

1 © 2021 This manuscript version is made available under the **CC-BY-NC-ND 4.0 license**
2 <http://creativecommons.org/licenses/by-nc-nd/4.0/>

3 This document is the **Published / Accepted / Submitted Manuscript** version of a
4 Published Work that appeared in final form in **Crop Science**.
5 To access the final edited and published work
6 see <https://www.sciencedirect.com/science/article/abs/pii/S0261219420303616>

7 **Big sales, no carrots: Assessment of pesticide policy in Spain.**

8 **Abstract**

9

10 This paper explores Spanish pesticide policy with a focus on developments during the
11 last decade. Spain is one of the greatest global consumers of conventional pesticides and
12 leader in various related rankings among European Union countries. However, reviews
13 of pesticide policies examining the key plans, facts, strategies and stakeholders are
14 largely lacking. In providing an overview of Spanish responses to the European
15 Directive 2009/128/EC on the Sustainable Use of Pesticides, this article contributes to
16 filling this research gap. Spanish National Action Plans lack measurable quantitative
17 objectives for reduction in the use of conventional pesticides and further
18 implementation of Integrated Pest Management. Spanish National Action Plans also
19 lack strategies for informing citizens about pesticide residues, and efficient means of
20 keeping up to date with the authorisation of new active substances and delivery of
21 pesticide use and sales data, in time and form. Moreover, there are no clear trends in
22 conventional pesticide use reduction and sales, despite a significant reduction in the use
23 of the more toxic active substances. Overall, this paper reveals various important
24 shortcomings and incongruences in Spanish pesticide policy, which deserve further
25 scholarly exploration and should be a matter of concern for public bodies.

26 **Keywords:** Crop protection; Policy; Pesticide use reduction; Spain; Statistics;
27 Sustainability

28 **Introduction**

29 In recent decades, the consequences and problems that conventional pesticide use poses
30 to the environment and human health via soil, food and water contamination has led to

31 several attempts to reduce, control and regulate their use. In the European Union, a
32 series of regulations since the early 1990s show clear demands to reconcile agricultural
33 production with a reduced impact of this activity on the environment, and the
34 development of risk indicators (Lewis, Tzilivakis, Warner, & Green, 2016). This has
35 involved attempts at data collection and statistical homogenisation, the promotion of
36 Integrated Pest Management (IPM), and the establishment of National Action Plans
37 geared towards conventional pesticide use reduction. The integration of such measures
38 within the Common Agricultural Policy has been fraught with difficulty (Navarro &
39 López-Bao, 2018). Since conventional pesticide use will not reduce spontaneously,
40 governments develop various policy strategies including legal prescriptions, taxes and
41 subsidies, knowledge transfer, research, and technical assistance. These are aptly
42 summarised as strategies aimed at incentivising (carrots), punishing (sticks) or raising
43 awareness (sermons) (Lee, den Uyl, & Runhaar, 2019).

44 According to Directive 2009/128/EC on the Sustainable Use of Pesticides, to assess the
45 effectiveness of these strategies, measure progress and calculate risk indicators, solid
46 conventional pesticide use statistics need to be compiled. The Directive required
47 Member States to adopt specific quantitative objectives, targets, measures and
48 timetables to reduce the risks and impacts of their use. However, a recent special EU
49 report has critically highlighted the limited advances in reducing and measuring risks of
50 conventional pesticide use (European Court of Auditors, 2020). This goes in line with
51 previous critical appraisals by Eurostat signalling the lack of Member States' progress
52 on statistics about conventional pesticide use and risk, which make it difficult to
53 compare, measure progress, and establish meaningful targets (Eurostat, 2019). Given
54 that farmers will not reduce conventional pesticide use by their own volition and
55 government action is required, the time has come to shed light on how individual

56 Member States are dealing with European directives and measure progress. The aim of
57 this overview is to explore current pesticide policy in one of the major conventional
58 pesticide consumers worldwide: Spain. This involves analysing issues of data collection
59 and management, key actors and policies, general public knowledge and negative
60 impacts of conventional pesticides on human health and the environment.

61 Spain has the second largest European agricultural surface area, comprising 24 million
62 hectares. Throughout the last decade, the country has been the leading pesticide
63 consumer in the EU together with France, with 61,343.224 tons in 2018 without
64 including Molluscicides and other so-called plant protection products, according to the
65 consumption of pesticides indicator developed by Eurostat recently updated in 2020.
66 Spain is also the tenth top conventional pesticide consumer worldwide, according to
67 data from the 2017 FAOSTAT developed by the Food and Agriculture Organization of
68 the United Nations. Despite this, it is a rather unexplored and neglected topic in this
69 country, and lacks the richness of literature exploring the issue in countries like the UK,
70 France, Denmark or Germany (Barzman & Dachbrodt-Saaydeh, 2011; Bürger, de Mol,
71 & Gerowitz, 2008; Hillocks, 2012; Jensen et al., 2019). This perspective paper tries to
72 fill this knowledge gap through a systematic analysis of recent Spanish pesticide policy,
73 compiled from all relevant data sources available in the country. In so doing, it aims to
74 provide useful scholarly and applied insights, which may aid in reducing conventional
75 pesticide use in the near future.

76 **Spanish pesticide uses and reported impacts**

77 Although there are no official indicators, the negative impact of conventional pesticide
78 use is widespread in Spain, including environmental damage and contamination of
79 groundwater (Fernandez-Alba et al., 1998; F. Hernández et al., 2008; Menchen, De las
80 Heras, & Alday, 2017; Pose-Juan, Sánchez-Martín, Andrades, Rodríguez-Cruz, &

81 Herrero-Hernández, 2015), impacts on human health (Fernández et al., 2020; Roca,
82 Miralles-Marco, Ferré, Pérez, & Yusà, 2014; Zumbado et al., 2005) and on domestic
83 and wild animals (Ruiz-Suárez et al., 2015). The contamination of Spanish waters and
84 rivers would deserve a separate analysis. Currently, harmonised methodologies for the
85 study of waters and rivers are lacking, and there is an uneven regional development of
86 academic or institutional research on the topic. Pesticide contamination with long-term
87 series are well documented in rivers such as the Ebro, Llobregat, Turia and the Júcar
88 (Canccapa, Masiá, Andreu, & Picó, 2016; Ccanccapa, Masiá, Navarro-Ortega, Picó, &
89 Barceló, 2016; Masiá, Campo, Navarro-Ortega, Barceló, & Picó, 2015), showing high-
90 impact of pesticides to river ecosystems and contamination of biota, sediments and
91 water samples generating chronic toxicity at different trophic levels. Other river basins
92 are less well known.

