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Introducción 

 

1. Hipercolesterolemia familiar                 

                                          

La hipercolesterolemia familiar heterocigota (HFHe) es una de las enfermedades 

monogénicas más prevalentes a nivel mundial, con una frecuencia estimada de 1 caso por 

cada 300 personas. Esta cifra es mayor en regiones de aislamiento geográfico1 (Fig. 1). 

La HFHe se caracteriza por niveles elevados de colesterol LDL (c-LDL) desde la infancia 

y la presencia de estigmas cutáneos como xantomas, xantelasmas y/o arco corneal2. No 

obstante, los eventos cardiovasculares precoces, tales como el infarto agudo de miocardio 

(IAM), el accidente cerebrovascular y la enfermedad arterial periférica, son los 

principales determinantes que condicionarán el pronóstico de la enfermedad 2. 

                     

 

 La HFHe tiene una herencia autosómica co-dominante y está causada por 

variantes patogénicas en los alelos de algunos de los genes que regulan el metabolismo 

Figura 1. Prevalencia mundial de hipercolesterolemia familiar. Las poblaciones con 

efecto fundador concentran la mayor prevalencia1. 
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del colesterol, principalmente el gen del receptor de LDL (LDLR), y en menor medida, 

los genes de la apolipoproteína B (APOB), de la proproteína convertasa subtilisina/kexina 

tipo 9  (PCSK9), la apolipoproteína E (APOE)  y la proteína adaptadora tipo 1 del receptor 

de LDL (LDLRAP1), este último de herencia autosómica recesiva3. Una característica 

distintiva de esta enfermedad es su elevada heterogeneidad genética, lo que, junto con 

otros factores modificadores, origina una amplia variabilidad fenotípica, incluso dentro 

de una misma población3,4. Esta variabilidad puede explicarse por factores como el tipo 

de variante genética, la edad, el sexo o la presencia de comorbilidades, como la diabetes 

mellitus (DM)5. 

Aunque el diagnóstico definitivo de esta enfermedad se realiza mediante el 

análisis genético, es posible estimar la probabilidad de HFHe utilizando sistemas de 

puntuación como el Dutch Lipid Clinic Network (DLCN), que integra parámetros 

analíticos, antecedentes personales y familiares, exploración física y pruebas genéticas6 

(Tabla 1).   
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Criterios Puntos 

Antecedentes familiares 

 

Familiar de primer grado con enfermedad coronaria o vascular prematura conocida (hombres <55 años; 

mujeres <60 años), o familiar de primer grado con c-LDL >p95 

 

Familiar de primer grado con xantomas tendinosos y/o arco corneal, o niños <18 años con c-LDL >p 95 
 

 

 

1 

 

 

2 

Antecedentes personales 

 

Paciente con enfermedad arterial coronaria prematura (hombres <55 años; mujeres <60 años) 

 

Paciente con enfermedad vascular cerebral o periférica prematura (hombres <55 años; mujeres <60 años) 

 

 

 

2 

 

1 

Exploración física 

 

Xantomas tendinosos 

 

Arco corneal antes de los 45 años 

 

 

 

6 

 

4 

Niveles de c-LDL (sin tratamiento) 

 

c-LDL ≥ 325 mg/dL 

 

c-LDL 251-325 mg/dL 

 

c-LDL 191-250 mg/dL 

 

c-LDL 155-190 mg/dL 

 

 

 

8 

 

5 

 

3 

 

1 

Análisis genético 

 

Mutación funcional en los genes LDLR, apoB o PCSK9 

 

8 

 

                             

 

1.1. Hipercolesterolemia familiar en Canarias  

 

El Archipiélago Canario, compuesto por ocho islas, se sitúa en el océano 

Atlántico, a menos de 100 km de la costa africana y aproximadamente a de 1.000 km. de 

la Península Ibérica. Tras la conquista castellana del siglo XV, su ubicación geográfica 

Tabla 1. Criterios de la Dutch Lipid Clinic Network para el diagnóstico de 

hipercolesterolemia familiar6
. 

> 8 puntos: diagnóstico definitivo; 6-8 puntos: diagnóstico probable; 3-5 puntos: diagnóstico posible; <3 puntos: 

diagnóstico improbable. 
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contribuyó al aislamiento poblacional prolongado hasta bien entrado el siglo XX. Esta 

situación redujo la variabilidad genética de sus habitantes, evidenciándose en la elevada 

frecuencia de determinadas enfermedades con respecto a otras regiones españolas 7-11. 

Este fenómeno, asociado a la consanguinidad y elevada homogeneidad genética 

resultante se conoce como “efecto fundador”.  

Con más del 30% de su población afecta, Canarias presenta la mayor prevalencia 

de dislipemia de toda España12 (Fig. 2), siendo a la vez la región con menor proporción 

de individuos que alcanzan los objetivos lipídicos recomendados13.  

            

 

 El primer estudio epidemiológico sobre hipercolesterolemia en Canarias fue 

publicado en 2019 por Sánchez-Hernández et. al8. en el que se realizó estudio genético a 

Figura 2. Prevalencia de dislipidemia ajustada por edad, sexo e índice de masa 

corporal, por comunidades autónomas españolas 12. 

Del total de dislipemias registradas, el 68,7% tenía diagnóstico de hipercolesterolemia pura, un 5,6% de 

hipertrigliceridemia y el 25,7% de hiperlipemia mixta. 

 

Estudio HISPALIPID. Med Clin (Barc). 2006;127:331-4. 
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una muestra de individuos de la isla de Gran Canaria que presentaban un c-LDL basal 

≥220mg/dL y un DLCN ≥8. El 62% de los sujetos obtuvieron un diagnóstico genético 

positivo siendo el 68% portadores de la misma variante genética p.(Tyr400_Phe402del) 

en LDLR. Este hallazgo contrasta con los datos obtenidos del registro nacional 

SAFEHEART (Spanish Familial Hypercholesterolaemia Cohort Study), publicado en 

2017, en el que la mayoría de las comunidades autónomas muestran prevalencias 

inferiores al 30% para una misma mutación (Tabla 2) y donde, a nivel nacional, ninguna 

variante genética individual en LDLR supera el 7% del total de mutaciones identificadas4.    

 

Autonomous  
communities

Top 3 Variant (%) (n)

1 – Andaluzia c.1845+1G>C; p.Glu615fs*25
c.-135C>G: p.(?)
c.1342C>T; p.(Gln448*)

11,5% (49)
8,4% (36) 
6,8% (29)

2 – Aragon c.518del; p.(Cys173Serfs*33)
c.91G>T; p.(Glu31*)
c.2184del; p.(Arg728Serfs*2)

28,3% (15)
24,5% (13)
7,5% (4)

3 – Asturias c.1285G>A; p.(Val429Met)
c.2548-?_2583+?del; p.(?)
c.314-?_940+?del; p.(?)

24,2% (43)
15,7 (28)
11,8% (21)

4 – Basque Country c.[313+1G>C; 274C>G]; p.[(?); (Gln92Glu)]
c.12G>A; p.(Trp4*)
c.2399_2403delinsGGGT ; p.(Val800Glyfs*129)

22,4% (19)
8,2% (7)
4,7% (4)

5– Balearic Islands c.[313+1G>C; 274C>G]; p.[(?); (Gln92Glu)]
c.884del; p.(Val295Alafs*75)
c.-135C>G: p.(?)

28,6% (4)
28,6% (4)
14,3% (2)

6 – Canary Islands c.1690A>C + c.2397_2405; p.(Asn564His) + p.(Val800_Leu802del)
c.1775G>A; p.(Gly592Glu)
c.682G>A; p.(Glu288Lys)

42,9% (6)
21,4% (3)
14,3% (2)

7 – Cantabria c.1358+1G>A; p.(?)
c.1359-1G>A; p.Thr454Leufs*51 
c.1186+5G>A: p.G396fs∗26

25,0% (2)
25,0% (2)
25,0% (2)

8 – Castile and León c.2389+4A>G; p.(?)
c.953G>T; p.(Cys318Phe)
c.1342C>T; p.(Gln448*)

18,4% (82)
8,7% (39)
7,8% (35)

9 – Castile-La Mancha c.1342C>T; p.(Gln448*)
c.530C>T; p.(Ser177Leu)
c.[313+1G>C; 274C>G]; p.[(?); (Gln92Glu)]

17,8% (39)
14,6% (32)
11,9% (26)

10 – Catalonia c.1045del; p.(Gln349Serfs*21)
c.1342C>T; p.(Gln448*)
c.2390-1G>C; p.(?)

12,5% (37)
7,7% (23)
6,4% (19)

11 – Extremadura c.1342C>T; p.(Gln448*)
c.-135C>G: p.(?)
c.1690A>C + c.2397_2405; p.(Asn564His) + p.(Val800_Leu802del)

23,3% (40)
14,0% (24)
12,8% (22)

12 – Galicia c.10580G>A; p.(Arg3527Gln) – APOB gene
c.1800G>C; p.(Glu600Asp)
c.464G>A; p.(Cys155Tyr)

26,9% (50)
16,7% (31)
10,2% (19)

13 – La Rioja c.301G>A; p.(Glu101Lys)
c.[313+1G>C; 274C>G]; p.[(?); (Gln92Glu)]
c.1186+5G>A; p.G396fs∗26

30,9% (21)
18,0% (18)
8.8% (6)

14 – Madrid c.[313+1G>C; 274C>G]; p.[(?); (Gln92Glu)]
c.1358+1G>A; p.(?)
c.1342C>T; p.(Gln448*)

11,8% (42)
8,1% (29)
3,9% (14)

15 – Murcia c.460C>T; p.(Gln154*)
c.12G>A; p.(Trp4*)
c.1690A>C + c.2397_2405; p.(Asn564His) + p.(Val800_Leu802del)

33,3% (9)
22,2% (6)
14,8% (4)

16 – Navarre c.1342C>T; p.(Gln448*)
c.283T>G; p.(Cys95Gly)
c.1285G>A; p.(Val429Met)

20,0% (2)
20,0% (2)
20,0% (2)

17 – Valencia c.97C>T; p.(Gln33*)
c.460C>T; p.(Gln154*)
c.12G>A; p.(Trp4*)

46,6% (156)
25,4% (85)
7,2% (24)

18 – Others c.313+2dupT; p.Leu64_Pro105delinsSer
c.590G>A; p.(Cys197Tyr)
c.-136C>G; p.(?)

10,4% (5)
10,4% (5)
8,3% (4)

3 - Asturias

12 - Galicia

7 - Cantabria

8 – Castile and León

9 – Castile-La Mancha

1 – Andaluzia

11 – Extremadura

2 – Aragon
10 – Catalonia

17 – Valencia

5– Balearic Islands 

6 – Canary Islands 

15 – Murcia

14 – Madrid

4 – Basque

Country

16 – Navarre

13 – La Rioja

Comunidades autónomas 3 variantes más frecuentes 

Aragón 

País Vasco 

Islas Canarias 

Castilla y León 

Andalucía 

Asturias 

Islas Baleares 

Cantabria 

Castilla La-Mancha 
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Las características clínicas y bioquímicas de los pacientes con HFHe de la isla de 

Gran Canaria fueron en general, similares, con la excepción de una mayor prevalencia de 

diabetes mellitus tipo 2 (DM2) observada entre los portadores de la variante genética 

p.(Tyr400_Phe402del) del LDLR, en comparación con aquellos que presentaban otras 

mutaciones en el mismo gen (17,8 vs 0%; p=0,021)8. En una investigación posterior, se 

observó que la prevalencia de DM2 era incluso mayor, alcanzando el 25% [(vs 4,8% en 

portadores de otras variantes en el gen LDLR; (p=0,045)]14, sin diferencias en edad, sexo, 

índice de masa corporal (IMC) o perímetro de cintura (PC).  Estos datos duplican la 

Autonomous  
communities

Top 3 Variant (%) (n)

1 – Andaluzia c.1845+1G>C; p.Glu615fs*25
c.-135C>G: p.(?)
c.1342C>T; p.(Gln448*)

11,5% (49)
8,4% (36) 
6,8% (29)

2 – Aragon c.518del; p.(Cys173Serfs*33)
c.91G>T; p.(Glu31*)
c.2184del; p.(Arg728Serfs*2)

28,3% (15)
24,5% (13)
7,5% (4)

3 – Asturias c.1285G>A; p.(Val429Met)
c.2548-?_2583+?del; p.(?)
c.314-?_940+?del; p.(?)

24,2% (43)
15,7 (28)
11,8% (21)

4 – Basque Country c.[313+1G>C; 274C>G]; p.[(?); (Gln92Glu)]
c.12G>A; p.(Trp4*)
c.2399_2403delinsGGGT ; p.(Val800Glyfs*129)

22,4% (19)
8,2% (7)
4,7% (4)

5– Balearic Islands c.[313+1G>C; 274C>G]; p.[(?); (Gln92Glu)]
c.884del; p.(Val295Alafs*75)
c.-135C>G: p.(?)

28,6% (4)
28,6% (4)
14,3% (2)

6 – Canary Islands c.1690A>C + c.2397_2405; p.(Asn564His) + p.(Val800_Leu802del)
c.1775G>A; p.(Gly592Glu)
c.682G>A; p.(Glu288Lys)

42,9% (6)
21,4% (3)
14,3% (2)

7 – Cantabria c.1358+1G>A; p.(?)
c.1359-1G>A; p.Thr454Leufs*51 
c.1186+5G>A: p.G396fs∗26

25,0% (2)
25,0% (2)
25,0% (2)

8 – Castile and León c.2389+4A>G; p.(?)
c.953G>T; p.(Cys318Phe)
c.1342C>T; p.(Gln448*)

18,4% (82)
8,7% (39)
7,8% (35)

9 – Castile-La Mancha c.1342C>T; p.(Gln448*)
c.530C>T; p.(Ser177Leu)
c.[313+1G>C; 274C>G]; p.[(?); (Gln92Glu)]

17,8% (39)
14,6% (32)
11,9% (26)

10 – Catalonia c.1045del; p.(Gln349Serfs*21)
c.1342C>T; p.(Gln448*)
c.2390-1G>C; p.(?)

12,5% (37)
7,7% (23)
6,4% (19)

11 – Extremadura c.1342C>T; p.(Gln448*)
c.-135C>G: p.(?)
c.1690A>C + c.2397_2405; p.(Asn564His) + p.(Val800_Leu802del)

23,3% (40)
14,0% (24)
12,8% (22)

12 – Galicia c.10580G>A; p.(Arg3527Gln) – APOB gene
c.1800G>C; p.(Glu600Asp)
c.464G>A; p.(Cys155Tyr)

26,9% (50)
16,7% (31)
10,2% (19)

13 – La Rioja c.301G>A; p.(Glu101Lys)
c.[313+1G>C; 274C>G]; p.[(?); (Gln92Glu)]
c.1186+5G>A; p.G396fs∗26

30,9% (21)
18,0% (18)
8.8% (6)

14 – Madrid c.[313+1G>C; 274C>G]; p.[(?); (Gln92Glu)]
c.1358+1G>A; p.(?)
c.1342C>T; p.(Gln448*)

11,8% (42)
8,1% (29)
3,9% (14)

15 – Murcia c.460C>T; p.(Gln154*)
c.12G>A; p.(Trp4*)
c.1690A>C + c.2397_2405; p.(Asn564His) + p.(Val800_Leu802del)

33,3% (9)
22,2% (6)
14,8% (4)

16 – Navarre c.1342C>T; p.(Gln448*)
c.283T>G; p.(Cys95Gly)
c.1285G>A; p.(Val429Met)

20,0% (2)
20,0% (2)
20,0% (2)

17 – Valencia c.97C>T; p.(Gln33*)
c.460C>T; p.(Gln154*)
c.12G>A; p.(Trp4*)

46,6% (156)
25,4% (85)
7,2% (24)

18 – Others c.313+2dupT; p.Leu64_Pro105delinsSer
c.590G>A; p.(Cys197Tyr)
c.-136C>G; p.(?)

10,4% (5)
10,4% (5)
8,3% (4)

3 - Asturias

12 - Galicia

7 - Cantabria

8 – Castile and León

9 – Castile-La Mancha

1 – Andaluzia

11 – Extremadura

2 – Aragon
10 – Catalonia

17 – Valencia

5– Balearic Islands 

6 – Canary Islands 

15 – Murcia

14 – Madrid

4 – Basque

Country

16 – Navarre

13 – La Rioja

Tabla 2. Variantes genéticas causantes de hipercolesterolemia familiar en España: 

representación de las 3 principales mutaciones para cada comunidad autónoma4. 

Adaptado de Bourbon M et al.  Atherosclerosis. 2017 Jul;262:8-13. 

 

Cataluña 

Galicia 

Madrid 

Navarra 

Otros 

Extremadura 

La Rioja 

Murcia 

Valencia 
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prevalencia general de DM2 de la población canaria15 y española16,17 y cuadruplican la 

observada entre individuos con HFHe en España18 (Fig. 3). 

           

 

En este estudio14 se determinó que, comparado con HFHe portadores de otras 

mutaciones en LDLR, aquellos con la variante p.(Tyr400_Phe402del) tenían más 

antecedentes familiares de DM2 (51,5% vs 5%; p<0,001), niveles más elevados de c-LDL 

(299,7 +-74,8mg/dL vs 273,5 +- 42,2mg/dL ; p=0,048),  y de triglicéridos al inicio del 

seguimiento [131 (91-184)mg/dL vs 100 (72-136)mg/dL; p=0,015] y un mayor uso de 

fármacos inhibidores de PCSK9 (51,5% vs 24%; p=0,027), probablemente en relación a 

una prevalencia superior, pero no significativa, de enfermedad cardiovascular (ECV). 

 

1.2. Variante genética p.(Tyr400_Phe402del) del LDLR 

 

0
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Global España Canarias HFHe_Global HFHe_España HFHe_GC
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Figura 3.  Prevalencia de Diabetes Mellitus, en población general (verde) y 

población con hipercolesterolemia familiar heterocigota (naranja) 15-18. 

GC: Gran Canaria, portadores de la variante patogénica p.(Tyr400_Phe402del) en el gen LDLR 

HFHe: hipercolesterolemia familiar heterocigota 
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Más del 90% de las variantes genéticas responsables de la HFHe se localizan en 

el gen LDLR que codifica el receptor de lipoproteínas de baja densidad (r-LDL), una 

glicoproteína transmembrana de 893 aminoácidos, cuya función principal es la captación 

e internalización de LDL, fundamentalmente en el hígado3.  

Localizado en el brazo corto del cromosoma 19 (19p13.2), hasta la fecha, se han 

descrito más de 2.000 variantes distintas en el gen LDLR, en las que se incluyen 

deleciones, inserciones, variantes de empalme (secuencias no codificantes), mutaciones 

sin sentido, etc19. El impacto fenotípico de estas variantes depende de la funcionalidad 

residual del r-LDL, lo que condiciona la gravedad de la alteración lipídica (Tabla 3)4,19. 

 

             

 

La variante genética p.(Tyr400_Phe402del) en LDLR se origina por una deleción 

de 9 nucleótidos entre las posiciones 1199 a la 1207 (c.1199 1207delACCTCTTCT) (Fig. 

4 y 5) que conlleva la pérdida de tres aminoácidos consecutivos -tirosina 400, serina 401 

y fenilalanina 402- en la proteína codificada. Esta deleción da lugar a formas inmaduras 

de r-LDL que quedan retenidas en el RE (variante patogénica clase 2A). Como 

Clase 1 Ausencia de síntesis del r-LDL 

Clase 2 Retención completa (A) o liberación deficiente (B) del r-LDL desde el RE (proteínas 

truncadas) 

Clase 3 Defectos en la interacción r-LDL/LDL 

Clase 4  Deficiencias en la internalización del complejo r-LDL/LDL (agrupación en fosas revestidas 

de clatrina defectuosa) 

Clase 5 Reciclaje defectuoso del r-LDL (rápida degradación) 

Clase 6  Dificultad del r-LDL para alcanzar la membrana basolateral (rápida degradación)  

Tabla 3.  Clasificación de las variantes genéticas del LDLR22. 

RE: retículo endoplasmático; r-LDL: receptor de LDL 
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consecuencia, se reduce su expresión en la superficie celular y con ello, la capacidad de 

captación de LDL3,19,20 (Fig. 4). 

  

 

La variante p.(Tyr400_Phe402del) del LDLR conlleva la eliminación de un residuo 

de tirosina del dominio YWTD del polipéptido codificado por LDLR, una región 

altamente conservada y funcionalmente relevante en el reciclaje del r-LDL y su retorno a 

la membrana plasmática. Asimismo, la proximidad de esta deleción a la región de 

interacción con PCSK9 (proteína implicada en la degradación del r-LDL), sugiere la 

posibilidad de alteraciones estructurales que podrían afectar a la afinidad de la PCSK98,20.  

Basándose en el análisis haplotípico de 14 microsatélites y bajo la hipótesis de un 

origen común, se ha estimado que esta variante surgió en la población canaria hace 

Figura 4.  Estudios funcionales de la variante p.(Tyr400_Phe402del) LDLR 20. 

La expresión de la variante p.(Tyr400_Phe402del) del LDLR, evaluada mediante citometría de flujo (A), 

evidenció una menor presencia del r-LDL en la superficie celular respecto a las células wt. A las 48 horas 

tras la transfección, el análisis por Western Blot (B) detectó únicamente la forma inmadura de la proteína. 

En consecuencia, la captación del LDL, evaluada también por citometría de flujo (C), se encontró 

reducida.  

LDLr: receptor de LDL; wt: células wild type; p.Trp87*: variante de alelo nulo; Ex3_4del: variante 

LDLR clase 3; GADPH: gliceraldehído-3-fosfato deshidrogenasa. 

 

 

 

 

C 
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aproximadamente 387 años (15,5 generaciones). Dado que no se ha documentado en otras 

regiones de España, la explicación más plausible es que se trate de una variante 

patogénica de novo originada entre los habitantes de la isla tras la colonización española20 

(Fig.5).  

 

 

2. Diabetes Mellitus 

 

La diabetes mellitus es un trastorno que se caracteriza por la aparición de 

hiperglucemia crónica, secundaria al déficit en la secreción y/o acción de la insulina. Se 

clasifica principalmente en DM tipo 1 (DM1), debida a la destrucción autoinmune de las 

células beta pancreáticas, y DM2, que aparece por resistencia progresiva a la insulina y 

disminución gradual de su secreción. Existen también formas menos frecuentes, como la 

diabetes gestacional, la secundaria a tratamientos farmacológicos (corticoides, 

antipsicóticos o estrógenos) y las formas monogénicas de herencia autosómica 

dominante, como la diabetes tipo MODY (“Maturity Onset Diabetes of the Young”). El 

Figura 5. Ubicación genómica de la variante p.[Tyr400_Phe402del] del LDLR (en 

rojo) en el cromosoma 19 20. Cambios de aminoácidos consecuencia de la variante genética 

prevalente (D). 
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enfoque terapéutico varía según el tipo de diabetes, lo que subraya la importancia de una 

clasificación precisa en el manejo adecuado de la enfermedad21. 

La DM2 es la forma más prevalente de diabetes, representando más del 90% de 

los casos y en su desarrollo están implicados factores genéticos y ambientales22. Se han 

identificado más de 70 genes asociados y numerosos polimorfismos de nucleótido simple 

(SNPs) en más de 400 regiones genéticas diferentes23. Sin embargo, el efecto de cada 

SNP aislado es relativamente pequeño. Es el efecto acumulativo de múltiples SNPs, junto 

con factores como la edad, la dieta, la actividad física y, especialmente, el peso corporal, 

lo que probablemente determina la aparición de la enfermedad23. 

