration and 
spottiness. Over this period, we observed a clear phenotypic trend toward redder and more spotted 
individuals. To uncover the genetic drivers of this trend, we sequenced 3102 individuals, improving 
resolution of genetic relatedness and refining heritability estimates. We identified three causal loci 
associated with these traits, including a shared signal on the Z chromosome. Gene expression analyses 
confirmed the link between Z-linked genotypes and phenotypes, suggesting a mechanistic basis for the 
observed sexual dimorphism. We further modelled the sex-specific genetic architecture of the traits, 
revealing differing allelic effects between males and females. Finally, forward simulations showed that 
selection, rather than genetic drift alone, can explain the observed allele frequency shifts.  
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Results and discussion 

 
Phenotypic changes in the two melanic traits 

 
In the Swiss barn owl population, plumage color and spottiness show substantial variation (Fig. 1a, 1b). 
Color scores range from -8 (white) to -1 (red), with a mean of -5.21 (SD=1.78; Fig. S1), while spottiness, 
measured as the area covered by black feather spots, average 1.71cm2 (SD=1.54; Fig. S1; n= 8278). The 
two traits are moderately correlated (Pearson’s r 0.33; Fig. 1b, Fig. S2-S3), with a significantly stronger 
correlation in males (r=0.37) than in females (r= 0.18; Fig. S2).  
Phenotypic data collected over the 30-year study period reveal a clear evolutionary trend toward 
redder and more heavily spotted individuals (Fig. 1c). Linear mixed-effects models confirm a significant 
temporal increase in both traits: color scores increased by 0.04 units per year, and spottiness increased 
by 0.05 cm2 per year. Over 30 years, these changes represent shifts of 0.66 and 0.91 standard 
deviations from the respective means (Tables S1-S2 for color; Tables S3-S4 for spottiness). This trend 
was consistent across both males and females showing increased melanism over time (Fig. S4-S7, 
Tables S5-S8 for sex-specific models), despite the species’ weak sexual dimorphism (Fig. S6). Moreover, 
the trend held when separating individuals born within the study area (residents) from those born 
outside it (immigrants), indicating that it is not driven by selective migration (Figs. S8-S9). Together, 
these results show that both coloration and spottiness have undergone directional change in this 
population, with barn owls becoming progressively redder and more spotted over the past three 
decades. 
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Figure 1: Variation in plumage coloration and spottiness of Swiss barn owls over the last 30 
years. (a) Photographs illustrating the range of ventral plumage coloration (rows) and spottiness 
(columns) observed in Swiss barn owls. Coloration varies from white (-8) to dark reddish (-1), 
while spottiness reflects variation in the density and size of black spots. (b) Relationship between 
coloration and spottiness (in cm2). The upper panel shows histograms of the distribution of 
coloration, while the right panel shows the distribution of spottiness. (c) Temporal trends in 
coloration and spottiness in alive adults between 1992 and 2021. Left: density plots of coloration 
for each year, with the white line indicating the annual mean. Right: boxplots of spottiness for 
all individuals alive in each year; sample sizes are reported on the right. 

 
 

Population-scale whole-genome sequencing of the Swiss barn owl population 
 
To investigate the genetic architecture underlying variation in coloration and spottiness, we assembled 
a whole-genome dataset consisting of 3,102 barn owls from the Swiss population, sampled over a 31-
year period. We leveraged a previously published high-coverage dataset of 502 owls from across the 
Western Palearctic, including 346 from our focal Swiss population, to construct a reference panel 
representing continental genomic diversity (10,451,268 phased SNPs; Fig. S10–S13; 44). Using this 
panel, we imputed genotypes for an additional 2,778 Swiss individuals sequenced at low coverage 
(mean 1.95X; Fig. S14), achieving high imputation accuracy (mean r2=0.968). The final dataset 
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comprised 3,280 individuals of which 3,102 were phenotyped for coloration and spottiness, providing 
an unprecedented resource for dissecting the genomic basis and evolutionary dynamics of these traits. 
 

High heritability and large-effect loci shared between the two traits 
 
Using whole genome data from 3102 owls, we first confirmed the high heritability of both plumage 
coloration and spottiness. Genetic relatedness was estimated using a genomic relationship matrix 
(GRM) derived from SNP data, and heritability was estimated using an animal model. Coloration 
showed a heritability of h2= 0.82 ± 0.02 (Table S9), consistent with previous estimates based on 
pedigree data (h2= 0.84 ± 0.02) 41. Spottiness exhibited similarly high heritability (h2=0.80 ± 0.02; Table 
S10), exceeding prior estimates for its two components-number of spots (h2= 0.57 ± 0.03) and spot 
diameter (h2= 0.67 ± 0.03) 41 - likely due to differences in how the trait was measured. Unlike previous 
analyses treating the components separately, our approach models total spottiness as an integrated 
phenotype. Together, these results demonstrate a strong genetic basis for both traits. 
We next estimated the genetic correlation between coloration and spottiness to assess the degree of 
shared genetic architecture. The overall genetic correlation was moderate (r = 0.24 ± 0.08), indicating 
partial but not complete genetic overlap. However, this correlation was substantially higher in males 
(r = 0.55 ± 0.11) than in females (r = 0.11 ± 0.16), suggesting sex-specific differences in genetic control. 
These results, consistent with previous findings in barn owls 41, support the involvement of sex-linked 
genetic factors, particularly variation on the Z chromosomes, in shaping these traits. 
 

Genome-wide association studies reveal shared and distinct large-effect loci  
 
To identify genomic regions associated with coloration and spottiness, we performed independent 
genome-wide association studies (GWAS) for each trait (Fig. 2, S15-S20; Table S11-S20). For coloration, 
we identified two significant loci (after Bonferroni threshold: -log10(p> 8.11; Fig. 2a, 2c and 2d). The 
top signal was on chromosome 11 (Super-scaffold 26) at position 22,522,039, a known nonsynonymous 
variant in the MC1R gene 45,46. This variant is referred to as MC1Rwhite (G) and MC1Rred (A) based on 
associated phenotypes. A second peak was located on the sex chromosome (chromosome Z - Super-
Scaffold 42) in a region (between 29’200’000 and 30’200’000 bp) encompassing 16 genes, with the 
most associated SNP on position 29’826’792 (Fig. 2a and 2d, Table S11). This variant is referred to as 
Zwhite (G) and Zred (C), based on associated phenotypes. Both loci confirm associations previously 
reported at the continental scale 46. To account for spatial heterogeneity in coloration across the 
ventral surface, we ran additional GWAS separately for breast and belly coloration (Fig. S16, S17, Table 
S12, S13). The breast-specific GWAS revealed an additional locus on chromosome 4 (Super-Scaffold 6) 
at 27,439,651 bp, located within an intron of the CORIN gene (-log10 (p)=9.43), not detected in the full-
body analysis.  
For spottiness, the GWAS revealed a single significant region on the Z chromosome, overlapping with 
the region associated with coloration (Fig. 2b, 2e). The top SNP was located at position 29’811’663 (-
log10(p< 8.11; Fig 2b, 2e). The associated alleles are referred to as Zimmaculate (G) and Zspotted (A), based 
on phenotype. To further dissect spottiness, we conducted a GWASs on its two components, mean 
spot diameter and total number of spots. The GWAS on spot diameter showed a pattern similar to the 
total surface area, with significant associations primarily on the Z chromosome (Fig. S19, S20, Table 
S15, S16). In contrast, the GWAS for number of spots identified multiple significant regions, including 
the MC1R variant on chromosome 11. 
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The GWAS results indicate an oligogenic architecture for both traits, with a few large-effect loci driving 
much of the variation. Notably, both traits share a common genetic architecture, with overlapping 
signals at the Z chromosome and the MC1R gene: (i) There was almost complete linkage disequilibrium 
(R²=0.934) between the top SNPs for Z coloration and Z spottiness , indicating near-identical genotype-
phenotype associations; (ii) The MC1R locus classically known for its role in pigmentation across 
vertebrates, also contributes to variation in both color and spot number. By precisely localizing the 
shared region on the Z chromosome and confirming its role in both traits, our work results refine 
previous estimates of the genetic correlation between coloration and spottiness 41. Interestingly, this 
Z-linked region has also been associated with color variation in North American rosy finches 47, 
suggesting a potentially conserved pigmentation pathway across species. 
 