93 Detailed official data on surface, underground and drinking water are only reported in
94 the latest 2018 yearly report on the progress in the application of the Spanish National
95 Action Plan or NAP (MAPAMA, 2018). The legal criteria for the provision of these
96 data is the Royal Decree 817/2015, September 11, which establishes the criteria for
97 monitoring and assessing the state of surface waters and environmental quality
98 standards, and the Royal Decree 1514/2009, October 2, which regulates the protection
99 of groundwater against contamination and deterioration. Data for 2017 show that 43%
100 of the 1,054 water monitoring stations sampled contained active substances from
101 conventional pesticides. Of the total 74,995 samples analysed (74,440 in water, 167 in
102 biota and 388 in sediment), 2,165 or the 3% of samples presented 43 different
103 conventional pesticides. Regarding underground water, of the 1,387 monitoring stations
104 385 contained active substances, and of the 73,313 samples collected, 1,9% presented
105 conventional pesticide residues. Finally, the Spanish National Information System for

106 Consumption Waters reported the presence of 278 different pesticides in drinking water,
107 detected in 4,168 supply areas, which corresponds to 41,49% of all supply areas
108 covering 69,9% of the Spanish population affected. Of the samples with conventional
109 pesticide residues, 51,8% came from supply tanks and 31,1% from the distribution
110 network. These data are alarming, but are difficult to compare with other EU Member
111 States due to the different methodologies applied and the lack of harmonised indicators
112 (Quintana, de la Cal, & Boleda, 2019).

113 Regarding pesticide residues in food, international assessments show that a high
114 percentage of Spanish foodstuffs contain varying, often high, residue levels (Jensen et
115 al., 2019; Poulsen, Andersen, Petersen, & Jensen, 2017). Despite this fact, Spain was
116 the third country with least food samples taken per 100,000 inhabitants in the last
117 (2018) EU report on pesticide residues in food, carried out by the European Food Safety
118 Authority (Medina-Pastor & Triacchini, 2020). Spain averaged 5.6 food samples per
119 100,000 inhabitants, while the EU mean was three times higher, with 17.1. As an
120 aggravating factor, a 2013 EU audit on Spanish pesticide control policy stated that:

121 *the pesticide residue controls are not sufficiently effective due to the limited analytical
122 scope in the majority of the laboratories analysing official control samples, and as a
123 consequence of the poor distribution and co-ordination of available resources across a
124 large number of residue laboratories* (European Commission, 2013, p. 60).

125 Intoxications through direct exposure to pesticides have been reported at levels ranging
126 between 750 and 1000 individual cases per year between 2013 and 2017 (MAPAMA,
127 2017). These numbers probably underestimate the actual cases, as only around 20
128 hospitals are involved in the system of detection of pesticide intoxications (European
129 Commission, 2018). Spanish consumers are well aware of the risks posed by pesticide
130 use (Pumarega et al., 2017). This was already patent in the 2010 Eurobarometer survey

131 report on food-related risks perception in the EU, which concluded that 72% of
132 Europeans and 66% of Spaniards were very or fairly worried about the presence of
133 pesticide residues in food (EFSA, 2010). This concern emerged most clearly in 2019,
134 when 45% of Spaniards compared to 39% of Europeans reported being worried the
135 most by pesticide residues in food, among all other issues (EFSA, 2019).

136 **Key actors in Spanish pesticide policy**

137 Spain adopted the Directive 2009/128/EC for the sustainable use of pesticides in its
138 national legislation through the Royal Decree 1311/2012. This law provided the
139 framework for implementing the requirements set out by the European Commission.
140 These were to reduce the risks derived from pesticide use for human health and the
141 environment, promote the IPM, and establish NAPs that should set quantitative targets,
142 goals, instruments and timetables for the reduction of conventional pesticide use. To
143 date, Spain has passed two NAPs, in 2012 and 2017 (Ministerio de Agricultura, 2012;
144 Ministerio de Agricultura y Pesca, 2017). The Ministry of Agriculture, Fisheries and
145 Food (MAPA) is now the competent authority on the matter. It designed the NAPs
146 together with another key actor: The Business Association for Crop Protection
147 (AEPLA), which comprises companies such as Basf, Bayer, Dow, Du Pont or Syngenta.
148 The social criteria to decide how much pesticides should be applied to maximize social
149 benefit differs from the private optimum geared by profit-seeking, because pesticides
150 cause external social effects that make it difficult to achieve common goals among
151 stakeholders (Agne et al., 1995). The fact that an interested private party such as
152 AEPLA plays such a fundamental role in policy-making has been called to question in
153 the literature, given the absence of environmental focus and the profit-making nature of
154 private actors. However, as Lee et al. (2019) have shown, multi-stakeholder actor
155 involvement in leading the application of an instrument has proved positive in reducing

156 pesticide use risks. Similarly, multi-stakeholder involvement yields positive outcomes
157 by working in tandem, as centralised government instruments tend to generate a sense
158 of exclusion to farmers and other actors. Although the actual development process of
159 the Spanish NAPs and the role of AEPLA will probably remain unknown, what is clear
160 is that the association is rather content with its lack of ambition and reach. In AEPLA's
161 2012 yearly report, it was stated:

162 *We value very positively the content of the National Action Plan... AEPLA has
163 participated in it, presenting a basic document and organising a conference to prepare
164 the first draft of the Plan, with the participation of all the sectors involved, to later
165 present proposals that would enrich it, some of them included in the final text, and
166 others that we hope will be taken into account in its development. Six months later, the
167 National Action Plan was a reality.* (cited in de Prada, 2014, p. 35)

168 The key role of AEPLA in developing the NAPs could have been counterbalanced by
169 the presence of other stakeholders, such as ecologist associations or organic agriculture
170 consortiums, which could have easily offered plausible alternatives for crop protection
171 strategies in specific crops and regions beyond IPM guidelines advocated by actors such
172 as farmer cooperatives or agricultural export associations.

173 Two further institutions play key roles in Spanish pesticide policy. First, the National
174 Phytosanitary Committee, created in 1998 and composed of civil servants, surveys the
175 implementation and coordination of NAPs with the devolved regional Spanish
176 Autonomous Communities , and delivers the mandatory annual reports monitoring their
177 performance. Breaking the regulations, only five annual reports have been delivered to
178 date. The last dates back to 2017, and is largely outdated. The second institution is the
179 Sectoral Committee of Plant Health, created in 2013, comprising central government
180 representatives, agriculture and exporters' associations and cooperatives, and crop

181 protection companies. There is no public information available about the role played by
182 the Committee, which is vaguely described as a “a forum for exchange and discussion
183 between the administration and the group of organisations related to plant health”
184 (MAPAMA, 2015, p. 135). The committee lacks representatives of organic agriculture,
185 despite Spain having the largest surface area dedicated to it in all Europe.