La DM2 incrementa el riesgo de ECV entre dos y cuatro veces en comparación 

con la población general, sobre todo en forma de IAM24. En Canarias, tanto la prevalencia 

como la morbimortalidad asociada a las complicaciones de la DM2 es superior a la media 

nacional (Fig. 6), especialmente en cuanto a aparición de IAM, necesidad de hemodiálisis 

y amputaciones de extremidades15,17,25-27. Aunque las causas de estas diferencias no han 

sido claramente identificadas, se postula que la elevada frecuencia de síndrome 

metabólico y obesidad junto con otros determinantes sociales como el bajo nivel 

educativo, limitados recursos económicos así como factores ambientales y genéticos, 

podrían desempeñar un papel relevante28,29. Además, algunos estudios realizados en 

población canaria muestran hábitos dietéticos poco saludables30 y baja adherencia 

terapéutica, lo que podría contribuir a la peor evolución clínica31 (Fig. 7 y 8).  
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La duración de la enfermedad y el control glucémico son factores clave en el 

pronóstico, aunque la presencia simultánea de otros factores de riesgo cardiovasculares 

Figura 6. Tasa de mortalidad estandarizada por diabetes mellitus en España y 

distribución por provincias. Periodo 1998-2013.  

TNE: tasa de mortalidad estandarizada25. 

 

Figura 7. Incidencia de enfermedad renal 

terminal relacionada con la diabetes mellitus 

por grupo de edad y grupos de comunidades autónomas 

españolas (año 2006)9. 

DM: diabetes mellitus 

 

Figura 8. Tasa de incidencia de amputación 

mayor en pacientes con diabetes mellitus 

tipo 2 en España, Canarias y País Vasco. 
Período 2001-201510. 

 



 

26 
 

(FRCV), como el tabaco, la hipertensión (HTA) o la hipercolesterolemia, acelera el daño 

endotelial, favorece la arteriosclerosis y contribuye a la aparición precoz de ECV32,33.  

En pacientes con HFHe, la DM2 es un FRCV independiente que duplica el riesgo 

de desarrollar la ECV34,35, de forma que el riesgo cardiovascular (RCV) de aquellos 

individuos en quienes coexisten la HFHe y la DM2 es comparable al de pacientes sin 

HFHe pero con ECV establecida36.  

2.1. Evaluación de la resistencia a la insulina  

 

         La insulina es una hormona peptídica secretada por las células β pancreáticas que 

participa en la regulación de la homeostasis glucémica, lipídica y proteica. Tras su 

liberación a la vena porta, aproximadamente entre el 60 y 70% se degrada en el hígado, 

lo que limita su disponibilidad periférica a cerca del 40% del total. A nivel hepático, inhibe 

la gluconeogénesis y estimula la síntesis de glucógeno; en el músculo esquelético, 

favorece la captación de glucosa y la glicólisis, mientras que a nivel del tejido adiposo, 

reduce la lipólisis y la liberación de ácidos grasos libres, al tiempo que potencia la 

formación de triglicéridos37.   
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La resistencia a la insulina se define como una disminución de la eficacia biológica 

de esta hormona en sus tejidos diana (Fig.9). Esto conduce a una menor captación 

periférica de glucosa, un incremento de la gluconeogénesis hepática y una activación de 

la lipólisis del tejido adiposo, lo que se traduce en hiperglucemia e hiperlipidemia (Fig. 9 

y 10)38.  

Figura 9. Fisiopatología de la resistencia a la insulina37. La resistencia a la insulina altera 

su acción en múltiples tejidos: en el hígado, se traduce en un aumento de la producción endógena de 

glucosa; en el músculo, se reduce su captación periférica; y en el tejido adiposo, la inhibición incompleta 

de la lipólisis conduce a una mayor liberación de ácidos grasos libres a la circulación. 

PEG: producción endógena de glucosa; AGL: ácidos grasos libres 

Adaptado de: Gastaldelli A. Obesity. 2022;30:1549–63. 
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Además de los efectos sobre el metabolismo de la glucosa (Fig.10), la resistencia 

a la insulina se ha relacionado con un mayor riesgo de HTA y aterogénesis, por incremento 

del tono vasoconstrictor mediado por el desequilibrio en la vía del óxido nítrico y la 

elevación de los niveles de endotelina (Fig.11). Además, la hiperinsulinemia mantenida 

actúa como factor de crecimiento, promoviendo la proliferación y diferenciación de 

células musculares lisas vasculares, así como la activación de vías inflamatorias como la 

mediada por NF-kB39.  

Figura 10. Evolución fisiopatológica y clínica de la resistencia a la insulina38. El 

incremento de la resistencia a la insulina asociado al exceso de tejido adiposo induce hiperinsulinemia 

compensatoria, que contribuye al deterioro progresivo de la célula β pancreática y la reducción 

progresiva en los niveles de la hormona. En ausencia de intervención, las alteraciones glucémicas más 

leves (pre-diabetes) progresarán a DM2. 

Adaptado de: Page MM et al. Trends Endocrinol Metab. 2018 Jun;29(6):389-399 
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La resistencia a la insulina constituye uno de los ejes fisiopatológicos comunes en 

el desarrollo de diversas alteraciones cardiometabólicas, fenómeno conocido como 

enfermedad metabólica sistémica (EMS)40. Este trastorno se caracteriza por la disrupción 

Figura 11. Señalización normal (a) y fisiopatología de la resistencia a la insulina 

(b)39
. La señalización de la insulina se ve afectada a nivel de IRS-1, que reduce el transporte, 

fosforilación y metabolismo de la glucosa, así como una alteración de la activación de la NOS y 

disfunción endotelial.  La hiperinsulinemia compensatoria provoca una estimulación excesiva de la vía 

MAPK (que mantiene la sensibilidad a la insulina) lo que genera inflamación, proliferación de células 

musculares lisas vasculares y aterogénesis. 

NOS: óxido nítrico sintasa; IRS-1: sustrato 1 del receptor de insulina; MLV: músculo liso vascular 

Adaptado de: di Pino A. et al. Endocr Rev. 2019;40(5):1447–67 
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de la homeostasis entre distintos órganos -principalmente tejido hepático, adiposo y 

muscular- y tiene su origen en la combinación de factores genéticos, étnicos y, de forma 

destacada, en la obesidad40.  

Se estima que aproximadamente el 58% de la población adulta presenta EMS, que 

puede manifestarse de forma precoz como pre-DM, sobrepeso, hipertensión arterial,  

enfermedad hepática esteatósica asociada a disfunción metabólica (MASLD por sus 

siglas en inglés) o la característica dislipemia aterogénica40. Ésta última está 

estrechamente vinculada a la resistencia a la insulina y se caracteriza por un aumento de 

las lipoproteínas ricas en triglicéridos (LRT), una mayor proporción de partículas 

pequeñas y densas de LDL -más susceptibles a la oxidación- y una reducción de las 

concentraciones de c-HDL (Fig.12)41. Sucesivos estudios han demostrado que el 

potencial aterogénico de las LRT podría ser incluso superior al de las LDL, lo que 

contribuiría a explicar el riesgo cardiovascular residual observado en algunos pacientes a 

pesar de un óptimo control del c-LDL40,41.   

En ausencia de intervención, la EMS progresa hacia DM2, fibrosis hepática, 

disfunción diastólica y enfermedad renal. Además, la coexistencia prolongada de la 

dislipemia aterogénica junto con los múltiples FRCV de carácter pro-inflamatorio 

favorece el daño vascular, promoviendo la aparición de arteriosclerosis subclínica -

evidenciada por el incremento del grosor íntima-media carotídeo (IMT) y del calcio 

coronario (CAC)-, lo que se traduce tanto en un aumento tanto del riesgo de ECV como 

de mortalidad global por cualquier causa 39-41.  

.  
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Dada la implicación central de la resistencia a la insulina en la fisiopatología de 

diversas entidades cardiometabólicas así como su estrecha asociación con el desarrollo y 

progresión de la ECV, su detección y cuantificación adquieren un valor clínico 

fundamental. Evaluarla de forma adecuada permite no solo identificar a pacientes en 

riesgo, sino también estimar su evolución pronóstica y orientar intervenciones 

terapéuticas tempranas40,41. La tabla 4 presenta un resumen de las principales 

herramientas disponibles para su evaluación. 

 

 

 

 

 

 

Figura 12. Dislipemia aterogénica 39
. La 

resistencia a la insulina induce una alteración 

significativa del perfil lipídico: el tejido adiposo 

incrementa la liberación de ácidos grasos libres, 

mientras que en el hígado se aumenta la 

lipogénesis de novo y la secreción de 

lipoproteínas de muy baja densidad (VLDL), de 

mayor tamaño y mayor contenido de 

triglicéridos. Además, se observa una reducción 

en la captación de LDL y una disminución en la 

actividad de la lipoproteína lipasa (LPL). 

 

LdN: lipogénesis “de novo”; VLDL: 

lipoproteínas de muy baja densidad; LRT: 

lipoproteínas ricas en triglicéridos; LDL: 

lipoproteínas de baja densidad; LDLR: receptor 

de LDL; LPL: lipoproteín lipasa; AGL: ácidos 

grasos libres; ANGPTL3: angiopoyetina like-3 
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Método Descripción Ventajas Inconvenientes 

 

 

CLAMP 

EUGLUCÉMICO-

HIPERINSULINÉMICO 

(CEH) 

 

 

-Mide la tasa de utilización de 

glucosa en tejidos periféricos 

(músculo) mediante la 

perfusión intravenosa de 

glucosa e insulina.  

 

- Técnica de referencia. 

 

-Alta precisión y 

especificidad. 

- Método complejo y costoso 

(equipamiento especializado, 

personal entrenado).  

-Riesgo de hipoglucemia. 

-Poco práctico para uso 

clínico.  

 

ÍNDICES DERIVADOS 

DE LA SOBRECARGA 

ORAL DE GLUCOSA 

(SOG) 

 
MATSUDA, OGIS, STUMVOLL 

 
 

 

 

-Medición seriada de glucosa e 

insulina en sangre tras 

administrar una carga oral de 

glucosa (2-5 muestras). 

 

-Evalúa de forma indirecta la 

respuesta glucémica e 

insulínica postprandial. 

 

- Poco invasiva y accesible 

en consulta. 

- Buena correlación con el 

CEH. 

- Detección precoz de 

alteraciones en el 

metabolismo de la glucosa. 

 

 

-Menor precisión. 

-Variabilidad interindividual 

(absorción y respuesta). 

- Múltiples extracciones de 

sangre. 

- Modelos matemáticos 

-No mide directamente la 

sensibilidad a la insulina en 

tejidos. 

 

ÍNDICES DERIVADOS 

DE MUESTRAS EN 

AYUNAS 

 
HOMA-IR, HOMA-β, QUICKI, 

TyG 

 

 

 

-Estimación indirecta de la 

resistencia insulínica mediante 

valores de glucosa e insulina 

plasmática en ayunas. 

 

-Poco invasivo (1 muestra). 

-Económico, rápido y 

accesible en consulta. 

-Marcador temprano de 

resistencia hepática a la 

insulina. 

-Útil en estudios 

poblacionales. 

 

 

-Menos correlación con el 

CEH. 

  

-Variabilidad según estado 

metabólico. 

 

2.1.1. Clamp euglucémico hiperinsulinémico (CEH) 

 

El clamp euglucémico hiperinsulinémico es el gold estándar para evaluar la 

resistencia a la insulina. Esta técnica cuantifica la cantidad de glucosa metabolizada por 

unidad de concentración plasmática de insulina, siendo la prueba más precisa para valorar 

la sensibilidad a la insulina a nivel muscular en humanos.  

El procedimiento consiste en una infusión de insulina a una velocidad de 

40mU/m2/min (o superiores en pacientes con resistencia a la insulina conocida), con el 

objetivo de reducir la gluconeogénesis (principalmente, hepática) y estimular la captación 

periférica de glucosa. De forma simultánea, se administra una perfusión ajustable de 

Tabla 4. Métodos para la evaluación de la resistencia a la insulina.  

CEH: clamp euglucémico-hiperinsulinémico; TyG: triglicéridos/glucosa 
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glucosa para mantener una concentración plasmática estable cercana a 100 mg/dL. 

(Fig.13). Cuando se alcanza un estado estacionario, la tasa de infusión de glucosa equivale 

a la de su eliminación (captación periférica por el músculo)37. 

           

 

Pese a su alta precisión y valor diagnóstico, se trata de una prueba técnicamente 

compleja que precisa de determinaciones sanguíneas frecuentes, requiere de personal 

entrenado y una infraestructura hospitalaria especializada con equipamiento específico 

(bombas de perfusión de glucosa, insulina y suero, glucómetro, monitorización, etc). 

Entre sus limitaciones se incluye el riesgo de hipoglucemia, la necesidad de suprimir 

completamente la producción endógena de glucosa lo cual exige mayores dosis de 

insulina en sujetos con resistencia significativa la posibilidad de interferencias en la 

interpretación por variaciones en las tasas de perfusión de glucosa para mantener 

Figura 13. Clamp euglucémico hiperinsulinémico 
37. La perfusión de insulina suprime la 

producción endógena de glucosa (hepática) y favorece la captación periférica (muscular). La 

sensibilidad a la insulina se mide como “valor M” descrito en la fórmula. 

TIG: tasa de infusión de glucosa (mg/kg/min); G: concentración de glucosa a los 90 y 120min 

(mg/dL); V:volumen de distribución de la glucosa (generalmente, 2,5dL/kg); UC: factor de 

corrección por pérdidas urinarias de glucosa. 
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euglucemia o en los métodos analíticos empleados entre distintos centros para medir 

glucosa e insulina37.  

2.1.2. Test de tolerancia a la glucosa intravenosa (IVGTT) 

 

El IVGTT permite evaluar la sensibilidad a la insulina mediante la administración 

en bolo de glucosa (0,3g/kg) y la posterior monitorización seriada de las concentraciones 

plasmáticas de glucosa e insulina, en intervalos frecuentes, hasta que la glucemia retorne 

a los niveles basales. Dado que el descenso de la glucosa puede ser más lento en sujetos 

con resistencia a la insulina, a los 20 minutos se administra tolbutamida (que actúa como 

secretagogo) o insulina, con el fin de acelerar la reducción glucémica. 

Aunque representa una alternativa más sencilla al CEH, esta prueba presenta una 

duración prolongada (aproximadamente tres horas), requiere un elevado número de 

extracciones (en los tiempos 0, 3, 4, 5, 6, 8, 10, 14, 19, 22, 27, 30, 35, 40, 50, 70, 100, 

140 y 180 minutos) y precisa de un análisis matemático final para la interpretación de los 

resultados. A pesar de estas limitaciones, ha demostrado una buena correlación con los 

valores obtenidos mediante CEH37.  

2.1.3. Pruebas alternativas para evaluar la resistencia a la insulina 

 

Tanto el CEH como la IVGTT son métodos técnicamente complejos y de larga 

duración, que requieren infusión intravenosa y múltiples extracciones seriadas de sangre. 

Estas características los hacen inapropiados para su uso en población general, y poco 

viables fuera del ámbito de investigación, lo que limita su aplicabilidad en la práctica 

clínica habitual. 

Como alternativas, se han desarrollado técnicas indirectas más económicas y 

accesibles para estimar la resistencia y la sensibilidad a la insulina. Estos métodos se 
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basan en pruebas dinámicas, como la sobrecarga oral de glucosa, o en determinaciones 

basales de glucosa e insulina. Aunque menos precisos, han mostrado buena correlación 

con las pruebas de referencia y resultan especialmente útiles tanto en la práctica clínica 

como en estudios epidemiológicos. 

 Un aspecto importante a considerar a la hora de interpretar estos índices es la 

variabilidad entre laboratorios, especialmente en las determinaciones de insulina, cuyas 

discrepancias pueden alcanzar hasta un 25%.  

Índices derivados de la sobrecarga oral de glucosa (SOG) 

 

Los índices dinámicos se basan en modelos matemáticos que describen la 

respuesta de la insulina y la glucosa en distintos momentos antes y después de la 

administración de una sobrecarga oral de glucosa de 75 gramos (SOG)42.  La cantidad de 

determinaciones sanguíneas necesarias varía entre dos (a los 0 y 120 minutos) y cinco (0, 

30, 60, 90 y 120 minutos), en función del índice empleado37,42.  

 La mayoría de los estudios indican que estos índices presentan una mayor 

correlación con los métodos de referencia para la evaluación de la resistencia a la insulina, 

en comparación con los obtenidos exclusivamente a partir de medidas aisladas en ayunas. 

Esto se debe a que la SOG permite identificar alteraciones tempranas en la homeostasis 

glucémica que pueden no detectarse mediante datos basales42. Sin embargo, su utilidad 

puede verse limitada por la baja reproducibilidad, consecuencia de la elevada variabilidad 

intraindividual en la respuesta a la carga de glucosa.  

En este contexto, la respuesta glucémica inicial se asocia principalmente con la 

insulino-resistencia (IR) hepática, mientras que la fase tardía refleja principalmente la IR 

periférica, especialmente en el músculo esquelético37,42.  Entre los índices derivados de la 

SOG (Tabla 5),  los que han mostrado mayor correlación con la CEH son el índice de 
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Matsuda, el índice de sensibilidad a la glucosa e insulina oral (OGIS) y el índice de 

Stumvoll, todos ellos validados en distintas poblaciones37.  

 

 

Índices derivados de muestras en ayunas 

 

Los índices calculados a partir de muestras aisladas obtenidas en ayunas (Tabla 6) 

reflejan el comportamiento de la insulina basal, en combinación o no con los niveles de 

Tabla 5.  Índices de resistencia y sensibilidad a la insulina basados en test 

dinámicos37. 

BW: peso corporal; EHC: clamp euglucémico hiperinsulinémico; FFM: masa libre de grasa; GIR: 

tasa de infusión de glucosa; G: glucosa; I: insulina; IR: resistencia a la insulina; ISI: índice de 

sensibilidad a la insulina; IVGTT: test de tolerancia a la glucosa intravenosa; OGIS: índice de 

sensibilidad a la glucosa e insulina oral; OGTT: sobrecarga oral de glucosa; eMCR: estimación de 

la tasa de depuración metabólica (con -dem- o sin -nodem- parámetros demográficos); MMT: test de 

comida mixta.  
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glucosa. Debido a su sencillez metodológica -solo requieren una extracción sanguínea en 

ayunas-son los índices más utilizados para estimar la IR42.  

La IR hepática, principal determinante de la hiperglucemia en ayunas, suele 

manifestarse antes que la IR periférica. Por ello, estos índices pueden considerarse 

marcadores tempranos de alteraciones en la homeostasis glucémica42.  

El índice más utilizado es el HOMA-IR (Homeostatic Model Assessment of 

Insulin Resistance), propuesto inicialmente en 1985 y actualizado en 1998. Aunque su 

punto de corte puede variar en función de factores como la raza, el IMC o los niveles de 

c-HDL, de forma general se considera que un valor superior a 2 se asocia con resistencia 

a la insulina en población caucásica37. 

 El índice HOMA-β (Homeostatic Model Assessment of β-cell function) es un 

parámetro derivado del mismo modelo matemático que el HOMA-IR y permite estimar 

la función de las células β pancreáticas. Refleja la capacidad secretora basal de insulina y 

expresa la función beta como un porcentaje respecto a la población general. Además, el 

descenso de este marcador en personas sin DM2 se relaciona con mayor probabilidad de 

ECV, sugiriendo que la reducción progresiva en la secreción de insulina puede contribuir 

en el pronóstico cardiovascular. Su interpretación debe realizarse de forma conjunta con 

el HOMA-IR, ya que la secreción de insulina está modulada por el grado de resistencia a 

la misma. Por tanto, el HOMA-β constituye una herramienta útil para valorar la reserva 

funcional pancreática, especialmente en etapas tempranas de disfunción 

metabólica37,39,42,43.  

El índice QUICKI (Quantitative Insulin Sensitivity Check Index) se obtiene 

mediante una transformación logarítmica del HOMA-IR, lo que mejora su precisión y 

aumenta su correlación con el CEH.  
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Otros índices propuestos para estimar con mayor precisión la resistencia o 

sensibilidad a la insulina hepática y del tejido adiposo emplean triglicéridos séricos en 

lugar de glucosa plasmática —como el índice triglicéridos-glucosa—, o incorporan 

parámetros lipídicos adicionales, como el c-HDL o los ácidos grasos no esterificados37. 

 

 

Tabla 6.  Índices de resistencia y sensibilidad a la insulina basados en datos 

obtenidos en ayunas37. 

EHC: clamp euglucémico hiperinsulinémico; G: glucosa; c-HDL: colesterol unido a lipoproteínas de 

alta densidad; HOMA: modelo de evaluación de la homeostasis; I: insulina; IGR: cociente 

insulina/glucosa; IR: resistencia a la insulina; ISI: índice de sensibilidad a la insulina; LAP: producto 

de la acumulación de lípidos; QUICKI: índice cuantitativo de verificación de la sensibilidad a la 

insulina; Tg: triglicéridos; Tg/c-HDL: cociente entre triglicéridos y colesterol unido a lipoproteínas de 

alta densidad; TyG, triglicéridos/glucosa; VAI, índice de adiposidad visceral. 
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2.2. Evaluación de la composición corporal y distribución del tejido adiposo 

 

La obesidad se define como una acumulación excesiva de grasa corporal que conlleva 

un riesgo significativo para la salud, y actualmente presenta una prevalencia global del 

16 % en la población adulta44. Aunque su diagnóstico suele basarse en un IMC superior a 

30 kg/m², una definición más precisa la caracteriza por un porcentaje de masa grasa 

superior al 30 % en varones y al 42 % en mujeres44,45.  

El incremento ponderal se asocia con múltiples complicaciones metabólicas, siendo 

el principal factor predictivo del desarrollo de DM246. Sin embargo, evidencias recientes 

sugieren que no solo la cantidad total de masa grasa, sino también su morfología, 

funcionalidad y distribución, desempeñan un papel clave en la alteración del metabolismo 

glucémico y en el pronóstico cardiovascular, incluso de forma independiente al IMC. De 

hecho, una composición corporal desfavorable puede incrementar el RCV incluso en 

personas con normopeso, lo podría explicar las diferencias de RCV observadas entre 

individuos con un mismo IMC47.  

El exceso de grasa visceral se asocia con una mayor producción de sustancias 

bioactivas, como citoquinas y ácidos grasos libres, que favorecen un estado de 

inflamación crónica de bajo grado, disfunción endotelial, hipertrigliceridemia, elevación 

del c-LDL y resistencia a la insulina48-51. En este sentido, la distribución del tejido adiposo 

adquiere especial relevancia. En personas con DM2, tanto la adiposidad general como el 

porcentaje de grasa localizada en determinadas regiones como brazos y tronco superior, 

se han relacionado con un mayor riesgo y mortalidad cardiovascular, incluso tras ajustar 

por indicadores tradicionales de obesidad47 (Fig.14).  
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En este contexto, ha cobrado creciente interés la evaluación de la composición 

corporal, especialmente en pacientes con sobrepeso y/u obesidad, como herramienta para 

predecir alteraciones glucémicas y mejorar la estratificación del RCV45,47,51.  