 

 
 

Figure 2: Genome-wide association study (GWAS) of plumage traits in Swiss barn owls reveals 
an oligogenic architecture for the two traits. Association scores (–log₁₀ p-values) for each SNP 
across the genome with (a) plumage coloration and (b) plumage spottiness. Alternating colors 
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distinguish successive chromosomes. The dotted line indicates the Bonferroni-corrected 
significance threshold (-log10(p-value) = 8.11). circle, triangle and diamond point to the most 
significant SNP in each region presented in (c–e). (c–e) Zoomed views of regions showing strong 
associations with coloration (c and d) or spottiness (e). Upper panels display association scores 
for SNPs within each region, with dotted lines marking the Bonferroni threshold. Rectangles 
below indicate annotated genes. Lower panels show mean linkage disequilibrium (r²) between 
SNPs in sliding windows of 10 SNPs. Lines connect each LD block to its genomic position on the 
x-axis. 

 
Differential gene expression links genotype to phenotype 

 
To investigate the molecular mechanisms linking genotype and phenotype, we measured the 
expression of genes within the GWAS-identified regions. Specifically, we quantified expression of 13 
candidate genes-MC1R and 12 genes located in the Z-linked region associated with both traits (Fig. 
S21, S22, Table S17), in developing breast feathers from 45 nestlings (28 males and 17 females). 
Sampling was timed to capture the onset of feather development, when black apical spots and 
pheomelanin-based coloration first become visible.  
The nonsynonymous MC1R (V126I) has previously been associated with both coloration and spot 
number, as well as with variation in MC1R gene expression 48. We included MC1R in our expression 
panel, but due to a sampling strategy designed to maximize Z-linked genotype variation, the resulting 
MC1R genotype distribution was highly unbalanced (38 homozygous MC1Rwhite, 6 heterozygous and 1 
homozygous MC1Rred), limited statistical power to assess its regulatory effect. We thus focused on the 
Z-linked region, where we quantified the relative expression levels of all 12 genes within the top GWAS 
peak (Fig. 3a). First, we confirmed that genotypes at the top Z-linked SNP were significantly associated 
with both coloration and spottiness in these individuals (Fig. 3b, 3c). We then used a linear mixed 
model to test whether gene expression levels varied with genotype at the Z locus. As expected, 
expression levels differed significantly between sexes for all 12 genes, typically higher in males, 
consistent with incomplete dosage compensation in birds 49–51. To account for this, we ran sex-specific 
models to test for genotype-expression associations (Table S18). Of the 12 genes tested, two showed 
significant genotype-dependent expression: PDE8B varied significantly with genotype in males, with 
lower expression in heterozygotes (Fig. 3d, Table S18-19), WDR41 with genotype in females (Fig. 3e, 
Table S21-22). To assess whether these expression differences translated into phenotypic effects, we 
tested for associations between expression and trait values. Only one significant link emerged with 
PDE8 expression in males associated with spottiness, but not coloration (Fig. 3f, 3g, S22, Table S23)  
 
Our findings suggest a potential link between genotype, gene expression, and the spottiness 
phenotype in barn owls. However, this association remains preliminary and warrants further 
investigation. One limitation of our study is the small sample size, which prevented us from accounting 
for variation in the MC1R genotype, potentially obscuring true genetic associations. Despite this 
constraint, we identified PDE8B as a promising candidate gene. PDE8B encodes a cAMP-specific 
phosphodiesterase 52, and although it has not previously been implicated in pigmentation, other 
phosphodiesterases, such as PDE5, are known to influence melanin synthesis via the 
cAMP/PKA/CREB/MITF signaling pathway 53,53,54. Further research is needed to clarify the molecular 
role of the Z-linked region. Given its location on the sex chromosome and the pronounced sexual 
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dimorphism in barn owls, we also considered whether sex-specific genetic architecture might 
contribute to variation in these traits. 
 

 
 

Figure 3: Candidate genomic region and genotype–phenotype associations for plumage traits 
in Swiss barn owls. (a) Genomic region on chromosome Z (Super Scaffold 42) containing 
annotated genes, including PDE8B and WDR41. The focal SNP (C/T) and the most significant SNP 
for color and spottiness are indicated. (b,c) Violin plots of plumage color and spottiness (black 
spot area, cm²) across genotypes (CC, CT, TT in males; C, T in females) for 3,102 sequenced 
individuals. Triangles and circles denote the 45 individuals with quantified gene expression. (d,e) 
Boxplots of sqrt-transformed expression of PDE8B and WDR41 across genotypes. (f,g) Scatter 
plots showing correlations between sqrt-transformed expression and spottiness for PDE8B and 
WDR41; lines depict sex-specific linear models. 

  

a

b c

ed

f g

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 1, 2025. ; https://doi.org/10.1101/2025.10.01.679793doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.01.679793
http://creativecommons.org/licenses/by-nc/4.0/


Sexual dimorphism and sex specific genetic architecture of the two traits 
 
The barn owl is a sexually dimorphic species, with males typically exhibiting whiter and fewer ventral 
spots than females 55. To investigate how the genomic variants identified in our GWAS contribute to 
phenotypic variation in each sex, and to quantify the relative effect of each locus, we fitted Bayesian 
generalized linear models separately for each trait. Genotype at each locus was fitted as fixed effects. 
Given the pronounced sexual dimorphism and the fact that one of the loci most strongly associated 
with both traits is located on the Z chromosome, we constructed sex-specific models. In total, we ran 
four models, one for each trait (coloration and spottiness) and for each sex (Figure 4). To control for 
ontogenic changes in phenotype, we included the developmental stage of each individual (fledgling or 
adult) as covariate in all models 56. 
 
The two sex-specific models for plumage coloration confirm the contribution of three loci-MC1R, the 
Z-linked region, and CORIN)-in both males and females. The models explained 80.7% (± 1.6) of the total 
variance in coloration in males and 75.3% (± 2.1) in females (Figure 4a, b). These values closely match 
the previously estimated heritability of the trait (0.82 ± 0.02; see High heritability and large-effect loci 
shared between the two traits section), supporting the interpretation of plumage color as an oligogenic 
trait with most of the variance accounted for by few loci. Genotypes at all three loci had significant 
effect sizes (Table S24 -S27). Consistent with earlier findings, MC1R emerged as the major contributor 
to color variation 46,57), followed by the Z-linked locus 46. The significant effect of CORIN, however, 
represents a novel result. Its detection here highlights how increasing sample size can reveal loci with 
smaller effects in oligogenic traits. While all three loci influenced coloration in both sexes, the 
magnitude and nature of their effects differed. Notably, a significant epistatic interaction between 
MC1R and the Z-linked genotype was detected only in females (Tables S27). In females, the 
accumulation of “red” alleles at MC1R and the Z-locus did not result in a linear increase in redness. 
Instead, coloration reached a plateau (Fig. 4b), consistent with a non-additive (epistatic) relationship 
between these two major pigmentation genes. This epistatic interaction has been previously 
hypothesized 57 and is now proven using genomic data.  
 
To model the contribution of the two loci, MC1R and the Z-linked region, to spottiness in each sex we 
used a generalized linear model with a hurdle-gamma distribution. This modelling approach separates 
(i) the effect of each locus on the presence or absence of spots (the hurdle part, estimating the 
probability that spottiness equals zero) and (ii) the contribution on the total surface area covered by 
spots in individuals using the gamma part of the model 58. In males, both loci significantly contributed 
to the presence / absence of spots. However, the Z-linked locus consistently had a larger effect than 
MC1R on both the likelihood of being spotted and the extent of spottiness (Figure 4c, see table S28-
S31). In females, while the Z-linked locus had a significant impact on both the presence of spots and 
the total spotted surface, the effect of MC1R was not statistically significant (Figure 4d, Table S31). 
These results suggest a slightly different architecture for spottiness between the sexes. The models 
explained 58.3% (±2.5) and 53.9% (±3.1) of the variance in spottiness in males and females, 
respectively. While this represents a substantial proportion of the trait variance, it falls short of the 
higher heritability previously estimated for spottiness (0.80 ± 0.02; see High heritability and large-
effect loci shared between the two traits section). This discrepancy indicates that additional genetic or 
environmental factors likely contribute to the trait. 
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Figure 4: Sex-specific genetic architecture of plumage coloration and spottiness in Swiss barn 
owls. 
(a-b) Violin plots of observed plumage coloration across genotype combinations for males (a) 
and females (b). Violin colors indicate mean phenotype per genotype. Intervals to the right of 
each violin show predicted lower and upper whiskers from the genetic architecture model; black 
triangles indicate median predicted values. The x-axis shows genotype dosage for each locus; 
sample sizes are in parentheses. (c) Same as (d), for plumage spottiness. 