186 **Key instruments in Spanish pesticide policy**

187 A detailed analysis of Spanish NAPs goes beyond the scope of this account due to their
188 multifaceted character and the wide-ranging number of topics they address. The focus
189 of both NAPs (2013 and 2017) is primarily on the so called compliance and action
190 targets for the ‘sustainable use of pesticides’, the notion of sustainability remaining
191 undefined. The 2017 version of the NAP is a 71-page document that expands and
192 updates the 2013 version. It provides a series of general and specific objectives
193 associated with 9 key measures disaggregated into sub-measures, and a timeline for
194 accomplishment to be monitored through yearly assessment reports. Most measures can
195 be considered vague statements of intent lacking ambition, aiming for instance to
196 “improve training and information”, “promote research”, “promote IPM” or to
197 “intensify monitoring of the marketing of plant protection products” (Ministerio de
198 Agricultura y Pesca, 2017). Outcome-based targets are almost absent in relation to the
199 reduction of risks associated with, and dependency on conventional pesticides. Contrary
200 to France, the NAP does not focus on overall use reduction as a means of reducing risk
201 (Lamichhane et al., 2019). Action-based and compliance-based targets prevail, being
202 mostly related with sector-specific issues such as crop rotation, which is only mentioned
203 in passing without establishing clear targets. The NAP sets high-level compliance and
204 action-based targets for the number of information campaigns per year to be
205 implemented, or the number of professional users involved in training courses.

206 Thus, in line with the recent assessment of EU NAPs elaborated by the European
207 Commission, there is an overall lack of ambition in Spanish NAPs. This is illustrated,
208 for instance, in the target number of IPM demonstration farms to be established
209 throughout the current NAP: six pilot farms in a country with nearly one million farms
210 by 2018. Similarly, the 2018 Spanish audit on the 2017 NAP reports the design or
211 implementation of not a single project by 2018, despite the target was not overambitious
212 in its original goal of creating two research projects related to the NAP's aims. These
213 data pale when compared to the more than 200 research projects that were implemented
214 under the umbrella of the French Ecophyto plan between 2008 and 2015 (Lamichhane
215 et al., 2019). In sum, Spanish NAPs lack a specific budget, measurable targets and goals
216 for conventional pesticide use reduction, timetables for implementation of instruments,
217 taxation schemes or incentives for alternative methods of crop protection. In other
218 words, the NAPs only enforce 'sermons' without 'carrots' or 'sticks' (Pedersen &
219 Nielsen, 2017). Despite there being no optimal policy instrument for conventional
220 pesticide reduction (Borrás & Edquist, 2013), Lee et al.'s (2019) review of successful
221 strategies evinces the need to employ at least a combination of the three, i.e. taxes,
222 incentives and training. It is worth quoting a recent EU audit into the 2017 Spanish
223 NAP:

224 *[it] lacks overall quantitative objectives and measurable targets for reduction of risks
225 and impacts of pesticide use, which does not satisfy the requirements of the Directive.
226 This makes it impossible to demonstrate progress towards meeting the objectives of the
227 Directive. This was also the case with the previous National Action Plan. ... there are
228 sound and robust systems in place for certain requirements of the Directive, such as
229 training of operators, or inspection of Pesticide Application Equipment, there are areas
230 where actions do not fully satisfy the requirements of the Directive, including the*

231 *following: measures to inform the general public, systems for gathering information on*
232 *poisoning incidents, and the assessment of the implementation of Integrated Pest*
233 *Management general principles ... The specific priority objectives, when*
234 *quantifiable, are either not ambitious in their targets, or are more focused on*
235 *monitoring compliance rather than a commitment to achieve risk reduction.* (European
236 Commission, 2018, pp. I, 10).

237 This situation has been constantly denounced by Spanish ecologist associations such as
238 FODESAM (de Prada, 2014) and contrasts with countries such as the Netherlands, the
239 UK or Denmark where regulatory instruments and taxes have been effective (Hillocks,
240 2012). Sweden, for instance, implemented a pesticide tax back in 1984, while Germany
241 provides mandatory training for pesticide advisors and farmers since 1987 (Lefebvre,
242 Langrell, & Gomez-y-Paloma, 2015). On the positive side, Spain has been the EU
243 member state training the most certified professional operators by 2017, with 825,197
244 professionals trained (European Commission, 2017b). However, no overall figure on
245 compliance can be provided because the number of total operators is unknown.
246 Similarly, although the Spanish NAP is among the few that envisions the establishment
247 of protocols for pesticide applications to the citizenship, by 2018 the yearly internal
248 audit acknowledged no progress on this regard (MAPAMA, 2018).

249 Regarding the testing of pesticide application equipment, another main goal of the
250 Directive 2009/128/EU aimed at establishing a framework for Community action to
251 achieve the sustainable use of pesticides, Spain remains, as of 2016, in the group of EU
252 Member States whose level of compliance reported is below 50% despite the progress
253 achieved, which reflects a lack of reliable data on the number of sprayers in use in the
254 country (European Commission, 2017b, p. 9). The case of Spain also contrasts with the
255 more ambitious French NAP ‘Ecophyto’. Although overall unsuccessful in achieving its

256 target of total pesticide use reduction, Ecophyto focused on promoting alternatives,
257 research and measurable pesticide reduction targets, assigning only a small fraction of
258 its large economic firepower to training and inspections, which are the backbone of the
259 Spanish NAP (Guichard et al., 2017; Lamichhane et al., 2019).

260 The most controversial issues in Spanish pesticide policy have to do with the levels of
261 testing and monitoring of pesticide residues in food, as mentioned before, the continued
262 use of aerial sprays despite their prohibition, with Spain accounting for 75% of all
263 reported aerial spraying in the EU in 2015 (European Commission, 2017b), and the lack
264 of verification procedures for the effective implementation of IPM guidelines. Indeed,
265 Spain does not report statistics on IPM since 2014, as the SUD foresaw that all farmers
266 shall implement IPM since that date. Information about the implementation, application
267 and reach of IPM principles is poor, the last internal audit only mentioning it in passing
268 in relation with the following actions taken place: the realisation of 25 seminars on non-
269 agrarian IPM uses, the approval of 5 IPM guides for specific crops, and the current
270 existence of 1,188 assessment entities (MAPAMA, 2018). This is in line with the
271 situation in other Member States. Indeed, for the European Commission, IPM remains
272 the main weakness in the application of the SUD, mainly because “Competent
273 Authorities do not have prescriptive and assessable criteria in order to determine
274 compliance with IPM, and therefore there is limited evidence that IPM is systematically
275 applied” (European Commission, 2020, p. 12).