Aunque la absorciometría dual de rayos X (DEXA) se considera el método de 

referencia para estimar la cantidad y distribución de la masa grasa, su uso en la práctica 

clínica es limitado debido a su coste, complejidad técnica y necesidad de personal 

especializado. Por ello, se han estandarizado métodos alternativos más accesibles, como 

los indicadores antropométricos indirectos -perímetro de cintura, perímetro de cadera o 

índice cintura-cadera47- o el análisis mediante impedanciometría bioeléctrica.  

 

Figura 14. Relación dosis-respuesta entre el porcentaje de grasa corporal y el riesgo 

de enfermedad cardiovascular entre pacientes con diabetes mellitus tipo 2 47. 

CVD: enfermedad cardiovascular 

Adaptado de: Qiu Z. et al. The J. of Clin. End. & Met. 2025, 110, e372–e381 
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2.2.1. Impedanciometría bioeléctrica  

 

La impedanciometría bioeléctrica (BIA, por sus siglas en inglés) es una técnica no 

invasiva accesible y ampliamente utilizada para la estimación de la composición corporal. 

Su principio se basa en la oposición que presenta el organismo al paso de una corriente 

eléctrica alterna constante de baja intensidad y alta frecuencia52. La conductividad 

eléctrica de los tejidos depende de su contenido en agua y electrolitos:  los tejidos magros 

como el músculo, conducen mejor la corriente que los tejidos grasos, que presentan menor 

contenido hídrico. La BIA mide dos parámetros principales: la resistencia (R), que refleja 

la oposición al paso de corriente a través de los líquidos corporales, y la reactancia (Xc), 

que representa la capacidad de las membranas celulares para almacenar carga eléctrica. 

A partir de estos valores se calcula la impedancia total (Z) y se deriva el ángulo de fase, 

considerado un marcador del estado funcional celular. Dado que la corriente fluye 

preferentemente a través del agua corporal, esta técnica permite estimar con precisión el 

volumen de agua total y, mediante ecuaciones específicas, obtener otros parámetros como 

la masa grasa, la masa libre de grasa o el estado de hidratación del individuo52-54. 

Gracias a su rapidez, bajo coste y facilidad de uso, la BIA se ha incorporado de forma 

rutinaria en el ámbito clínico, especialmente para la valoración nutricional, el seguimiento 

enfermedades crónicas y la evaluación del riesgo cardiometabólico en personas con 

sobrepeso u obesidad. Además, al ser inocua para el paciente, puede repetirse de forma 

seriada para monitorizar cambios en la masa celular corporal o en los compartimentos 

hídricos, incluyendo el agua intracelular y extracelular, lo que resulta especialmente útil 

en situaciones clínicas que requieren vigilancia estrecha del estado nutricional o del 

equilibrio hidroelectrolítico 52-54. 
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No obstante, la interpretación de los resultados obtenidos mediante BIA debe 

realizarse con cautela, ya que la precisión de las estimaciones puede verse afectada por 

diversos factores, como el estado de hidratación, la temperatura corporal, la posición del 

paciente, el tipo de dispositivo y electrodos empleados, así como características 

individuales como la edad, el sexo, la raza o determinadas condiciones clínicas. Además, 

es imprescindible emplear ecuaciones predictivas validadas para la población evaluada, 

dado que su aplicabilidad no es universal54.  Finalmente, aunque la BIA ha demostrado 

una buena correlación con la DEXA en la estimación de masa grasa y masa magra, puede 

infra o sobrestimar la grasa corporal en individuos con valores extremos de IMC o en 

contextos patológicos específicos53. 

 

3. Hipercolesterolemia familiar y metabolismo de la glucosa 

 

La mayoría de los estudios epidemiológicos han evidenciado que los individuos con 

HFHe presentan una prevalencia de DM2 relativamente baja (aproximadamente del 

5,7%)55, inferior a la observada en población general17. Esta proporción es aún menor 

(<2%) en aquellos con diagnóstico genético confirmado y fenotipos de 

hipercolesterolemia grave56. Tradicionalmente estos hallazgos se han atribuido a una 

mayor adherencia a estilos de vida saludables entre los sujetos con HFHe35. Sin embargo, 

son escasos los estudios que han evaluado de forma directa el metabolismo de la glucosa 

en esta población. La mayoría no han encontrado alteraciones relevantes en la función de 

la insulina o en la captación periférica o hepática de glucosa, incluso en pacientes tratados 

con estatinas. No obstante, el reducido tamaño muestral de muchas investigaciones, el 

predominio del diagnóstico clínico frente al genético, y las características de los 

participantes (principalmente sujetos jóvenes y con normopeso), puede haber limitado la 
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detección de alteraciones glucémicas57-63 y dificultan la extrapolación de los resultados al 

conjunto de la población con HFHe (Tabla 7). 

 

 

El complejo metabolismo que interrelaciona el metabolismo glucémico y lipídico 

aún no se comprende completamente, aunque se propone la existencia de una relación 

bidireccional. Diversos estudios han evidenciado que la insulina incrementa la expresión 

del r-LDL de manera dependiente de las concentraciones intracelulares de ésteres de 

colesterol64, lo que sugiere que el aclaramiento podría estar influido, al menos en parte, 

por los niveles de insulina circulantes.  No obstante, estudios experimentales in vitro 

indican que el principal regulador de la actividad del r-LDL es la concentración 

Autor, 

año 

N 

HF vs 

controles 

Edad 

HF 

IMC 

(kg/m2) 

Diagnóstico de HF Método Resultados 

(HF vs controles) 

Paolisso 
57, 1992  

39 vs 36 58,9 23 Clínica y analítica 75g. SOG > [insulina basal] y > [insulina a las 2h]  

> [GB a las 2h] 

Karhapaa
58, 1993  

8 vs 13 

 

31 23 Clínica y analítica 

Función r-LDL en 

linfocitos 

Clamp 

euglucémico + 

75g. SOG 

Dif. no sig: GB, insulina, péptido C, 

captación glucosa, oxidación glucosa, 

oxidación lípidos… 

Galvan59, 

1993 

13 vs 15 46 23,9 Clínica y analítica Clamp 

euglucémico 

Dif.no sig: GB, insulina, AGL, niveles 

de c-LDL 

Paolisso 
60, 1993 

8 vs 8 30,6 22,4 Clínica y analítica Clamp 

euglucémico 

Dif.no sig: captación glucosa, 

neoglucogénesis hepática 

Galvan61, 

1996 

20 vs 10 46 24,9 Clínica y analítica 75g. SOG + 

Clamp 

euglucémico 

Dif.no sig: tolerancia glucosa, 

respuesta a insulina, neoglucogénesis 

hepática, lipolisis, captación y 

oxidación de glucosa 

Koks62, 

2017 

22 vs 14 54,7 25,6 DLCN SOG + 

activación 

leucocitos 

> AUC post SOG 

Xu63, 

2017 

82 vs 641 41 26,5* Genético (APOB) SOG Dif.no sig: prevalencia de DM2, 

[glucemia], [insulina] 

 

Tabla 7. Estudios que evalúan el metabolismo de la glucosa en individuos con 

hipercolesterolemia familiar. 

 

IMC: índice de masa corporal; SOG: sobrecarga oral de glucosa; GB: glucemia basal; r-LDL: receptor de LDL; 

AGL: ácidos grasos libres; c-LDL: colesterol LDL; AUC: área bajo la curva; DM2: diabetes mellitus tipo 2. 

*De la muestra completa de HF n=625 
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intracelular de esteres de colesterol, por lo que la transcripción del gen LDLR mediada 

por insulina estaría condicionada, por los niveles intracelulares de c-LDL64.  

Además, investigaciones mediante microscopía confocal han demostrado que los 

receptores de insulina (RI) y los r-LDL pueden formar complejos tanto en la superficie 

celular como en el medio intracelular.  En este estado de interacción, el r-LDL permanece 

funcionalmente inactivo, lo que impide su participación efectiva en el aclaramiento del 

LDL. La unión de la insulina a su receptor induce la disociación de este complejo, 

permitiendo la activación del r-LDL y, con ello, la captación y eliminación de LDL 

plasmático. Por el contrario, en ausencia de insulina, el propio LDL puede simular 

parcialmente la acción de esta hormona a través del r-LDL, modulando procesos como la 

autofagia y favoreciendo la captación de glucosa en células endoteliales, mediante la 

traslocación de transportadores de glucosa desde el citoplasma hacia la membrana celular 

(Fig. 15). A nivel hepático, la señalización de insulina activa la vía de mTOR, lo que 

incrementa la expresión de r-LDL y disminuye los niveles de PCSK9, potenciando así su 

capacidad de captación de LDL64-66.   
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En consecuencia, se ha postulado que el déficit de insulina – ya sea por resistencia 

periférica (DM2) o ausencia absoluta (DM1)- junto con la hiperglucemia mantenida, 

podrían comprometer tanto la expresión como la funcionalidad del r-LDL64,65 (Fig.16). 

Este deterioro limitaría la capacidad de captación intracelular del LDL, favoreciendo su 

acumulación en la luz arterial y contribuyendo de forma directa al desarrollo de 

arteriosclerosis en estos pacientes. 

Figura 15. Representación esquemática del complejo r-LDL- receptor de la 

insulina66. La unión de la insulina con su receptor desbloquea el complejo con el r-LDL y permite 

aumentar la captación de LDL. A su vez, la unión del LDL con el r-LDL favorece la captación de glucosa 

extracelular mediante la traslocación de los receptores GLUT a la superficie celular.   
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 Estudios en modelos in vitro67 han demostrado que la exposición a 

concentraciones suprafisiológicas de ácidos grasos puede resultar tóxica para las células 

β pancreáticas, reduciendo la expresión del gen de la insulina y provocando necrosis 

celular, fenómeno conocido como lipotoxicidad68 (Fig.17). Esta hipótesis podría 

contribuir a explicar los hallazgos de estudios de secuenciación génica y randomización 

mendeliana, que han mostrado que los individuos portadores de variantes genéticas con 

ganancia de función que reducen los niveles de c-LDL desde etapas tempranas de la vida- 

como aquellas que afectan a NPC1L1, HMGCR, PCSK9 o ABCG5/G8- presentan un 

menor RCV, pero una mayor probabilidad de desarrollar DM269.  

 

Figura 16. Efecto del aumento de glucosa en el metabolismo del c-LDL y la 

secreción de insulina65. 

 

r-LDL: receptor de LDL; c-LDL: colesterol LDL; NPC1L1: proteína Niemann-Pick C1-Like 1; 
ABCG5/8: transportadores de casete de unión a ATP G5 y G8. 

Adaptado de: Bonilha I. et al. Metabolites 2021, 11, 807. 
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En cambio, los pacientes con HFHe, que presentan niveles elevados de c-LDL 

desde el nacimiento y suelen iniciar tratamiento hipolipemiante de forma precoz, parecen 

tener un menor riesgo de desarrollar DM270 (Fig. 18).  

  

 

Figura 17.  Hipótesis de la lipotoxicidad pancreática68
.  La exposición prolongada a ácidos 

grasos libres, como el ácido palmítico, induce apoptosis de las células β-pancreáticas a través de mecanismos 

inflamatorios y de estrés oxidativo, lo que reduce la masa funcional de células β. La consecuencia clínica de 

este descenso en la secreción de insulina es la aparición de diabetes e hiperlipidemia secundaria a la 

disminución en la expresión de los r-LDL.  Además, la actividad de la lipoproteín lipasa se ve comprometida, 

lo que favorece la acumulación de ácidos grasos libres y de lipoproteínas ricas en triglicéridos, de mayor 

potencial aterogénico y menor afinidad por el r-LDL. 

PA: ácido palmítico; AGL: ácidos grasos libres; r-LDL: receptor LDL; LPL: lipoprotein lipasa 

Adaptado de: Oh Y. et al. Front End. (Lausanne). 2018 Jul 16;9:384. 
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No obstante, los resultados observados en la práctica clínica han sido 

inconsistentes.  Exceptuando el reconocido efecto diabetógeno de las estatinas71, otros 

agentes hipolipemiantes que incrementan los niveles intracelulares de c-LDL no han 

demostrado una asociación clara con un mayor riesgo de hiperglucemia72,73. Así mismo, 

pacientes con hipolipidemias genéticas graves como la abetalipoproteinemia o la 

hipobetalipoproteinemia, no presentan una mayor prevalencia de DM274.  

Estudios recientes han identificado grupos específicos de genes que están 

implicados tanto en la síntesis, exportación y captación hepática de lípidos como en la 

secreción y acción de la insulina, así como en el desarrollo de enfermedad hepática 

metabolica75. Estos hallazgos sugieren que el riesgo de alteraciones glucémicas no 

depende exclusivamente de los niveles de c-LDL, sino probablemente del extenso 

entramado genético que regula de forma conjunta el metabolismo lipídico y la 

homeostasis de la glucosa76.  

 

Figura 18. Asociaciones directas e inversas de los niveles del c-LDL con el riesgo de 

diabetes mellitus tipo 2 y de enfermedad coronaria70. 

HR: hazard ratios; c-LDL: colesterol LDL;T2D: diabetes mellitus tipo 2; FH: hipercolesterolemia familiar; 

CAD: enfermedad coronaria; PRS: score de riesgo poligénico; pLOF: variantes de pérdida de función 

(APOB y PCSK9). 
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Hipótesis 

 

La variante patogénica p.(Tyr400_Phe402del) del LDLR, responsable de la 

mayoría de los casos de HFHe en Gran Canaria, predispone al desarrollo de DM2, 

sugiriendo una posible co-segregación entre ambas enfermedades. La presencia de esta 

variante podría modificar vías metabólicas comunes que provocan de manera simultánea 

hipercolesterolemia e hiperglucemia. En caso de que no exista esta co-segregación, podría 

tratarse de una nueva variante de DM2 de herencia autosómica dominante, aún no 

descrita. 
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Objetivos 

 

El objetivo principal de esta tesis doctoral es evaluar si existe co-segregación entre 

la DM2 y otras alteraciones del metabolismo de la glucosa con la variante patogénica 

p.(Tyr400_Phe402del) de LDLR en individuos con HFHe de Gran Canaria. 

Objetivos secundarios 

Este trabajo de investigación se propone como objetivos secundarios: 

1. Revisar la literatura existente sobre la relación entre el metabolismo glucémico y 

lipídico en pacientes con HFHe. 

2. Evaluar la respuesta al tratamiento con iPCSK9 en los pacientes atendidos en la 

Unidad de Lípidos del Complejo Universitario Materno Insular de Gran Canaria, 

analizando los cambios en el perfil lipídico, posibles alteraciones en el 

metabolismo glucémico y las diferencias según el tipo de variante genética 

causante de HFHe.   

3. Ampliar el diagnóstico genético de portadores de la variante genética 

p.(Tyr400_Phe402del) de LDLR dentro de las familias estudiadas. 

4. Realizar una búsqueda activa de nuevos casos de DM2, tanto en portadores como 

en no portadores de la variante genética prevalente, que hasta el momento no 

hubieran sido diagnosticados.  

5. Caracterizar fenotípicamente el metabolismo de la glucosa en individuos sin 

DM2, estimar la prevalencia de sus alteraciones y comparar los resultados de los 

HFHe portadores de la variante genética p.(Tyr400_Phe402del) en LDLR con los 

de sus familiares no portadores y con pacientes con HFHe debida a otras variantes 

genéticas. 
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Justificación de la unidad temática de la tesis 

 

Las enfermedades cardiovasculares (ECV) constituyen la principal causa de 

discapacidad y de mortalidad en España, siendo responsables del 26,6 % de las 

defunciones totales 77, lo que implica un impacto económico considerable sobre el sistema 

sanitario. En este contexto, el control de los factores de riesgo cardiovascular (FRCV) 

modificables, como los hábitos de vida —alimentación saludable, práctica regular de 

ejercicio físico y abstinencia de tóxicos—, así como el manejo adecuado de enfermedades 

como la diabetes mellitus tipo 2 (DM2) o la dislipemia, resultan fundamentales en las 

estrategias de prevención78. A pesar de los avances en la comprensión acerca de los 

factores que influyen en la evolución y el pronóstico de las ECV, el conocimiento sobre 

la interacción entre el metabolismo de la glucosa y los lípidos es aún limitado 3,64,65. 

La reducida variabilidad genética de la población canaria, consecuencia del 

prolongado aislamiento geográfico mantenido hasta mediados del siglo XX, podría 

explicar la elevada prevalencia de determinadas enfermedades hereditarias en el 

archipiélago7,8. Este mismo contexto genético, junto con factores ambientales y 

sociodemográficos, podría contribuir a que Canarias presente la mayor prevalencia de 

DM2 entre las comunidades autónomas españolas, así como una evolución especialmente 

desfavorable en cuanto a la aparición y progresión de sus complicaciones 9,10,25,28. En este 

sentido, un estudio publicado en 20198 evidenció una prevalencia inesperadamente alta 

de DM2 entre individuos con HFHe portadores de la variante genética más frecuente en 

la isla de Gran Canaria.  

La notable homogeneidad genética y ambiental de esta población la convierte en 

un modelo idóneo para el estudio clínico, genético y molecular de ambas enfermedades. 

Desde una perspectiva de medicina de precisión, la caracterización genética de la DM2 y 
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su posible co-segregación con la HFHe representan una oportunidad única para avanzar 

en estrategias de diagnóstico y tratamiento individualizado. Los hallazgos derivados de 

este análisis permitirán establecer un diagnóstico más certero de dos entidades clínicas 

con alta carga de enfermedad y morbimortalidad, ofrecer asesoramiento genético a los 

portadores de variantes patogénicas y, fundamentalmente, instaurar intervenciones 

terapéuticas tempranas orientadas a reducir tanto las complicaciones metabólicas como 

el riesgo cardiovascular (RCV) en esta población. 
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Abstract: Familial hypercholesterolemia (FH) is a genetic disease characterized by high low-density
lipoprotein (LDL) cholesterol (LDL-c) concentrations that increase cardiovascular risk and cause
premature death. The most frequent cause of the disease is a mutation in the LDL receptor (LDLR)
gene. Diabetes is also associated with an increased risk of cardiovascular disease and mortality. People
with FH seem to be protected from developing diabetes, whereas cholesterol-lowering treatments
such as statins are associated with an increased risk of the disease. One of the hypotheses to explain
this is based on the toxicity of LDL particles on insulin-secreting pancreatic β-cells, and their uptake
by the latter, mediated by the LDLR. A healthy lifestyle and a relatively low body mass index in
people with FH have also been proposed as explanations. Its association with superimposed diabetes
modifies the phenotype of FH, both regarding the lipid profile and cardiovascular risk. However,
findings regarding the association and interplay between these two diseases are conflicting. The
present review summarizes the existing evidence and discusses knowledge gaps on the matter.

Keywords: familial hypercholesterolemia; diabetes; LDL receptor; genetic risk; insulin resistance; review

1. Introduction
1.1. Familial Hypercholesterolemia

Familial hypercholesterolemia (FH) is a genetic disease characterized by high low-
density lipoprotein (LDL) cholesterol (LDL-c) concentrations that increase cardiovascular
risk and cause premature death [1]. The most frequent mutations are found in the LDL
receptor gene (-LDLR- responsible for LDL uptake), though other genes involved in LDL
metabolism can also cause the disease, such as apolipoprotein B 100 (APOB), apolipopro-
tein E (APOE) or proprotein convertase subtilisin/Kexin-type 9 (PCSK9) [2,3]. Heterozy-
gous FH (HeFH) (one affected allele) is the usual presentation form, with a prevalence of
1/250 [4], higher in isolated regions [5–7]. LDL-c concentrations in people with HeFH are
often twice those of the general population [8]. Homozygous FH (HoFH) is infrequent
(1/160,000–1/300,000) but more severe, with LDL-c concentrations exceeding 500 mg/dL
from birth. Without treatment, subjects with HoFH develop atherosclerosis before the
age of 20 and die before 30 [9]. The diagnosis of FH is usually made based on LDL-c
concentrations, family history, and the presence of corneal arcus, xanthomas, or xanthelas-
mas [8]. Although affected individuals have a higher cardiovascular risk than the general
population [10], subjects with the same mutation show enormous phenotype variability.
These differences might be explained by other factors such as the type of mutation [11],
age [12], gender [10,13], or the existence of other concomitant diseases [14].
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1.2. Diabetes Mellitus

Diabetes mellitus (DM) is a group of metabolic disorders defined by increased blood
glucose concentrations. The most frequent types of DM are type 1 diabetes (-T1DM-
mediated by autoimmune destruction of pancreatic ß cells and absolute insulin deficiency),
type 2 diabetes (-T2DM- caused by progressive loss of insulin secretion in the context of
insulin resistance) and gestational DM (first diagnosed during pregnancy), but there are
also other, less frequent forms of the disease, such as monogenic DM or drug-induced
DM [15]. A correct classification of DM is important since both treatment and follow-up
depend on it. The prevalence of DM has doubled since the 1990s [16]; nowadays, there are
about 537 million subjects with DM around the world (mostly T2DM), and this is expected
to continue increasing in the near future [17]. Its complex physiopathology involves
modifiable factors such as weight, diet, or physical activity [18], and non-modifiable factors
such as genetics, age, or gender [19]. Patients have an increased all-cause mortality [20],
but about 50% die because of cardiovascular complications [21], especially women [22],
and people with long-standing disease [23,24]. This cardiovascular risk is enhanced in
the presence of other risk factors such as smoking, hypertension, or dyslipidemia that
contribute to endothelial damage and the progression of atherosclerosis [25].

The prevalence of DM is generally lower in people with FH than in the general
population [26], suggesting a relationship between glucose and lipid metabolism. The aim
of this paper is to summarize the existing evidence and contribute to the understanding of
the complex underlying mechanisms that relate DM and HF.

2. Familial Hypercholesterolemia and Diabetes: Molecular Causes
2.1. Genetics of FH

FH is the most common monogenic disorder. It has high penetrance (90%) and autosomal
dominant inheritance [1] and is caused by mutations in genes related to LDL metabolism.

HeFH is mainly caused by loss-of-function mutations in LDLR (85–90%) or APOB
(5%), or gain-of-function mutations in PCSK9 (1–3%) [27]. Mutations have also been
identified in APOE [3] and in the adaptor protein type 1 gene (LDLRAP1), the latter
with autosomal recessive inheritance [28]. However, 10–40% of patients with a clinical
phenotype of FH have negative genetic tests, probably representing severe polygenic forms
of hypercholesterolemia [29].

HoFH is a more severe form that involves two mutations in the aforementioned genes.
According to the combination of mutations, HoFH is classified into the following: true
homozygotes (two equal mutations in both alleles of the same gene, mostly in LDLR);
compound heterozygotes (a different mutation in each allele of the same gene); double
heterozygotes (two different mutations in different genes); autosomal recessive hyper-
cholesterolemia (mutations in LDLRAP1) [9]. The phenotype of HFHo will depend on
the degree of residual LDLR activity, which is defined by the genetic defect. Indeed, in
some cases, the LDLR protein is almost absent (less than 2%), leading to the most extreme
phenotypes [30].