 
Taken together, our results reveal distinct genetic architectures for both coloration and spottiness 
between the sexes. The epistatic interaction between MC1R and the Z-linked locus in determining 
coloration in females, alongside the male-specific contribution of MC1R to spottiness, suggests that 
trait expression is influenced not only by individual loci but also by their interactions, interactions that 
may differ between sexes with mechanisms such as incomplete dosage compensation in birds 49–51 and 
sex-biased gene expression 59,60, both of which can reduce antagonistic sexual conflict 61. These findings 
underscore the importance of modelling sex-specific genetic effects and inter-locus interactions when 
investigating the evolution of complex traits and the maintenance of sexual dimorphism in natural 
populations. 
 
Given the large effects of these loci on phenotype and the observed changes in trait distribution over 
time, we next leveraged the temporal dimension of our dataset to assess whether shifts in allele 
frequencies could account for the observed phenotypic trends. 
 

Characterizing the evolutionary processes driving allelic and phenotypic changes  
 
To investigate the evolutionary forces underlying allele frequency changes at the MC1R and Z-linked 
loci, we leveraged the temporal resolution of our 30-year dataset to track allele dynamics over time 
(Fig. 5). Allele frequencies were estimated annually using genotypes from adult owls alive in each year 
(Fig. 5b, 5e). Over the three-decade period, the frequency of the MC1Rred allele increased significantly, 
while the Zspotted allele showed a significant decline (Fig. 5b, 5e, Table S32-S33). Given the strong 
associations of these loci with plumage coloration and spottiness, respectively, this temporal trend 
may reflect directional selection acting on these traits. However, change in allele frequencies over time 
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could also be influenced by gene flow, demographic changes, or genetic drift. To disentangle these 
processes, further analysis is needed to assess the role of selection relative to neutral evolutionary 
forces. 
 
As a first step in disentangling the processes driving allele frequency shifts, we tested whether 
migration could explain the observed changes. Individuals ringed as fledglings were classified as 
residents, while those first captured as adults, likely born outside the study area, were considered 
immigrants. Across years, allele frequencies did not differ significantly between these two groups (Fig. 
S23) suggesting that migration is unlikely to be the primary driver of the observed allele frequency 
changes. Instead, the trends likely reflect broader-scale evolutionary processes acting across the wider 
population. This interpretation aligns with previous findings of high connectivity and low genetic 
differentiation among barn owl population across continental Europe 62. 
 
To assess whether the observed allele frequency changes could be attributed to selection rather than 
genetic drift, we considered the relationship between allele effects on fitness and population size. For 
natural selection to act efficiently, the variant must influence fitness, and the effective population size 
(Ne) must be large enough for selection to overcome stochastic fluctuations due to drift. In small 
populations, drift can dominate, causing allele frequencies to change regardless of selective 
advantage. Census estimates for the Swiss barn owl population remained relatively stable over the 
study period, ranging from 200 to 1,000 breeding pairs 63. To estimate Ne, we used whole-genome data 
to calculate nucleotide diversity (π), applying the equation Ne = π/(4*μ), where μ is the mutation rate 
64. Across different subsampling, Ne estimates were highly consistent, averaging 226,051 individuals 
(range: 223,937 in 2016 to 228,716 in 1992; Fig. S24), roughly 100 times larger than the census 
population. This inflation likely reflects a large historical effective size and high contemporary 
connectivity among European barn owl populations (low genome-wide differentiation across the 
Western Palearctic (overall FST=0.047))  62 and rare occurrence of inbreeding 65.  

To test whether genetic drift alone could explain the observed allele frequency changes, we simulated 
allele frequency trajectories under a neutral model using the census population size as input (see 
Methods). For the MC1R locus, the observed frequency trajectory of the MC1Rred allele deviated 
significantly from the range expected under neutrality. Specifically, the increase in MC1Rred frequency 
exceeded that predicted by drift alone (Fig 5b), suggesting a likely role for positive selection. Although 
observed trajectory exhibited some year-to-year variability, potentially due to limited sample sizes in 
certain years, family structure within the dataset, or temporal fluctuations in selection intensity, the 
overall mismatch between simulated and observed patterns indicates that drift alone cannot account 
for the changes at this locus. In contrast, the frequency dynamics of the Z spotted allele fell within the 
distribution of trajectories expected under neutrality drift (Fig. 5e), suggesting that the decline in this 
allele could plausibly be explained by stochastic processes. 

To further investigate whether the observed allele frequency changes at the two loci reflect directional 
selection, we applied a probabilistic modeling framework that infers evolutionary parameters from 
temporal frequency shifts (see Methods for details). 
The MC1R locus exhibited a stronger signal of selection. Although only 25% of iterations in the 
combined model (which includes both selection and drift) supported selection, the selection-inclusive 
models consistently yielded higher log-likelihoods than the drift-only model (Fig. S25-S27). 
Furthermore, both the combined and selection-only models produced selection coefficient estimates 
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whose 95% credible intervals excluded zero (Fig. 5a), indicating a statistically significant deviation from 
neutrality. These results provide compelling evidence that positive selection contributed to the 
observed increase in MC1Rred allele frequency. The estimated selection coefficient of s=0.054, with a 
dominance coefficient of h=0.492, suggesting an additive to slightly dominant effect of the MC1Rred 

allele. 
To validate our selection inference for MC1R, we incorporated the estimated genotype-specific 
selection coefficients into forward-time simulations. Under a model combining genetic drift and 
directional selection, the observed allele frequency trajectory for the MC1Rred allele fell within the 
simulated range (Fig. 5), further supporting the of selection in shaping its increase over time. In 
contrast, the analysis of allele frequency changes at the Z-linked locus revealed limited evidence for 
selection. In the model allowing both drift and selection, 96.5% of iterations favored the drift-only 
scenario. The log-likelihood difference between the selection and drift models modest (Fig. S28-S30), 
and the 95% credible interval for the selection coefficient in the selection-only model included zero 
(Fig. 5d), indicating no statistically significant deviation from neutrality. Moreover, incorporating the 
estimated selection coefficient into simulations only marginally improved the fit to the observed 
frequency trajectory (Fig. 5f). Taken together, these results suggest that the allele frequency dynamics 
at the MC1R locus are best explained by a combination of drift and positive selection, whereas those 
at the Z locus are consistent with neutral evolution. 
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Figure 5: Likelihood-based inference of selection parameters and simulation-based validation 
for MC1R (top panels) and Zspot (bottom panels). (a, d) Heatmaps show the log-likelihood 
surface across a grid of selection coefficients (s) and dominance coefficients (h), with warmer 
colors indicating higher likelihood of the observed allele frequency trajectory for a given 
parameter combination. Overlaid bar plots represent the posterior distributions of s and h, 
summarizing parameter uncertainty; points below the histograms mark posterior means, and 
bars indicate 95% confidence intervals. Significance was assessed by whether the confidence 
interval overlaps zero. (b, c, e, f) Results from forward simulations of allele frequency change 
under two evolutionary scenarios: genetic drift alone (top) and drift combined with selection 
(bottom). Histograms show the distribution of final allele frequencies across replicates, and p-
values indicate the probability of observing the empirical data under each scenario. 

 

Conclusion 

 
Three decades of phenotypic monitoring combined with whole-genome sequencing of over 3,000 
individuals provide an unprecedented window into the genomic basis of rapid trait evolution in a wild 
vertebrate population. We identify an oligogenic architecture underlying two melanin-based traits—
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coloration and spottiness—both of which have undergone significant shifts over time. These traits 
share a partially overlapping genetic basis but exhibit pronounced sex-specific differences in genetic 
architecture and gene interactions. Allele frequency changes at major loci are consistent with 
selection, although the specific fitness consequences and potential trade-offs with other traits 
remain to be explored. Crucially, this study illustrates the power of integrating genomic, phenotypic, 
and long-term ecological data. Such an approach not only deepens our understanding of how wild 
populations respond to environmental change but also offers a framework for predicting the pace 
and mechanisms of evolutionary change in natural systems.  
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Material and Method 

 
Study system and phenotyping 
 

Study system 
 
A wild population of barn owls (Tyto alba) in western Switzerland (46°49ʹ N, 06°56ʹ E) (Tyto alba) has 
been continuously monitored since 1986, spanning over 30 years. These owls typically reach sexual 
maturity within their first year of life 66, and primarily breed in nest boxes installed on farms. 
Throughout each breeding season, nest boxes were inspected at four-week intervals to assess 
occupancy. When an active nest was detected, females were captured during incubation, while males 
were typically caught later during the provisioning of nestlings. During these visits, all nestlings and 
any previously unmarked adults were fitted with uniquely numbered metal rings for individual 
identification. Blood samples were collected from the brachial vein of each bird and initially stored in 
liquid nitrogen before being transferred to -80°C freezers for long-term preservation. Nestling sex was 
determined using sex-specific molecular markers targeting the SPINDLIN-gene 67. Breeding females 
were identified by the presence of a brood patch. The year of birth was known for individuals ringed 
as nestlings. For adults ringed for the first time, age and year of birth were estimated based on molt 
patterns of wing flight feathers. 
 