276 **Pesticide authorisations**

277 The shortcomings described above are perfectly illustrated by the processes of pesticide
278 assessment and authorisation. The issue recently became public knowledge when the
279 association Ecologists in Action denounced the ongoing routine ‘exceptional’
280 authorisation of unauthorised pesticides for use in Spain (K. Hernández, Romano,

281 Pérez, & García, 2019). While in theory forbidden pesticides cannot be used,
282 unauthorised ones can be used under exceptional situations provided institutional
283 authorisation is granted. The delay in assessing the prohibition of pesticides thus allows
284 authorities to routinely renew permits for unauthorised pesticides, through ‘exceptional’
285 mandates. An example is one of the most used active substances in Spain, which is
286 being phased out in Europe: 1,3-dichloropropene. This anomalous situation had already
287 been monitored by the EU through a series of audits in 2007, 2013 and 2017. What
288 raised the alarm initially in 2007 were the delays in the approval of thousands of new
289 active substances and in the assessment of those already in use. This meant that
290 pesticides forbidden in other European Member States were still marketed in Spain or
291 had not been evaluated to EU standards after 15 years of this legal requirement. By
292 2013, a new audit still recorded a delay in the authorisation of 1493 active substances
293 (European Commission, 2013).

294 Not only are all EU legal deadlines for authorisations consistently breached, but neither
295 can farmers obtain more selective and less risky substances that are available in other
296 Member States, including those in the Southern Authorisation Zone. This was noted by
297 the EU audit carried out in Spain in 2017. An excerpt from the audit’s Executive
298 Summary is illustrative in this regard:

299 *Compliance with deadlines is hampered by not availing of the opportunity to reduce the*
300 *work burden through work sharing between southern zone Member States and taking*
301 *greater account of the evaluation work of other Member States. These structural*
302 *problems are compounded by a range of inefficiencies in communication between*
303 *competent authorities. Consequently, access to market for plant protection products*
304 *with new active substances is delayed, thus affecting the range of newer and more*
305 *selective pest management tools available to growers. Difficulties in gaining*

306 *authorisation for generic and mutual recognition applications for PPPs impact*
307 *competition within the market. (European Commission, 2017a, p. I)*

308 The auditors also point out that many evaluations are refused where non-mitigable
309 adverse consequences are identified, but, at the same time, the competent authorities do
310 not review the already authorised products posing similar risks, which goes against
311 Article 44 of Regulation (EC) nº 1107/2009, and the aim to diminish overall risk in
312 pesticide use (European Commission, 2017a, p. 18). The concluding 2017 audit, and a
313 further one in 2018 devoted to the sustainable use of pesticides in Spain, showed no
314 improvements, emphasising the lack of long-term planning, brain-drain among the staff
315 in charge, and the consistent breach of deadlines (European Commission, 2017a, 2018).

316 The audit similarly reminded the Spanish authorities that the EU Regulation 1107/2009
317 envisaged the imposition of fees or charges for new applications, so as to recover the
318 costs associated with the processing of authorisations, a useful option disregarded by
319 Spain. The whole process revealed a consistent lack of political commitment to
320 conventional pesticide reduction and control, especially when compared to the swiftness
321 in permitting the ‘exceptional’ use of otherwise unauthorised pesticides and aerial
322 sprays.

323 **Spanish pesticide data: facts and trends.**

324 Spanish data about conventional pesticide use and consumption present various
325 drawbacks that make it difficult to assemble long-term series under comparable
326 parameters. Moreover, the repeated delays in the preparation and sending of data does
327 nothing but impede comparison tasks and setting thresholds by Eurostat, which has
328 already complained about this situation (Eurostat, 2019). Spanish pesticide data face
329 similar problems to other EU countries, namely commercial confidentiality reasons,

330 which force public data to categorise or aggregate active substances into major groups
331 without disclosing specific products, so as to hinder their sales and later local impacts to
332 being monitored. In addition, sales data tend to be more opaque than use data precisely
333 because of being covered by confidentiality clauses resulting from agreements between
334 the conventional pesticide industry and EU officials. As a result of confidentiality
335 clauses, gaps on pesticide sales and use data in public databases such as EUROSTAT
336 emerge, as highlighted by Lamichhane et al. (2020) regarding the case of seed treatment
337 in the EU.

338 Notwithstanding these facts, sales data can often be more precise because use data
339 normally derive from estimations based on extrapolations from other surveys
340 (Galimberti, Dorati, Udiás, & Pistocchi 2020). Moreover, one of the two key
341 harmonised risk indicators (HRI1) developed by the European Commission is based on
342 sales data, in particular in the quantities of conventional pesticides sold yearly.
343 Therefore, pesticide sales are not the best indicator to assess risk reduction or
344 sustainability targets. However, it is currently the more reliable one until more accurate
345 and reliable indicators are developed. New indicators should be based on a
346 multifactorial set of use-derived risks, from underground water pollution to compliance
347 with proper equipment use or the enforcement of IPM.

348 The key actors in data delivery are AEPLA and the MAPA. AEPLA gathers
349 conventional pesticides' sales data from the main pesticide companies operating in
350 Spain comprising 70% to 80% of the total market share. It elaborates yearly reports that
351 are not publicly available. MAPA is responsible for compiling data from every legal
352 entity in possession of the authorisation to commercialise conventional pesticides
353 during the reference period. MAPA is also responsible for sending data to Eurostat. Key
354 public reports delivered by MAPA are the yearly "Statistics on the Marketing of

355 Phytosanitary Products" (2011-2018) and the Five-year "Statistics on the Use of
356 Phytosanitary Products", which is in theory a five-year report but has only appeared
357 once, in 2013. The Directorate-General for Biodiversity and Environmental Quality of
358 the MAPA then issued the annual series entitled Environmental Profile of Spain since
359 2004, which is now compiled by the newly created Ministry for Ecological Transition
360 since 2018. This is a report delivered intended to inform the public about the
361 environmental state of the country, providing information broken down by regions, and
362 offering comparative profiles with the EU.