LDLR is the most frequently affected gene in HF and more than 3000 mutations have
been described so far, most of them disease-causing or pathogenic [2]. Traditionally, muta-
tions were classified into classes I to V, with class I mutations being the most severe, where
no protein synthesis is present (large rearrangements, insertions, nonsense frameshifts, or
splicing mutations). Classes II-IV include alterations in LDLR transport, LDLR binding,
internalization, or recycling of LDLR, corresponding to in-frame, missense mutations, or
small deletions [27]. Currently, there is a tendency to simplify this classification into class 1
and non-class 1 mutations [31], which would correspond to null or defective alleles, respec-
tively, and this correlates with the severity of the individual phenotype. Null LDLR allele
carriers present with very high LDL-c concentrations, premature coronary heart disease
and poor response to treatment [32]. However, LDL-c concentrations have been shown to
improve cardiovascular risk prediction more than the genetic defect per se. A cohort study
in 12,245 FH LDLR mutation carriers showed that the classification of pathogenic LDLR
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variants according to LDL-c concentration percentile was indeed more accurate than class 1
vs. non-class 1. The relative risk of major cardiovascular events ranged from 2.2 in subjects
with an LDL-c concentration below the 75th percentile to 13 when the LDL-c concentration
was above the 98th percentile of the cohort [33].

APOB was the second gene identified to be associated with FH, also called familial
defective APOB [34]. It is less frequent than FH caused by LDLR mutations, and there are
currently about 35 pathogenic mutations described, generally located in the LDLR-binding
domain of apolipoprotein B (apoB) [27]. The most common is the R3500Q mutation, which
accounts for 5–10% of FH cases in northern Europe [35]. Patients with this form of FH
present with less severe phenotypes than LDLR mutation carriers and have lower LDL-c
concentrations and less cardiovascular events [36].

FH type 3 is caused by gain of function mutations in PCSK9 [37], and there are about
30 pathogenic variants reported [27]. The phenotype is variable, with variants such as p.
(Asp374Tyr), which causes an extreme FH phenotype with very high LDL-c concentrations
and premature coronary heart disease [38], and other mutations affecting distinct domains
of the protein, leading to milder phenotypes and better response to treatment [39].

In patients with an FH phenotype but no mutation identified, a polygenic mechanism
should be considered, caused by the aggregation of common LDL-c-raising genetic vari-
ants or single nucleotide polymorphisms (SNPs), which can be studied using validated
polygenic risk scores [40,41].

There are other genes that are no longer considered to cause FH, such as STAP1, which
seemed to be associated with the disease, but subsequent in vitro and family segregation
studies have shown that it does not cause FH [42,43].

2.2. Genetics of Type 2 Diabetes

Regarding the genetics of DM, there are both monogenic forms, including neonatal
diabetes mellitus and maturity-onset diabetes of the young (MODY), and the following
polygenic forms: T1DM or T2DM [44]. Neonatal diabetes is caused mainly by paternally in-
herited duplications in chromosome 6q24 that cause overexpression of paternally imprinted
genes, mutations in KATP channels, potassium inwardly rectifying channels, subfamily
J, member 11 (KCNJ11) or ATP Binding Cassette Subfamily C Member 8 (ABCC8) genes,
among others [45]. Mutations in the hepatocyte nuclear factor 1-α (HNF1A), 4-α (HNF4A),
1-ß (HNF1B/TCF2) and glucokinase (GCK) genes are responsible for most of the cases of
MODY [46].

The development of T2DM depends on both environmental [47] and genetic causes.
The genetics of T2DM are very complex, and genome-wide association studies and whole-
genome sequencing have shown more than seventy genes related to the pathogenesis of
the disease [48,49]. A large number of SNPs have been described in more than 400 distinct
genomic regions [50]. The heritability of T2DM ranges from 20 to 80% [51], the highest
concordance corresponding to monozygotic twins [52]. Despite the huge number of risk
SNPs identified, each one accounts only for a small effect on the risk of T2DM, around
10–20% increase per risk allele [44]. Because of this, various genetic risk scores have been
developed to evaluate the cumulative effect of multiple SNPs and to identify individuals
with a high genetic risk of T2DM [53,54].

The genes with the most reported risk variants are KCNJ11, peroxisome proliferator-
activated receptor gamma (PPARG), HNF1B/TCF2 and wolfram syndrome 1 (wolframin)
(WFS1), confirmed by genome-wide association studies [55]. Other genes related to T2DM
are insulin receptor substrate 1 gene (IRS1) and IRS-2, ABCC8, Phosphatase and Tensin
Homolog (PTEN), Zinc Transporter-8 Gene (SLC30A8), GATA Binding Protein 6 (GATA6),
ISL LIM Homeobox 1 (ISL-1), Transcription Factor 7-like 2 (TCF7L2), Insulin-like Growth
Factor 2 mRNA-Binding Protein 2 (IGF2BP2), among many others [48,50,56].

The effects of variants in these genes can lead to impaired insulin response, decreasing
insulin sensitivity, loss of the ß cell morphology, generate oxidative stress in the pancreas,
destruction of pancreatic β-cells altering insulin biosynthesis, causing insulin receptor dys-
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function, etc. [48,56]. Due to the polygenic feature, many genes and their SNPs contribute
to an enhanced risk of T2DM, which together with environmental triggers, like obesity,
leads to the development of the disease [51].

2.3. Genetic Studies Assessing the Link between Hyperlipidemia and Type 2 Diabetes

Mendelian randomization studies suggest that there is an overlap between the risks
of DM and hyperlipidemia. Indeed, after combining and analysing existing information
provided by three large consortia, Fall et al. report a significant association between gene
variants determining higher LDL-c and a lower risk of T2DM, whereas the association with
variants determining HDL-c and triglycerides was less clear [57,58]. When constructing the
risk scores, the authors excluded SNPs associated with adiposity, which they considered
a possible confounder. White et al. used a modified approach in a dataset combining
several genome-wide association studies, including 188,577 individuals with measured
blood lipids and 34,840 with T2DM. A 130 SNP score was developed for LDL-c (explaining
7.9% of its variance), and 140 SNP scores, for HDL-c and triglycerides. For each SD
(38 mg/dL) estimated increase in LDL-c, the risk of T2DM was reduced by 21% (R 0.79
(0.71–0.88)). For triglycerides, every 89 mg/dL estimated increase was also associated with
a reduction in T2DM (OR 0.83 (0.72–0.95)), as was the case for every 16 mg/dL estimated
increase in HDL-c (OR 0.83 (0.76–0.90)) [59]. Although the protective effect of triglycerides
seems somewhat unexpected, other studies in different ethnic groups agree with this
finding [60,61].

3. Familial Hypercholesterolemia and Glucose Metabolism: Risk of Diabetes
3.1. Epidemiological Studies

In 2019, the worldwide prevalence of DM was 9.3%, higher in men (9.6 vs. 9%) and in
high-income countries (10.4 vs. 4%) [17]. Most epidemiological studies in FH subjects have
shown a lower DM prevalence than in the general population (see Table 1). In a Dutch
cohort with more than 14,000 FH subjects, only 2.8% had DM [62], whereas a British cohort
showed an even lower prevalence (0.8%) [63], and intermediate results were described
in 263 French-Canadian patients with FH [64]. Recently, a Spanish study with more than
1700 subjects with FH found a T2DM prevalence close to 6%, around one third of the
national average [65]. However, another recently published Spanish study, performed on
the island of Gran Canaria, showed an unexpectedly high prevalence of DM in HeFH LDLR
mutation carriers (25%) [66]. Other studies show a high prevalence of DM too, above 20%,
but in patients with only clinical diagnosis of FH without genetic confirmation [67,68].

Table 1. Prevalence of diabetes in representative populations with FH.

Author, Year Country N Sample Characteristics Diagnostic Criteria of FH Diabetes (%)

Ferrières, 1995 [64] Canada 263 French Canadian HeFH patients Genetic test (LDLR mutation)
Men with CHD 1.9%

Women and men
without CHD 0%

Vuorio, 1997 [69] Finland 179 55 HeFH with CHD and 124
HeFH without CHD Genetic test (LDLR mutation) 9 and 0%,

respectively
Neil, 1998 [63] UK 1185 HeFH Simon Broome Criteria 1.2% men

0.5% women
Fuentes, 2015 [70] Spain 3823 2558 HeFH vs. 1265 unaffected

relatives Genetic test (LDLR mutation) 2.3%

Saavedra, 2015 [71] Canada 188 HeFH Genetic test (PCSK9-InsLEU
or LDLR mutations)

4 and 2%,
respectively

Besseling, 2015 [26] Netherlands 63,320 25,137 HeFH vs. 38,183
unaffected relatives

Genetic test (APOB, PCSK9
or LDLR mutations) 1.75%

Skoumas, 2017 [72] Greece 280
90 HeFH vs. 112 familial

combined
hyperlipidemia vs. 78 controls

Clinical criteria or genetic test 2%

Climent, 2017 [65] Spain 1732 HeFH Definite or probable
DLCN criteria 5.9%

Sun, 2018 [68] China 289 HeFH Definite or probable
DLCN criteria 20.1%

Sánchez-Hernández, 2021 [66] Spain 68 p.[Tyr400 Phe402del]
LDLR carriers Genetic test (LDLR mutation) 25%

Mehta, 2021 [73] Mexico 336 332 HeFH and 4HoFH Definite, probable, or possible
DLCN criteria 11.3%

DM: diabetes mellitus, BMI: body max index, CHD: coronary heart disease, HeFH: Heterozygous familial
hypercholesterolemia, HoFH: Homozygous familial hypercholesterolemia, DLCN: Dutch Lipid Clinical Network.
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Regarding the relationship between FH mutations and DM, the results are not con-
sistent. Patients with mutations in APOB, with a less severe phenotype, had a higher
prevalence of T2DM (1.91%) than LDLR mutation carriers, and amongst these, the most
severe phenotype (receptor-negative) had the lowest prevalence of DM (1.12%) [26]. In
accordance with these findings, PCSK9 InsLEU mutation carriers had a higher prevalence
of DM and a lower incidence of coronary heart disease. However, other studies have not
found an association between mutation type and DM [74,75].

3.2. Lipid-Lowering Treatment and Risk of Diabetes

In recent years, many drugs have been developed to treat hypercholesterolemia, and
several studies have shown that they could alter glucose tolerance, highlighting the link
between cholesterol and glucose metabolism (see Table 2).
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Table 2. Studies assessing the association between lipid-lowering drugs and disorders of glucose metabolism.

Author, Year N Characteristics/Therapy Mean Follow-Up Mean Results Statistical Measures (OR, HR or RR) (95% CI)

Sattar, 2010 [76] 91,140 Meta-analysis. All statins 4 years NODM 9% OR 1.09 (1.02–1.17)

Waters, 2013 [77] 15,056 Atorvastatin 80 mg vs. atorvastatin 10 mg or
simvastatin 20–40 mg 4.9 years 0–1 NODM risk factors: NODM 3.22% vs. 3.35%

2–4 NODM risk factors: NODM 14.3% vs. 11.9%
HR 0.97 (0.77–1.22)
HR 1.24 (1.08–1.42)

Cederberg, 2014 [78] 8749 Non-diabetic patients. All statins vs. control 5.9 years
NODM 11.2% vs. 5.8%

High and low dose simvastatin
High dose atorvastatin

HR 1.46 (1.22–1.74)
HR 1.44 (1.23–1.68) and 1.28 (1.01–1.62)

HR 1.37 (1.14–1.65)

Khan, 2019 [79] 163,688
Non-diabetic patients. Intensive therapy

(PCSK9i or statins) vs. less intensive therapy
(placebo/usual care)

4.2 years NODM 6.1% vs. 5.8% RR 1.07 (1.03–1.11)

Ko, 2019 [80] 2,162,119

Duration of statin use (<1 year vs. 1–2 years
vs. >2 years)

Cumulative dosing of statin (low-tertile
vs. middle-tertile vs. high-tertile)

3.9 years NODM 8.2% vs. 14.6% vs. 19.8%
NODM 6.7% vs. 11.5% vs. 18.6%

HR 1.25 (1.21–1.28) vs. 2.22 (2.16–2.29)
vs. 2.62 (2.56–2.67)

HR 1.06 (1.02–1.10) vs. 1.74 (1.70–1.79)
vs. 2.52 (2.47–2.57)

Choi, 2018 [81] 2483 5–10 mg rosuvastatin vs. 10–20 mg and atorvastatin vs.
2–4 mg pitavastatin 3 years NODM 10.4% vs. 8.4% vs. 3% HR Rosuvastatin vs. Pitavastatin: 3.9 (1.8–8.7)

HR Atorvastatin vs. Pitavastatin: 2.6 (1.2–5.9)

Freeman, 2001 [82] 5974 All statins 3.5–6.1 years NODM 2.3% Pravastatin therapy HR 0.70 (0.50–0.99)

Hiramitsu, 2010 [83] 120 Ezetimibe 12 weeks HbA1c: −3.4%; p = 0.05

Dagli, 2007 [84] 100 High-dose pravastatin (40 mg) vs. combination
low-dose pravastatin (10 mg) plus ezetimibe (10 mg) 6 months HOMA IR: 3.16 vs. 2.05; p = 0.01

Her, 2010 [85] 76 Atorvastatin 20 mg vs. rosuvastatin 10 mg vs.
atorvastatin 5 mg plus ezetimibe 5 mg 8 weeks HbA1c: +3% vs. +1.2% vs. −0.4%; p = 0.03

Takeshita, 2013 [86] 32 Ezetimibe vs. placebo in NAFLD patients 6 months HbA1c: 6.5% vs. 6%; p = 0.041

Sabatine, 2017 [87] 27,564 EVOLOCUMAB vs. placebo 2.2 years NODM 8% vs. 7.6% HR 1.05 (0.94–1.17)

de Carvalho, 2017 [88] 68,123 Meta-analysis: PCSK9i vs. placebo 78 weeks
Mean difference in FBG 1.88 (0.91–2.68) mg/dL;

p < 0.001
HbA1c 0.032% (0.011–0.050); p <0.001

NODM
RR 1.04 (0.96–1.13); p = 0.427

Chen, 2019 [89] 65,957 Meta-analysis: PCSK9i vs. placebo

Global NODM
ALIROCUMAB

Homogeneous statin use
ALIROCUMAB and EVOLOCUMAB vs. ezetimibe

RR 0.97 (0.91–1.02)
RR 0.91 (0.85–0.98)
RR 2.14 (1.12–4.07)
RR 0.60 (0.37–0.99)

Leiter, 2022 [90] 3621 Bempedoic acid vs. placebo 1 year
NODM 0.3% vs. 0.8%; p > 0.05

T2DM: HbA1c −0.12% vs. 0.07%; p < 0.0001
pre-T2DM: HbA1c −0.06% vs. −0.02; p < 0.0004

Masson, 2020 [91] 3629 Meta-analysis: bempedoic acid vs. placebo 4–52 weeks NODM OR 0.66 (0.48–0.90)

Handelsma, 2010 [92] 216 Colesevelam vs. placebo in
pre-T2DM patients 16 weeks FBG: −4.0 mg/dL vs. −2.0 mg/dL; p = 0.02

HbA1c: −0.12% vs. −0.03%; p = 0.02

OR: odd ratio; HR: hazard ratio; RR: risk ratio; CI: confidence interval; NODM: new-onset diabetes mellitus; HbA1c: glycosylated hemoglobin; HOMA-IR: insulin-resistance index;
NAFLD: non-alcoholic fatty liver disease; PCSK9i: PCSK9 inhibitors; FBG: fasting blood glucose; T2DM: type 2 diabetes.
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3.2.1. Statins

Statins are the treatment of choice for hypercholesterolemia, both in primary and
secondary prevention [93,94]. They inhibit the 3-hydroxy-3-methylglutaryl-coenzyme A
reductase (HMG-CoA reductase), increase LDLR expression, and reduce plasma LDL-c
concentration by over 50% [95]. New-onset DM (NODM) has a prevalence of 9–12% and is
one of most recognized side effects of statins [76,96]. Risk increases with age in women [97],
and in people with more than two risk factors for DM (impaired fasting plasma glucose,
hypertriglyceridemia, hypertension, obesity, or the metabolic syndrome) [77,78]. The risk
of DM seems to be independent of LDL-c concentrations [76,79] and varies according to
statin type and dose, as well as exposure time [80,98]. Nevertheless, this association with
NODM should not discourage health professionals from prescribing these drugs, given
their proven cardiovascular benefit, especially in high-risk individuals [99,100]. Simvastatin,
atorvastatin, and rosuvastatin have shown more glucose impairment, while pitavastatin has
a lower risk of NODM compared with atorvastatin and rosuvastatin [81,96,101]. Pravastatin
has also shown favourable results, probably related to its lower liposolubility and limited
potency [82]. However, FH subjects seem to be protected against these diabetogenic
effects [70].

3.2.2. Ezetimibe

Ezetimibe inhibits intestinal absorption of cholesterol by blocking the Niemann-Pick
C1 like1 (NPC1L1) transporter [102], and is frequently used as a concomitant treatment
to statins. Its relationship with glucose metabolism is controversial. Several studies have
shown that fasting plasma glucose, glycosylated haemoglobin (HbA1c) and insulin sensi-
tivity improve with ezetimibe treatment, both in DM and non-DM individuals [103,104].
This drug also improves inflammation markers and obesity and reduces waist circumfer-
ence [83]. Based on these positive results, a possible compensatory effect on the diabetogenic
effects of statins has been studied. Dragi et al. found that the combination of low-dose-
pravastatin plus ezetimibe improved insulin resistance and inflammation compared with
high-dose-pravastatin alone [84]. In 2018, a meta-analysis concluded that patients who used
low-dose-statins plus ezetimibe for more than 3 months had lower fasting plasma glucose
compared with those treated with high-dose statins [105]. Nevertheless, no differences
in the HOMA-IR index were found when two statins in monotherapy were compared
with a combination of low-dose-statin plus ezetimibe [85]. No significant differences were
found either, in a recent study that compared statins alone versus their combination with
ezetimibe in glucose intolerant patients followed for 7 years [106]. Other studies have
found neutral [107] or deleterious effects on glycemic metabolism with ezetimibe, with an
increase in HbA1c and hepatic long-chain fatty acids in patients with non-alcoholic fatty
liver disease [86].

The discrepancies in the results could be explained by the small number of participants
in some studies, insufficient follow-up, or the presence of other lipid-lowering drugs that
could act as confounders.

3.2.3. PCSK9 Inhibitors (PCSK9-i)

Inhibition of the PCSK9 enzyme prevents LDLR degradation after cellular internal-
ization, reducing LDL-c by about 60%. Approved in 2015, monoclonal antibodies against
PCSK9 (alirocumab and evolocumab) have shown a favourable safety profile with few side
effects [108], but the consequences on glucose metabolism are still not clear. Despite the
fact that most clinical studies have not found an association between PCSK9-i and NODM
or worsening of pre-existing DM [87,109].

A large study including more than 96,000 individuals followed for 1.5 years found a
small but significant increase in plasma glucose and HbA1c but not a higher incidence of
NODM in those treated with PCSK9-i [88]. In 2020, a meta-analysis found that alirocumab
was associated with a reduction in the risk of DM and, when compared with ezetimibe
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in monotherapy, evolocumab was also associated with this risk reduction. However,
when used in combination with statins, an increased risk of NODM was found in the
PCSK9-i group, even though the use of statins was equivalent between the experimental
and active comparator arms [89]. It seems that the combination with other lipid-lowering
drugs (especially statins) could change the studies’ results due to the discrepancies in
background treatment between groups. Furthermore, mendelian randomization studies
must be interpreted carefully. As is the case for other lipid-lowering drugs, follow-up is
often limited and could be insufficient to see an effect on glucose metabolism [110].

3.2.4. Bempedoic Acid

Bempedoic acid is a newly developed drug that inhibits adenosine triphosphate citrate
lyase, increasing LDLR expression and reducing LDL-c [90]. In the phase 3 “CLEAR” stud-
ies, bempedoic acid was associated with a reduced incidence of DM and an improvement in
fasting blood glucose and HbA1c in week 12 in pre-DM or DM subjects, without increasing
NODM risk for 1 year [90,91]. A recent meta-analysis found a reduction of 34% in NODM
risk [91].

3.2.5. Other Cholesterol-Lowering Drugs

Nicotinic acid (B3 vitamin) reduces triglyceride and LDL-c concentrations and raises
high-density lipoprotein cholesterol (HDL-c) by up to 35% [111]. It is associated with
an increased risk of NODM and higher fasting plasma glucose and HbA1c, especially in
predisposed individuals, with a dose-dependent effect [112]. Niacin has other side effects,
such as flushing, and does not reduce cardiovascular events in secondary prevention [113],
so its use is currently limited.

Bile acid sequestrants (resins) reduce bile acid reabsorption and increase hepatic
LDLR, lowering LDL-c by 15–25%. They improve the glucose profile but do not cause
hypoglycemia in T2DM subjects. Similar results have been found with different resins
and in both pre-DM and healthy individuals [92,112,114]. Although they have a moderate
lipid-lowering effect, they could be useful in subjects with DM because of their dual effects
on lipid and glucose metabolism.

3.3. Genetics and Metabolism

The cause of the lower prevalence of DM in FH subjects found in most studies is
not clearly known yet. In vitro, long exposure to fatty acids has been associated to β-
cells dysfunction and reduced insulin secretion, especially when coexisting with hyper-
glycemia [115,116]. Moreover, in vitro studies have shown that intracellular cholesterol
accumulation also induces apoptosis of pancreatic β-cells [117]. LDL particle uptake
causes β-cell death in a dose-dependent manner, and this toxicity can be counteracted by
HDL, very LDL (VLDL) particles, or antioxidants [118]. Supporting these findings, poly-
morphisms in ATP-binding cassette transporter 1 gene (ABCA1), involved in cholesterol
efflux and HDL synthesis, have been associated to obesity, the metabolic syndrome, and
DM [119,120]. On the β-cell, HDL particles have an anti-inflammatory effect and participate
in cholesterol efflux [121]. Higher HDL-c levels are associated with less hyperglycemia and
HDL particle size is inversely correlated to T2DM risk in the general population [122].

A large meta-analysis of genetic association studies assessing the effects of cholesterol-
lowering variants in or near NPC1L1, HMGCR, PCSK9, ABCG5/G8 and LDLR showed
an overall increased risk of DM with an odds ratio of 1.19–2.42 for every 1 mmol/L
(38.6 mg/dL) reduction in LDLc [110]. However, there was rather high heterogeneity in
the meta-analysis, suggesting gene-specific associations with DM. Indeed, the highest risk
of T2DM was associated with variants in or near NPC1L1, whereas the HMGCR locus was
associated with body mass index and waist-to-hip ratio, and PCSK9, with higher fasting
and two-hour glucose concentrations [110].

The lipotoxicity hypothesis could, at least partially, explain how statins increase
NODM and how FH reduces the risk of DM. The rise in LDLR increases LDL particle
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uptake by pancreatic β-cells, thereby promoting dysfunction and apoptosis, especially
in those with baseline glucose disturbances. On the other hand, genetic mutations that
prevent cholesterol input, like FH, could be protective and explain the inverse relationship
between mutation severity and DM prevalence [123]. However, clinical studies do not
clearly reflect this theory. No differences in insulin, C peptide, or fasting plasma glucose
concentrations have been found comparing FH with non-FH subjects, regardless of their
insulin sensitivity [124–126]. Indeed, in some studies, FH has even been associated with an
increased risk of impaired glucose metabolism [7,127].

In vivo studies show controversial results. When comparing prediabetic wildtype vs.
LDLR knock-out (KO) mice, no differences were observed in glucose levels, although less
insulin secretion and more β-cell apoptosis were seen in LDLR KO mice [128].