Phenotype measurements 
 
At each capture event, two melanin-based plumage traits, namely coloration and spottiness, were 
assessed on both the breast and the belly of each individual. The degree of reddish pheomelanic 
coloration was scored using an eight-color chip scale ranging from −8 (white) to −1 (dark reddish). 
Spottiness was quantified by counting the number (N) and measuring the mean diameter (D ± 0.1 mm) 
of eumelanic black spots within a 60 × 40 mm (2400 mm2) frame. For each body part (breast and belly), 
we calculated the total surface area covered by black spots (referred to as spottiness, S) using the 
following formula (expressed in cm2): S = 100 × (N × (𝜋 × (D/2) 2)). The spottiness values of the breast 
and belly were then summed to obtain a single value representing total the ventral spottiness. To 
retain a single phenotype value per individual, we averaged trait values across all available adult 
captures. If no data were available (e.g., due to mortality or dispersal), the fledging measurement was 
retained. The life stage at which individual was phenotype (fledging or adult) was recorded for 
downstream analyses. Individuals first ringed as adults were classified as “immigrants”, whereas those 
ringed as fledglings were classified as “residents”. To examine the relationship between the two traits, 
we estimated Pearson’s correlation coefficient (r) using the cor() function R (v4.2.2) 68 across all 
individuals, and separately for each sex. Differences in trait values between sexes and between life 
stages (juvenile vs. adult) were tested using the wilcox.test() function in R. 
  
Evolution of two melanin-based traits 
  

Modeling the temporal evolution of coloration and spottiness  
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To assess whether the melanin-based traits of coloration and spottiness have changed over time, we 
modeled the evolution of each trait across years using linear mixed-effects model (LMM). Models were 
fitted via restricted maximum likelihood (REML) using the lmer() function from the lme4 package (v1.1-
37) 69 in R (v4.2.2). For each trait, we constructed a series of increasingly complex models by 
sequentially adding explanatory variables. Model comparisons were based on Akaike’s Information 
Criterion (AIC; Table S1, S3). The best supported model for both traits included the following fixed 
effects: year of birth (continuous) to test for long-term evolutionary trends; sex (categorical) to account 
for sexual dimorphism in plumage traits 70,71, Fig. S6); phenotypic stage (categorial: fledging or adult) 
to control for age-related changes in melanin expression 56,57, Fig. S7). To account for variation related 
to observation timing, we included year of first capture as a random effect in all models. We also tested 
the effect of origin (resident versus immigrant) by including a categorical fixed effect indicating 
whether an individual was born within the study population. However, adding this variable did not 
improve model performance and was therefore excluded from the final model. 
  
Whole genome sequencing and Genotyping 
  

Reference panel: Data collection, phasing, and quality control 
  
The reference panel used in this study was previously assembled 44, and includes samples from 
previous whole-genome sequencing efforts 44,46,62,72–74. In total, whole genome sequencing data from 
502 samples were processed through a standardized variant discovery pipeline, briefly summarized 
below (see 44 for further details). Raw sequencing reads were processed with Trimmomatic v0.39 75: 
sequencing adapters were removed, and reads shorter than 70bp were discarded. Cleaned reads were 
aligned to the Tyto alba reference genome (NCBI RefSeq assembly: GCF_018691265.1) 73 using BWA-
MEM v0.7.17 76. 
Variant discovery followed the GATK v4.2.6 best practices pipeline 77. Base Quality Score Recalibration 
(BQSR) was performed using a previously validated truth set 62. SNPs were initially called per individual 
using HaplotypeCaller, then merged via joint genotyping with GenotypeGVCFs. Variants were filtered 
to retain only high-quality bi-allelic SNPs that passed the following GATK hard filters: QD<2.0, 
QUAL<30, SOR>3.0, FS>60.0, MQ<40.0, MQRankSum<-12.5, and ReadPosRankSum<-8.0). In addition, 
regions with low mappability were excluded 78. Depth-based filtering was performed using BCFTools 
(v.1.15.1) 79: any genotype with read depth < 5 or > (mean depth + 3 SD) was set to missing. SNPs with 
a minor allele count (MAC) < 5 were also removed. Following all filtering steps, the final reference 
panel comprised 28’197’066 high-confidence SNPs. To facilitate downstream analyses, SNPs positions 
originally mapped to Super-scaffolds were converted to chromosomal coordinates based on the 
linkage map of the barn owl 44. Of the retained SNPs, 26’933’469 were located on autosomes, and 
1’263’597 were assigned to the Z chromosome (corresponding to Super-scaffold 13 and 42 in the 
reference assembly). 
  
The full set of 28’197’066 high-confidence variants was phased in two successive steps. In the first step, 
local phasing was performed using WhatsHap v1.4 80, which uses sequencing reads information to 
phase variants observed together on the same read or read pair, and incorporates pedigree data when 
available. Phasing was conducted independently for each individual. For individuals belonging to 
parent-offspring trios, pedigree-aware phasing was applied using WhatsHap v1.4 80 pedigree mode. In 
cases where a parent was present in multiple trios (i.e., had more than one offspring in the dataset), 
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the parent was phased together with the offspring that had the highest sequencing depth. Additionally, 
we incorporated the mean recombination rate of the species 44, by using the --recombrate 2 option 
during phasing. After phasing, we applied a second round of variant filtering to minimize bias 
introduced by relatedness among individuals. Specifically, we retained only biallelic SNPs with minor 
allele count (MAC) > 5, and missing data < 5%, based on a subset of 187 unrelated individuals, defined 
as having pairwise kinship coefficients < 0.03125 (see 44 for kinship estimation details). Following this 
filtering step, the final dataset comprised 10’451’268 SNPs, of which 10'115'035 were located on 
autosomes and 336’233 on the Z chromosome. 
The set of 10'115'035 autosomal variants was further phased using SHAPEIT v4.1.2 81. This algorithm 
extends local phasing by incorporating population-level information using a model based on 
coalescence and recombination, enabling both statistical phasing of haplotypes and imputation of 
missing genotypes. To minimize potential bias due to relatedness, phasing was performed in two 
stages: 187 unrelated individuals were phased together to form a reference haplotype panel. 315 
family members were then phased individually against this unrelated set, avoiding the inclusion of 
family structure in the phasing panel and maintaining statistical independence. SHAPEIT was run 
according to the authors’ recommendations for increased phasing accuracy. Specifically, the number 
of conditioning hapolotypes in the PBWT (Positioning Burrows-Wheeler Transform) was set to 8. The 
Markov Chain Monte Carlo (MCMC) parameters were set as follows: 10 burn-in iterations, 5 pruning 
iterations, each separated by 1 additional burn-in iteration, and 10 main iterations for haplotype 
sampling. 
The set of 336’233 SNPs located on the Z chromosome was phased independently to account for the 
haplo-diploid nature of this chromosome in birds (males: ZZ, females: ZW). For variants located within 
the pseudo-autosomal region (PAR ) – as defined in 44, the phasing procedure followed the same 
protocol as for autosomal variants, since all individuals are diploid in this region. For non-PAR regions, 
phasing was handled differently by sex: diploid males (ZZ) were phased using the same two-step 
procedure applied to autosomes: first using WhatsHap 80 for read-based phasing, followed by SHAPEIT 
v4.1.2 81 for statistical phasing. Haploid females (ZW) possess a single Z chromosome; thus, any 
heterozygous calls (e.g., due to sequencing or genotyping error) were recoded as haploid genotypes 
by assigning the most frequent allele observed across individuals at that site. After sex-specific phasing, 
the male and female datasets were merged, and female genotypes were recoded as fully homozygous 
diploid for downstream analyses, ensuring compatibility with software that requires diploid input. This 
yielded a final dataset comprising 10’451’268 phased SNPs, including both autosomal and sex-linked 
variants. 
  
