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Abstract—Accurate estimation of above-ground biomass
(AGB) is essential to understanding carbon stocks and flows,
monitoring forest health, assessing biodiversity, and tracking
ecological disturbances, which together help to inform climate
policies. Imminent global satellite biomass missions (such as
ESA’s BIOMASS and NASA-ISRO’s NISAR satellites) will offer
valuable environmental monitoring, but their low spatial reso-
lution limits their application in detailed local assessments. In
this study, we present BiomSHARP (Biomass Super-resolution
for High Accuracy Prediction), a deep learning (DL) model
developed to enhance coarse-resolution biomass maps by fus-
ing them with high-resolution multispectral data from sensors
such as Sentinel-2 or Landsat. BiomSHARP achieves 25-meter
biomass predictions—four times the spatial resolution of the
input—bridging the gap between global-scale monitoring and
local-scale applications. In a first set of experiments, conducted
in a local area in Europe, we demonstrate that BiomSHARP
outperforms both traditional interpolation methods and state-
of-the-art DL interpolation and prediction approaches for high-
resolution AGB estimation across all evaluated metrics (MAE,
MSE, RMSE, PSNR and SSIM), while using a comparable/lower
number of parameters. Moreover, the model exhibits strong
global-scale generalization, as demonstrated by its ability to
accurately estimate biomass across diverse climatic regions de-
spite being trained on a limited subset of data. Furthermore,
the model presents strong temporal generalization, achieving
improved performance in estimating AGB from 2020 data even
when trained solely on 2010 data. We also analyze the impact of
different combinations of spectral bands on biomass estimation,
identifying optimal subsets that reduce redundancy and improve
computational efficiency. BiomSHARP represents a promising
approach to advance global environmental assessments and
support improved climate strategies. The code and models are
publicly available at https://github.com/laiaalbors/biomsharp.

Index Terms—BiomSHARP, Above-ground biomass, Guided
biomass super-resolution, Deep learning, Remote sensing, Multi-
spectral imagery, Satellite biomass estimation, Climate monitor-
ing.

I. INTRODUCTION

HE increasing effects of climate change highlight the

critical need to deepen our understanding of global
ecosystems. A key element in this understanding is the accu-
rate estimation of above-ground biomass (AGB), essential for
modeling carbon stocks and flows, monitoring forest health,
assessing biodiversity, and tracking ecological disturbances
such as fires or storms—which in turn shape effective climate
policies [1]. Time-consuming, cost-effective, and non-invasive
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methods for global biomass estimation are indispensable,
offering vital data while preserving the studied ecosystems.
The recent development of satellite technologies dedicated to
estimating AGB reflects a global consensus on the importance
of these estimates. For example, the planned launches in
2025 of ESA’s BIOMASS satellite [2] and NASA-ISRO’s
NISAR mission [3] mark major progress towards regular, non-
destructive monitoring of global biomass—including in hard-
to-reach areas. This is crucial for both understanding and
combating the effects of climate change.

However, while these satellite missions will provide the
global overview necessary for broad environmental assess-
ments, they will not deliver the detailed data achieved with
local studies. This is due to their limited resolutions—200
meters for the BIOMASS satellite [2] and 100 meters for the
NISAR mission [3]. Detailed data is essential for designing
specific, local-level actions and policies. These local assess-
ments, critical for the development of particular interventions,
are notably expensive, labor-intensive, and logistically com-
plex, particularly in remote areas where accessibility poses
significant challenges.

To address these limitations, this paper proposes
BiomSHARP, an innovative approach using deep learning
(DL) to merge low-resolution biomass data, such as that
of BIOMASS or NISAR upcoming satellite missions, with
high-resolution multispectral data from satellite sensors
such as Sentinel-2 or Landsat. This combination aims to
produce high-resolution biomass maps capable of providing
detailed insights for any region of the world. By leveraging
the strengths of both satellite systems, our method offers
a promising solution to bridge the gap between global
monitoring capabilities and local application needs, enabling
detailed environmental assessments on a global scale.

Hence, the primary objective of this work is to develop a
DL tool that enhances the resolution of low-resolution AGB
maps, specifically transforming 100-meter resolution data into
25-meter resolution data.

This paper makes three key contributions: (1) we introduce
BiomSHARP, a novel deep learning architecture for guided
super-resolution of AGB maps that outperforms current state-
of-the-art models across all tested metrics; (2) we conduct
a detailed analysis of multispectral bands to identify the
optimal subset that minimizes redundancy while maintaining
performance; and (3) we release publicly available pretrained
checkpoints for both Landsat-5 and Sentinel-2 data that have
demonstrated robust spatial and temporal generalization in
improving the resolution of AGB maps. These checkpoints
include global and climate-specific models, allowing practi-
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tioners to choose the most suitable variant for their region or
application.

The structure of this paper is as follows: after this introduc-
tion, Section II reviews relevant literature, focusing on method-
ologies for AGB estimation using remote sensing and on
recent advancements in super-resolution techniques. Section
IIT details the data used, including the datasets, preprocessing
techniques, and regions of study. Section IV describes the
methodologies employed in our study, including the com-
parison baselines and the characteristics of the proposed DL
model. Section V presents four key experiments—comparing
BiomSHARP with state-of-the-art methods, assessing the im-
pact of reducing band redundancy, testing global-scale gener-
alization, and evaluating temporal generalization—which to-
gether demonstrate the superior performance of BiomSHARP
with respect to the baselines. Finally, Section VI concludes the
paper, summarizing the key contributions of our work, stating
the limitations of this study, and suggesting potential directions
for future research.

II. RELATED WORK

This section reviews prior research relevant to our study, fo-
cusing on two key areas: the estimation of AGB using remote
sensing data and advancements in image super-resolution tech-
niques. The first part highlights traditional and deep learning-
based approaches for biomass prediction, emphasizing their
strengths and limitations in local and global contexts. The
second part analyzes image super-resolution methodologies,
including guided super-resolution, and their applicability to
enhancing biomass data resolution, framing the state-of-the-
art techniques that inspire our proposed model.

A. Above-Ground Biomass Estimation from Remote Sensing
Data

1) Local Estimations: Numerous studies have investigated
the prediction of AGB using remote sensing (RS) data. The
majority of these studies use optical satellite imagery from
platforms like Sentinel-2 and Landsat [4]-[8]. Other works
have employed optical data collected by Unmanned Aerial
Vehicles (UAVs) [9], whereas some have explored the use of
RADAR data from sources such as Sentinel-1, ALOS, and
Gaofen-3 [7], [10].