363 MAPA's statistics on sales reveal an uneven tendency with yearly shifts derived from
364 changing weather conditions, showing no clear decreasing trend, as stated in the official
365 reports (Figure 1). Most surprisingly, MAPA data are strikingly below AEPLA's, the
366 latter showing an almost double amount of pesticide consumption in 2018 over
367 MAPA's. This incongruence remains unexplained by official reports. The discrepancy
368 might be explained by the methodology employed by MAPA in compiling data. Data do
369 not come from sales information provided by the Treasury. Instead, data is compiled
370 through an annual electronic questionnaire and a follow-up telephone interview to non-
371 respondents delivered to every legal entity in possession of the authorisation to
372 commercialise conventional pesticides during the reference period. It could derive from
373 the lack of data provided by non-respondents to the sales survey. However, the
374 discrepancy is too high, because only 5% of authorised vendors of conventional
375 pesticides did not respond in 2017, according to MAPA data. The discrepancy might
376 also be explained by dissimilar so-called family products within conventional pesticides
377 included in the statistics, although this different is mainly derived from a different
378 disaggregation of products: AEPLA's statistics comprise insecticides, nematicides,
379 fungicides, herbicides, phytoregulators, molluscicides, rodenticides and 'various', while

380 MAPA includes insecticides, herbicides, fungicides and bactericides, growth regulators,
381 molluscicides and ‘other’ conventional pesticide.

382 In turn, the statistics on conventional pesticide use are based on extrapolations from
383 telephone-based sample surveys of 4,220 agro-business undertakings carried out by an
384 outsourced company hired by the MAPA. The Canary and Balearic Islands, Ceuta and
385 Melilla were excluded from the study. They are compiled based on the EU requirement
386 to choose typical representative crops and their specific associated pesticide
387 consumption. In 2013, Spain analysed barley, citrus, sunflower, vegetables, olive tree,
388 wheat and vines, which comprised 63% of the total conventional pesticides applied.
389 Despite representing 7% of the total cultivated area, pesticide use on vineyards
390 amounted to 38%, followed by olive trees, citrus, barley, vegetables, wheat and
391 sunflowers (Figure 2). These data demonstrate that the cultivation of vineyards is
392 pesticide-intensive in Spain and beyond. In France, for instance, vineyards make up 3%
393 of the total agricultural surface and represent 20% of the total pesticide share (Baldi et
394 al., 2013).

395 Statistics on pesticide use should have been delivered in 2018, but the report is overdue
396 and is still in the making by the end of 2020. Beyond these quantitative indicators
397 showing a slight decrease, the European Commission also requires two other indicators
398 to be developed: HRI1, in which the use of active substances is weighted according to
399 their toxicological profile and risk, and HRI2, which identifies the number of
400 Emergency authorisations weighed by the intrinsic hazardous properties of the active
401 substances granted by each Member State. The MAPA is also in charge of both
402 indicators. Regarding HRI1, Spain underwent a significant decrease from a baseline of
403 100 points in 2011-2013 to 68 in 2017, then increasing again to 78 in 2018 (a 22%
404 overall decrease compared to 17% decrease in the EU). In contrast, HRI2 remained

405 stable at 100 points from the baseline to 2017, to then decrease to 79 in 2018 (a 21%
406 overall decrease compared to a 56% increase in the EU). In line with the evaluation of
407 HRI1 by the Court of Auditors (European Court of Auditors, 2020), the decrease in
408 HRI1 in Spain can be interpreted as the result of a sharp reduction in the sales of not
409 approved active substances, due to pesticide bans and withdrawals from companies.
410 This is because the weighting factor of the indicator penalizes heavily the use of high-
411 risk substances. Therefore, the indicator conflates the targets of risk and use reduction,
412 which should be separated for a better understanding of long-term trends and actual
413 accomplishments in achieving the EU objective of sustainable use of pesticides. Not
414 surprisingly, HRI1 raises partisan views among key actors in pesticide policy: the
415 European Crop Protection Association supports it, while Pesticide Action Network,
416 Greenpeace and the organic association IFOAM call it into question (Foote, 4 March,
417 2020). For the Court of Auditors, “The indicator does not show
418 how successful the directive has been in achieving the EU objective of sustainable use
419 of PPP” (European Court of Auditors, 2020).

420 Regarding HRI2, its decrease in Spain results from a cut in the number of emergency
421 authorisations issued by the government. However, as recently shown by a report
422 delivered by Ecologists in Action (K. Hernández et al., 2019), the scale of the
423 authorisations tends to increase in Spain, and there is lack of information about how and
424 much is applied during the time of authorisations. Moreover, the information on the
425 uses and time frames for each emergency authorisation is not kept electronically
426 available for the public in Spain, as required by Article 57 of Regulation (EC) No
427 1107/2009, which reduces access to growers to essential information. Other EU
428 Member States present similar problems providing an accurate measure of HRI2,
429 because an ‘emergency authorisation’ can be issued for a short time period in a minor

430 crop but also, as commonly applies in Spain, to pesticide-intense crops such as vines, in
431 large areas, and during long periods. These problems make of HRI2 a rather
432 unsophisticated indicator (European Commission, 2020), which could be improved for
433 instance by weighting the number of hectares treated, the risk of the substances
434 employed, and the time-span of the authorisation. All in all, it would be advisable to
435 link EU indicators of risk to specific crop protection practices of use for statistics to take
436 ground and offer a real contribution to a low-input crop protection system in Spain, in
437 line with the recent work by Galimberti et al. (2020) aiming to harmonise use data of
438 conventional pesticides among EU countries.

439 Finally, the Environmental Profile of Spain draws on data from AEPLA and MAPA to
440 produce a further national pesticide use indicator: kilograms of active substance per
441 hectare of agricultural surface. The indicator is disaggregated by product types and also
442 by Spanish regions. This is so despite the fact that the profile made publicly available
443 by MAPA only provides nationwide data. This implies that private data from AEPLA
444 are also employed. The Environmental Profile also draws on sales data of conventional
445 pesticides from AEPLA, to provide data on sales that contradict those produced by the
446 same ministry. For instance, in 2015 and 2016 the profile affirms that 102,721 and
447 125,296 tonnes of conventional pesticides were sold in Spain, while MAPA had
448 declared 77,298 and 77,052 respectively. This huge discrepancy in pesticide sales by
449 two official reports might be explained by the fact that the Environmental Profile draws
450 on AEPLA data, which, as noted above, differs from MAPA's.