To evaluate phasing quality on autosomes, we used the switch error-rate (SER) metric 82. A switch error 
occurs when a heterozygous site is phased differently between two phase sets for the same individual. 
For each individual, we compared local phasing inferred either form a read-based or the trio approach 
(both using WhatsHap 80 as described previously) with statistical phasing produced by SHAPEIT 81. In 
this comparison, SHAPEIT phasing was performed without using read-based or trio information for the 
target individual, using the same version and parameters detailed in the previous section. This method 
assumes that short phasing blocks generated by WhatsHap are accurate; thus, any switch in these 
blocks when compared to SHAPEIT phasing is considered an error. Switch error rates were calculated 
using the switchError tool (available at https://github.com/SPG-group/switchError). Our results show 
that variants present in the reference panel had a low switch error rate, with a mean error SER of 1.83% 
(Fig. S12). 
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We also evaluated the ability of the reference panel to capture both SNP diversity and the arrangement 
of these SNPs into haplotypes within the population. To assess SNP diversity, we downsampled the 
number of individuals and estimated the number of unique SNPs present in each subset. We observed 
that the number of SNPs plateaued after approximately 200 individuals, indicating that the reference 
panel effectively captures the majority of common SNPs found in the Western Palearctic population 
(Fig. S10). To assess haplotypic diversity, we applied a similar downsampling approach and found that 
the panel also captures fine-scale haplotype structure (Fig. S13). 
 

Low coverage: DNA extraction, library preparation, and sequencing 
  
We sequenced 2,778 owls from a pedigreed population, with samples collected between 1986 and 
2020. Individuals were prioritized based on the availability of complete family information and 
phenotypic data. To assess sequencing performance, we included 32 individuals previously sequenced 
at high coverage as part of the reference panel (see above). Of these, 10 individuals were sequenced 
three times at low coverage, once per flow cell, to assess potential batch effects (see below for details). 
These are referred to as triplicates. The remaining 22 individuals, each sequenced once at low 
coverage, are referred to as duplicates and were used to evaluate the accuracy of low-coverage 
genotyping by comparison with their high-coverage data (see next paragraphs). 
  
Genomic DNA was extracted from blood samples using the DNeasy Tissue Kit (Qiagen, Switzerland) 
and the Biosprint robot 96 (Qiagen, Switzerland), then stored at -20°C. High quality DNA (without 
degradation) was quantified using Quant-it PicoGreen dsDNA Assay kit (Thermo Scientific, Switzerland) 
and diluted in 10 mM Tris-HCl to 1.5 to 2.5 ng/μl. We randomized the position of the 2,820 DNA 
samples (2,778 owls + 20 triplicates + 22 duplicates) across 30 distinct 96-well plates. Each plate 
included two empty wells for contamination control. DNA concentration was quantified using the 
Quant-it PicoGreen dsDNA Assay kit (Thermo Scientific, Switzerland), and samples were diluted in 10 
mM Tris-HCl to a final concentration of 1.5 to 2.5 ng/μl. Libraries were prepared using the plexWell 96 
kit (SeqWell, USA) and sequenced across three lanes (10 plates per lane) on the Illumina NovaSeq 6000 
platform at the Genomic Technologies Facility (GTF) of the University of Lausanne. 
  
Low coverage: genotyping, phasing, imputation, and validation on autosomes 
  
Raw sequencing reads were trimmed using Trimmomatic v.0.36 75 and aligned to the barn owl 
reference genome (NCBI RefSeq assembly: GCF_018691265.1) 73 with BWA-MEM v.0.7.15 76. Read 
alignment was followed by quality control using Qualimap v2.2.1 83, which was used to estimate mean 
sequencing coverage across the autosomes and the Z chromosome. Across all individuals, the average 
genome-wide was 1.95X, with individual coverage ranging from 0.2X to 4.15X (fig S14). 
  
We estimated genotype likelihoods for low-coverage individuals at each variant position present in the 
reference panel using BCFTools (mpileup and call methods), with the -T and -C options enabled 84. 
Phasing and imputation of these low-coverage samples were performed using GLIMPSE v1.1.1 85. 
GLIMPSE leverages haplotypes from high-coverage reference panel to impute and phase genotypes in 
low-coverage samples. We used the 502 high-coverage individuals described earlier as the reference 
panel. We selected version 1.1.1 of GLIMPSE, as it is better suited for small reference panels according 
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to the official documentation. The GLIMPSE pipeline consists of four steps: Chromosomes were divided 
into overlapping chunks for efficient parallel processing using the GLIMPSE_chunk tool. We applied 
default parameters (--window-size 2,000,000 and --buffer-size 200,000). Each genomic chunk was 
phased and imputed using the GLIMPSE_phase method. This step iteratively refines genotypes 
likelihoods and phase information for each individual independently. In each iteration, GLIMPSE 
phases the low-coverage individual using haplotypes from both the high-coverage reference panel and 
other imputed low-coverage samples. It identifies the closest haplotypes, those sharing the highest 
number of identical-by-descent (IBD) segments and uses them for genotype imputation. Within each 
diploid sample, haplotypes are imputed separately. A new iteration begins once imputation is 
complete. We performed this step with an increased number of iterations (--burnin 100 and --main 15) 
and set the effective population size parameter to (--ne 10000). If a recombination map was available 
for the given chunk 44, it was included using the --map option. All samples were considered diploid for 
autosomal genotyping. Once phasing and imputation were completed for each chunk, results were 
merged using the GLIMPSE_ligate tool to ensure consistent phase across the genome. This step was 
run with default parameters The final step involved identifying the most likely haplotype configurations 
based on posterior genotype likelihoods and phase probabilities, using the GLIMSE_sample method 
with the --solve flag enabled. 
  
Validation of the imputation approach was performed using the 32 individuals that were sequenced at 
both high and low coverage. As previously mentioned, GLIMPSE selects haplotypes sharing the highest 
fraction of identical-by-descent (IBD) segments with the target sample for both phasing and 
imputation. Including the same individual in both the reference panel and the imputed (target) set 
would therefore lead to artificially accuracy due to circularity. To avoid this bias, we ran the GLIMPSE 
pipeline five times: We used the full reference panel of 502 individuals and the 2,768 unique low-
coverage samples (excluding all duplicates and triplicates). This run produced the main dataset used 
throughout the study. The 22 duplicate individuals (those sequenced at both high and low coverage) 
were removed from the reference panel and added to the low-coverage target set. This resulted in a 
reference panel of 480 individuals and 2,790 low-coverage samples. This setup was used specifically to 
validate imputation accuracy without self-reference bias. Since GLIMPSE also samples haplotypes from 
other low-coverage individuals, we further ensured independence by imputing each of the three low-
coverage replicates of the 10 triplicate individuals separately. In each run (denoted a, b, and c), the 
triplicate being imputed was excluded from the rest of the low-coverage data. These runs used as 
reference panel of 492 individuals (502 minus the 10 triplicates) and 2,778 low-coverage samples. To 
ensure fair evaluation, we excluded). Because 11 individuals from the validation set that had 
intermediate sequencing depth in the high-coverage dataset (mean »11x), as their coverage could bias 
the accuracy assessment (see 86 for details). Using the remaining n=21 individuals sequenced at high 
coverage (mean»30x), we estimated the overall imputation accuracy as r2 = 0.968 across all variants. 
For further methodological details on imputation and validation procedures, refer to86. 
 
Identification of genomic regions associated with plumage coloration and spottiness. 
  

GRM and kinship matrix 
  
We estimated individual-based relatedness (β) 87 and inbreeding coefficients using the R package 
hierfstat (v0.5-11, R v4.2.2) 88. These metrics were calculated for all individuals in the dataset. The 
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resulting kinship matrix was then converted into a Genetic Relationship Matrix (GRM) using the 
kinship2grm() function provided by the hierfstat package. This GRM was used in downstream 
association analyses to account for population structure and relatedness among individuals. 
  

SNPs-based heritability of plumage coloration and spottiness 
  
We estimated SNP-based heritability for the two traits, plumage coloration and spottiness, by fitting 
two independent animal models. These general linear mixed models partition the total phenotypic 
variance (VP) into three components: (1) variance explained by fixed effects, accounting for known 
environmental sources; (2) additive genetic variance (VA), estimated via the GRM, and (3) residual 
variance (VR). Animal models were implemented in R using the brms package (version 2.34, R version 
4.2.2) 58. Sex and phenotypic stage were included as fixed effects to control for their influence on trait 
variation. The GRM, previously described, was incorporated as a random effect to estimate VA. Models 
were run using 8 independent Markov Chain Monte Carlo (MCMC) chains, each with 10,000 iterations 
and burn-in of 2,000 iterations. Narrow-sense heritability (h2) was calculated as h2=VA/VP. We also 
report the 95% credible intervals associated with each h2 estimate. Results for both traits are presented 
in Supplementary Table S9 and S10. 
  