Within these studies, traditional Machine Learning (ML)
techniques are most commonly used, typically relying on man-
ual feature extraction from the RS data [4]-[6], [10]. However,
recent studies have proposed more advanced DL models that
do not require prior feature extraction, working directly on raw
data [7]-[9]. For instance, [7] compares traditional machine
learning methods like Random Forest (RF) [11] with deep
learning models such as CNN [12] and CNN-LSTM [13],
and it concludes that deep learning approaches, particularly
CNN-LSTM, perform better in predicting AGB when using
multispectral and SAR data, due to their capacity to handle
complex relationships and to extract high-dimensional features
from these types of RS data.

While these studies provide valuable information for local
actions by offering resolutions up to 2.5 meters, they lack the

broader, global insights essential for understanding the global
carbon cycle and informing climate mitigation policies. This
limitation arises because these studies have been conducted
in relatively small areas, at most a few thousand square
kilometers.

2) Global Estimations: In parallel, a different approach has
been proposed that focuses on improving global understanding
by creating worldwide biomass maps. Earlier versions of these
maps often had low spatial resolutions, typically between 500
and 1,000 meters [14]-[16]. While these low-resolution maps
provided essential data for global assessments, their utility for
localized applications was limited. Moreover, with the immi-
nent launch of the BIOMASS and NISAR satellites—set to
provide worldwide estimations of AGB at 200 and 100 meters
resolution, respectively—these maps will become outdated.

More recent studies have produced higher-resolution
biomass maps (up to 30 meters) targeting specific regions like
tropical forests [17], global mangrove forests [18], and even
encompassing all global forest types [19]. These advancements
have significantly extended the applicability of biomass maps
for regional and local analyses, offering more actionable data
for forest management and conservation while maintaining
their usefulness for global assessments.

However, producing these high-resolution maps involves
complex methodologies that rely on multiple data sources and
intricate processes. Generally, they require region-specific allo-
metric equations (mathematical models tailored to specific tree
species or forest types) to estimate biomass from measurable
tree parameters. LiDAR (Light Detection and Ranging) data,
captured by UAVs or satellites, is also utilized to compute
the ground truth AGB in conjunction with these allometric
equations. Classic machine learning models, such as RF, are
then trained to link biomass with other satellite-derived data
(including imagery, elevation, and climate variables) to obtain
continuous biomass maps. Despite their utility, these methods
are data-intensive and computationally complex—factors that
limit both their scalability and accessibility.

B. Image Super-Resolution

Considering the previously commented launch of biomass
satellites (which will provide worldwide low-resolution AGB
data), as well as the availability of a dataset with global
biomass estimations at a higher resolution [20]-[28], we
propose the novel application of image super-resolution tech-
niques for global high-resolution biomass estimation. Super-
resolution (SR) refers to the task of generating high-resolution
images from one or more low-resolution captures of the
same scene [29]. In our case, we address single-image super-
resolution. Conventional linear interpolation schemes, such as
bilinear and bicubic interpolation, have been widely used to
generate high-resolution images from low-resolution versions
due to their computational simplicity. However, these methods
fall short in capturing high frequency data, often resulting
in blurred edges and noticeable artifacts in the interpolated
images [30]. To address these issues, many super-resolution
algorithms have been proposed over the years [31]. Among
them are reconstruction-based methods, which iteratively en-
hance resolution using prior image statistics. Another group of
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TABLE I
OVERVIEW OF THE DATA USED IN EACH EXPERIMENT, INCLUDING THE SECTION WHERE EACH EXPERIMENT IS DISCUSSED, THE REGION OF STUDY, THE
YEARS OF THE ABOVE-GROUND BIOMASS (AGB) AND MULTISPECTRAL (MS) DATA USED FOR TRAINING AND VALIDATION, AND THE MULTISPECTRAL
BANDS CONSIDERED. AGB DATASETS INCLUDE HIGH-RESOLUTION SOURCES (GLOBBIOMASS, FORMS) AND LOW-RESOLUTION SOURCES (ESA
BIOMASS CLIMATE CHANGE INITIATIVE). MULTISPECTRAL DATA COME FROM LANDSAT-5 LEVEL-2, COLLECTION 2, TIER 1 PRODUCT (L5) AND
SENTINEL-2 LEVEL-2 PRODUCT (S2).

Year of the Data

. . Region Multispectral
Section Experiment of .. .
Study Training Validation Bands
AGB MS AGB MS
V-A SOTA Comparison Aol 2010 2010 (LS) 2010 2010 (LS) All
(Glob/ESA) 2017 (S2) (Glob/ESA) 2017 (S2)
V-B Band Redundancy Aol 2010 2010 (L5) 2010 2010 (LS5) Different
(Glob/ESA) 2017 (S2) (Glob/ESA) 2017 (S2) combinations
V-C Global Generalization Global 2010 2009-2011 (LS) 2010 2009-2011 (L5) 3,4, 7 (L5)
(Glob/ESA) 2017-2019 (S2) (Glob/ESA) 2017-2019 (S2) 4, 8, 12 (S2)
V-D Temporal Generalization Aol / 2010 2017 (S2) 2020 2020 (S2) 4,8, 12 (S2)
France (Glob/ESA) (FORMS/ESA)

methods includes example-based super-resolution techniques,
which use a dictionary of high-resolution patches to guide finer
detail inference in low-resolution images [31].

Despite these advancements, traditional super-resolution
methods still face challenges in effectively capturing complex
image structures and generalizing across diverse datasets.
These limitations have driven the exploration of more so-
phisticated approaches that can learn intricate mappings and
adapt to varying data characteristics, such as DL-based in-
terpolation methods. In particular, SRCNN [32] was the first
method to introduce deep CNNs to the image super-resolution
task, obtaining superior performance over traditional super-
resolution methods. After this work, many other DL models
[4], [33]-[42] were proposed to further improve this field.
Among these, we need to highlight the HAT (Hierarchical
Attention Transformer) model, introduced in [41] and further
developed in [42], which represents a significant advance-
ment in super-resolution technology. HAT innovatively com-
bines self-attention, channel attention, and overlapping cross-
attention to address key limitations of Transformer-based SR
models. These include limited receptive field, insufficient pixel
utilization, and blocking artifacts. As a result, HAT achieves
superior accuracy and visual quality.

1) Guided Super-Resolution: Within the realm of image
super-resolution, guided super-resolution represents a special-
ized subtask, which uses high-resolution (HR) images to help
enhance low-resolution (LR) data. This technique has already
been used to enhance the resolution of various types of data,
such as depth maps [43]-[46], thermal images [47]-[49],
hyperspectral images [S50]-[52], feature maps [53], and even
other RGB images [54], using HR RGB images as guidance.
However, to the best of our knowledge, this paper is the first to
apply this technique for enhancing the resolution of biomass
data.