In a study in PCSK9 KO and PCSK9/LDLR double knock-out mice, the former showed
reduced insulin secretion and glucose intolerance, as well as cholesteryl ester accumulation
in β-cells compared with WT mice. In the double knock-out mice, these alterations were
restored, supporting the hypothesis that LDLR, the target of PCSK9, is responsible for the
phenotype [129]. However, a later study with PCSK9 KO and PCSK9 ß-cell specific KO
mice does not show any alteration on glucose homeostasis nor in β-cell function [130].

Thus, other molecular or environmental factors are probably involved in DM risk. For
example, plasma lipoprotein(a) (Lp(a)) has been shown to be higher in HeFH compared
with the general population [131], and an inverse association has been described between
Lp(a) concentrations and the risk of T2DM [132]. However, this effect has to be confirmed,
and a mechanism explaining it is still to be found.

Regarding environmental factors, a study comparing a cohort of 2185 HeFH subjects
from the Spanish Dyslipidaemia Registry with a representative sample of the background
population showed more favorable cardiovascular risk profiles in the former. Indeed,
HeFH subjects without cardiovascular disease showed a lower body mass index and a
lower prevalence of smoking than the background populations, suggesting that the lower
prevalence of T2DM could, at least partially, be explained by a healthier lifestyle in patients
with FH [133].

4. Coexistence of Diabetes and Familial Hypercholesterolemia: Clinical Consequences
4.1. Effects on the Lipoproteins

Cardiovascular disease is the leading cause of death in people with DM. Traditionally,
DM has been considered to increase the risk of ischemic heart disease, stroke, and peripheral
arterial disease by 2–4 times [134]. Although recent studies show that contemporary
treatment for cardiovascular risk has reduced the excess mortality associated with the
disease, DM remains a very strong independent risk factor for cardiovascular morbidity
and mortality [135]. Therefore, since FH is associated with an elevated risk of premature
atherosclerosis, it is conceptually reasonable to assume that the coexistence of both DM and
FH has a strong impact on cardiovascular disease risk.

While decreased clearance of LDL particles and accumulation of LDL-c is the main de-
terminant for increased cardiovascular disease in FH, multiple interconnected mechanisms
have been involved in vascular damage caused by DM, including hyperglycemia-induced
overproduction of reactive oxygen species, accumulation of advanced glycation products,
activation of protein kinase C and chronic inflammation [136]. In addition, DM is also
responsible for a characteristic cluster of lipid disorders with high atherogenic potential,
known as diabetic dyslipidemia. Although diabetic dyslipidemia and FH share hyperbetal-
ipoproteinemia as the fundamental mechanism for atherogenesis, the mechanisms behind
them and their biochemical expression are different.

The hallmarks of diabetic dyslipidemia are hypertriglyceridemia and decreased
HDL-c, whereas LDL-c concentrations are normal or only slightly increased. Although the
mechanisms of diabetic dyslipidemia are not completely understood, it is accepted that
insulin resistance is its main underlying element [137]. Under physiological conditions,
insulin inhibits lipolysis in adipose tissue and activates lipoprotein lipase, an enzyme
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involved in the plasma clearance of triglycerides from VLDL and chylomicrons. In a state
of insulin resistance, lipolysis is not inhibited, and increased circulating free fatty acids are
readily taken up by the liver and used as substrates for synthesis and subsequent release of
VLDL. Hypertriglyceridemia stimulates the enzymatic activity of cholesteryl ester transfer
protein and, during their passage through the circulation, VLDL particles transfer their
triglycerides to HDL and LDL in exchange for cholesteryl esters [137]. Triglyceride-enriched
HDL undergoes lysis by hepatic lipase, a mechanism by which they are converted into
small, dense particles with reduced antioxidant, anti-inflammatory, and anti-atherogenic
capacity compared to normal HDL. The smaller HDLs, in turn, are cleared more rapidly
from the circulation, resulting in a decrease in HDL-c and apolipoprotein A-1 (apoA-1) con-
centrations [137]. In a similar manner, LDL particles also become smaller and denser due
to a higher ratio of protein to lipid (LDL phenotype B). These LDL particles are resistant to
receptor binding, pass more readily through the arterial wall, bind to proteoglycans and are
more susceptible to oxidation [138]. On the whole, although LDL-c is not characteristically
increased, diabetic dyslipidemia is characterised by an increase in the total number of
apoB-containing particles (VLDL, IDL, and LDL).

Several studies have assessed the presence of phenotypic features of diabetic dys-
lipidemia in non-diabetic subjects with FH. LDL particles from both HoFH and HeFH
patients appear to be larger, more buoyant, and more resistant to oxidation than those from
healthy controls [139]. Thus, the qualitative properties of LDL do not seem to play a signifi-
cant role in the development of atherosclerosis in people with FH. Furthermore, patients
with FH usually have normal triglyceride concentrations. However, experimental studies
have suggested that defective LDLR promotes liver uptake of chylomicrons and remnants
and increases VLDL secretion [140,141]. In fact, disturbed triglyceride-rich lipoprotein
metabolism and, particularly, postprandial dyslipoproteinemia have been proposed as a
putative modulator of cardiovascular risk in HeFH [142]. The possible role of lipoprotein
lipase in postprandial hyperlipemia among subjects with HeFH has not been specifically
studied. However, individuals with HeFH who carry an LPL gene variant that reduces
lipoprotein lipase activity, show higher triglyceride levels and lower HDL-c levels than
non-carriers of this mutation [143]. This suggests that a decreased lipoprotein lipase activity,
as occurs in insulin resistance, could condition the phenotype of HeFH. Finally, results
have been discordant regarding serum concentrations of HDL-c in subjects with FH [141].
This is probably related to the fact that, in subjects with FH, there is an increase in both
synthesis and catabolism of HDL particles, but there may be an imbalance between both
processes that varies depending on population-specific genetic or environmental factors.
Increased apoA-1 catabolism due to increased cholesteryl ester transfer protein activity
favours the generation of small HDL particles rich in triglycerides and apolipoprotein
E [144,145]. Moreover, HDL particles in subjects with FH may show different functional
abnormalities not detectable by measuring HDL-c alone. This may include a defective
ability to reverse cholesterol transport from macrophages and impaired anti-inflammatory
and antioxidant capacity [144,145].

As mentioned above and depicted in Figure 1, it is reasonable to think that subjects
with FH who develop DM may have alterations in lipid metabolism resulting from the
additive effect of both diseases. A few studies have compared the clinical characteristics
and lipid profiles of HeFH subjects with and without T2DM [68,74,146]. Patients with DM
were older, had a higher prevalence of hypertension, and had a higher body mass index
than patients without DM. As expected, they also had a lipid profile more characteristic
of diabetic dyslipidemia, including higher triglyceride and lower HDL-c and apoA-1 con-
centrations [68,74,146], as well as higher concentrations of markers of subclinical systemic
inflammation, such as C-reactive protein and neutrophil count [68], typical of individuals
with insulin resistance.
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Figure 1. Potential combination of the physiopathological mechanisms of diabetes and familial
hypercholesterolemia in the same individual. Diabetic dyslipidemia. Insulin resistance reduces
lipoprotein lipase activity (LPL) 1©, decreasing plasma triglyceride clearance, and promotes the
release of free fatty acids 2©, which are taken up by the liver and used for the synthesis and release of
VLDL 3©. VLDL exchange triglycerides and cholesterol esters with LDL 4© and HDL 5© through the
action of cholesteryl ester transfer protein (CETP). Triglyceride-rich HDL particles, through the action
of hepatic lipase (HL), are converted into smaller particles, with less anti-atherogenic properties,
which are cleared more rapidly in the kidney 6©. LDL particles also become smaller and denser
(LDL phenotype B), more pro-atherogenic 7©. Familial hypercholesterolemia. The genetic defect in
LDL receptor prevents its uptake and metabolism in the liver, favoring the accumulation of LDL
particles 8©. This generates an increase in the uptake of chylomicrons and remnants in the liver 9©, in
turn boosting the synthesis of VLDL.

4.2. Effects on Chronic Arterial Wall Inflammation and Endothelial Dysfunction

In recent decades, abundant scientific evidence has highlighted the preponderant role
of immunological and inflammatory mechanisms in the development and progression
of atherosclerosis. As mentioned above, inflammatory mechanisms may be particularly
important in the development of cardiovascular disease in individuals with T2DM. Epi-
demiological studies have shown that insulin resistance is associated with high concen-
trations of uric acid and a wide set of acute phase reactants and markers of endothelial
dysfunction [147,148]. In addition, obesity, commonly present among people with T2DM,
perpetuates the maintenance of a state of chronic inflammation as adipose tissue secretes a
variety of proinflammatory adipocytokines such as tumour necrosis factor α, interleukins
1, 6, and 8, resistin, adiponectin, leptin, and adipsin [149].

Increased blood concentrations of different biomarkers of systemic inflammation,
endothelial activation, and oxidative stress [150,151] have also been reported in FH subjects,
and some authors have postulated their possible role as tools for cardiovascular risk
stratification in HeFH [152]. In any case, these studies reveal that DM and FH could share
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a greater predisposition to the activation of pathways leading to arterial wall inflammation
and endothelial activation, promoting early mechanisms of atherosclerosis induction.

4.3. Effects on the Cardiovascular Risk

Contrary to theoretical assumptions and evidence from the general population, in
which the role of DM as a cardiovascular risk factor is incontrovertible, studies that have
evaluated the association between DM and cardiovascular disease in HeFH have offered
contradictory results. Over the past two decades, a considerable number of studies have as-
sessed the role of classical cardiovascular risk factors in patients with HeFH. A multi-centre
retrospective cohort study performed in the Netherlands on 2400 patients (112,943 person-
years) [153] found that, along with male gender, smoking, hypertension, low HDL-c and
Lp(a), DM was independently associated with the presence of at least one cardiovascular
event (RR 2.19; 95% CI: 1.36–3.54). Very recently, another methodologically similar study,
which evaluated 1050 Japanese patients with HeFH over 19 years, also demonstrated that
DM was an independent risk factor for a composite of major adverse cardiovascular events
(HR 1.81; 95% CI: 1.12–2.25) [154]. However, the results of cross-sectional studies were
mixed (see Table 3), and in many of them, DM was no longer significantly associated with
the presence of cardiovascular disease after adjustment for other covariates. In many of the
studies that found no association, either the population size was small or the prevalence of
DM was very low, possibly limiting the statistical power to detect the association between
DM and cardiovascular disease. In fact, a meta-analysis of 27 studies, published in 2018,
aimed at assessing the association between cardiovascular disease and several classical
risk factors, adding up to 41,831 subjects and 6629 cardiovascular events, found that DM
was indeed an independent risk factor in HeFH (OR 1.95; 95% CI: 1.33–2.57), along with
age, male sex, hypertension, body mass index, smoking, increased Lp(a), low HDL-c and a
family history of cardiovascular disease [14].

In recent years, mainly due to the wide variation in established cardiovascular disease
rates, even among individuals who share the same mutation and belong to the same family,
there has been a growing interest in finding tools for cardiovascular risk stratification in
subjects with HeFH. To this end, predictive models specifically designed for HeFH have
been developed, and, strikingly, DM was not a factor to be taken into account in any of
them. The first one, the Montreal-FH-SCORE, was calculated on the basis of retrospective
data from a sample of 670 patients carrying a known FH-causing mutation in the LDLR
gene, and it combines five predictor variables (age, gender, smoking, hypertension, and
untreated HDL-c levels) [155]. In light of these findings, the authors conducted a specific
study to investigate the impact of DM on cardiovascular disease in FH, using data from
1412 patients (73 with DM) from the FH Canada Registry. Although patients with DM
had a higher prevalence of established cardiovascular disease, their results confirmed
that including DM did not improve risk prediction with respect to the Montreal-FH-
SCORE [146]. Subsequently, two mathematical models for cardiovascular risk prediction
have been developed, but, unlike the Montreal-FH-SCORE, which had the limitation of
being based on retrospective data, these were generated using prospective data from
registries that collected incident cardiovascular events. The SAFEHEART Risk Equation
was estimated using data from 2404 Spanish patients (104 with DM) with HeFH. Age,
male sex, history of previous atherosclerotic cardiovascular disease, high blood pressure,
increased body mass index, active smoking, and LDL-c and Lp(a) concentrations, but not
DM, were independent predictors of incident cardiovascular events [156]. The FH-Risk
SCORE was developed from a multinational prospective cohort of 3881 adults (152 with
DM) with HeFH and no prior history of atherosclerotic cardiovascular disease. DM was not
among the selected variables for the FH-Risk SCORE equation either, which incorporates
sex, age, HDL-c, LDL-c, hypertension, smoking, and Lp(a) concentration as independent
risk factors for 10-year atherosclerotic cardiovascular disease [157]. It should be noted that,
until the publication of these two large studies, only a few long-term prospective studies
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had been carried out to assess the occurrence of new cardiovascular events in subjects with
FH and, again, DM was not a significant risk factor in any of them [36,158,159].

Overall, the information available to date suggests that the role of DM as a cardiovas-
cular risk factor in the FH population is smaller than in the general population. However,
as their authors themselves acknowledge, due to the low prevalence among the FH pop-
ulation, even the highest quality prospective studies included small numbers of patients
with DM and may not have had sufficient statistical power to determine the true effect of
the disease [156,157]. Therefore, as has already been cautioned before [160], it is probably
premature to underestimate the role of DM, and clinical judgement should be applied to
establish the individual risk of a person with both FH and DM, considering other specific
variables related to the disease, such as type of DM, time since diagnosis, or target organ
damage, as recommended in clinical practice guidelines [161].
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Table 3. Cross-sectional studies that have assessed the association between diabetes and cardiovascular disease in subjects with heterozygous
familial hypercholesterolemia.

Author, Year Study Type * Country FH Diagnostic
Criteria ** N Diabetes (%)

Univariate
Association
OR (95% CI)

Multivariate
Association
OR (95% CI)

Adjusting Covariates

Hopkins, 2001 [162] RR USA MEDPED criteria 262 3.0 NS NS

Age, sex, BMI, smoking, waist to hip ratio,
hypertension, HDL-c, triglycerides, small LDL,
Lp(a), homocysteine, insulin, white cell count,
C-reactive protein, xanthomas, intima-medial

thickness, angiotensin-converting
enzyme I/D polymorphism

De Sauvage, 2003 [163] MC Netherlands Genetic test or definite
DLCN criteria 526 2.1 17.61 (2.25–137.8) NS

Age, sex, BMI, smoking, total-c, LDL-c, HDL-c,
triglycerides, Lp(a),

apo A1, apo B, homocysteine

Allard, 2014 [164] SC Canada Definite DLCN criteria 409 6.4 3.2 (1.9–5.6) 3.6 (2.0–6.5)
Sex, BMI, smoking, family history of premature

CVD, hypertension, LDL-c, HDL-c,
triglycerides, Lp(a)

Alonso, 2014 [165] MC Spain Genetic test 1960 3.9 Non reported NS
Sex, BMI, smoking, hypertension, HDL-c,

triglycerides, Lp(a),
type of mutation, xanthomas

Besseling, 2014 [62] NR Netherlands Genetic test 14,283 2.8 6.40 (5.21–7.86) 1.37 (1.03–1.82) Age, sex, BMI, smoking,
hypertension, lipid profile

Pereira, 2014 [166] SC Brazil Definite or probable
DLCN criteria 202 17.3 2.23 (1.05–4.75) NS

Age, sex, BMI, smoking, hypertension, sedentary
lifestyle, LDL-c, HDL-c, triglycerides, glucose,

creatinine, xanthomas, corneal arcus,
ankle-brachial index, claudication

Chan, 2015 [167] SC Australia Genetic test 390 1.3 2.74 (1.06–7.08) NS Obesity, smoking, hypertension, CKD, LDL-c,
HDL-c, triglycerides, Lp(a)

De Goma, 2016 [168] NR USA Genetic test or any set
of clinical criteria 1295 13 3.08 (2.04–4.64) 1.74 (1.08–2.82) Age, smoking, hypertension, total-c, low HDL-c

Paquette, 2016 [155] SC Canada Genetic test 670 3.3 3.5 (1.45–8.47) NS
Age, sex, BMI, smoking, hypertension, prior

statin use, total-c, LDL-c, HDL-c, triglycerides,
VLDL-c, non-HDL-c, Lp(a), apoB

Paquette, 2017 [169] MC Canada Genetic test 1388 4.5 3.28 (1.92–5.619 NS
Age, sex, BMI, smoking, hypertension, prior

statin use, total-c, LDL-c, HDL-c, triglycerides,
VLDL-c, non-HDL-c, Lp(a), apo B

Galema Boers, 2017 [170] SC Netherlands
Genetic test or definite

or probable DLCN
criteria

821 4 4.39 (2.15–8.97) NS
Age, sex, BMI, smoking, hypertension, family

history of CVD, previous cardiovascular disease,
triglycerides, high LDL-c, low HDL-c.

Paquette, 2019 [146] MC Canada Definite, probable or
possible DLCN criteria 1412 5.2 2.9 (1.8–4.7) NS Montreal-FH-SCORE

Pérez-Calahorra, 2019 [171] NR Spain
Genetic test or definite

or probable
DLCN criteria

1958 6.5 4.99 (3.43–7.26) NS

Michikura, 2022 [172] SC Japan Genetic test 176 12 Non reported NS
Age, sex, BMI, smoking, hypertension, LDL-c,

HDL-c, triglycerides,
Achilles tendon elasticity index

* Type of study. SC: single-centre; MC: multicentre; RR: regional registry; NR: national registry. ** Diagnostic criteria. MEDPED: Make Early Diagnosis to Prevent Early Deaths System;
DLCN: Dutch Lipid Clinic Network; NS: Not significant; BMI: body mass index; CVD: cardiovascular disease; c: cholesterol.
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5. Knowledge Gaps and Further Research

The previous sections have highlighted the interplay between lipid and glucose
metabolism, but also the controversy in this area. The inverse correlation between LDL-c
concentrations and the risk of DM is supported by the low risk of DM in most populations
with HF, by mendelian randomization studies, and by the increased risk of DM associated
with some cholesterol-lowering agents, especially statins. However, results are inconsistent,
and robust mechanistic studies are sparse. Furthermore, healthy behavior in people with
FH could be associated with lower body mass index and a lower risk of T2DM.

There are several approaches that could fill in some of the existing knowledge gaps.

1. In FH populations where DM is more frequent than in the general population, family
co-segregation studies could be performed, comparing the prevalence of DM and
pre-DM in FH-causing mutation carriers and non-carriers in the same families;

2. Studies focused on glucose tolerance, insulin secretion, and insulin resistance in
whole-body and β-cell specific LDLR (or other FH-related genes) knock-out animal
models, as performed already for PCSK9 [129,130];

3. FH-causing-mutation-specific studies in β-cells and islets, assessing their viability
and function;

4. Larger and longer prospective studies assessing the incidence of DM in FH and
non-FH populations, as well as the cardiovascular risk of the combination of FH
and DM.

6. Conclusions

Both DM and FH are associated with an increased risk of cardiovascular disease. Many
studies suggest that FH is protective against the development of DM and that cholesterol-
lowering treatments, especially statins, increase the risk of DM. Indeed, the LDLR is
hypothesized to play a role in the toxicity of (or protection from) cholesterol on the β-cells.
Their reduced amount or function in HF would protect the cells against LDL particle entry,
whereas their increase would promote it and, thus, damage the β-cells. Nevertheless, this
hypothesis is still to be proven. Indeed, a healthy lifestyle associated with a relatively low
body mass index in people with FH could also account for some of the protection against
DM. On the other hand, there are also studies showing an increased prevalence of DM in
people with FH, and not all cholesterol-lowering drugs are associated with an increased
risk of DM. The combination of FH and DM would be expected to be associated with an
especially high risk of cardiovascular disease. However, existing evidence suggests that
other classical cardiovascular risk factors modulate cardiovascular risk in FH, but DM does
not play a highly relevant role. Short follow-up and small numbers of people with DM
advise that this conclusion should be drawn with caution. Much research is still needed to
fully understand the interplay between glucose and lipid metabolism in FH and DM.
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Abstract
Background  The diabetogenic effect of statins has been well established by clinical trials, Mendelian randomisation 
studies and meta-analyses. According to large clinical trials, PCSK9 inhibitors (PCSK9i) have no deleterious impact 
on glucose metabolism. However, few real-life studies have yet evaluated the long-term effects of these drugs on 
glucose homeostasis and their impact on new-onset diabetes (NODM).

Methods  We studied 218 patients treated with either alirocumab or evolocumab (70% with familial 
hypercholesterolemia) for at least three years (PCSK9iG). We studied the NODM rate in the nondiabetic group at 
baseline (168) and overall glucose metabolism control in the whole group. Incidental DM was compared with two 
groups. The first was a propensity score matching (PSM)-selected group (n = 168) from the database of patients 
attending the Reus lipid unit (Metbank, n = 745) who were not on PCSK9i (PSMG). The second was a subgroup with 
a similar age range (n = 563) of the Di@bet.es study (Spanish prospective study on diabetes development n = 5072) 
(D@G). The incidence was reported as the percentage of NODM cases per year.

Results  The fasting glucose (FG) level of the subjects with normoglycaemia at baseline increased from 91 (86-95.5) 
to 93 (87–101) mg/dL (p = 0.014). There were 14 NODM cases in the PCSK9i group (2.6%/y), all among people with 
prediabetes at baseline. The incidence of NODM in PSMG and D@G was 1.8%/y (p = 0.69 compared with the PCSK9iG). 
The incidence among the subjects with prediabetes was 5.1%/y in the PCSK9iG, 4.8%/y in the PSMG and 3.9%/y in 
the D@G (p = 0.922 and p = 0.682, respectively). In the multivariate analysis, only the FG level was associated with 
the development of NODM in the PCSK9iG (OR 1.1; 95% CI: 1.0-1.3; p = 0.027). Neither FG nor A1c levels changed 
significantly in patients with DM at baseline.

Conclusion  A nonsignificant increase in NODM occurred in the PCSK9iG, particularly in patients with prediabetes, 
compared with the PSMG and D@G groups. Baseline FG levels were the main variable associated with the 
development of DM. In the subjects who had DM at baseline, glucose control did not change. The impact of PCSK9i 
on glucose metabolism should not be of concern when prescribing these therapies.

Keywords  New-onset Diabetes Mellitus, Prediabetes, PCSK9 inhibitors, Real-life study, Hyperglycaemia, Familial 
hypercholesterolemia
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Background
The interest in proprotein convertase subtilisin/kexin 
type 9 (PCSK9) as a lipid-lowering target arose at the 
beginning of the present century after the identification 
of several families with familial hypercholesterolemia 
(FH) who carried gain-of-function mutations in the gene 
encoding PCSK9. The subsequent observation that loss-
of-function gene variants were associated with reduced 
low-density lipoprotein (LDL) cholesterol (C) levels and 
fewer cardiovascular events led to its consideration as a 
potential drug target [1, 2].

Circulating LDL binds to the LDL receptor (LDLR) 
to form a complex that is internalised in the cell, where 
the LDL particles are degraded and the LDLR is recy-
cled. PCSK9 is synthesised in the liver and released into 
plasma, where it also binds LDLR. When internalisa-
tion of the LDL-LDLR complex occurs in the presence 
of PCSK9, LDLR is also degraded, preventing recycling 
and reducing the expression of LDLR on the cell surface, 
mainly in hepatocytes.