Genome-Wide Association Study (GWAS) 
  
To identify genomic variants associated with plumage coloration and spottiness in the Swiss barn owl 
population, we performed genome-wide association analyses using the association.test() function 
from the gaston package (v1.6, R v4.2.2) 89. A linear mixed model (LMM) was fitted using the Average 
Information Restricted Maximum Likelihood (AI-REML) algorithm, as implemented in the same 
package 89. Both traits were treated as continuous variables. Sex and phenotyping stage (juvenile or 
adult) were included as fixed covariates, while the Genetic Relationship Matrix (GRM) was included as 
a random effect to account for population structure, familial relationships, and cryptic relatedness. To 
avoid proximal contamination and increase statistical power, we applied a Leave-One-Chromosome-
Out (LOCO) approach. For each chromosome, we constructed a GRM excluding SNPs from that 
chromosome, and performed the GWAS on the focal chromosome using this modified GRM. This 
approach ensures that associations are not inflated due to shared signal between the tested SNPs and 
the GRM 90. Mixed-model association methods incorporating LOCO have been shown to outperform 
traditional GWAS approaches in terms of power and control for confounding 91. 
 
For every GWAS, we used the score statistics to assess the strength of the association between 
individual SNP and the phenotype of interest. The significance threshold (a = 0.05) was adjusted using 
a Bonferroni correction to account for multiple testing 92. Additionally, we visually assessed deviations 
from the null distribution using quantile-quantile (QQ) plots, focusing on SNPs deviating from the 
expected 1:1 line as a qualitative check for inflation or strong associations.  
 
 To maximize power for detecting loci associated with plumage coloration and spottiness, we 
conducted six independent GWAS, three for each trait category. 
For the coloration, we first ran a GWAS using the mean ventral plumage coloration as the phenotype. 
However, since the coloration of the belly and breast are not perfectly correlated (Fig. S3), we 
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conducted two additional GWAS, using belly coloration and breast coloration as independent traits. 
This allowed us to identify loci potentially contributing to regional variation in coloration patterns. 
For the spottiness, we began with a GWAS on total spottiness as a composite trait. Given that this 
phenotype results from the combination of both spot number and spot diameter, we stratified the 
dataset to explore the genetic basis of each component separately. This involved running two 
additional GWAS: (i) one using the number of dots, and (ii) one using the mean spot diameter as the 
phenotype. 
 
Genotyping and gene expression of the Z chromosome region 
 

Feather and blood sampling and genotyping  
 
For gene expression and allelic discrimination, we collected two to three developing breast feathers 
and blood samples from 28 male and 17 female nestlings born in 2023 (n= 21) and 2024 (n = 24). We 
collected growing feathers from nestlings at a similar stage of development (mean age ± SD: 29 days ± 
1.8). At this age, the feathers start to develop the typical black spots on the apical part of the feather 
and the white to reddish pheomelanin coloration. Upon collection, feathers and blood were 
immediately frozen in liquid nitrogen in the field and stored at -80º C until molecular analyses. For 
every individual, genomic DNA was extracted using the Blood and Tissue kit (Qiagen, Switzerland), 
sexed (as described in 67) and genotyped for MC1R (as described in 57). Out of the 45 individuals used for 
the gene expression analysis, The MC1R genotypes are the following: 38 VV (GG genotype, 
homozygous MC1Rwhite), 6 VI (AG genotype), 1 male II (AA genotype, homozygous MC1Rred). Because 
of this unequal frequencies, MC1R genotypes were not considered for the analysis. 
 

Allelic discrimination assay 
 
To validate associations found on the Z chromosome, we performed an allelic discrimination assay 
targeting a SNP located on Super-Scaffold 42 at position 29,811,381. This SNP was selected because it 
showed strong linkage disequilibrium with the top associated SNPs for both plumage coloration (r² = 
0.97) and spottiness (r² = 0.98) and was itself significantly associated with both traits (p < 6.95e-31 for 
coloration; p < 2.70e-122 for spottiness). The following primers and probes were used in the assay: 
Forward primer ChZ29811429Fw: 5’-TATCTTTGGGCTTGACTGGT-3’; Reverse primer: ChZ29811308Rev: 
5’-AAACACCCAAGAAATAGCAAT-3’; Probe 1 (FAM-labeled): ChZ29811381FamMGBQ530: 5’-
ACTCTCACTTTGTTGCTCTCTCCT-3’ ; Label: 5’ FAM fluorophore; 3’ MGB quencher; Probe 2 (HEX-
labeled): ChZ29811381HexMGBQ530: 5’-ACTCTCACTTTGCTGCTCTCTCCT-3’ Label: 5’ HEX fluorophore; 
3’ MGB quencher. 
To enhance signal quality, an initial PCR pre-amplification step was performed using the following 
thermal cycling conditions: 95°C for 5 minutes (Initial denaturation) followed by 30 cycles at 95°C for 
30 seconds, 56°C for 30 seconds, 72°C for 30 seconds, followed with  72°C for 10 minutes (final 
extension). The reaction mix (10 μL total volume) contained: 200 μM dNTPs, 1 mM MgCl2, 500 nM of 
each primer, 1 x GoTaq buffer, 0.5 U/μl GoTaq polymerase (Promega, Switzerland). Following PCR, the 
products were diluted 1:1,000,000, and 2 μL if the diluted product was added to a 20 μL qPCR reaction 
using Takyon MasterMix (1x) (Eurogentec, Belgium), with 300 nM of each primer and 300 nM of each 
probe. 
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qPCR and allelic discrimination were performed on a CFX96 Real-Time PCR Detection System (BIO-RAD, 
Switzerland) using the standard protocol. The assay was conducted on 184 owls previously sequenced 
at low coverage. We observed a very high concordance between the genotypes inferred from allelic 
discrimination and those obtained via imputation from low-coverage whole-genome sequencing, with 
r2 = 0.986. Only one individual showed a discrepancy; further inspection revealed that this sample had 
no sequencing coverage at the locus, suggesting the discordant imputed genotype was due to a miscall 
during imputation rather than an error in the allelic assay. 
The allelic discrimination for the region on the Z chromosome (SNP 29,811,381) was then used to 
genotype the 45 individuals used for RNA extraction and gene expression. The genotypes at the Z locus 
were for males 5 CC, 13 CT, 10 TT, and for females 5 C and 12 T. 
 
 Total RNA extraction and cDNA preparation 
 
Total RNA was extracted from the developing breast feathers of the 45 nestlings used in the gene 
expression study. For each individual, one to two growing feathers were used. At the time of RNA 
extraction, a photograph of the basal part of each feather was taken on dry ice to visually document 
the stage of black spot development. Feathers were ground in liquid nitrogen using a sterile pestle and 
then resuspended in Qiazol Lysis Reagent. Total RNA was extracted using the miRNeasy Mini Kit 
(Quiagen, Switzerland) following the manufacturer’s protocol, with the following modifications: 
RNase-Free DNase treatment (Quiagen) was included during the extraction to remove genomic DNA; 
Buffer RWT was prepared using isopropanol instead of ethanol, as recommended for feather samples. 
Total RNA was eluded in 30 μL of RNase-free H2O. RNA concentration was quantified using the Qubit 
fluorometer (Life Technologies, Switzerland) with the RNA Broad Range Assay Kit, and RNA integrity 
was assessed using the Fragment Analyzer (Advanced Analytical, Labgene, Switzerland). Only samples 
with high RNA quality (RQN > 7.7) were retained for downstream gene expression analyses. For each 
individual, 200 ng of total RNA was reverse-transcribed in a total volume of 20 μL using the LunaScript 
RT SuperMix (New England Biolabs; BioConcept, Switzerland), under the following thermal conditions: 
25°C for 2 minutes; 60°C for 10 minutes; 95°C for 1 minute (inactivation). The resulting cDNA was 
precipitated using 1 μL of glycogen (20 ng/μL), 5 M ammonium acetate, and ethanol, and resuspended 
in 20 μL of 10 mM Tris-HCl (pH 8.0) and 0.1 mM EDTA. Because of the low expression levels of some 
target genes, 5 μL of the precipitated cDNA were preamplified with the complete primer mix used for 
the qPCRs. Preamplification was performed for 14 cycles using reagents from Life technologies 
(Thermo-Fisher Scientific, Switzerland). The resulting product was diluted 10-fold in 10 mM Tris–HCl 
(pH 8.0) and 0.1 mM EDTA, and stored at −20 °C until qPCR. Preamplification was validated not to bias 
relative expression levels for the majority of genes. However, one reference gene (HPRT1) showed 
altered expression post-preamplification and was therefore excluded from all downstream analyses.  
 