Among the various guided super-resolution tasks, depth map
super-resolution shares several characteristics with biomass
data enhancement. Both depth and biomass rasters are typ-

ically single-channel and contain values that correspond to
physical quantities. Additionally, they often exhibit clear
structural boundaries aligned with physical objects, unlike
thermal or feature maps, where values may be more abstract
or spatially diffuse. In this context, SGNet [43] improves
depth map resolution by leveraging gradient and frequency
information to preserve structural details and high-frequency
components. These properties are also desirable for biomass
super-resolution, where edge preservation and accurate recon-
struction of physical values are critical.

Recent research has explored guided super-resolution using
diffusion models, particularly for depth maps. For instance, the
study in [55] introduces a diffusion model within the latent
space to generate guidance for depth map super-resolution.
Analogously, [56] presents a similar approach, focusing on
efficient feature fusion and reconstruction using diffusion
models. However, SGNet, which uses non-diffusion models
to improve depth map resolution, outperforms these proposals.
For this reason, we have not included diffusion-model-based
approaches in this study.

Inspired by these state-of-the-art methodologies, our pro-
posed approach aims to generate high-resolution biomass
maps that support both worldwide and regional environmental
policies. This involves leveraging DL-based super-resolution
techniques and multispectral guidance to advance in global
high-resolution biomass estimation.

III. DATA

In this section, we present the resources used to develop
and train our proposed model, BiomSHARP. We describe the
data sources, preprocessing techniques, and selected regions
to facilitate reproducibility. Table I summarizes the details of
each experiment.

For our task, we required (i) biomass data with a resolution
similar to what will be available from near future satellite mis-
sions, (ii) high-resolution biomass data to serve as ground truth



JOURNAL OF KTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

J{T!‘L“'- 3

—r

Europe

Africa

(a)

(GT) for training and validation, as well as (iii) high-resolution
multispectral images to support resolution enhancement.

To ensure full transparency, all data sources used in this
study are publicly accessible, allowing for independent verifi-
cation and further exploration by the research community.

A. Datasets

In this subsection, we detail the specific datasets used in our
study, encompassing high-resolution biomass data serving as
ground truth, low-resolution biomass data analogous to future
satellite mission outputs, and high-resolution multispectral im-
agery guiding in resolution enhancement. Below, we describe
each dataset, highlighting its features, sources, and role in our
methodology.

1) High-resolution biomass: For the high-resolution
biomass data, we used two different datasets, depending on
the particular experiment. First, we used the “GlobBiomass
dataset of forest biomass (25 m)”, which is publicly available
on Zenodo and divided into 9 regions: Eurasia [20], Africa
[21], North America N [22], North America S [23], South
America N [26], South America S [27], North Asia N [24],
North Asia S [25], and South Asia [28]. This dataset provides
a global map of above-ground forest biomass estimates
for the year 2010 at a 25-meter resolution, and was used
for the training of all models and the evaluation of the
first three experiments. Fig. la illustrates the extension of
the area covered by this dataset. For the validation of the
final experiment, in which we check the generalization of
BiomSHARP in the temporal domain, we have used another
dataset, FORMS, an AGB map at 30-meter resolution of
France from 2020, presented in [58].

2) Low-resolution biomass: For the low-resolution biomass
data, since the previously mentioned satellites (NISAR and
BIOMASS missions) have not yet been launched, we utilized
the “ESA Biomass Climate Change Initiative (Biomass_cci):
Global datasets of forest above-ground biomass for the years
2010, 2017, 2018, 2019 and 2020, v4” [57], which offers data
at a resolution of 100 meters—the same resolution expected
from NASA-ISRO’s NISAR mission. Specifically, we used
the data from 2010 (to align with the year of the 25m-
resolution biomass data) and from 2020 (for the validation
of the temporal experiment). Fig. 1b illustrates the extension
of the area covered by this dataset.

Il North America N
B North America S
| HEE South America N
South America S
Bl North Asia N
North Asia S
South Asia

(b)

Fig. 1. Global biomass data. (a) Biomass patches at 25m resolution available from [20]-[28]. (b) Biomass patches at 100m resolution available from [57].

3) High-resolution multispectral data: In this study, we
used multispectral optical data from both Landsat-5 and
Sentinel-2 satellites. Sentinel-2 provides images with higher
spatial and spectral resolution but was not launched until 2015,
which is five years after the 2010 biomass data. In contrast,
Landsat-5 offers imagery from 1984 to 2013, including the
year of the biomass data, 2010, but it has lower spatial
and spectral resolution compared to Sentinel-2. Therefore, we
experimented with both datasets to determine which approach
is more effective for guided biomass super-resolution. Specif-
ically, we aimed to establish whether using guide images that
are temporally closer to the biomass data is more advantageous
than employing images with higher spatial and spectral reso-
lution acquired at a later time. The data was obtained using
Google Earth Engine (GEE) [59]. For Sentinel-2, we utilized
the Level-2A product [60] and, for Landsat-5, we selected
the Level-2, Collection 2, Tier 1 product [61] . Sentinel-2
offers images with 13 spectral bands, with resolutions ranging
from 10 to 60 meters per pixel, depending on the band. For
our analysis, we selected the 10 bands with resolutions of
10 or 20 meters, as these provide the detail required for our
study. We then downsampled these higher-resolution bands
to align them with our target resolution of 25 meters. The
Landsat-5 product includes 6 bands at a 30-meter resolution.
Therefore, to obtain the objective resolution of 25 meters
defined in our study, we applied interpolation to resample the
data accordingly. For the State-of-the-Art (SOTA) Comparison
and Band Redundancy experiments we used multispectral data
from only one year: 2010 for Landsat-5 and 2017 for Sentinel-
2 (the first available year in GEE for this product). However,
in the Global Generalization experiment, the time span was
extended to 2009-2011 for Landsat-5 and to 2017-2019 for
Sentinel-2 to include more of the Earth surface. Finally, for
the validation of the Temporal Generalization experiment, we
only used Sentinel-2 data from 2020. In all cases, we used
the median to obtain a single representative image from the
collection of images available in the specified period of time.

B. Data preprocessing

For the biomass data (both low and high-resolution), no
preprocessing was applied.

For the Sentinel-2 data, we filtered out pixels with clouds
using the given classification in band SCL, and computed the



JOURNAL OF KTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

[ Train
B Validation

CZECHIA

Mediterranean
Sea

gitude

Fig. 2. (Left) Region of Europe showing the Aol of the study, represented by a red

box and defined by the bounding box coordinates [12.0, 46.0,

Sections V-A and V-B).
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Fig. 3. Region of France (red polygons) used to evaluate the
model in the Temporal Generalization experiment (see Section
V-D).