In 2015, the Food and Drug Administration (FDA) and 
European Medicines Agency (EMA) approved the clini-
cal use of alirocumab and evolocumab, two PCSK9 inhib-
itor monoclonal antibodies (PCSK9i). These drugs block 
the circulating PCSK9 protein, allowing the recycling of 
the receptors, thus increasing the availability of LDLR. 
These therapies lower LDL-C concentrations by approxi-
mately 60% and significantly reduce cardiovascular risk 
when added to statin therapy [3, 4].

Data from the Jupiter study [5], various subsequent 
meta-analyses [6] and results from Mendelian randomi-
sation studies [7] have demonstrated the diabetogenic 
potential of statins, the cornerstone of lipid-lowering 
treatment, although the exact mechanism through which 
this phenomenon is produced is unknown. Various 
hypotheses have been formulated, such as their associa-
tion with the decrease in LDL concentrations, the dis-
turbed intracellular metabolism in pancreatic beta-cells 
induced by the hyperexpression of LDLR on the cell 
membrane and the subsequent increase in intracellular 
cholesterol [8, 9], or even body weight increase associated 
with statin treatment [10]. Given that PCSK9i notably 
raise LDLR expression and achieve much higher LDL-C 
reductions than statins, it would be reasonable to think 
that these new drugs might also have effects on glucose 
metabolism [11]. Large-scale clinical studies conducted 
to date have not observed a higher incidence of diabetes 
mellitus (DM) among participants treated with PCSK9i 
[12, 13]. However, Mendelian randomisation studies [7, 
9], some meta-analyses [14, 15] and real-life studies [16] 
published in recent years have found a slight deteriora-
tion in glycaemic control among users of these drugs.

The aim of this study was to examine the development 
of glucose metabolism disorders and new-onset DM in 

patients with hypercholesterolemia receiving treatment 
with PCSK9i.

Methods
Study design and population
This is a retrospective observational study based on real 
clinical practice. Two hundred eighteen patients over 18 
years of age on PCSK9i, because of clinical indication, 
for a mean follow-up of 3.2 years, from two lipid units 
at University Hospitals in Las Palmas de Gran Canaria 
and Reus (Spain), were included in the study (PCSK9iG). 
Subjects who discontinued treatment before the first year 
and those who were lost to follow-up were excluded. To 
compare the incidence of new-onset diabetes, the non-
diabetic patients at baseline (n = 168) were compared to 
a similar group of patients not taking PCSK9i selected by 
a propensity score matching technique (PSM) from the 
database (Metbank, n = 745) of patients enrolled in the 
Reus Lipid Unit because of metabolic disturbance. The 
mean follow-up of this group was 6.6 years. The inci-
dence of new-onset DM was also compared with that 
of the Di@bet.es study, a prospective, population-based 
study including 5072 participants, aimed at estimating 
the prevalence and incidence of DM in Spain (D@G) 
[17]. For comparison with the PCSK9iG, a subgroup of 
563 subjects with a similar age were selected with a mean 
follow-up of 7.5 years.

Medical records of PCSK9iG participants were 
reviewed, and demographic data, personal history of 
DM and cardiovascular disease (CVD) (defined as acute 
myocardial infarction, angina pectoris, coronary revas-
cularization, ischaemic stroke or peripheral vascular 
disease), type of hypercholesterolemia (FH, polygenic 
hypercholesterolemia or mixed dyslipidaemia), and time 
and characteristics of lipid-lowering treatment were 
compiled. Anthropometric data (height and weight) were 
also recorded at baseline and at the end of follow-up. Ini-
tial and final body mass index (BMI) and weight change 
during the time of exposure to PCSK9i were obtained. 
Standard biochemical data, including LDL-C, lipopro-
tein (a) and glycaemic profile [fasting glucose (FG) and 
glycated haemoglobin (A1c)] were recorded at baseline 
and follow-up. The new-onset DM rate was determined 
according to the American Diabetes Association (ADA) 
guidelines and expressed as a percentage per year (%/y) 
in the PCSK9iG, PSMG and D@G groups.

PCSK9iG patients received alirocumab 75 or 150 mg or 
evolocumab 140 mg every two weeks at the discretion of 
their physicians. Depending on the status of their glucose 
metabolism prior to PCSK9i treatment, participants were 
classified into three categories according to ADA defini-
tions: normoglycaemia (FG < 100 mg/dl and A1c < 5.7%), 
prediabetes (pre-DM) (FG between 100 and 125  mg/dL 
and/or A1c between 5.7 and 6.4%) and DM (FG ≥ 126 mg/
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dL and/or A1c ≥ 6.5% on two or more occasions, or use of 
hypoglycaemic medication). The same criteria, observed 
in at least one blood test, were used to determine cate-
gory changes of the patients during treatment.

Statistical analysis
Descriptive data are presented as the mean +/- standard 
deviation or median (interquartile range) for quantitative 
variables and as percentages for categorical variables. The 
groups were compared using ANOVA/Student’s ‘t’ test 
or the Kruskal‒Wallis/Mann‒Whitney test for quantita-
tive variables, depending on whether the distribution was 
normal or not and according to the number of groups 
analysed. To compare follow-up with baseline results, 
Student’s ‘t’ test for related data or Wilcoxon’s test was 
used, depending on whether the distribution was normal 
or not.

A propensity score matching (PSM) is a statistical 
technique that was designed to control for potential 
clinically relevant confounding variables and effectively 
balance the distribution of covariates between the groups 

to minimize bias and enhance the validity of our com-
parative analysis. The propensity score is the probabil-
ity of receiving the treatment given a set of observed 
covariates of each individual selected, which is obtained 
using logistic regression analysis. The idea is to create 
a pseudo-randomised group not on PCSK9 inhibitors 
that is comparable to the treatment group based on the 
observed covariates. Thus, PSM involves pairing indi-
viduals from the treatment group with similar propensity 
scores to individuals from the control group. The match-
ing process was carried out with the MatchIt R pack-
age. Patients were selected from the database (Metbank, 
n > 745) of patients attending the lipid units because of 
dyslipidaemia and/or associated disturbances, such as 
DM, obesity or metabolic syndrome. Subjects without 
baseline DM from the Metbank and PCSK9iG cohorts 
were matched at a 1:1 ratio. The covariates used as pre-
dictors in this matching process included age, sex, BMI, 
FG levels, statin use and FH diagnosis. A1c was not 
included in the matching process because measurements 
were unavailable for a considerable number of patients, 
and its inclusion would compromise the optimality of 
the process. These covariates were selected because they 
were identified as potential confounders, and, moreover, 
they were measured in all patients.To compare the pro-
portion of patients who developed DM during follow-up, 
in the PCSK9iG, PSMG and D@G groups, a two-propor-
tion z test, which assesses whether there is a significant 
difference between two known proportions, was used. It 
is a test commonly employed when dealing with categori-
cal data, and the goal is to assess whether the proportions 
in the two groups are significantly different from each 
other.

Finally, to identify the factors associated with the devel-
opment of DM, a multivariate logistic regression analysis 
was performed in the non-DM PCSK9iG. FG, A1c, age, 
sex, baseline BMI, FH diagnosis, PCSK9i type, exposure 
to treatment time, centre of origin, concomitant treat-
ment with statins, and percentage reduction in LDL-C 
were included as independent variables. Odds ratios (OR) 
along with their corresponding confidence intervals (CI) 
were calculated to assess the impact of the mentioned 
variables on the onset of new DM. SPSS version 21.0 for 
Windows (IBM Corporation, Armonk, NY, USA) and 
RStudio (version 4.0.1) were used to perform the analy-
ses. A p value less than 0.05 was considered significant.

Results
Two hundred eighteen patients were included in the 
PCSK9iG group, and 53.2% of these patients were men. 
The patients were overweight, and the median age was 
62 years (54–69). Table 1 shows the clinical characteris-
tics of the PCSK9iG patients sorted by glycaemic status 
at baseline. A total of 70.6% of patients had FH, and more 

Table 1  Characteristics of the PCSK9iG subjects according to 
their initial glucose metabolism status

Total 
n = 218

Normo-
glycaemia 
n = 91

Pre-DM 
n = 77

DM 
n = 50

p

Age (years) 62 
(54–69)

59 (51–67) 62 
(54–69)

66 
(58–72)

0.001

Sex (male, %) 53.2 58.2 45.5 56 0.230
Baseline BMI 
(kg/m2)

29 ± 4.6 27.7 ± 4.5 29.8 ± 4.8 30.4 ± 3.9 0.001

Final BMI 
(kg/m2)

29 ± 4.7 27.8 ± 4.7 29.7 ± 4.8 30.1 ± 4.3 0.004

CVD (%) 53.2 45.1 48.1 76 0.001
FH (%) 70.6 69.2 76.6 64 0.289
Ezetimibe (%) 62.8 56 68.8 66 0.202
Statins (%) 73.4 70.3 77.9 72 0.523
PCSK9i starting 
dose (%)

0.005

Al 75 mg
Al 150 mg
E 140 mg

37.6
31.2
31.2

34.1
23.1
42.9

40.3
31.2
28.6

40
46
14

Lp(a) (mg/dL) 40.6 
(11.2–
98.8)

57.4 
(10.6-100.6)

23 
(9.2–84)

48 
(14–108)

0.509

LDL-C (mg/dL) 158.1 
(130.8-
191.1)

157 
(129–190)

173.3 
(141.9-
202.6)

153.1 
(127.5-
172.2)

0.009

Fasting glucose 
(mg/dL)

100 
(91–
114)

91 (86-95.5) 107 
(100–
112)

130 
(114–
160)

< 0.001

A1c (%) N = 151 5.9 
(5.6–
6.4)

5.5 (5.3–5.6) 5.8 
(5.6–6.1)

6.7 
(6.4–7.8)

< 0.001

BMI: body mass index; CVD: cardiovascular disease; FH: familial 
hypercholesterolemia; Lp(a): lipoprotein A; LDL-C: LDL cholesterol; A1c: glycated 
haemoglobin; preDM: prediabetes; DM2: type 2 diabetes mellitus
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than half already had established CVD. Over two-thirds 
(68.8%) of the population used alirocumab (37.6% were 
on the 75  mg dose), and 31.2% used evolocumab. The 
rates were different between the two centres (Supple-
mentary Table 1). The mean follow-up was 38.2 months 
[21.3–61.6]. After starting PCSK9i, a reduction in LDL-C 
of 57% [40.5–67.8] was achieved at six months of follow-
up, and a reduction of 60% [43.5–70.7] was achieved after 
three years. One hundred and sixty-eight participants did 
not have DM (though 77 had pre-DM) at baseline. Partic-
ipants with DM at the beginning (n = 50) were older and 
had a higher prevalence of ECV and BMI than non-DM 
subjects. Table 2 compares the main clinical characteris-
tics of the non-DM PCSK9iG, PSMG and D@G groups.

After a mean follow-up of 3.2 years, the non-DM 
patients at baseline in the PCSK9iG group experienced a 
slight nonsignificant increase in FG (97 (90–107) vs. 99 
(90.3–107) mg/dL, p = 0.058). Twenty-six of the 91 sub-
jects with normoglycaemia (28.6%) progressed to pre-
DM, but none developed DM.

Fourteen out of 168 non-DM patients in the PCSK9iG 
group at baseline developed overt DM (8.3%), represent-
ing an incidence rate of 2.6%/y. The incidence in both the 
PSMG and D@G comparison groups was 1.8%/y (p = 0.69 
vs. PCSK9iG). Importantly, all 14 patients from the 
PCSK9iG group that transitioned to overt DM had pre-
DM at baseline. The new-onset DM incidence among the 
77 pre-DM patients in the PCSK9iG group was 5.1%/y, 
and this value was 4.8%/y and 3.9%/y among the pre-
DM patients in the PSMG and D@G groups, respectively 
(p = 0.922 and 0.682) (Fig. 1).

Patients with pre-DM who developed DM had higher 
baseline FG levels than those without diabetes, but there 
were no differences in the lipid-lowering treatment 
received, the LDL-C reduction or the time on PCSK9i 
(Supplementary Table 2). Regarding subjects with DM at 
baseline, they had a slight but significant decrease of BMI 
at the end of follow-up, without changes in either FG or 
A1 (Fig. 2).

As expected from the clinical settings (specialised lipid 
units), more than 70% of the patients had FH. The inci-
dence of DM was 2.2%/y and 1.4%/y in the PCSK9iG 
and PSMG FH patients, respectively (p = 0.67) (Fig.  1). 
According to the multivariant logistic regression analysis 
(Table 3), baseline FG was the only variable significantly 
associated with the development of DM (OR 1.1; 95% CI: 
1.0-1.3; p = 0.027).

Table 2  Matching baseline characteristics of the non-DM 
subjects from the three compared groups

PCSK9iG 
(n = 168)

PSMG 
(n = 168)

Di@bet.
es study 
(n = 563)

Age (years) 59.5 ± 10.6 65.4 ± 11.8 64.5 ± 10.5
Sex (male, %) 52.4 50.8 39.7
BMI (kg/m2) 28.6 ± 4.7 28 ± 4.5 27.5 ± 4.7
Fasting glucose (mg/dL) 98.2 ± 12.4 95.6 ± 11.2 91.9 ± 12.6
A1c (%) 5.7 ± 0.4 6.2 ± 6.3 

(n = 96)
N/A

FH (%) 72.6 72.6  N/A
BMI: body mass index, FH: familial hypercholesterolemia; A1c: glycated 
haemoglobin; DM2: type 2 diabetes mellitus

Fig. 1  Incidence (%/year) of new onset Diabetes Mellitus according to their original group
PCSK9iG: PCSK9i users; PSMG: Propensity score matching group (control group 1); D@G: di@bet.es cohort (control group 2); FH: familial hypercholester-
olemia group
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Discussion
We analysed the effects of treatment with PCSK9i (ali-
rocumab and evolocumab) on the development of de 
novo DM in real-life practice. In general, mild alterations 
in glycaemic control parameters were recorded during 
treatment with PCSK9i among the non-DM patients. 
Approximately a quarter (28.6%) of the patients with 
normoglycaemia had FG level increases that reclassified 
them as pre-DM. Although the change in the FG level 
was statistically significant, it was of little clinical rel-
evance, as it increased from 91 (86-95.5) to 93 (87–101) 
mg/dL. The incidence of new-onset DM in this cohort 
was 2.6%/y, which is higher than that of a matched group 
of patients with metabolic alterations (PSMG, 1.8%/y) 
and the incidence observed in the general population in 
the same range of age from the Di@bet.es study (1.8%/y). 
Although these results did not reach statistical signifi-
cance (probably because of its low incidence), the dif-
ference between the two control groups was consistent. 

Interestingly, only those patients with baseline pre-DM 
developed overt DM, suggesting that any diabetogenic 
effects associated with PCSK9i could play an acceleration 
effect in DM-prone patients.

Another aspect to be considered is that 70% of the 
patients in the PCSK9iG had FH. In general, it is believed 
that FH patients have a lower prevalence of DM [8, 
11]; however, the main gene variation [p.(Tyr400_Phe-
402del)], causing 68% of FH in Gran Canaria Island, is 
associated with a paradoxical 25% increased prevalence 
of diabetes [18]. Therefore, the higher incidence of DM 
in the PCSK9iG group could be expected, as this group 
of patients had a wide representation of FH when com-
pared to the general population or to metabolic patients, 
including FH patients from other parts of the country 
(D@G and PSMG groups, respectively). However, our 
results do not support this possibility. The new-onset 
DM in the PCSK9iG and PSMG FH groups was similar 
to that of the non-FH groups, and there were no differ-
ences between them. Moreover, the multilevel multivari-
ate study, which was adjusted for the possible impact of 
the origin of the subjects on the evolution of their glu-
cose metabolism, showed that the development of DM 
was only related to baseline FG levels, excluding factors 
associated with treatment, such as the type of inhibitor, 
the length of exposure and the percentage reduction in 
LDL-C levels, as shown in previous studies [12, 13]. As 
previously mentioned, in the PCSK9iG group, new-onset 
DM was only diagnosed in subjects who already had 
baseline pre-DM. These subjects had higher weight gains 
(although the difference was not significant) than the 
pre-DM subjects who did not progress to DM, a finding 
consistent with the results recently published by Merino 
et al. [10]. This study showed that the diabetogenic effect 

Table 3  Multivariant logistic regression analysis of non-DM 
PCSK9i-treated patients. Dependent variable: new-onset DM 
(compared with baseline characteristics)

OR CI 95% sig
Fasting glucose 1.1 1-1.3 0.027
BMI 1 0.9–1.2 0.773
Statin 1.5 0.7–35.1 0.791
Ezetimibe 2.4 0.1–40.6 0.531
Age 1 0.9–1.1 0.642
Male sex 1.4 0.2–9.9 0.731
Alirocumab 1 0.03–31.6 0.995
LDL-C reduction at 1y 1 0.9-1 0.590
FH 2.4 0.1–45.1 0.565
Treatment duration (months) 1 1-1.1 0.313
LDL-C: LDL cholesterol; BMI: body mass index; FH: familial hypercholesterolemia

Fig. 2  Evolution of fasting glucose, A1c and BMI in DM patients at baseline on PCSK9i
Follow-up 3.2 years. Only significant differences were found in BMI
A1c: glycated haemoglobin. BMI: body mass index. NS: not significant
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related to lipid-lowering therapies and LDL-C reduc-
tion could be partially mediated by the increase in BMI 
(38% of the total effect, p = 0.003). Interestingly, in the 
group of patients with DM at baseline in the PCSK9iG 
group, anthropometric parameters and glucose metabo-
lism control did not worsen, which is probably because 
of the absence of relevant effects. Moreover, in this 
group of patients, physicians tend to adapt DM therapies 
promptly according to clinical practice. Overall, our data 
suggest that the impact of PCSK9i on glycaemic control, 
if any, would be moderate, perhaps slightly accelerating 
the transition to DM in predisposed subjects [19, 20]. 
Moreover, the efficacy and safety of PCSK9i were demon-
strated in clinical trials carried out during their develop-
ment in patients with and without DM [13, 21]. Neither 
the ODYSSEY OUTCOMES (alirocumab) nor FOURIER 
(evolocumab) studies found any deterioration in glycae-
mic control when compared with placebo, during 2.8 
and 2.2 years, respectively [19, 20]. Moreover, most cases 
of de novo DM occurred among subjects with pre-DM, 
as in our study [20]. The recently published FOURIER-
OLE study found no increased risk of de novo DM after a 
median follow-up of five years. The short follow-up time 
and the fact that most participants in the clinical trials 
were undergoing statin treatment are factors that could 
mask a hypothetical risk of DM associated with PCSK9i.

Most meta-analyses published to date have also failed 
to show an increased risk of DM among patients treated 
with PCSK9i [22]. In 2020, Chen et al. [14] found an 
increased risk of DM with alirocumab only when they 
adjusted for the use of statins, reinforcing the idea that 
the metabolic repercussions of the inhibitors probably 
depend to a great extent on the baseline treatment the 
patient is receiving.

In 2018, Carvalho et al. [15] published a meta-analysis 
that included more than 68,000 patients with a mean 
follow-up of 78 weeks. Compared with placebo, subjects 
treated with PCSK9i experienced a slight but significant 
increase in FG and A1c levels. However, this did not 
translate into a significant increase in the incidence of 
DM, with an association between DM risk and PCSK9i 
power and duration. These results are consistent with 
those obtained by Goldman et al. [16] in a recently pub-
lished real-life study. Hyperglycaemic events were more 
frequent in PCSK9i users, without higher levels of DM. 
These effects were observed in the first six months of 
treatment and were reversible after PCSK9i withdrawal. 
Analysis according to the type of iPCKS9 indicated 
that only evolocumab was significantly associated with 
hyperglycaemia.

Mendelian randomisation studies have analysed gene 
variants of the HMGCR, PCSK9 and NPC1L1 genes as a 
model of the pharmacological action of statins, PCSK9i 
and ezetimibe. This approach suggested an impact of 

these three genes on glycaemic metabolism and increased 
risk of DM, especially among patients who already had 
altered FG levels [7, 9]. However, it is not known whether 
the metabolic repercussions of these genetic variants, 
present from birth, can be assimilated to those of a treat-
ment habitually initiated in adulthood.

The pathophysiological mechanism involved in diabe-
togenesis associated to PCSK9i is not known. It has been 
speculated that LDLR upregulation in beta cells could 
play a role. Higher intracellular cholesterol levels have 
been related to cell toxicity in animal models [23, 24]. The 
lower prevalence of DM in FH patients whit less LDLR 
expression has been postulated to reinforce this theory 
[8]. Moreover a recent mendelian randomization study 
including more than 900,000 patients suggest that lower 
genetically driven LDL-C concentrations are partially 
mediated by a higher BMI [10].

This study has several limitations; the main ones are its 
retrospective nature, the small sample size, a relatively 
short follow-up period and the lack of data availability for 
some variables of interest, such as A1c, HDL cholesterol 
or triglycerides levels in non-DM patients. Lifestyle (diet, 
physical activity), socioeconomic status, race or fam-
ily background were not taken into account in the PSM 
and we cannot exclude some impact in DM development. 
Pre-DM were defined by FG or A1c but glucose tolerance 
test was not performed, so we could lose some pre-DM 
patients.

Finally, the initial dose and subsequent adjustments of 
statins were not assessed although all our patients were 
on high intensity statins. Moreover, the impact of DM 
therapy changes was not analysed. The strengths of the 
study lie on its real life nature, and the comparison with 
a similar metabolic population and a general population 
cohort with robust data, which provide a reliable com-
parison for the main variable of the study: the incidence 
of new-onset DM.

Conclusions
Our study has shown that PCSK9i therapy is associated 
with minute alterations in glucose metabolism control of 
nonclinical impact. The incidence of new-onset DM was 
higher in the PCSK9i-treated patients than in both the ad 
hoc control group and the observed rates in the general 
population; however, the difference did not reach statisti-
cal significance. No changes in glucose parameters were 
found in subjects with baseline DM. The development of 
new-onset diabetes was limited to subjects with predia-
betes at baseline with higher FG levels and BMI values, so 
in these cases, closer monitoring of glucose parameters 
could be important for making an early diagnosis of DM.

In summary, our results do not support a clinically rel-
evant effect of PCSK9i on the risk of DM. In any case, the 
impact of PCSK9i on glucose homeostasis, if any, should 
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not modify the clinical decision-making process regard-
ing the prescription of these therapies.
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Abstract
Background  Heterozygous familial hypercholesterolemia (HeFH) is typically associated with a lower prevalence 
of type 2 diabetes mellitus (T2DM). However, individuals carrying the p.[Tyr400_Phe402del]LDLR mutation, which is 
prevalent in Gran Canaria, exhibit an unexpectedly high prevalence of T2DM. This study aimed to investigate whether 
the p.[Tyr400_Phe402del] LDLR mutation co-segregates with T2DM and other glucose metabolism abnormalities.

Methods  A total of 226 individuals were recruited, with 196 included in the final analysis. This included 90 HeFH 
patients from Gran Canaria (HeFH-GC) carrying the p.[Tyr400_Phe402del]LDLR mutation, 76 first-degree relatives (non-
HeFH), and 30 HeFH patients from Italy (HeFH-It) with other LDLR mutations. Clinical, anthropometric, biochemical, 
and hematological parameters, including insulin resistance and sensitivity, were assessed via oral glucose tolerance 
tests (OGTT), and indices such as HOMA-IR, HOMA-beta, QUICKI, and the triglyceride‒glucose ratio were measured.