451 In the latest Environmental Profile, from 2018, the statistical data history changed to
452 then show an overall two-fold national yearly increase in kg/ha compared to the
453 previous reports, without any methodological or statistical clarification. For instance,
454 the former reports showed an average of 2.8 and 3.6 kg/ha in 2012 and 2016

455 respectively, while the historical series of the 2018 edition assigns averages of 5.2 and
456 5.4 kg/ha to those same years. If the 2018 data can be trusted, the statistics do not show
457 a significant variation between the start of the series in 2011 (5.2 kg/ha) and the latest
458 data in 2017 (5.1 kg/ha). The shift in 2018 can be explained by a change in the data
459 source, as previous reports draw on AEPLA data and in 2018 they draw on MAPA data.
460 The change in the indicator regarding kg/ha in previous years is tricky to understand
461 and cannot be explained by this shift alone. First, because AEPLA reports higher
462 pesticide sales than MAPA, and thus it would be reasonable to expect the indicator to be
463 higher in previous years in terms of kg/ha applied, but it is not. Thus, this shift can only
464 be explained by a change in the other element of the indicator, that is, a reduction in the
465 number of hectares considered in the estimation. To calculate the indicator for previous
466 years, the area of application of conventional pesticide was considered to be the area
467 constituted by cropland excluding fallow and other unoccupied lands (herbaceous and
468 woody crops). Then, for 2018, the indicator represented the consumption of
469 conventional pesticide in relation to the area of application in the period 2011-2017,
470 without further methodological clarification. Furthermore, the methodological note of
471 this report leads to misinterpretation. Despite establishing that it takes the same
472 reference base as other years, it then relates the justification of the indicator of
473 conventional pesticide consumed in kg/ha with another indicator referred to the
474 consumption of fertilizers, without any clear methodological explanation. In turn, the
475 fertilizer consumption indicator is based on the quotient between the consumption of
476 fertilizers and the total fertilizable area. However, the fertilizable area could differ from
477 that constituted by cropland, excluding fallow and other unoccupied lands. The
478 methodological note does not explain this correlation between the use of conventional
479 pesticides and fertilizable land.

480 Despite the huge differences in types of agriculture, cultivars, weather conditions, and
481 therefore in pesticide use in the Spanish Autonomous Communities, the NAP does not
482 establish regional objectives or disaggregate reports. This would however be desirable
483 and important, as shown by the following regional analysis of the Canary Islands. The
484 islands were chosen because the Spanish Profile does disaggregate among regions,
485 showing an outstanding difference in the historical series between the Canaries and
486 Peninsular Spain's total, regarding kg/ha of pesticide use. For example, in 2012 and
487 2016 the Canaries used 69.9 and 69.1 kg/ha respectively, against 5.2 and 5.4 kg/ha in
488 Spain. To further shed light on these figures, the authors requested disaggregated
489 AEPLA data for pesticide sales in the Canary Islands between 2008 and 2018.

490 These data were contrasted with records from the Canary Islands customs office, which
491 depend directly on the Spanish tax agency and have a specific taxation category
492 dedicated to plant protection, broken down by category. Despite the fact that the Canary
493 Islands belong to the EU Customs Union and the Single Market, the entry and exit of
494 goods requires the completion of customs procedures, since they are considered as
495 imports, even when they come from Peninsular Spanish territory. The results were
496 striking, as customs data are almost three-fold higher than AEPLA's in terms of tons of
497 pesticide sales for some years, such as 2016 (Figure 3). Because the Spanish Profile of
498 Spain draws on AEPLA data on conventional pesticide consumption, it can be argued
499 that data on kg/ha used are also underestimated in this report for the Canaries. In other
500 words, if the MAPA data underestimate those of AEPLA, in turn AEPLA's data
501 underestimate the actual sales recorded by the Spanish tax agency through customs
502 reports. Certainly, AEPLA only comprises the largest sellers of conventional pesticide
503 and sales can still be made by minor actors. However, this cannot conceal the finding

504 that conventional pesticide use might be seriously underestimated in other Spanish
505 regions apart from the Canary Islands.

506 **Conclusion**

507 This perspective has aimed to contribute to the state of the art in the area of pesticide
508 policy in the EU, by providing a detailed analysis of one of the top conventional
509 pesticide consumers in the world and a leading country in Europe: Spain. The analysis
510 and data presented in this overview point to significant shortcomings and incongruences
511 in Spanish pesticide policy and data compilation that deserve further exploration and a
512 deep institutional review. Since 2012, Spain has enacted several measures to implement
513 the requirements of the European Directive 2009/128, including the passing of two
514 NAPs that contemplated the establishment of reliable systems for inspection of pesticide
515 application equipment and training for operators. However, other areas are far less
516 developed, including the NAPs' own lack of quantitative objectives and measurable
517 milestones and reduction targets, or the absence of regional data disaggregation and
518 strategies for reducing conventional pesticide use. It would be a great step forward for
519 future NAPs to establish specific and measurable targets to reduce risks and overall use
520 of pesticides, as well as to contribute to the development of more realistic indicators
521 than the current HRI1 and HRI2.

522 The application of successful mixed instruments from regulatory, economic,
523 informative and governance resources to reduce conventional pesticide use is not
524 considered by the most recent reports and plans. Moreover, there are no clear trends
525 towards the reduction of pesticide sales and use, according to most indicators. Data
526 produced by the State remain inconsistent and even contradictory, with potential
527 underestimations of conventional pesticide use. There are consistent failures to meet
528 deadlines for delivering statistical data and for the assessment of authorisation

529 applications, which cannot only be blamed to double competences and bureaucratic
530 overload, but rather reflect a clear lack of political will and ambition. Moreover, the
531 NAPs and the bureaucratic apparatus in charge of the programmes are disconnected
532 from the institutions and policies involved in promoting ecological agriculture, neither
533 is the implementation of IPM principles solidly measured, issues that are
534 counterproductive to conventional pesticide use reduction.

535 The high levels of pesticides in water should be a matter of concern for the competent
536 authorities. Information about pesticide poisoning of operators and the public at large is
537 not rigorously compiled, while analyses of pesticide residues in food lag far behind
538 other EU countries. As reported by Lamichhane et al. (2019), this makes it difficult to
539 monitor the effectiveness of the plans and their implementation, as well as to
540 communicate with key stakeholders involved. Measures to inform the general public
541 about pesticide use, dangers and residues are not sound, despite various surveys
542 showing that these issues are among those that most concern the Spanish population.
543 This constitutes a serious shortcoming in the response to citizen demands for
544 transparency and information. Such a perspective is by no means the final word on this
545 complex topic, which requires the dedicated attention of multidisciplinary teams of
546 researchers and institutional actors. Rather, we hope to spark further debate on Spanish
547 pesticide policy within and beyond the field of crop protection.