(b)

Fig. 4. Global area studied in the Global Generalization experiment (see Section V-C), derived from intersecting available data across all utilized datasets
(biomass at 25 and 100 meters of resolution, and the multispectral images available in GEE). (a) Sentinel-2 as the multispectral data. (b) Landsat-5 as the

multispectral data.

median of the remaining pixels to produce a single final image.
For the Landsat-5 data, we specified a CLOUD_COVER lower
than 15%, and computed the median of the images to produce
the final image. The specific JavaScript code used to download
and process the Sentinel-2 and Landsat-5 data for the small-
scale experiments within the Aol (see Section III-C) can be
found in our GitHub repository.

For the GEE data, we reprojected! the Sentinel-2 and
Landsat-5 images in order to match the 25-meter resolution,
projection, and extent of the biomass raster.

C. Region of study

In this study, we have worked with different regions. For
the first two experiments, SOTA Comparison and Band Redun-
dancy (in Sections V-A and V-B, respectively), we defined a
small area of interest (Aol), illustrated in Fig. 2. This Aol was
chosen for its manageable size and computational convenience,
allowing for the efficient comparison of different models under
controlled but varied environmental conditions.

For the Global Generalization experiment (in Section V-C)
we used all global data according to the spatial availability

lReprojection was done via the function rio.reproject_match ()
from the rioxarray package.

of the three data sources (low and higher AGB data, and
multispectral imagery). Fig. 4 illustrates the global region used
in this particular experiment.

Finally, for the Temporal Generalization experiment (in
Section V-D), we took the model chosen in the Band Redun-
dancy experiment—trained on the Aol—and evaluated it on
the FORMS dataset region, which covers France and Corsica
(see Fig. 3).

IV. MODELS

In this section, we present the models evaluated in our
study, including our proposed BiomSHARP model and several
baseline models adapted for comparison. BiomSHARP is
specifically designed to enhance the resolution of AGB rasters
by leveraging high-resolution Sentinel-2 or Landsat-5 data.
To ensure a fair assessment, all models are standardized in
terms of input crop size, training strategy, and parameter count.
This allows us to rigorously compare the performance im-
provements offered by BiomSHARP over existing approaches.
Complete hyperparameter details for all models are available
in our GitHub repository.
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Fig. 5. BiomSHARP architecture, based on the RHAG module from HAT proposed in [41], [42]. (a) Detailed view of individual submodules where each
colored box represents a specific submodule. (b) Overall network architecture, with the same color code.

A. Baselines

To ensure comparability among all models, we standardized
the ground truth crop size to 256 x 256 and adopted a unified
training strategy—training from scratch with an interpolation
factor of 4 in each dimension. Additionally, we adjusted the
number of filters or features in some baseline models to
ensure that the number of parameters is in the same order
of magnitude across all models.

1) ReUse: The ReUse model [8] is the first end-to-end DL
model designed to predict AGB from Sentinel-2 data. It is
based on a Regressive U-Net [62] and is the only baseline
model in this study originally intended for biomass data. The
original model has 10 input channels, corresponding to the
10 bands of Sentinel-2. For our experiments with Landsat-5,
we modified this number to 6, to match the 6 bands of this
satellite. Since ReUse is the only baseline model specifically
designed to handle satellite and biomass data, we used it as a
reference and adapted all the other baseline models (originally
designed to process only natural RGB images) to use all the
bands of Sentinel-2 or Landsat-5 as input in order to achieve
a fair comparison. Also, in the original paper, crops of size
16 x 16 were used, with 16 filters, resulting in a model with
1.2 million parameters. For this study, we increased the crop
size (from 16 to 256) to use the same size in all models,
and we also increased the number of filters (from 16 to 24)
to observe the improvement in performance when increasing

the capacity of the model, and making it more comparable
to the other models. In Tables II and III, the modified model
with 24 filters is represented as ReUse*. We also changed the
learning rate scheduler (from a ReduceLROnPlateau to an
ExponentialDecay) to enhance training convergence and
performance.

2) HAT-S: The HAT model [41], [42] is a state-of-the-
art image super-resolution model that utilizes the Residual
Hybrid Attention Group (RHAG) module at its core (see
Fig. 5a for the detailed structure of this module). RHAG
enhances both local and global interactions by integrating
channel attention with window-based cross- and self-attention
schemes through hybrid attention blocks and overlapping
cross-attention mechanisms. By activating a wide range of
input pixels and facilitating cross-window interactions, RHAG
enables precise reconstruction of fine details. This model has
three versions based on parameter count; in this study, we
used the smallest version, HAT-S, which comprises 6 RHAG
modules (each with 6 HAB modules) and has an embedding
dimension of 144, amounting to approximately 9.5 million
parameters. By selecting this smaller version of the HAT
model, we ensure comparability with the other tested models
in terms of parameter count. However, this model was origi-
nally designed to improve the resolution of RGB images, so we
adapted it for our biomass data (e.g. by changing the number of
input channels and modifying the input normalization value).
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3) SGNet: The SGNet model [43] is a state-of-the-art
guided super-resolution model developed for depth map super-
resolution, a task we consider closely related to our problem.
This model has not been applied to biomass data before,
hence, we adapted it for our study. In particular, we changed
the number of channels of the input guide data to match
the number of bands used from Sentinel-2 or Landsat-5.
Additionally, we reduced the number of filters (from 24 to
16) to achieve a model with 4.2 million parameters in order
to assess the performance of the model with a capacity closer
to that of the other models. In Tables II and III, the modified
model with 16 filters is represented as SGNet*.

B. BiomSHARP

In this study, we introduce BiomSHARP, a DL model
designed to enhance the resolution of AGB rasters by an
interpolation factor of 4 in each dimension, with the guidance
of high-resolution multispectral data. This model, depicted in
Fig. 5, builds upon the RHAG module introduced in HAT [41],
[42] (yellow box in Fig. 5a and Fig. 5b), originally designed
for natural image super-resolution, but here used to perform
biomass guided super-resolution, enhancing the resolution of
AGB rasters using multispectral images from Sentinel-2 or
Landsat-5 as guidance.

In the original HAT model, the input is a low-resolution
(LR) RGB image that passes through a convolution layer to
preserve its spatial dimensions. The resulting shallow features
are then processed by a set of RHAG modules, which also
maintains spatial dimensions, and the output is combined with
the initial shallow features via a residual connection. The
combined features are subsequently upscaled using the Pixel
Shuffle method [63] to obtain the final enhanced image.