Results  Among HeFH-GC participants, 20% had T2DM, similar to 18.4% in the non-HeFH group (p = NS). HOMA-
beta was significantly greater in HeFH-GC patients (86.2 vs. 68.4; p = 0.046). Normoglycemic HeFH-GC individuals had 
elevated HOMA-IR [2.0 (1.3–2.9) vs. 1.3 (1.0–1.9); p = 0.008]. Compared with HeFH-It patients, HeFH-GC individuals 
had higher fasting glucose levels (99 vs. 92.5 mg/dL; p = 0.004) and lower 120-min post-OGTT glucose levels 
(115 vs. 136.5 mg/dL; p = 0.001). Lipid-lowering therapy, hypertension, hypertriglyceridemia, and increased waist 
circumference were associated with T2DM.

Conclusions  HeFH patients from Gran Canaria exhibit a high prevalence of T2DM. The p.[Tyr400_Phe402del]LDLR 
mutation does not co-segregate with T2DM, but normoglycemic HeFH-GC individuals have greater insulin resistance. 
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Research insights
What is currently known about this topic?

 	• Despite HeFH usually being linked to low diabetes 
prevalence, a founder effect in Gran Canaria has led 
to a high frequency of a specific mutation and an 
unexpectedly high diabetes prevalence in local HeFH 
patients.

What is the key research question?

 	• Does the prevalent mutation co-segregate with 
diabetes and other glucose issues?

What is new?

 	• This study examines the link between HeFH and high 
diabetes prevalence by analyzing glucose metabolism 
and body composition, comparing results with non-
HeFH individuals and HeFH patients with other 
mutations.

How might this study influence clinical practice?

 	• The results could lead to earlier monitoring and 
treatment of glucose disorders in this HeFH group.

Introduction
Heterozygous familial hypercholesterolemia (HeFH) is 
one of the most common monogenic disorders, with a 
prevalence of 1 in 313 individuals [1]. It is inherited in 
an autosomal codominant manner and is characterized 
by elevated low-density lipoprotein cholesterol (LDL-
C) levels from childhood, the presence of distinctive 
physical signs (such as corneal arcus, xanthomas, and 
xanthelasmas), and an increased risk of early-onset car-
diovascular disease (CVD) [2]. In HeFH patients, addi-
tional cardiovascular risk factors (CVRFs), including male 
sex, hypertension, and type 2 diabetes mellitus (T2DM), 
significantly increase the likelihood of developing CVD 
[3]. Despite the well-documented diabetogenic effects 
of statins [4], the prevalence of T2DM among HeFH 
individuals, who are almost universally treated with this 
medication, remains markedly lower (1.75–2.3%) [5] than 

Additionally, lipid-lowering therapy, hypertension, hypertriglyceridemia, and increased waist circumference are factors 
associated with the prevalence of T2DM.

Keywords  Heterozygous familial hypercholesterolemia, Type 2 diabetes, Founder effect, Glucose metabolism, Insulin 
resistance index, Oral glucose tolerance test
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that in the general population (10.5%) [6]. This discrep-
ancy may be partly explained by better adherence to a 
healthy lifestyle and maintenance of an optimal body 
weight [7]. In vitro studies have demonstrated that intra-
cellular cholesterol accumulation induces apoptosis in 
pancreatic beta cells [5, 8]. These findings form the basis 
of the pancreatic lipotoxicity hypothesis, suggesting that 
excessive cellular cholesterol uptake could contribute to 
the pathogenesis of diabetes. This theory is further sup-
ported by Mendelian randomization studies showing 
that individuals with genetic variants that increase cel-
lular cholesterol uptake (e.g., NPC1L1, HMGCR, PCSK9, 
and ABCG5/G8) have a higher prevalence of T2DM, in 
direct proportion to reductions in LDL-C levels [9]. Con-
sequently, HeFH patients, who inherently have reduced 
cellular cholesterol uptake, might be considered partially 
protected  from developing T2DM. This hypothesis also 
provides a plausible explanation for the diabetogenic 
effects of statins.

In contrast, individuals from Gran Canaria who 
carry the  p.[Tyr400_Phe402del] LDLR pathogenic vari-
ant  exhibit an unusually high T2DM prevalence of  25% 
[10], which is twice the prevalence reported in the local 
(10.4%) [11] and national (13.8%) [12] background pop-
ulations. The geographic isolation of the Canary Islands 
until the mid-twentieth century facilitated consanguinity 
and genetic isolation, leading to the expansion of specific 
genetic traits and diseases [13, 14]. As a result, nearly 70% 
of HeFH individuals in Gran Canaria share this particu-
lar LDLR genetic variant, which is classified as a founder 
effect mutation [13].

The p.[Tyr400_Phe402del] variant in the LDLR leads to 
the deletion of three consecutive amino acids—tyrosine 
400, serine 401, and phenylalanine 402—resulting in the 
production of immature LDL receptor proteins that are 
retained in the endoplasmic reticulum. Consequently, 

their expression on the cell surface is reduced, impair-
ing the receptor’s ability to mediate LDL-C uptake [15]. 
Notably, the loss of the tyrosine residue affects the highly 
conserved YWTD domain, a region critical for proper 
folding and function of the LDL receptor, and potentially 
important for its interaction with PCSK9, particularly in 
the recycling process and return of the receptor to the 
plasma membrane. Recent Mendelian randomization and 
meta-analyses involving PCSK9 inhibitors have reported 
associations with altered glucose metabolism [9, 16]. 
Together, these findings suggest that shared molecular 
mechanisms—possibly involving PCSK9 activity—may 
contribute not only to hypercholesterolemia, but also to 
insulin resistance and impaired glucose homeostasis [10].

The primary objective of this study was to determine 
whether T2DM co-segregates with the  p.[Tyr400_Phe-
402del] LDLR pathogenic variant. Additionally, we evalu-
ated  glucose metabolism  in HeFH affected individuals 
without T2DM, comparing them with their unaffected 
first-degree relatives and with an Italian cohort of HeFH 
patients carrying different LDLR genetic variants.

Materials and methods
Study design and subjects
This  was a cross-sectional study  that included  HeFH 
patients  aged ≥ 18  years who carried the  p.[Tyr400_Phe-
402del] LDLR genetic variant and who were regu-
larly followed at the  Lipid Unit of the Maternal‒Child 
Insular University Hospital Complex of Gran Canaria 
(CHUIMI)  between 2020 and 2022 (HeFH-GC). First-
degree relatives (parents, siblings, and offspring) 
aged ≥ 18  years  were invited to participate. Those with 
a  negative genetic test  for HeFH were classified into 
the control group (non-HeFH). Subjects with poorly con-
trolled thyroid disease, liver or kidney disorders, or active 
cancer were excluded.

Fig. 1  Flow diagram
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Additionally, a cohort of  Italian HeFH patients with-
out T2DM, carrying LDLR mutations  distinct  from the 
prevalent in Gran Canaria, was included for comparative 
analysis (HeFH-It) (Fig. 1).

Study protocol
For Gran Canaria patients, data collection included fam-
ily history of  early-onset cardiovascular disease (CVD), 
demographic characteristics (age, sex, place of birth, fam-
ily history), lifestyle factors (smoking, alcohol consump-
tion), and personal history of hypertension, T2DM, and/
or CVD. CVD was defined as  acute myocardial infarc-
tion (AMI), coronary revascularization, ischemic stroke, 
or peripheral vascular disease  (intermittent claudication 
symptoms or an ankle-brachial index < 0.9).

Lipid-lowering therapy  was recorded and classi-
fied on the basis of intensity (low, moderate, or high) 
[17]. Adherence to a  healthy lifestyle  was assessed via 
the  Mediterranean Diet Adherence Screener (MEDAS) 
[18]  and the  International Physical Activity Question-
naire (IPAQ) [19].

A  comprehensive physical examination  was con-
ducted, including weight, height, body mass index (BMI), 
waist and hip circumference, blood pressure (BP), and 
hypercholesterolemia stigmata  (xanthomas, xanthelas-
mas, or corneal arcus). Hypertension  was diagnosed in 
patients receiving antihypertensive treatment. Hyper-
cholesterolemia  was defined as LDL-C ≥ 160  mg/dL  on 
two or more occasions and/or current lipid-lowering 
therapy. Hypertriglyceridemia  was defined as a triglyc-
eride level > 200  mg/dL  on two or more occasions and/
or ongoing treatment for hypertriglyceridemia. Medi-
cations  affecting glycemic metabolism  (e.g., glucocorti-
coids, estrogens, and antipsychotics) were also recorded.

The participants also underwent  body composition 
analysis using bioelectrical impedance (Nutrilab™ Akern 
®, Pisa, Italy) to determine fat mass, fat-free mass, muscle 
mass, and total body water.

After a  12-h overnight fast, blood samples were col-
lected for  general biochemical profiling, including 
complete blood count; fasting glucose, glycosylated 
hemoglobin (HbA1c); renal, hepatic, and thyroid func-
tion tests; urine analysis; vitamin D levels; and lipid 
panels  (total cholesterol, HDL cholesterol [HDL-C], tri-
glycerides, LDL-C [calculated via the Friedewald for-
mula], apolipoprotein B [ApoB], and lipoprotein (a)).

Participants  without a prior T2DM diagnosis  under-
went an oral glucose tolerance test (OGTT) with 75 g of 
glucose, and glucose, insulin, and C-peptide levels  were 
measured at  0, 30, 90, and 120  min. On the basis of 
these results, glucose metabolism status was reclassi-
fied according to the  2024 American Diabetes Associa-
tion (ADA) criteria [20], and surrogate markers of insulin 
resistance and beta-cell function  were calculated. The 

homeostasis model assessment for insulin resistance 
(HOMA-IR), the quantitative insulin sensitivity check 
index (QUICKI) and the triglyceride‒glucose index 
(TyG) were used to evaluate insulin resistance [21, 22]. 
HOMA-Beta was employed as a  proxy for pancreatic 
beta-cell function [21], and the oral glucose insulin sen-
sitivity (OGIS) index was used as an estimator of insulin 
sensitivity [23].

Biochemical methods
Glucose concentrations  were determined using a  hexo-
kinase-based method (Beckman Coulter AU analyzers), 
whereas the  Italian cohort  employed a  glucose oxidase 
technique. HbA1c levels  were measured via  high-per-
formance liquid chromatography (HPLC)  with a  Bio-
Rad D-100 hemoglobin testing system  (Gran Canaria) 
and an  HLC-723G7 hemoglobin HPLC analyzer (Tosoh 
Corp.)  (Italy). All measurements were standardized 
to the  National Glycohemoglobin Standardization 
Program  and aligned with the  Diabetes Control and 
Complications Trial (DCCT) reference assay. Insulin lev-
els  were quantified using  chemiluminescent immunoas-
say (Beckman Coulter Access Immunoassay Systems), 
while C-peptide levels were measured via an electroche-
miluminescence immunoassay (ECLIA) on Cobas e 411 
analyzer (Roche Diagnostics). In the Italian cohort, insu-
lin was measured via  microparticle enzyme immunoas-
say (Axsym System, Abbott Laboratories), and C-peptide 
was quantified using ELISA (Millipore Corporation, Bil-
lerica, MA, USA), with inter-assay and intra-assay coef-
ficients of variation (CVs) ranging from  5.0–8.7% and 
1.6–4.0%, respectively.

Plasma  proprotein convertase subtilisin/kexin type 
9 (PCSK9) levels  were measured  in duplicate  using 
a PCSK9 ELISA kit (Human PCSK9 Simple Step ELISA 
Kit, ABCAM, model ab209884). Concentrations were 
determined via  4-parameter logistic regression curve 
analysis (Prism 9, GraphPad Software).

The remaining analytical variables were determined 
using standard, routine laboratory methods. All labora-
tory analyses for the Canarian samples were conducted at 
the same facility.

Genetic analysis
Genomic DNA was extracted from blood samples col-
lected in  EDTA-containing tubes  using a  salt precipita-
tion protocol [24]. Primer BLAST was used to design the 
following specific oligonucleotide primers: LDLR_
e9_1F  (5’-​A​G​G​C​A​C​T​C​T​T​G​G​T​T​C​C​A​T​C​G-3’), labeled 
with 6-carboxyfluorescein (FAM); and LDLR_e9_1R (​G​A​
G​G​A​G​A​G​A​A​G​G​G​C​A​T​C​A​G​C). PCR amplification  was 
performed using 35 cycles (95  °C, 1  min; 55  °C, 1  min; 
72 °C, 1 min) with 50 ng of genomic DNA and Taq poly-
merase (Promega Biotech, Madison, WI, USA). The PCR 
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products were denatured, combined with deionized for-
mamide, heated at 95 °C for 5 min, and separated via 4% 
acrylamide:bis-acrylamide (19:1) denaturing gels with 
50% urea in 1 × TBE buffer  (89  mM Tris–borate, 2  mM 
EDTA, pH 8.2). Fluorescence detection  was performed 
via a  FUJI FLA 9000 Starion (Fujifilm Corporation, 
Tokyo, Japan) following the manufacturer’s protocol.

Italian cohort
The results from the  Gran Canaria cohort  were com-
pared with those from a cohort of  30 Italian HeFH 
patients (HeFH-It) from Catania, Sicily, who did not have 
T2DM. These individuals were diagnosed with HeFH and 
carried genetic variants distinct from the p.[Tyr400_Phe-
402del] LDLR mutation. Data collection included  per-
sonal medical history, physical examinations, current 
lipid-lowering treatments, and laboratory results.

An  oral glucose tolerance test (OGTT)  with  75  g of 
glucose  was performed in these patients at  three time 
points  (0, 60, and 120  min). These data were used to 
calculate the  HOMA-IR, HOMA-beta, and QUICKI 
indices.

Statistical analysis
Descriptive data are reported as  mean ± standard devia-
tion or median (interquartile range) for continuous vari-
ables and as frequencies (%) for categorical variables.

Comparisons between groups were performed 
using  appropriate statistical tests: the chi-square (χ2) 
test  was used for categorical variables. Student's t 
test or the Mann‒Whitney U test was used for continu-
ous variables, depending on the normality of the data dis-
tribution. Multivariate logistic regression analyses  were 
conducted to identify  variables associated with the pri-
mary outcomes, using T2DM and a composite variable 
of impaired fasting glucose, glucose intolerance, and 
T2DM  as  dependent variables. The independent vari-
ables were those that reached  statistical significance  in 
the bivariate analyses.

A p value < 0.05 was considered statistically significant.
All the statistical analyses were conducted via SPSS 

version 21.0 for Windows (IBM Corporation, Armonk, 
NY, USA).

Results
From the 226 individuals recruited, 196 were included in 
the final analysis because they had a FH genetic testing 
performed. Among them, 90 were HeFH patients from 
Gran Canaria (HeFH-GC group) from 32 different fami-
lies carrying the p.[Tyr400_Phe402del] LDLR mutation; 
76 were first-degree relatives who had a negative genetic 
test (non-HeFH group); and 30 were HeFH patients from 
an Italian cohort (HeFH-It group) carrying other LDLR 
mutations (Fig. 1).

Regarding the characteristics of the  entire Canar-
ian cohort, classified by HeFH status, more than 50% of 
the participants were male, with a mean age of 55 years 
(47.8–62) and a mean BMI in the overweight range (Sup-
plementary Material, Table 1).

Among HeFH Canarian patients,  40% (n = 36)  who 
carried the  p.[Tyr400_Phe402del] LDLR mutation  were 
diagnosed  de novo during the study. Compared with 
non-HeFH controls, HeFH-GC patients were  younger, 
but there were no significant differences  in sex distribu-
tion, hypertension prevalence, or hypertriglyceridemia.

As expected, HeFH-GC patients had an  earlier diag-
nosis of hypercholesterolemia  and a  higher prevalence 
of established CVD, primarily AMI. The use of antiplate-
let agents  and  lipid-lowering therapies, including  high-
intensity statins and PCSK9 inhibitors (PCSK9i), 
was significantly greater among HeFH-GC patients.

There were  no significant differences  in lipid profiles 
between HeFH-GC and non-HeFH participants,  except 
for triglycerides, which were higher in the control group.

Additionally, no significant differences were observed 
in  BMI, waist circumference, fat mass, fat-free mass, or 
muscle mass between the groups (body composition data 
were available for 79.9% of the participants).

With respect to glucose metabolism parameters, 
36.7% of HeFH-GC patients  had prediabetes (pre-
DM), whereas  38.2% of non-HeFH controls did. 20% 
of HeFH-GC group  had T2DM, compared to  18.4% 
of non-HeFH controls  (p = 0.962). The fasting glucose 
and HbA1c levels  were similar between the groups [99 
(92–105) mg/dL  (HeFH-GC) vs 98 (92–107) mg/dL 
(non-HeFH); (p = 0.982)] and [5.8 ± 0.8%  (HeFH-GC) 
vs. 6.1 ± 1.4% (non-HeFH); (p = 0.163)], respectively. Only 
8.6% of the participants were taking medications known 
to affect glucose metabolism.

The  general characteristics of the participants with-
out T2DM were comparable to those of the entire study 
cohort  (Table  1). The prevalence of pre-DM  was  simi-
lar between HeFH-GC and non-HeFH individuals (70.8% 
vs. 66.1%; p = 0.580). No significant differences were 
observed in the glucose metabolism results between the 
HeFH-GC and non-HeFH groups.

Prior to the OGTT, there were no known cases 
of T2DM in the Italian cohort (Table  1). Compared 
with HeFH-GC patients without T2DM, Italian subjects 
were older, had a higher prevalence of hypertension, and 
presented  worse HbA1c levels. However, there were  no 
significant differences  between the two groups regard-
ing CVD prevalence, weight, or BMI.

Although the  use of lipid-lowering therapy  was  simi-
lar  between the groups, the  Italian cohort had a 
better lipid profile. Conversely,  impaired fasting glu-
cose  was  more prevalent in HeFH-GC patients than in 
Italian HeFH patients (48.6% vs. 20%; p = 0.019).
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non-HeFH (n = 62, 
37.8%)

HeFH-GC(n = 72, 
43.9%)

p value * HeFH-It (n = 30, 
18.3%)

p value 
**

Age (years) 56 (51–61) 50 (42–58) 0.017 61 (57–66)  < 0.001
Sex (male,%) 54.8 48.6 0.493 36.7 0.285
Smoking (%) 18 22.2 0.776 36.7 0.014
IPAQ (%) 0.005 N/A N/A
  Low 35.7 10.9
  Moderate 35.7 48.4
  High 28.6 40.6
MEDAS 7.3 ± 2 8.2 ± 2 0.011 N/A N/A
Hypertension (%) 35 23.9 0.181 46.7 0.033
Hypercholesterolemia (%) 54.8 100  < 0.001 N/A N/A
Age of diagnosis of hypercholesterolemia (years) 41.9 ± 11.9 21.1 ± 11.1  < 0.001 N/A N/A
Hypertriglyceridemia (%) 23.3 22.2 1.000 N/A N/A
Glucose metabolism post OGTT (%) 0.580 0.205
  Normoglycemia 33.9 29.2 20
  PreDM 66.1 70.8 76.7
  T2DM 0 0 3.3
Impaired fasting glucose (%) 48.4 48.6 0.994 20 0.019
Glucose intolerance by OGTT (%) 26.2 19.4 0.626 36.7 0.095
HbA1c 5.7–6.4% 37.1 43.1 0.458 63.3 0.038
Gestational DM (%) 36.4 9.1 0.311 N/A N/A
CVD (%) 1.6 15.3 0.006 26.7 0.263
Antiplatelet drug (%) 3.2 16.7 0.012 26.7 0.279
Lipid lowering drugs (%) 29 95.8  < 0.001 100 0.553
Statins 29 88.9  < 0.001 100 0.101
  Low intensity 0 1.6 1.000 6.7
  Moderate intensity 72.2 17.2  < 0.001 46.7
  High intensity 27.8 81.3  < 0.001 46.7
Ezetimibe 11.3 66.2  < 0.001 76.7 0.351
PCSK9i 0 31  < 0.001 26.7 0.813
Medications that can alter glucose metabolism (%) 8.2 8.4 0.269 N/A N/A
  Antipsychotic 3.3 2.8
  Glucocorticoid 4.9 1.4
Weight (kg) 76.3 ± 18.1 74.5 ± 13.3 0.534 71.8 ± 8.9 0.306
Height (cm) 167.3 ± 10.5 166.2 ± 8.5 0.514 165 ± 8.3  < 0.001
BMI (kg/m2) 25.9 (23.1–30.5) 26.3 (24.4–28.9) 0.728 25.4 (24.2–28.4) 0.386
Waist circumference (cm) 96.8 ± 13.7 94.3 ± 13.1 0.309 91.6 ± 12.1 0.338
Fat mass (%) 28.2 ± 10.7 26.7 ± 8.6 0.447 N/A N/A
Fat free mass (%) 71.8 ± 10.7 73.3 ± 8.6 0.447 N/A N/A
Muscular mass (%) 33.1 ± 9.4 35.3 ± 6.7 0.189 N/A N/A
CRP mg/dL 0.2 (0.1–0.5) 0.1 (0.1–0.3) 0.017 N/A N/A
HbA1c (%) 5.6 ± 0.4 5.6 ± 0.3 0.163 5.8 ± 0.4 0.016
Total cholesterol (mg/dL) 210.5 ± 44 210.4 ± 73.6 0.988 173.9 ± 44.3 0.013
HDL-C (mg/dL) 56.5 ± 10.4 55 ± 13 0.483 52.7 ± 12.1 0.406
LDL-C (mg/dL) 132.4 ± 36 135.3 ± 66.2 0.746 101.1 ± 39.1 0.002
ApoB (mg/dL) 99.8 ± 23.2 103.1 ± 38 0.542 84.2 ± 23.9 0.013
Lp(a) (mg/dL) 45.3 ± 36.4 57 ± 52.1 0.129 48 ± 37.9 0.390
Triglycerides (mg/dL) 115 ± 53.9 100.9 ± 49.5 0.117 100.7 ± 37.4 0.988
Untreated total cholesterol (mg/dL) 238 (210–278) 337 (298–406)  < 0.001 323 (313–356) 0.347

Table 1  Characteristics of patients without diabetes mellitus (n = 134) with and without familial hypercholesterolemia from the Gran 
Canaria (HeFH-GC and non-HeFH) and Italian cohorts (HeFH-It)
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The comparison of the results of the OGTT, which was 
conducted only in participants without a known T2DM 
diagnosis, is presented in  Table  2. Compared with that 
in the  control group, the  HOMA-beta index  was  sig-
nificantly higher  in  HeFH-GC subjects. Although 
the differences  did not reach statistical significance, 
both  fasting insulin and HOMA-IR  tended to be higher 
in the HeFH-GC group. In a subgroup analysis of 84 nor-
moglycemic individuals (excluding pre-DM patients; 
Supplementary Material, Table  2), the  HeFH-GC group 

presented  significantly higher fasting insulin levels, 
30-min insulin levels, HOMA-IR index, HOMA-beta 
index and a lower QUICKI index.

Compared with Italian patients, Canarian HeFH sub-
jects had higher fasting glucose levels, lower 120-min 
glucose levels  after the OGTT and a lower HOMA-
beta index. No significant differences were observed 
in the  TyG index  between  HeFH-GC patients and their 
unaffected relatives or the Italian cohort.