548 **Acknowledgements:**

549 This paper was supported by the Ministry of Economy and Competitiveness, project
550 'The social construction of food quality: mediations between production and
551 consumption in a knowledge based economy', Ref. Q2432001B, and by the Spanish
552 Plan of Innovation, Technical and Scientific Research 2017-2020 – Ramón & Cajal Ref.
553 RYC2018-024025-I. The text was edited by Guido Jones, currently funded by the

554 Cabildo de Tenerife, under the TFinnova Programme supported by MEDI and FDCAN
555 funds. The authors thank AEPLA for supplying statistical data.

556 **References**

557 Agne, S., Waibel, H., Jungbluth, F., & Fleischer, G. (1995). *Guidelines for pesticide*
558 *policy studies*. Hannover: University of Hannover.

559 Baldi, I., Cordier, S., Coumoul, X., Elbaz, A., Gamet-Payrastre, L., Lebailly, P., . . . van
560 Maele-Fabry, G. (2013). *Pesticides: effets sur la santé*. Paris: INSERM.

561 Barzman, M., & Dachbrodt-Saaydeh, S. (2011). Comparative analysis of pesticide
562 action plans in five European countries. *Pest management science*, 67(12), 1481-
563 1485.

564 Borrás, S., & Edquist, C. (2013). The choice of innovation policy instruments.
565 *Technological Forecasting and Social Change*, 80(8), 1513-1522.

566 Bürger, J., de Mol, F., & Gerowitz, B. (2008). The “necessary extent” of pesticide use—
567 Thoughts about a key term in German pesticide policy. *Crop Protection*, 27(3),
568 343-351.

569 Cancappa, A., Masiá, A., Andreu, V., & Picó, Y. (2016). Spatio-temporal patterns of
570 pesticide residues in the Turia and Júcar Rivers (Spain). *Science of the Total*
571 *Environment*, 540, 200-210.

572 Cancappa, A., Masiá, A., Navarro-Ortega, A., Picó, Y., & Barceló, D. (2016).
573 Pesticides in the Ebro River basin: Occurrence and risk assessment.
574 *Environmental Pollution*, 211, 414-424.
575 doi:<https://doi.org/10.1016/j.envpol.2015.12.059>

576 de Prada, C. (2014). *Propuesta para el establecimiento legal de objetivos de reducción*
577 *del consumo de pesticidas que se usan en España*: Fundación Vivo Sano;
578 Fodesam.

579 EFSA. (2010). *Special Eurobarometer 354 for Food-related risks*. Brussels: European
580 Commission.

581 EFSA. (2019). *Special Eurobarometer – Wave EB91.3. Food Safety in the EU*.
582 Brussels: European Commission.

583 European Commission. (2013). *Final report of an audit carried out in Spain from 06 to*
584 *13 march 2013 in order to evaluate controls of pesticides. DG(SANCO) 2013-*
585 *6637 - MR FINAL*.

586 European Commission. (2017a). *Final report of an audit carried out in Spain from 17*
587 *january 2017 to 24 january 2017 in order to evaluate the control systems in*
588 *place for authorisation of plant protection products. DG(SANTE) 2017-6005.*

589 European Commission. (2017b). *Overview report on the implementation of Member*
590 *States' measures to achieve the sustainable use of pesticides under Directive*
591 *2009/128/EC.* Luxembourg: Publications Office of the European Union.

592 European Commission. (2018). *Final report of an audit carried out in Spain from 23*
593 *january 2018 to 02 february 2018 in order to evaluate the implementation of*
594 *measures to achieve the sustainable use of pesticides DG(SANTE) 2017-6005.*

595 European Commission. (2020). *On the experience gained by Member States on the*
596 *implementation of national targets established in their National Action Plans*
597 *and on progress in the implementation of Directive 2009/128/EC on the*
598 *sustainable use of pesticides. COM(2020) 204 final.*

599 European Court of Auditors. (2020). *Special Report Sustainable use of plant protection*
600 *products: limited progress in measuring and reducing risks.* Brussels: European
601 Union.

602 Eurostat. (2019). *Statistics on agricultural use of pesticides in the European Union.*
603 Brussels: European Commission.

604 Fernandez-Alba, A., Agüera, A., Contreras, M., Penuela, G., Ferrer, I., & Barceló, D.
605 (1998). Comparison of various sample handling and analytical procedures for
606 the monitoring of pesticides and metabolites in ground waters. *Journal of*
607 *chromatography A*, 823(1-2), 35-47.

608 Fernández, S. F., Pardo, O., Adam-Cervera, I., Montesinos, L., Corpas-Burgos, F.,
609 Roca, M., . . . Yusà, V. (2020). Biomonitoring of non-persistent pesticides in
610 urine from lactating mothers: Exposure and risk assessment. *Science of the Total*
611 *Environment*, 699, 134385.

612 Foote, N. (4 March, 2020). Controversial risk indicator to be basis for pesticide
613 reduction targets. *EURACTIV.*

614 Galimberti, F., Dorati, C., Udiás, A., & Pistocchi , A. (2020). *Estimating pesticide use*
615 *across the EU. Accessible data and gapfilling.* Luxembourg: Publications Office
616 of the European Union.

617 Guichard, L., Dedieu, F., Jeuffroy, M.-H., Meynard, J.-M., Reau, R., & Savini, I.
618 (2017). Le plan Ecophyto de réduction d'usage des pesticides en France:
619 décryptage d'un échec et raisons d'espérer. *Cahiers Agricultures*, 26(1), 14002.

620 Hernández, F., Marín, J. M., Pozo, Ó. J., Sancho, J. V., López, F. J., & Morell, I.
621 (2008). Pesticide residues and transformation products in groundwater from a
622 Spanish agricultural region on the Mediterranean Coast. *International Journal of*
623 *Environmental Analytical Chemistry*, 88(6), 409-424.

624 Hernández, K., Romano, D., Pérez, F., & García, K. (2019). *Autorizaciones de*
625 *pesticidas prohibidos*: Ecologistas en Acción.

626 Hillocks, R. (2012). Farming with fewer pesticides: EU pesticide review and resulting
627 challenges for UK agriculture. *Crop Protection*, 31(1), 85-93.

628 Jensen, B. H., Petersen, A., Petersen, P. B., Poulsen, M. E., Nielsen, E., Christensen, T.,
629 . . . Andersen, J. (2019). *Pesticide residues in food on the Danish market: results*
630 *from the period 2012-2017*. Copenhagen: National Food Institute, Technical
631 University of Denmark.