For BiomSHARP, we have replaced the initial convolution
layer with a transpose convolution layer. This not only ex-
tracts shallow features from the LR biomass data but also
upscales them to the desired spatial resolution at the output.
Concurrently, multispectral data (from Sentinel-2 or Landsat-
5), matching the target output resolution, is processed through
a convolution layer that preserves its spatial dimension. These
shallow features from the multispectral data are then con-
catenated with the upscaled shallow features from the LR
biomass data. This concatenation allows the subsequent lay-
ers—particularly the attention-based modules—to effectively
learn how to merge and exploit the complementary information
from both data sources. Afterward, this combined feature set
is processed by another convolution layer to integrate the
features, which are then passed through five RHAG modules
from HAT—each composed of six HAB modules with an
embedding dimension of 84 (see Fig. 5a for more details on
these modules). The number of RHAG modules was treated
as a hyperparameter; we selected five during tuning as a
trade-off between strong performance and model complexity,
deviating from the original HAT configuration of six modules.
Following [41], [42], the deep features obtained pass through
a convolution layer and then are added back to the combined
shallow features using a residual connection. This residual
connection helps preserve low-level information from the

shallow features and facilitates gradient flow during training,
which is a common practice in deep learning to stabilize and
improve convergence. Finally, a convolution layer is used to
generate the AGB prediction from the extracted features. By
initially upscaling the biomass, we leverage the high-resolution
details from the multispectral data more effectively during the
concatenation of both feature sets.

V. EXPERIMENTS: SET UP AND RESULTS

In this section, we present four main experiments designed
to evaluate BlomSHARP under different conditions. First, in
the SOTA Comparison experiment (Section V-A), we compare
BiomSHARP against classical and deep learning interpolation
methods using several performance metrics to demonstrate its
superior reconstruction quality. Second, in the Band Redun-
dancy experiment (Section V-B), we assess whether reducing
the number of spectral bands can maintain performance while
lowering memory usage. Third, in the Global Generalization
experiment (Section V-C), we test the ability of BiomSHARP
to generalize worldwide across diverse climatic zones, even
when trained on a limited subset of data. Finally, in the
Temporal Generalization experiment (Section V-D), we evalu-
ate the model’s robustness over time by predicting biomass
for a future year and comparing these results with other
interpolation methods.

A. State-of-the-Art Comparison

The goal of this experiment is to compare the performance
of the proposed BiomSHARP model against a classic inter-
polation method (bicubic) and three DL approaches: ReUse
[8], HAT [41] and SGNet [43]. Among these, only the ReUse
model has been tested on biomass data, whereas the last two
have not. For consistency, all models, including BiomSHARP,
were trained using the L1 loss, except SGNet, which employs
a specialized loss combining spatial, gradient, and frequency
terms.

Specifically, each model was trained from scratch three
times, each with a different random seed to capture initial-
ization variability. In addition, hyperparameter tuning was
performed for all models to ensure optimal results.

The region of study for this experiment was the Aol
presented in Section III-C, which we divided into 81 patches
of size 1920 x 1920 and randomly allocated 64 for training
and 17 for validation (see Fig. 2).

Regarding the multispectral bands, in this experiment we
used all of them, 10 in the case of Sentinel-2 and 6 for Landsat-
5, in order to compare the methods in the best case scenario
(when we have all possible spectral information).

Tables II and III present the results of the experiment, using
Sentinel-2 and Landsat-5 bands as guidance, respectively. The
experiments evaluate the performance of the proposed method
across multiple metrics, including Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and
Mean Absolute Error (MAE). PSNR and SSIM are the most
widely used metrics for assessing image super-resolution and
reconstruction quality [31], [33], [34], while MSE, RMSE, and
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TABLE II
COMPARISON OF MODELS USING 10-20M SENTINEL-2 BANDS. MODELS USE HIGH-RESOLUTION MULTISPECTRAL DATA (MS), LOW-RESOLUTION AGB
DATA (AGB), OR BOTH. RESULTS ARE AVERAGED OVER 3 RUNS WITH DIFFERENT RANDOM INITIALIZATIONS AND REPORTED AS “MEAN (STD)”. BOLD
INDICATES THE BEST RESULT FOR EACH METRIC.

Model | MS | AGB | Params (}) | PSNR(1) | SSIM(1) | MSE() | RMSE() | MAE ()
Bicubic | | v | - | 1725() | 036() | 740483() | 8168() | 56.65()
HAT-S [41], [42] | | v | 96M | 21.61(0.02) | 049 (1.8e-3) | 2531.54 (22,97) | 48.58 (0.16) | 32.11 (0.05)
ReUse [8] | v | | 12 M | 23.07 (0.02) | 0.60 (1.4¢-3) | 1952.91 (13.34) | 41.82 (0.11) | 27.09 (0.10)
ReUse* v 49M | 23.20 (0.03) | 0.61 (1.6e-3) | 189539 (16.83) | 41.19 (0.17) | 26.60 (0.13)
SGNet* | v | v | 42M | 24.13 (0.05) | 0.64 (2.3¢-3) | 1503.42 (13.39) | 36.89 (0.19) | 23.92 (0.14)
SGNet [43] v 92M | 2442 (0.04) | 0.66 (1.8¢-3) | 1400.91 (15.27) | 35.64 (0.17) | 22.79 (0.14)
BiomSHARP (our) | v | v | 34M | 2490 (0.06) | 0.70 (3.1e-3) | 1254.24 (14.60) | 33.70 (0.21) | 21.02 (0.15)
TABLE III

COMPARISON OF MODELS USING ALL MULTISPECTRAL LANDSAT-5 BANDS. MODELS USE HIGH-RESOLUTION MULTISPECTRAL DATA (MS),
LOW-RESOLUTION AGB DATA (AGB), OR BOTH. RESULTS ARE AVERAGED OVER 3 RUNS WITH DIFFERENT RANDOM INITIALIZATIONS AND REPORTED
AS “MEAN (STD)”. BOLD INDICATES THE BEST RESULT FOR EACH METRIC.