Gene expression analysis 
 
To investigate the molecular basis of plumage coloration and spottiness, we quantified the expression 
of genes located within and adjacent to the Z chromosome region (Super Scaffold 42) previously 
identified as being strongly associated with both traits. Specifically, we measured the expression of 12 
genes spanning the genomic interval between 29,210,880 and 30,121,259 using reverse transcription 
quantitative PCR (RT-qPCR). The targeted genes include: AGGF1 (Angiogenic Factor With G-Patch And 
FHA Domains 1); AP3B1 (Adaptor Related Protein Complex 3 Subunit Beta 1; CRHBP (LOC10436293) 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 1, 2025. ; https://doi.org/10.1101/2025.10.01.679793doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.01.679793
http://creativecommons.org/licenses/by-nc/4.0/


(Corticotropin Releasing Hormone Binding Protein); F2R (Coagulation Factor II Thrombin Receptor); 
IQGAP2 (IQ Motif Containing GTPase Activating Protein 2); LOC116965528 (uncharacterized non-
coding RNA); LOC122154642 (uncharacterized non-coding RNA; PDE8B (Phosphodiesterase 8B); 
SCAMP1 (Secretory Carrier Membrane Protein 1); SNORA47 (Small Nucleolar RNA, H/ACA Box 47); 
TBCA (Tubulin Folding Cofactor A); WDR41 (WD Repeat Domain 41). Among these, PDE8B and 
LOC116965528 are located closest to the SNPs showing the highest associations with spottiness and 
coloration. Given that multiple splice variants have been annotated for many of these genes in the T. 
alba_DEE_v4.0, barn owl genome assembly (NCBI RefSeq assembly : GCF_018691265.1) 73, we 
designed and tested multiple primer and probe sets per gene to evaluate potential transcript-specific 
expression. All primers and probes used in this study are listed in Table S17. Four additional genes 
located in the same genomic region could not be amplified despite multiple attempts and were 
therefore excluded from the expression analyses. To normalize gene expression in the RT-qPCR assays, 
we evaluated the expression of four commonly used reference genes: EEF1A (Elongation factor 1A); 
GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase); HPRT1 (Hypoxanthine 
Phosphoribosyltransferase 1); TBP (TATA-Box Binding Protein). However, due to altered expression 
following preamplification, HPRT1 was excluded from all analyses. In addition to the genes located on 
the Z chromosome, we also quantified the expression of four candidate pigmentation genes: MC1R 
(Melanocortin 1 Receptor); GPR143 (G Protein-coupled receptor 143); TYR (Tyrosinase); TYRP1 
(Tyrosinase-related protein 1). Primers and probes for these pigmentation genes were previously 
described 48,93. 
 
Quantitative PCR (qPCR) conditions were optimized for each primer and probe set by testing various 
concentrations using serial dilutions of plasmids or PCR-purified products amplicons of the target gene 
regions. The goal was to achieve PCR efficiencies between 95% and 105%, in line with MIQE guidelines. 
Most primer-probe combinations fell within this range (see Table S17). One exception was the 
IQGAP2_T102 primer-probe set, which showed a slightly elevated efficiency of 107 %, but was retained 
for downstream analyses given the acceptable range for relative quantification (see below). qPCR 
reactionsqPCRs were performed on a CFX96 Real-Time PCR Detection System Bio-Rad (BIoRad, 
Switzerland). Each reaction contained 2 ul of diluted, pre-amplified cDNAs, run in technical duplicates, 
using the QuantiTect Probe PCR Kit (Qiagen, Switzerland) in a final reaction volume of 20 μL. To ensure 
technical accuracy reactions were repeated if the Ct difference between duplicates exceeded 0.25 
cycles. To control for plate-to-plate variability and potential pre-amplification biases, three pooled pre-
amplified cDNA controls (from different individuals) were included on every qPCR plate. 
We set up qPCR conditions with different concentrations of primers and probes with serial dilutions of 
plasmids or PCR purified products of the amplified gene region to achieve PCR efficiency between 95% 
and 105% (Table S17). Only for one primer pair and probe for IQGAP2_T102, we got a higher efficiency 
of 107 % (Table S17) while considering the relative expression calculation (see below).  
To identify the most stable reference genes for qPCR normalization, we used the RefSeeker package 
(v1.0.4, R v4.2.2) 94. RefSeeker evaluates reference gene stability using four established algorithms-
Normfinder, geNorm, delta-Ct, and BestKeeper-based on the raw quantification cycle (Cq) values. 
Among the three tested reference genes (EEF1A, GAPDH, and TBP), EEF1A and TBP were identified as 
the most stable, with final stability rankings of 1.2 and 1.4, respectively (Table S17). These two genes 
were therefore used for normalization in subsequent expression analyses. All raw Ct values were log 
transformed to calculate relative expression assuming a PCR efficiency of 2.0 (corresponding to 100% 
efficiency, within the acceptable 95-105% range). For IQGAP2_T102, which had a slightly higher 
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empirically determined efficiency, a coefficient of 2.07 was applied. Normalized relative expression 
values were obtained using the SL1PCR package (v1.72.0 R v4.2.2) 95, with EEF1A and TBP serving as 
internal controls. 

 
Gene expression analysis and statistical modeling 
 

All qPCR-derived gene expression data were square root-transformed to improve normality of the 
residuals prior to statistical analyses, using R v4.4.2. Because multiple transcript variants were detected 
for several genes, we first assessed the correlation between their expression levels using males and 
females (see Figure S21-S22). Given the high correlation observed, only one transcript per gene was 
retained for downstream analysis. Where possible, we selected primers and probes that either (i) 
targeted all transcript variants, or (ii) captured the most highly expressed variant (e.g., for IQGAP2, see 
Table S17). To test whether genotype at the Z-linked locus (SNP at position 29,811,381 on Super-
Scaffold 42) influenced gene expression, we fitted linear mixed-efects model using the lme() function 
from the nlme (v3.1-168, R v4.2.2) 96. 
Because males (ZZ) and females (ZW) differ in their ploidy at the Z chromosome, we ran sex-specific 
models. Each model included gene expression as the response variable, genotype at the Z locus as a 
fixed effect (additive coding), brood of origin as a random effect to account for shared environmental 
and genetic background. For each gene-sex combination, we compared two models: one with and one 
without genotype as a fixed effect. Model comparison was performed using likelihood ratio tests 
(ANOVA). The resulting p-values were corrected for multiple testing using the Bonferroni method 92. 
Only corrected p-values below the significant threshold (a=0.05) were considered evidence that 
genotype significantly affected gene expression. 
For genes showing a significant association between genotype and gene expression, we further 
investigated whether variation in gene expression was associated with individual phenotypic traits. To 
do so, we fitted linear mixed models using the lme() function from the nlme package (v3.1-168, R 
v4.2.2) 96. As feathers were collected from the breast of the fledglings, we focused this analysis on 
plumage coloration and spottiness traits measured on the breast only. For each gene, we built two 
separate models: a baseline model including only sex as fixed effect; a full model including both the 
sex and gene expression levels as fixed effects. In both models, brood of origin was included as a 
random effect to account for non-independence among siblings. 
 
Genetic architecture of plumage coloration and spottiness 
  

Variance partitioning among QTLs for color and spottiness 
  
To quantify the contribution of the genomic loci identified in the GWASs and to evaluate the sex-
specific genetic architecture of plumage coloration and spottiness, we fitted Bayesian generalized 
linear models using the R package brms (v2.0.22, R v4.4.2) 58. Given the well-documented sexual 
dimorphism in the species, we constructed independent models for males and females for each trait. 
For each trait/sex combination, we considered multiple model parameterizations to explore the nature 
of genotype-phenotype relationships. In one set of models, genotypes were encoded as dosage values 
ranging from 0 to 2, assuming additive effects of alleles. In an alternative set, genotypes were treated 
as categorical factors, allowing for non-additive and dominance effects at each locus. 
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To identify the most appropriate model for each trait and sex, we compared the prediction accuracy 
of all fitted models using the widely applicable information criterion (WAIC). WAIC is a Bayesian model 
selection tool that evaluate the log-likelihood averaged across posterior simulations, providing a 
robust metric for model comparison that outperforms AIC and DIC in complex hierarchical models 97. 
This approach is implemented in the brms function loo_compare(). Model comparison and selection 
were implemented using the loo_compare() functions in the brms package. This approach allowed us 
to identify the genetic model best explaining trait variance across sexes and traits, offering insights 
into sex-specific dominance or additive genetic effects at key QTLs. 
  