Following the  OGTT,  one Italian patient was newly 
diagnosed with T2DM according to ADA criteria.

The multivariate logistic regression analysis conducted 
to identify  factors associated with T2DM  in the  HeFH-
GC cohort revealed that, after adjusting for age,  T2DM 
was significantly associated with the use of lipid-lowering 
drugs, hypertension, hypertriglyceridemia, and waist cir-
cumference. No association  was found between  T2DM 
and the prevalent mutation (Fig. 2).

When a  composite outcome  of  impaired fasting glu-
cose, glucose intolerance (based on the OGTT), and 
T2DM was used as the dependent variable, we identified 
associations with hypertension, hypertriglyceridemia, 
lipid-lowering drug use, BMI, fat mass, waist circumfer-
ence and lipoprotein (a) levels (Fig. 3).

Discussion
This study confirms an unusually high prevalence of dia-
betes (20%) among HeFH patients from Gran Canaria 
carrying the p.[Tyr400_Phe402del]  LDLR  mutation. In 
comparison, the prevalence of  T2DM  in individuals 
within the same age range from the reference hospital's 
health area ranges between 8.1 and 13.7% [11].

This finding is particularly noteworthy given previous 
suggestions that HeFH patients might be somewhat pro-
tected against T2DM. Globally, the prevalence of T2DM 
among individuals with HeFH is estimated at 5.7%, and 
even lower—around 4.1%—among those with a con-
firmed genetic diagnosis [25]. Similarly, in Spain, the 
prevalence among HeFH patients is 6.7% [7], but drops 
to below 2% in cohorts with genetically confirmed LDLR 
mutations [5]. One proposed explanation for this lower 
prevalence has been the adoption of healthier lifestyles 
and lower BMI among HeFH patients [7] due to early 

Table 2  Comparison of OGTT results in patients with familial 
hypercholesterolemia from the Gran Canaria and Italian cohorts 
(HeFH-GC and HeFH-It)

non-HeFH
(n = 62, 
37.8%)

HeFH-GC
(n = 72, 
43.9%)

p 
value 
*

HeFH-It
(n = 30, 
18.3%)

p 
value 
**

Glucose 0 min 
(mg/dL)

98 (92–107) 99 (92–105) 0.982 92.5 
(86–97)

0.004

Glucose 90 min 
(mg/dL)

137 
(112–167)

135 
(106–167)

0.811 N/A N/A

Glucose 120 min 
(mg/dL)

116 
(92–144)

115 
(97–135.5)

0.820 136.5 
(117–
172)

0.001

Insulin 0 min 
(µU/ml)

6.2 (3.9–9.9) 8.5 
(5.4–11.5)

0.052 7.4 
(6.8–
12.3)

0.623

Insulin 90 min 
(µU/ml)

49 
(33.1–80.4)

58.8 
(34–104.9)

0.585 N/A N/A

Insulin 120 min 
(µU/ml)

40.9 
(27.9–82.3)

50.1 
(30.2–82.7)

0.357 57.4 
(37–75.6)

0.537

HOMA-IR 1.5 (1–2.7) 2.1 (1.4–2.9) 0.068 1.7 
(1.5–3.1)

0.843

HOMA-beta 68.4 
(49–99)

86.2 
(51.5–118.8)

0.046 97 
(84.4–
175.1)

0.017

QUICKI 0.4 (0.3–0.4) 0.3 (0.3–0.4) 0.066 N/A N/A
OGIS 405 

(342–442)
393.5 
(336.5–423)

0.550 N/A N/A

Tg/glucose index 8.6 ± 0.5 8.4 ± 0.5 0.080 8.4 ± 0.4 0.825
The bolded values indicate statistically significant results

OGTT, oral glucose tolerance test with 75 g glucose; HOMA, homeostatic model 
assessment; IR, insulin resistance; QUICKI, quantitative insulin sensitivity check 
index; OGIS, oral glucose insulin sensitivity; Tg, triglycerides

p value * comparison between HeFH-GC vs. non-HeFH patients

p value ** comparison between HeFH-GC vs. HeFH-It patients

non-HeFH (n = 62, 
37.8%)

HeFH-GC(n = 72, 
43.9%)

p value * HeFH-It (n = 30, 
18.3%)

p value 
**

Untreated LDL-C (mg/dL) 162.7 (132–195.1) 266.2 (217.8–321.1)  < 0.001 242 (232–271) 0.197
Duration of lipid-lowering treatment (years) 9.5 ± 7.1 21.1 ± 10.9  < 0.001 N/A N/A
The bolded values indicate statistically significant results

MEDAS, Mediterranean Diet Adherence Screener; IPAQ, International Physical Activity Questionnaire; T2DM, type 2 diabetes; CVD, cardiovascular disease; 
PCSK9i, PCSK9 inhibitors; BMI, body mass index; HbA1c, glycosylated hemoglobin; CRP, C-reactive protein; HDL-C, HDL cholesterol; LDL-C, LDL cholesterol; Apo-B, 
apolipoprotein B; Lp(a), lipoprotein(a)

p value * comparison between HeFH-GC vs. non-HeFH patients

p value ** comparison between HeFH-GC vs. HeFH-It patients

Table 1  (continued) 



Page 8 of 12González-Lleó et al. Cardiovascular Diabetology          (2025) 24:322 

medical follow-up and preventive care. However, our 
findings do not support this hypothesis. Despite report-
ing healthier lifestyle habits than their non-HeFH first-
degree relatives—as assessed by dietary and physical 
activity questionnaires—no significant differences were 
observed in anthropometric measures, and the HeFH-
GC cohort still exhibited a similarly high prevalence of 
T2DM. These findings suggest that additional, non-tra-
ditional factors may be contributing to this unexpected 
metabolic profile.

Our initial hypothesis was that the highly prevalent 
pathogenic variant p.[Tyr400_Phe402del] LDLR observed 
in Gran Canaria might co-segregate with a predispo-
sition to  T2DM. However, no significant differences 
in  T2DM  or pre-diabetes prevalence were found when 
comparing  HeFH-GC  patients with their first-degree 
relatives who did not carry the mutation. Notably, even 
in this control group, the prevalence of glucose metabo-
lism disorders (pre-DM  or  T2DM) was higher than in 
the general population. Furthermore, multivariate logis-
tic regression analysis revealed no associations between 

Fig. 3  Multivariate logistic regression analysis in patients with familial hypercholesterolemia from the Gran Canaria cohort using the composite of im-
paired fasting glucose, glucose intolerance (by OGTT) and type 2 diabetes mellitus (T2DM) as the dependent variable. Abbreviations: HBP: high blood 
pressure; BMI: body mass index; Lp(a): lipoprotein(a)

 

Fig. 2  Multivariate logistic regression analysis in patients with familial hypercholesterolemia from the Gran Canaria cohort using type 2 diabetes mellitus 
(T2DM) as the dependent variable. Abbreviations: HBP: high blood pressure; BMI: body mass index; PCSK9i: PCSK9 inhibitors
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the p.[Tyr400_Phe402del] LDLR mutation and T2DM or 
the composite variable of impaired glucose metabolism, 
glucose intolerance, and T2DM. These findings suggest a 
strong genetic predisposition to impaired glucose metab-
olism regulation within these families but no association 
with the pathogenic HeFH variant.

Although the  p.[Tyr400_Phe402del] LDLR  mutation 
was not a determinant of the high prevalence of T2DM in 
these patients, it also did not serve as a protective fac-
tor against  T2DM  or other glucose metabolism disor-
ders observed in this population. In participants without 
previously known  T2DM, insulin resistance and pan-
creatic beta-cell secretory capacity were evaluated. 
While the euglycemic clamp technique is considered the 
gold standard for assessing insulin resistance [26], we 
used  HOMA-IR, HOMA-Beta, the QUICKI index, the 
OGIS index, and the triglyceride-glucose (TyG) index 
[27–31], which are more suitable for epidemiological 
studies.

Among  HeFH-GC  patients without  T2DM,  HOMA-
Beta was significantly greater than that of non-HeFH par-
ticipants. Basal insulin and  HOMA-IR  showed a trend 
toward higher values, although these differences were not 
statistically significant. This pattern suggests increased 
insulin resistance in HeFH-GC patients, accompanied by 
a compensatory increase in insulin secretion, potentially 
identifying those at higher risk of developing T2DM [31].

Interestingly, when individuals with  pre-DM  were 
excluded—leaving only normoglycemic participants pre-
sumed to have normal carbohydrate metabolism—insulin 
levels (fasting and at 30  min),  HOMA-IR, and  HOMA-
Beta were significantly higher in HeFH-GC participants, 
whereas the QUICKI index was lower, reaching statistical 
significance in all cases.

After the OGTT, nearly  50%  of  HeFH-GC  patients 
without  T2DM  exhibited altered fasting glucose levels, 
and  30%  showed  OGTT-defined glucose intolerance, a 
prevalence similar to that observed in non-HeFH individ-
uals. These findings suggest a strong genetic or environ-
mental predisposition to diabetes within these families.

A comparison of glucose metabolism test results 
between  HeFH-GC  patients and an Italian cohort car-
rying different  LDLR mutations suggested that differ-
ent  FH  mutations do not influence insulin secretion, as 
assessed by HOMA-Beta. This finding does not support 
the hypothesis that  LDL  cellular uptake plays a role in 
pancreatic beta-cell function.

The complex interplay between glucose and lipid 
metabolism remains incompletely understood [5], 
although insulin is known to play a central role in regu-
lating  LDL receptor (LDLR)  function [32, 33]. Certain 
lipid disorders -such as  hypertriglyceridemia  and  famil-
ial combined hyperlipidemia- can induce hyperinsu-
linemia  and reduce insulin sensitivity independently 

of BMI [34–36]. However, this relationship appears to be 
less pronounced in HeFH subjects [37–42].

Our findings suggest that insulin resistance, particularly 
reduced hepatic insulin sensitivity, is the primary mecha-
nism contributing to impaired glucose metabolism in the 
HeFH-GC population. In addition, multivariate analysis 
identified several traditional metabolic factors—includ-
ing lipid-lowering treatment  (mainly statins),  hyperten-
sion, triglyceride levels, BMI and increased fat mass—as 
significant contributors to diabetes risk and glucose dys-
regulation. The detrimental impact of these metabolic 
risk factors is well recognized, and their presence in indi-
viduals with  HeFH may further exacerbate cardiometa-
bolic risk. Indeed, in this population, both  metabolic 
syndrome [43] and T2DM [44] are established, indepen-
dent risk factors for CVD [45, 46].

A recent study involving over  24,000  adults 
with  HeFH  from  44 countries  identified age, lipid-low-
ering therapy, and—most prominently—BMI as sig-
nificant predictors of T2DM risk [25]. In line with these 
findings, and compared to the national Spanish HeFH 
cohort [7], individuals in the HeFH-GC group were older, 
had higher BMI and waist circumference, and more fre-
quently received lipid-lowering treatment.

The elevated use of high-intensity statins—known for 
their diabetogenic effect—[4, 47] -, may partially explain 
the unexpectedly high prevalence of T2DM in the HeFH-
GC population. However, previous evidence suggests 
that this adverse effect may be mediated, at least in part, 
by statin-associated weight gain [48]. In patients with 
FH, the diabetogenic influence of statins appears to be 
attenuated, with BMI remaining the most consistent fac-
tor associated with metabolic disturbances [49]. Contrary 
to this, no differences in BMI or waist circumference 
were observed between HeFH-GC patients and their 
non-affected relatives, with values comparable to those 
reported for the general population of Gran Canaria 
[50, 51]. Interestingly, despite similar anthropometric 
profiles, the prevalence of T2DM in both groups within 
our cohort was significantly higher than the regional 
averages.

The Canary Islands report the highest prevalence of 
T2DM in Spain [52]. Moreover, the population exhib-
its disproportionately high rates of both macrovascular 
complications—such as diabetes-related mortality [53] 
and lower limb major amputations [54]—and microvas-
cular complications, including chronic kidney disease 
and diabetes-related end-stage renal disease [55].

These significant disparities between the Canarian 
population and other Spanish regions remain poorly 
understood. The elevated prevalence of cardiovascular 
risk factors in the Canary Islands—including metabolic 
syndrome, hypertension, obesity, and insulin resistance—
may contribute to this phenomenon [55, 56].
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Social and environmental determinants also play a 
significant role. Lower educational levels, particularly 
among women [50], and the limited economic resources 
that often accompany this may restrict access to healthy 
foods, further promoting the development of T2DM in 
this population. The high consumption of saturated fats, 
simple sugars, and alcohol, along with irregular adher-
ence to diabetes treatment regimens [57–59] likely con-
tributes to both the elevated rates of metabolic diseases 
and the poor clinical outcomes observed in the Canary 
Islands.

Finally, the distinct ethnic origins of the Canary Islands 
population, which differ from the rest of Spain, may con-
tribute to a unique genetic background. Although phe-
notypically Caucasian, the inhabitants descend from a 
mixture of indigenous peoples from North Africa and 
Spanish colonists who arrived from the fifteenth century 
onward [60]. This distinct ancestry, combined with the 
region’s geographic isolation, could explain a genetic pre-
disposition that differs from that of other Spanish popu-
lations. It is likely that this genetic background, together 
with classical metabolic, therapeutic, and environmental 
factors, contributes to the clinical profiles observed in the 
HeFH-GC cohort.

In any case, it is evident that HeFH individuals are not 
protected from the development of glycemic disorders, 
highlighting the importance of addressing all risk factors 
and initiating early treatment when necessary.

Our study has some limitations. Although the euglyce-
mic clamp is the gold standard for assessing insulin resis-
tance and sensitivity, we relied on surrogate markers such 
as HOMA-IR, HOMA-Beta, QUICKI, and the triglycer-
ide–glucose index. Additionally, the Italian HeFH group 
was older than the Canarian HeFH patients, and method-
ological differences in laboratory measurements between 
countries may limit the generalizability of some findings. 
The use of alternative diagnostic criteria for T2DM [61] 
may also have influenced the results. Our study also pres-
ents several strengths. Although the sample size of the 
HeFH-GC group may seem limited, to the best of our 
knowledge, this represents the largest cohort of individu-
als carrying the same LDLR mutation in which glucose 
metabolism has been specifically evaluated, including 
comparisons with first-degree relatives without the 
mutation. This genetic homogeneity enhances the inter-
nal validity of the findings and enables a more precise 
metabolic characterization.

Furthermore, the HeFH-GC cohort shows an unusu-
ally high prevalence of T2DM [5], making it particu-
larly relevant for the study of glucose homeostasis. 
To our knowledge, this is also the first study compar-
ing  OGTT  responses between  HeFH  cohorts from two 
different countries (Spain  and  Italy) carrying distinct 
genetic mutations.

Conclusion
This study confirms a high prevalence 
of T2DM in HeFH families from Gran Canaria carrying 
the  p.[Tyr400_Phe402del] LDLR  variant. However, our 
findings indicate that T2DM does not co-segregate with 
this founder mutation.

Furthermore, the prevalent mutation in  Canar-
ian HeFH  does not provide protection against  T2DM. 
Instead, similar to the general population, genetic 
and environmental factors such as  hyperten-
sion, fat mass, waist circumference,  and others play 
decisive roles in determining glycemic alterations 
among HeFH individuals.

Routine assessment of  body composition, glycemic 
profiles,  and  cardiovascular risk factors in non-dia-
betic  HeFH  patients is essential for personalized moni-
toring of carbohydrate metabolism, predicting diabetes 
progression, and early implementation of lipid- and glu-
cose-lowering therapies with proven cardiovascular 
benefits.
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1 

La interacción entre el metabolismo glucémico y el lipídico es compleja y está 

influida por factores genéticos, ambientales y terapéuticos. Tanto la DM2 como 

la HF se asocian a un mayor riesgo cardiovascular, que se incrementa cuando 

ambas patologías coinciden en un mismo individuo. 

2 

La prevalencia de DM2 en personas con HF parece ser inferior a la de la 

población general, posiblemente debido a que una menor actividad del r-LDL 

atenúa la lipotoxicidad sobre las células β pancreáticas. 

individuo. 

 3 

4 

El tratamiento con iPCSK9 no se asocia a un efecto clínicamente relevante 

sobre el metabolismo glucémico, por lo que no se justifica modificar su 

indicación terapéutica por un potencial riesgo de DM2. 

 

La aparición de nuevos casos de DM2 en pacientes tratados con iPCSK9 se limitó 

a personas con prediabetes y sobrepeso, lo que sugiere que, en individuos 

predispuestos, podría ser útil una monitorización glucémica más estrecha. 

 

5 
La prevalencia de DM2 entre individuos con HFHe portadores de la variante 

p.[Tyr400_Phe402del] en el gen LDLR en Gran Canaria es superior a la publicada 

tanto en población general como en otras cohortes de HFHe. 
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Los individuos con HFHe portadores de esta variante no están protegidos frente a las 

alteraciones de la homeostasis glucémica y presentan los mismos factores de riesgo 

clásicos asociados al desarrollo de DM2 en la población general. 

 

Esta variante genética no mostró co-segregación con la DM2. 

 

6 

7 
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Anexos 



 
 

Servicio Canario de la Salud 

Complejo hospitalario Materno Insular de Gran Canaria 

 

 

1 

 

CUESTIONARIO DE ADHERENCIA A LA DIETA MEDITERRÁNEA 

 

Nombre:  

Edad:  

 

1. ¿Usa el aceite de oliva como principal grasa para cocinar?  

  No 

 Sí 

 

2. ¿Cuánto aceite de oliva consume en total al día? (incluyendo el usado para freír, comidas fuera de casa, 

ensaladas, etc.…) 

 Menos de 2 cucharadas al día 

  2 o más cucharadas al día 

 

3. ¿Cuántas raciones de verduras u hortalizas consume al día? (1 ración = 200 g. Las guarniciones o 

acompañamientos = ½ ración)   

  Menos de 2 raciones al día 

 2 o más raciones al día (al menos una de ellas en ensaladas o crudas) 

 

4. ¿Cuántas piezas de fruta (incluyendo zumo natural) consume al día?   

  Menos de 3 raciones al día 

 3 o más raciones al día 

 

5. ¿Cuántas raciones de carnes rojas, hamburguesas, salchichas o embutidos consume al día? (1 ración = 

100-150 g)   

 Menos de 1 ración al día 

 1 o más raciones al día 

 

6. ¿Cuántas raciones de mantequilla, margarina o nata consume al día? (porción individual = 12 g)   

 Menos de 1 ración al día 

 1 o más raciones al día 
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2 

   

7. ¿Cuántas bebidas carbonatadas y/o azucaradas consume al día? (refrescos, colas, tónicas, bitter)   

 Menos de 1 bebida al día 

 1 o más bebidas al día 

 

8. ¿Bebe vino? ¿Cuánto consume a la semana?   

 Menos de 3 vasos a la semana 

 3 o más vasos a la semana 

 

9. ¿Cuántas raciones de legumbres consume a la semana? (1 plato o ración = 150 g)   

 Menos de 3 raciones a la semana  

 3 o más raciones a la semana  

 

10. ¿Cuántas raciones de pescado/mariscos consume a la semana? (1 plato, pieza o ración = 100-150 g de 

pescado o 4-5 piezas o 200 g de marisco)   

 Menos de 3 raciones a la semana  

 3 o más raciones a la semana 

   

11. ¿Cuántas veces consume repostería comercial a la semana? (no casera, como: galletas, flanes, dulces, 

bollería, pasteles)   

 Menos de 3 raciones a la semana 

 3 o más raciones a la semana   

 

12. ¿Cuántas veces consume frutos secos a la semana (1 ración = 30 g)?  

 Menos de 1 ración a la semana  

 1 o más raciones a la semana 

 

13. ¿Consume preferentemente carne de pollo, pavo o conejo en vez de ternera, cerdo, hamburguesas o 

salchichas? (carne de pollo, pavo o conejo: 1 pieza o ración de 100-150 g)   

  No 

 Sí 
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3 

14. ¿Cuántas veces a la semana consume los vegetales cocinados, la pasta, arroz u otros platos aderezados 

con salsa de tomate, ajo, cebolla o puerro elaborada a fuego lento con aceite de oliva? (sofrito)  

 Menos de 2 a la semana 

  2 o más a la semana 
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CUESTIONARIO INTERNACIONAL DE ACTIVIDAD FÍSICA (IPAQ) 

 

Nombre:  

Edad:  

 

Las preguntas que se le plantean a continuación se refieren al tiempo que usted ha empleado a estar 

físicamente activo en los últimos 7 días. Por favor responda a cada pregunta incluso si no se considera 

una persona activa.  

 

 Piense en todas las actividades INTENSAS que usted ha realizado en los últimos 7 días. Las 

actividades físicas intensas se refieren a aquellas que implican un esfuerzo físico intenso y que lo 

hacen respirar mucho más intensamente que lo normal y que realizó durante por lo menos 10 minutos 

seguidos. 

 

1. Durante los últimos 7 días, ¿en cuántos realizó actividades físicas intensas tales como levantar pesos 

pesados, cavar, hacer ejercicios aeróbicos o andar rápido en bicicleta? 

______ días por semana        

 

􀀀 Ninguna actividad física intensa → Vaya a la pregunta 3 

 

2. Habitualmente, ¿cuánto tiempo en total dedicó a una actividad física intensa en uno de esos días? 

______ horas por día          

______ minutos por día          

 􀀀 No sabe/No está seguro 

 

Piense en todas las actividades MODERADAS que usted realizó en los últimos 7 días. Las actividades 

moderadas son aquellas que requieren un esfuerzo físico moderado que lo hace respirar algo más 

intensamente que lo normal. Piense solo en aquellas actividades físicas que realizó durante por lo 

menos 10 minutos seguidos. 

 

3. Durante los últimos 7 días, ¿en cuántos días hizo actividades físicas moderadas como transportar pesos 

livianos, andar en bicicleta a velocidad regular o jugar al tenis? No incluya caminar. 

______ días por semana 

􀀀 Ninguna actividad física moderada → Vaya a la pregunta 5 
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 4. Habitualmente, ¿cuánto tiempo en total dedicó a una actividad física moderada en uno de esos días? 

______ horas por día 

______ minutos por día 

􀀀 No sabe/No está seguro 

 

Piense en el tiempo que usted dedicó a CAMINAR en los últimos 7 días. Esto incluye caminar en el 

trabajo o en la casa, para trasladarse de un lugar a otro, o cualquier otra caminata que usted podría 

hacer solamente para la recreación, el deporte, el ejercicio o el ocio. 

 

5. Durante los últimos 7 días, ¿En cuántos caminó por lo menos 10 minutos seguidos? 

______ días por semana 

􀀀 Ninguna caminata → Vaya a la pregunta 7 

 

6. Habitualmente, ¿cuánto tiempo en total dedicó a caminar en uno de esos días? 

______ horas por día 

______ minutos por día 

􀀀 No sabe/No está seguro 

 

La última pregunta es acerca del tiempo que pasó usted SENTADO durante los días hábiles de los 

últimos 7 días. Esto incluye el tiempo dedicado al trabajo, en la casa, en una clase, y durante el tiempo 

libre.  

 

7. Durante los últimos 7 días ¿cuánto tiempo pasó sentado durante un día hábil? 

______ horas por día 

______ minutos por día 

􀀀 No sabe/No está seguro 
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