Model | MS | AGB | Params () | PSNR (1) | SSIM (1) | MSE ({) | RMSE () | MAE ()
Bicubic | | v - | 1725(¢) | 036() | 740483 (-) | 81.68(-) | 56.65(-)
HAT-S [41], [42] | | v 9.6 M | 21.61 (0.02) | 0.49 (1.8e-3) | 2531.54 (22,97) | 48.58 (0.16) | 32.11 (0.05)
ReUse [8] v 1.2 M 23.44 (0.02) | 0.62 (2.8e-3) | 1820.05 (12.83) | 40.24 (0.12) | 26.27 (0.10)
ReUse* v 4.9M 23.60 (0.04) | 0.63 (7.6e-4) | 1755.12 (10.40) | 39.50 (0.15) | 25.70 (0.08)
SGNet* v v 42 M 24.56 (0.02) | 0.67 (3.5e-4) 1360.05 (6.39) 35.08 (0.08) | 22.63 (0.03)
SGNet [43] v v 92 M 24.80 (0.01) | 0.69 (3.5e-4) 1280.10 (1.48) 34.09 (0.02) | 21.68 (0.04)
BiomSHARP (our) | v | v | 3.4 M | 25.14 (0.02) | 0.71 (1.4e-3) | 1194.81 (7.95) | 32.84 (0.10) | 20.45 (0.06)
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Fig. 6. Qualitative results for Landsat-5 (similar results were obtained with Sentinel-2). (Top) Predicted AGB maps. (Bottom) Error maps relative to the GT.
Note the lower error values in BiomSHARP, even compared to SGNet.

MAE are commonly applied for evaluating continuous value resolution AGB data ("AGB’) with high-resolution multispec-
prediction in regression tasks [64], [65]. Higher values indicate  tral data ("MS’) offers clear benefits over relying on a single
better performance for PSNR and SSIM, whereas lower values data type. This is exemplified by the superior performance
of MSE, RMSE and MAE reflect smaller prediction errors. of SGNet and BiomSHARP, with BiomSHARP surpassing

Results show that BiomSHARP consistently outperforms SGNet, even though it has nearly three times fewer parameters.
all other methods across every metric in both Sentinel-2 When comparing the use of Sentinel-2 (Table II) and
and Landsat-5 experiments, highlighting its ability to pro- Landsat-5 (Table III) as guidance, Landsat-5 consistently
duce high-quality biomass reconstructions. Integrating low- achieves slightly better results across all models and metrics.
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TABLE IV
GROUPING OF THE DIFFERENT SENTINEL-2 AND LANDSAT-5 BANDS USED IN THIS STUDY AND THEIR CHARACTERISTICS FOR VEGETATION
MONITORING, BASED ON [66]—[68]. ONLY SENTINEL-2 BANDS WITH 10 OR 20 METERS OF RESOLUTION ARE USED, AS OUR TARGET RESOLUTION IS 25

METERS.
Sentinel-2 Landsat-5 . L . -
Bands Bands Grouping Characteristics for vegetation monitoring
- Chlorophyll in green leaves strongly absorbs light in the visible spectrum, particularly in the
B2, B3, B4 Bl, B2, B3 Visible bands (VIS) blue and red wavelengths, with red being the most absorbed.
BS5. B6. B7 B Red-Edge bands RE bands help distinguish photosynthetic activity from biomass and are key indicators for
T (RE) plant health and pigmentation, making them useful for vegetation classification.
Near-Infrared bands Leaves exhibit high reflectance and transmission in NIR bands, mainly related to leaf
BS, B8A B4 (NIR) ) structural properties and biomass. B8 (in Sentinel-2) and B4 (in Landsat-5) are particularly
useful for shoreline mapping, biomass, and vegetation analysis.
SWIR bands are mainly absorbed by water, making them useful for measuring soil and
Short-Wave Infrared . . AR . . L
B11, B12 BS, B7 vegetation moisture, distinguishing vegetation types and health stress, and differentiating
bands (SWIR)
snow from clouds.
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Fig. 7. Correlation matrix in the Aol for: (a) Sentinel-2 bands. (b) Landsat-5 bands.

This outcome indicates that having multispectral data closer
in time to the biomass observations (as with Landsat-5, where
both are from 2010) is more beneficial than relying on higher
spectral and spatial resolution but recorded further in time
(as with Sentinel-2, where biomass data is from 2010 and
multispectral data is from 2017). Therefore, the upcoming ex-
periments will primarily focus on Landsat-5 due to its temporal
proximity to the biomass observations. Nevertheless, we will
continue to conduct general experiments with Sentinel-2, as it
is expected to be the satellite of choice in the future—once
BIOMASS or NISAR data become available—given its open
access and superior spatial, spectral, and temporal resolutions
compared to Landsat.

As illustrated by the qualitative results in Fig. 6,
BiomSHARP consistently delivers sharper, more detailed pre-
dictions that align closer with the ground truth. In the bot-
tom row, the error maps reveal fewer red (blue) patches
in BiomSHARP’s output, indicating reduced overestima-
tion (underestimation) compared to other methods. Overall,
BiomSHARP better preserves critical details—such as bound-

aries and texture—resulting in cleaner transitions and less
blurring. While the enhancements may initially seem subtle,
they are consistently present across the scenes, underlining
BiomSHARP’s superiority in qualitative performance.

B. Band Redundancy

Multispectral bands capture different wavelength ranges,
each suited to specific applications. As shown in Table IV,
Sentinel-2 and Landsat-5 bands can be grouped into Visible
(VIS), Red-Edge (RE), Near-Infrared (NIR), and Short-Wave
Infrared (SWIR) categories, each providing distinct benefits
for vegetation monitoring.

Until now, we used all available bands to ensure a fair
comparison among models. However, the correlation matrices
in Fig. 7 reveal strong inter-correlation among certain bands
(in both Sentinel-2 and Landsat-5), especially within the
same spectral group. Leveraging this redundancy can reduce
memory usage without impacting performance. Although prior
research [68]-[79] suggests that some bands may be more
informative than others for AGB estimation, there is no
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TABLE V
COMPARISON OF THE USE OF DIFFERENT LANDSAT-5 BANDS IN BIOMSHARP ON VARIOUS METRICS, TRAINED AND EVALUATED IN THE AOI. THE
“MEM.” COLUMN REPRESENTS THE MEMORY THAT THE TRAINING DATA OCCUPY IN DISK. WE ALSO INCLUDE THE SGNET MODEL [43] TRAINED WITH
ALL BANDS FOR COMPARISON.