632 Lamichhane, J. R., Akbas, B., Andreasen, C. B., Arendse, W., Bluemel, S., Dachbrodt-
633 Saaydeh, S., . . . Kudsk, P. (2018). A call for stakeholders to boost integrated
634 pest management in Europe: a vision based on the three-year European research
635 area network project. *International Journal of Pest Management*, 64(4), 352-
636 358.

637 Lamichhane, J. R., Dachbrodt-Saaydeh, S., Kudsk, P., & Messéan, A. (2016). Toward a
638 Reduced Reliance on Conventional Pesticides in European Agriculture. *Plant*
639 *Disease*, 100(1), 10-24. doi:10.1094/pdis-05-15-0574-fe

640 Lamichhane, J. R., Messéan, A., & Ricci, P. (2019). Chapter Two - Research and
641 innovation priorities as defined by the Ecophyto plan to address current crop
642 protection transformation challenges in France. In D. L. Sparks (Ed.), *Advances*
643 *in Agronomy* (Vol. 154, pp. 81-152): Academic Press.

644 Lamichhane, J. R., You, M. P., Laudinot, V., Barbetti, M. J., & Aubertot, J.-N. (2020).
645 Revisiting sustainability of fungicide seed treatments for field crops. *Plant*
646 *Disease*, 104(3), 610-623.

647 Lee, R., den Uyl, R., & Runhaar, H. (2019). Assessment of policy instruments for
648 pesticide use reduction in Europe; Learning from a systematic literature review.
649 *Crop Protection*, 104929.

650 Lefebvre, M., Langrell, S. R., & Gomez-y-Paloma, S. (2015). Incentives and policies
651 for integrated pest management in Europe: a review. *Agronomy for sustainable*
652 *development*, 35(1), 27-45.

653 Lewis, K. A., Tzilivakis, J., Warner, D. J., & Green, A. (2016). An international
654 database for pesticide risk assessments and management. *Human and Ecological
655 Risk Assessment: An International Journal*, 22(4), 1050-1064.
656 doi:10.1080/10807039.2015.1133242

657 MAPAMA. (2015). *Agricultura, alimentación y medio ambiente en España*. Madrid:
658 MAPAMA.

659 MAPAMA. (2017). *Informe de resultados de aplicación del PAN 2017*. Madrid:
660 MAPAMA.

661 MAPAMA. (2018). *Informe de resultados de aplicación del PAN 2018*. Madrid:
662 MAPAMA.

663 Masiá, A., Campo, J., Navarro-Ortega, A., Barceló, D., & Picó, Y. (2015). Pesticide
664 monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison
665 with historical data. *Science of the Total Environment*, 503, 58-68.

666 Medina-Pastor, P., & Triacchini, G. (2020). The 2018 European Union report on
667 pesticide residues in food. *EFSA Journal*, 18(4), 6057.

668 Menchen, A., De las Heras, J., & Alday, J. J. G. (2017). Pesticide contamination in
669 groundwater bodies in the Júcar River European Union pilot basin (SE Spain).
670 *Environmental monitoring assessment*, 189(4), 146.

671 Ministerio de Agricultura, A. y. M. A. (2012). *Plan de acción nacional para el uso
672 sostenible de productos fitosanitarios*. Madrid: Gobierno de España.

673 Ministerio de Agricultura y Pesca, A. y. M. A. (2017). *Plan de acción nacional para el
674 uso sostenible de productos fitosanitarios*. Madrid: Gobierno de España.

675 Navarro, A., & López-Bao, J. V. (2018). Towards a greener Common Agricultural
676 Policy. *Nature Ecology & Evolution*, 2(12), 1830-1833. doi:10.1038/s41559-
677 018-0724-y

678 Pedersen, A. B., & Nielsen, H. Ø. (2017). Effectiveness of pesticide policies:
679 Experiences from Danish pesticide regulation 1986-2015. In M. Coll & E.
680 Wajnberg (Eds.), *Environmental pest management: Challenges for agronomists,
681 ecologists, economists and policymakers* (pp. 267-324). New Jersey: Wiley.

682 Pose-Juan, E., Sánchez-Martín, M. J., Andrades, M. S., Rodríguez-Cruz, M. S., &
683 Herrero-Hernández, E. (2015). Pesticide residues in vineyard soils from Spain:
684 Spatial and temporal distributions. *Science of the Total Environment*, 514, 351-
685 358.

686 Poulsen, M. E., Andersen, J. H., Petersen, A., & Jensen, B. (2017). Results from the
687 Danish monitoring programme for pesticide residues from the period 2004–
688 2011. *Food Control*, 74, 25-33.

689 Pumarega, J., Larrea, C., Munoz, A., Pallarès, N., Gasull, M., Rodríguez, G., . . . Porta,
690 M. (2017). Citizens' perceptions of the presence and health risks of synthetic
691 chemicals in food: results of an online survey in Spain. *Gaceta sanitaria*, 31,
692 371-381.

693 Quintana, J., de la Cal, A., & Boleda, M. R. (2019). Monitoring the complex occurrence
694 of pesticides in the Llobregat basin, natural and drinking waters in Barcelona
695 metropolitan area (Catalonia, NE Spain) by a validated multi-residue online
696 analytical method. *Science of the Total Environment*, 692, 952-965.
697 doi:10.1016/j.scitotenv.2019.07.317

698 Roca, M., Miralles-Marco, A., Ferré, J., Pérez, R., & Yusà, V. (2014). Biomonitoring
699 exposure assessment to contemporary pesticides in a school children population
700 of Spain. *Environmental research*, 131, 77-85.

701 Ruiz-Suárez, N., Boada, L. D., Henríquez-Hernández, L. A., González-Moreo, F.,
702 Suárez-Pérez, A., Camacho, M., . . . Luzardo, O. P. (2015). Continued
703 implication of the banned pesticides carbofuran and aldicarb in the poisoning of
704 domestic and wild animals of the Canary Islands (Spain). *Science of the Total
705 Environment*, 505, 1093-1099.

706 Zumbado, M., Goethals, M., Álvarez-León, E. E., Luzardo, O. P., Cabrera, F., Serra-
707 Majem, L., & Domínguez-Boada, L. (2005). Inadvertent exposure to
708 organochlorine pesticides DDT and derivatives in people from the Canary
709 Islands (Spain). *Science of the Total Environment*, 339(1-3), 49-62.

710