In the models for plumage coloration, we included as fixed effects the genotype at the three loci 
identified as significantly associated with the trait in the GWAS analyses: the SNP on Super-Scaffold 26, 
position 22,522,039 (hereafter referred to as genoMC1R); the SNP on Super-scaffold 42, position 
29,808,233 (genoZcol); the SNP on Super-scaffold 6, position 27,439,651 (genoCORIN)). We also 
included the developmental stage at phenotyping (fledglings versus adults) as a fixed factor, to control 
for age-related variation in coloration. To account for relatedness among individuals and estimate the 
additive genetic variance (VA), the genomic relatedness matrix (GRM) calculated from autosomal SNPs 
was included in the models as a random effect. To investigate potential epistatic interactions between 
loci, we additionally fitted two extended models including the interaction term between genoMC1R 
and genoZcol. All models assumed a Gaussian distribution for the coloration trait. Bayesian inference 
was performed using 8 independent Markov chains, each run for 10,000 iterations, with a burn-in of 
2,000 iterations. We set the adapt_delta parameter to 0.9 to ensure proper convergence. 
For the analysis of spottiness, we included as fixed predictors the genotype of individuals at the two 
loci significantly associated with the trait in the GWAS: the SNP on Super-scaffold 42, position 
29,812,087 (hereafter referred as genoZspot); the SNP on Super-scaffold 26, position 22,522,039 
(genoMC1R). We also included the developmental stage at which the phenotype was measured 
(fledgling or adult) as a fixed effect. To account for genetic relatedness, we included the genomic 
relatedness matrix (GRM), estimated across the entire genome, as random effect in the models, 
allowing us to estimate VA. Because the distribution of the spottiness trait was zero-inflated, with an 
over-representation of individuals showing no spots, we modeled the phenotype using a hurdle-
gamma distribution. In this framework, the presence or absence of spots was modeled as the binary 
hurdle component, while the degree of spottiness among spotted individuals was modeled with a 
gamma distribution. All models were run using 8 independent Markov chains, each for 10,000 
iterations, with a burn-in of 2,000 iterations. The adapt_delta parameter was set to 0.9 to ensure 
robust convergence. For the best-fitting models, we extracted the total variance explained using the 
bayes_R2() function from the brms package 58. 
  
Allele frequency changes, fitness estimates, and drivers of evolution 
  

Temporal evolution of allele frequencies 
  
To assess whether the allele frequencies at the loci identified by the GWAS for coloration and 
spottiness have changed over time, we estimated allele frequencies for each year based on the adults 
alive in that year. To account for variation in sample sizes, particularly in earlier years with limited data, 
we computed 95% confidence intervals around each annual allele frequency estimate using the 
Clopper–Pearson exact binomial method 98. 
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To evaluate whether allele frequencies have changed systematically over time, we fitted linear models 
with allele frequency as the response variable and year as the predictor. To avoid potential bias from 
years with high uncertainty in frequency due to small sample sizes, we restricted this analysis to the 
period between 1995 and 2022. 
 
 Estimation of Effective population size  
 
We estimated the effective population size (Ne) from the whole-genome resequencing data using the 
standard formula π/(4*Mu), where π is the nucleotide diversity and  µ the mutation rate per site per 
generation [REF]. For each year, π was calculated using only for the adult individuals alive during that 
year. To ensure consistency with the variant calling pipeline, the total sequence length (L) used for π 
estimation matched the length of the reference genome after mapping (L = 1,131,781,302 bp). 
Nucleotide diversity (π) was computed using the pi.dosage() function from the hierfstat (v0.5-11, R 
v4.2.2) 88. Because the mutation rate in barn owls is currently unknown, we adopted the recently 
estimated mutation rate for the closely related Snowy owl (Bubo scandiacus) (Mu = 1.93*10-9) 99. To 
obtain 95% confidence intervals around annual Ne estimates, we performed bootstrap resampling of 
non-overlapping 1Mb segments along the genome and repeating this process 100 times per year. 
 
 Simulation of allele frequency through time 
  
To assess whether the observed allele frequency changes could be explained solely by genetic drift, 
we simulated allele frequency dynamics under a neutral scenario. This approach allowed us to test 
whether selection may have also played a role in shaping the temporal trajectory of alleles associated 
with coloration and spottiness. We modeled drift in a population with overlapping generations, 
reflecting the demography of barn owls, which have an average lifespan of approximately three years 
100. Accordingly, in our simulations, one-third of the population was renewed each year, while the 
remaining two-thirds persisted from the previous generation. Simulations began with the initial allele 
frequencies observed in the population over the first four years of the study: MC1Rred 0.047; Zspotted 
0.685 (based on n = 32 individuals). For each locus, we ran 1000 replicates assuming a constant 
population size of 400 individuals, a conservative estimate consistent with the lowest census sizes of 
the Swiss barn owl population during the study period 63. Given that MC1R is located on an autosome, 
simulation assumed diploidy across all individuals. The Z locus is located on the Z chromosome, which 
is hemizygous in females (ZW) and homozygous in males (ZZ). We therefore used a sex-aware 
simulation approach, where the effective number of alleles per individual differed by sex (1 for 
females, 2 for males), and sexes were sampled at a 1:1 ratio. To mimic the empirical data structure, for 
each simulated year we subsampled the same number of individuals as were observed alive in the 
actual dataset for that year. This allowed us to account for sampling variance and generate realistic 
confidence intervals around the neutral expectation. 
 
 Disentangling drift and selection on major QTLs 
 
To evaluate whether the allele frequency changes observed at key QTLs were consistent with neutral 
expectations or indicative of selection, we used the approxWF framework 101. This method compares 
empirical allele frequency trajectories to those expected under a Wright–Fisher diffusion process and 
is particularly well suited for time-series population genetic data. It allows explicit estimation of 
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selection coefficients while accounting for stochastic fluctuations due to genetic drift. For each focal 
locus, we fitted two models: (i) a neutral model (drift only), and (ii) a selection incorporating a selection 
coefficient (s) and, optionally, a dominance coefficient (h). Each Markov Chain Montel Carlo (MCMC) 
chain was run for 1,010,000 iterations, with the first 10,000 iterations discarded as burn-in, and 
sampling conducted every 10 steps. For the Z-linked locus, we used the default MCMC parameters. For 
MC1R, however, the default settings led to low acceptance rates and unstable chains, likely due to 
lower starting allele frequency. To improve convergence and stability, we reduced the proposal step 
sizes by half, using logN_step=0.025 for the log population size, s_step=0.005 for the selection 
coefficient (s), and h_step=0.005 for the dominance coefficient (h). 
For each locus, we first fitted a Wright-Fisher model incorporating both genetic drift and selection, and 
compared the log-likelihoods and the proportion of MCMC iterations supporting selection versus 
neutrality. A higher posterior support for selection and an improved model likelihood was interpreted 
as evidence that selection better explains the observed allele frequency trajectory. We then fitted a 
selection-only model and assessed whether the 95% credible interval of the estimated selection 
coefficient excluded zero. A locus was considered under directional selection if it met the following 
three criteria: (i) the selection model had a higher log-likelihood than the drift-only model; (ii) the 95% 
credible interval did not include zero; and (iii) a substantial proportion of MCMC iterations supported 
the presence of selection. Loci that failed to meet these criteria, particularly those with overlapping 
credible intervals including zero and low support for selection, were interpreted as being consistent 
with neutral drift. To provide further insights into the evolutionary dynamics, effective population size 
and dominance coefficients were jointly inferred from the MCMC chains. 
Finally, we used the simulation and dominance coefficients estimated from the selection-only models 
to simulate allele frequency trajectories under selection. Simulations followed the scheme outlined in 
the Simulation of Allele Frequency Through Time section. Genotype fitness was parameterized as 1, 
1-hs, and 1-s for autosomal loci (MC1R), and as 1 and 1-s for hemizygous females at the Z-linked 
locus. 
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