Model Bands | Mem. (}) | PSNR() | SSIM(1) | MSE() | RMSE()) | MAE ()
BiomSHARP B04 1.8 GB 23.80 (-) 0.62 (-) 1617.37 () 38.24 (-) 24.81 (-)
BiomSHARP B04, BO5 3.4 GB 24.53 (-) 0.67 (-) 1365.19 (-) 35.15 (-) 2232 (-)
BiomSHARP B04, B07 3.4 GB 24.56 (-) 0.67 () 1358.71 (-) 35.07 (-) 22.53 ()
BiomSHARP B03, B04 3.4 GB 24.65 (-) 0.68 (-) 1352.54 (-) 34.86 (-) 22.04 (-)
BiomSHARP | BO03, B04, B05 5.1 GB 24.86 (-) 0.69 (-) 1284.00 (-) 33.99 (-) 21.40 (-)
BiomSHARP | B03, B04, BO7 5.1 GB | 24.98 (0.04) | 0.70 (1.9e-3) | 1238.32 (12.02) | 33.44 (0.16) | 20.98 (0.08)
BiomSHARP | B01-05, BO7 (all) | 11 GB | 25.14 (0.02) | 0.71 (1.4e-3) | 1194.81 (7.95) | 32.84 (0.10) | 20.45 (0.06)

SGNet [43] | B01-05, BO7 (all) | 11 GB | 24.80 (0.01) | 0.69 (3.5¢-4) | 1280.10 (1.48) | 34.09 (0.02) | 21.68 (0.04)
TABLE VI

COMPARISON OF THE USE OF DIFFERENT SENTINEL-2 BANDS IN BIOMSHARP ON VARIOUS METRICS, TRAINED AND EVALUATED IN THE AOI. IN THE

“ALL” BANDS EXPERIMENT, WE ARE USING ALL THE BANDS WITH A RESOLUTION OF 10 OR 20 METERS (WE HAVE EXCLUDED THE 60M-RESOLUTION

BANDS SINCE THE OBJECTIVE RESOLUTION IS 25 METERS). THE “MEM.” COLUMN REPRESENTS THE MEMORY THAT THE TRAINING DATA OCCUPY IN
DISK. WE ALSO INCLUDE THE SGNET MODEL [43] TRAINED WITH ALL BANDS FOR COMPARISON.

Models | Bands | Mem. (1) | PSNR (1) | SSIM(1) | MSE() | RMSE()) | MAE ()
BiomSHARP | B04, B08, BI12 | 51GB | 2470 (0.02) | 0.68 (1.3e-3) | 1317.05 (10.56) | 34.52 (0.10) | 21.70 (0.09)
BiomSHARP | B02-08, B11-12, B8A (all) | 17 GB | 24.90 (0.06) | 0.70 (3.1e-3) | 1254.24 (14.60) | 33.70 (0.21) | 21.02 (0.15)
SGNet [43] | B02-08, B11-12, B8A (all) | 17 GB | 24.42 (0.04) | 0.66 (1.8¢-3) | 1400.91 (15.27) | 35.64 (0.17) | 22.79 (0.14)

universally agreed-upon subset or combination of bands for
optimal results. Hence, the objective of this experiment is to
verify whether fewer bands can preserve performance while
reducing memory usage.

To examine these redundancies more closely, we conducted
a series of Landsat-5 experiments with different band com-
binations to identify the most informative sets for biomass
estimation. We started with only the NIR band (band 4),
known for its sensitivity to leaf structure and high inter-species
variability. Next, we added a SWIR band (band 5 or 7) to
this NIR setup to capture water content and vegetation stress.
Afterward, we introduced a visible band (band 3) alongside the
NIR band to incorporate foliar pigment information. Finally,
we combined the NIR band with one SWIR band and one
visible band to check whether including all three spectral
groups yielded a meaningful performance boost over nar-
rower subsets. Given the computational demands, we limited
these experiments to Landsat-5 and replicated only the best-
performing combination for Sentinel-2.

BiomSHARP consistently shows minimal variability during
training (see Tables II and III, with standard deviations below
0.9% of the reported means); therefore, multiple trials for
each new experiment were deemed unnecessary. Repeating
them would not only use substantial computational resources
but also increase the environmental footprint without offering
additional insights. Nevertheless, for the sake of completeness,
we performed three independent runs for the best-performing
band configuration.

The region of study for this experiment was again the Aol
presented in Section III-C, with the same train-validation split
explained in Section V-A.

The results of the reduced-band experiment are presented
in Tables V and VI. Notably, the best-performing config-
uration—comprising NIR, SWIR (specifically Band 7), and
a visible band (Band 3)—achieves performance comparable
to using all available bands (next-to-last row in the tables),
while requiring less than half the memory. Furthermore, even
with only three input bands, BiomSHARP outperforms SGNet
(last row in the tables)—the strongest state-of-the-art model
evaluated—despite SGNet using the full set of spectral bands
and having three times more parameters (see Tables II and III
for model sizes).

C. Global Generalization

While the previous experiments focused on a relatively
small region in Europe, this section aims to demonstrate
BiomSHARP’s ability to generalize worldwide with only
modest amount of training data. Specifically, we leverage the
climate classification from [80] to categorize our data patches
into five distinct climatic classes: arid, boreal, equatorial,
polar, and warm temperate. After randomly selecting a subset
of patches from each class, we train five climate-specific
models (one per class) and one global model that aggregates
patches from all classes; these models use only the three
best-performing bands identified in our Band Redundancy
experiment (see Section V-B). For Sentinel-2, we trained only
climate-specific models—not a global one—as these models
were simpler to optimize and, based on the results with
Landsat-5 data, generally outperformed the global model in
each climatic region or showed only marginal differences.
Fig. 8 illustrates the geographical distribution of the available
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data for both Landsat-5 and Sentinel-2, with the climatic
classification along with the chosen training patches.

To evaluate the performance of these models across different
climates, we report MAE values for each region in Figures
9 and 10, using Landsat-5 and Sentinel-2 as multispectral
input data, respectively. As shown, BiomSHARP consistently
outperforms the simple upsampling by quadriplicated pixels
(Naive method) and bicubic interpolation in all climatic re-
gions—whether implemented as climate-specific models or
as a global model—with one exception: in the polar region
using Landsat-5 data, where the baseline methods achieve
lower errors. We attribute this exception to the underrepre-
sentation of these low-vegetation, low-biomass areas in our
training data, suggesting that additional training samples could
enhance performance in these regions. Furthermore, while
climate-specific models generally exhibit lower MAE values
than the global model—reflecting their specialization in local
conditions—the global model remains highly competitive and,
in certain instances, even outperforms the specialized models,
highlighting its adaptability across multiple regions.

Comparing model performance across climatic regions,
boreal, equatorial, and warm temperate areas show higher
MAE values—with the equatorial region having the highest
error—while arid and polar regions yield much lower errors.
This is expected because arid and polar areas have sparse
or no vegetation (mostly sand, rocks, and snow), resulting in
nearly zero AGB and easier predictions. In contrast, regions
with abundant vegetation composed of diverse species (like
boreal, equatorial, and warm temperate areas) have higher and
more variable AGB values, making accurate predictions more
challenging.

Overall, these experiments demonstrate that the benefits of
BiomSHARP observed in the Aol of Europe extend success-
fully to global applications. Training with just a subset of
patches from each climatic class is sufficient for BlomSHARP
to capture the key characteristics of different vegetation types
and environmental contexts.

All these climate-specific models for both Landsat-5 and
Sentinel-2, and the global model for Landsat-5, are available
to download from our GitHub repository.

D. Temporal Generalization

To further evaluate the reliability of BiomSHARP in real-
world applications, we assess its performance in estimating
AGB for France in the year 2020. This experiment provides
an opportunity to test BiomSHARP’s ability to generalize to
future years beyond its training data from 2010. By compar-
ing the AGB predictions of BiomSHARP against reference
biomass estimates from [58], we can determine whether the
model can effectively capture temporal variations in biomass
distribution despite being trained on a single reference year.
The validation is performed by resampling our model’s 25m-
resolution biomass predictions to 30m resolution for direct
comparison with the reference data (see Section III-A), ensur-
ing consistency in spatial resolution.

The results in Table VII demonstrate that the BlomSHARP
model, trained solely on AGB data from 2010 and Sentinel-2

data from 2017 using bands 4, 8, and 12, outperforms the other
tested interpolation methods. With a MAE of 14.13 compared
to 16.67 for the Naive method, 15.45 for bicubic, and 15.18 for
SGNet, BiomSHARP effectively captures biomass variations
despite being trained on data from a decade earlier. Notably,
BiomSHARP delivers these results with only 3.4 million pa-
rameters, whereas SGNet employs 9.2 million. This indicates
strong temporal generalization capability, but suggests that
performance could further improve if more recent data were
available.

It is important to note that no analogous experiment was
conducted using Landsat-5 data, as the sensor was no longer
operational in 2020. However, this is not necessary for validat-
ing temporal generalization, since the current experiment with
Sentinel-2 already demonstrates the capability of BiomSHARP
to generalize to future years using only past training data.

TABLE VII
PERFORMANCE COMPARISON OF BIOMSHARP vS. BASELINE MODELS
FOR AGB ESTIMATION IN FRANCE (2020). SGNET AND BIOMSHARP
WERE TRAINED ON THE AOI (SEE FIG. 2) USING 2010 AGB DATA AS
WELL AS 2017 SENTINEL-2 BANDS 4, 8, AND 12.

Model | PSNR (1) | SSIM () | MSE (/) | RMSE (}) | MAE (})

Naive 25.72 0.71 1930.67 39.49 16.67

Bicubic 26.39 0.74 1668.42 36.67 15.45
SGNet [43] 27.04 0.76 1439.41 34.07 15.18
BiomSHARP 27.47 0.78 1302.14 32.34 14.13

VI. CONCLUSIONS

BiomSHARP leverages guided super-resolution to enhance
low-resolution biomass maps by fusing them with high-
resolution multispectral data. Our experiments in a predefined
Aol demonstrate that BiomSHARP consistently outperforms
classic interpolation methods and state-of-the-art DL. models
across all metrics (MAE, MSE, RMSE, PSNR, and SSIM),
while using fewer parameters. This underscores the strength
of integrating coarse biomass data with detailed multispectral
guidance.

Our analysis comparing Sentinel-2 and Landsat-5 inputs re-
vealed that multispectral data temporally closer to the biomass
observations (as with Landsat-5) offers slightly better perfor-
mance than data with higher spectral and spatial resolution but
acquired at a later time (as with Sentinel-2). However, once
the BIOMASS and NISAR satellites are launched, biomass
observations will be available for the same year as Sentinel-
2 data, eliminating the need to sacrifice temporal proximity,
spectral detail, or spatial resolution.

Furthermore, our experiments on spectral band redundancy
show that even a minimal set of three bands—one NIR,
one SWIR, and one VIS—can yield near-optimal results.
This reduces memory usage without compromising accuracy.
Notably, BlomSHARP with just these three bands still outper-
forms SGNet, despite SGNet using all bands and having three
times more parameters. Global experiments confirmed the
robust generalization of the model across almost all climatic
regions with both Landsat-5 and Sentinel-2.

Importantly, the temporal generalization experiment for
AGB estimation in France 2020 shows that even when trained
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Fig. 8. Climatic classification of all available patches along with the selected training patches: 4 equatorial, 4 boreal, 4 warm temperate, 2 polar, and 2 arid
(only 1 for Landsat-5). Patches with a striped pattern denote the training set, while the remaining patches form the test set. (a) Landsat-5 classification data.

(b) Sentinel-2 classification data.
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Fig. 9. MAE comparison across climate regions using Landsat-5 multispectral
data. Empty bars represent the Naive method, dotted bars the bicubic method,
striped bars BiomSHARP Global Models, and solid bars BiomSHARP
Climate-Specific Models.

solely on 2010 data, BiomSHARP not only enhances the
resolution of 2020 AGB data but also achieves lower error
values compared to other interpolation methods. However, the
fact that we only had access to global high-resolution AGB
data from 2010 also limits our study; with more recent high-
resolution AGB data, we could further improve the model and
achieve even better temporal generalization. This suggests that
retraining with updated data when available could yield further
improvements.

In the near future, as ESA’s BIOMASS and NASA-ISRO’s
NISAR satellites are launched and actual satellite observations
becomes available, it will be possible to fine-tune and validate
our models to adapt optimally to these new data. To facilitate
this, we have released all trained checkpoints—including the
global model for Landsat-5 and all climate-specific models for
both Landsat-5 and Sentinel-2—in our public GitHub repos-
itory, enabling practitioners to apply or adapt BiomSHARP
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25 1 - Specific Models
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N _
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5 |
0 T II' II. T T T
Arid Boreal Equatorial Polar Warm Global
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Fig. 10. MAE comparison across climate regions using Sentinel-2 multispec-
tral data. Empty bars represent the Naive method, dotted bars the bicubic
method, and solid bars BiomSHARP Climate-Specific Models.

directly to their own regions or datasets.

In conclusion, BiomSHARP offers a promising solution for
producing high-resolution biomass maps from low-resolution
biomass data, such as the one that will be available from the
BIOMASS and NISAR missions. These maps are essential for
modeling carbon stocks and flows, monitoring forest health,
assessing biodiversity, and tracking ecological disturbances
[1]. The demonstrated accuracy, computational efficiency, and
adaptability of BiomSHARP make it a valuable tool for en-
hancing biomass assessments and informing climate policies.
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