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Abstract 

Background  Dirofilariosis is a vector-borne zoonotic disease primarily caused by the parasitic nematodes Dirofilaria 
immitis and D. repens. In Europe, the disease has expanded from traditionally endemic southern countries to central 
and northeastern regions, many of which are now also considered endemic. This study aimed to generate infection 
risk maps for dirofilariosis in Europe using ecoinformatic tools, at both annual and monthly scales, to serve as a pre‑
vention tool and contribute to more effective control of the disease, as well as helping to stop its spread.

Methods  A habitat suitability map was generated for the two most important and widely distributed culicid vec‑
tors in Europe (Culex pipiens and Aedes albopictus). This map was weighted with the number of D. immitis generations 
in the vectors, both annually and monthly. The resulting annual risk map was validated with georeferenced records 
of D. immitis- and D. repens-infected dogs and cats. In addition, a future habitat suitability projection for both vector 
species was performed for the year 2100 under the Representative Concentration Pathway (RCP) 8.5 climate change 
scenario.

Results  Dirofilariosis infection risk in Europe is highest in southern countries, where favorable climatic conditions 
and increased vector activity coincide. Central Europe showed medium- to high-risk values, while northern latitudes 
exhibited low or very low risk, correlating with lower average temperatures. Of the geolocated infected animals, 
35.9%, 51% and 13% were located in high-, medium-, or low-risk areas, respectively. Infection risk appears to be very 
limited during winter, restricted mainly to Mediterranean coastal areas, the Canary Islands (Spain), and Madeira (Por‑
tugal); while in spring/summer it becomes high in these places and moderate across other parts of the range such us 
central and northeastern Europe. The 2100 projection predicts a 161.6% increase in habitat suitability for the vectors, 
particularly in northeastern regions, high-altitude areas, and northernmost countries.

Conclusions  The combined use of habitat suitability for Culex pipiens and Aedes albopictus and the number of Diro-
filaria spp. generations allowed the development of a more comprehensive color-coded dirofilariosis infection risk 
map than previously available. Monthly infection risk maps across Europe could help guide targeted prevention 
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and control measures, disrupt disease establishment in specific areas and seasons, and raise awareness about infec‑
tion risks in both animals and humans.

Keywords  Europe, Dirofilariosis, Dirofilaria immitis, Dirofilaria repens, Culex pipiens, Aedes albopictus, Ecological niche 
model, Number of generations of Dirofilaria spp., Annual infection risk, Monthly infection risk

Background
Species of the genus Dirofilaria are parasitic nematodes 
responsible for dirofilariosis, a vector-borne zoonotic 
disease. The two most relevant species are Dirofilaria 
immitis (heartworm disease) and D. repens (subcutane-
ous dirofilariosis). The definitive hosts of these parasites 
include both domestic and wild canids and felids, with 
domestic dogs serving as the main reservoir. Other hosts 
such as domestic cats, ferrets, and wild carnivores may 
also be affected [1, 2], while humans are considered acci-
dental hosts [3, 4]. Culicid mosquitoes, including species 
of the genera Culex, Aedes, Anopheles, and Coquillettidia, 
act as vectors of the parasites [5, 6].

Both D. immitis and D. repens adults release microfilar-
iae into the bloodstream of their definitive hosts. When 
mosquitoes take a blood meal, they ingest these micro-
filariae, which then undergo two molts within the vec-
tor to develop into the infective third-stage larvae (L3). 
Upon subsequent blood feeding, the mosquito inocu-
lates the L3 larvae into a new host. This developmental 
process is temperature-dependent, taking approximately 
16–20  days at 22  °C, and only 8–10  days at 28–30  °C. 
Temperatures below 14 °C inhibit larval development but 
preserve their viability [7].

In Europe, dirofilariosis is a dynamic disease, regarded 
for years as emerging or re-emerging, and is currently 
present across much of the continent. Heartworm dis-
ease was historically endemic only in Mediterranean 
countries (Spain, France, Greece, Italy, Portugal, and 
Turkey). However, D. immitis has now been reported 
in Albania, Germany, Austria, Bulgaria, Czech Repub-
lic, Croatia, Slovakia, Hungary, Moldova, Romania, 
Serbia, southern Russia, and Ukraine, many of which 
are now considered endemic areas [8–10]. Similarly, D. 
repens, previously confined to southern and southeastern 
regions (e.g., Bulgaria, Spain, Greece, Italy, Romania, and 
Turkey), has spread over the past decade to central and 
northern European countries such as Germany, Austria, 
Belarus, Slovakia, Estonia, Hungary, Latvia, Lithuania, 
Poland, and Ukraine [1, 5, 9–14].

The distribution and expansion of dirofilariosis is influ-
enced by numerous environmental and social factors, 
including climate change, the introduction of new vector 
species, increased anthropogenic activity (e.g., irrigation 
zones, urban development, and the creation of stag-
nant water bodies), enhanced transportation networks, 

and the greater movement of people and animals. This 
includes a growing number of pets traveling to endemic 
or imported case-reporting areas [1, 8]. Some health-
based control measures include preventive treatment in 
domestic animals, avoidance of mosquito bites, and the 
diagnosis and treatment of all hosts involved [4, 15]. In 
addition, predictive mapping tools based on ecologi-
cal niche modeling (ENM) have been developed. These 
models estimate infection risk by correlating vector and 
host presence records with environmental variables [16, 
17]. ENMs have been used to model the distribution of 
infected hosts [18–22] and vectors involved in transmis-
sion [23, 24, 89, 90, 91, 92, 93, 94, 95], as well as to assess 
infection risk by integrating the potential distribution 
of one or more vectors and the parasite’s development 
within them [25–27].

Several local and national studies in Europe have esti-
mated the risk of dirofilariosis transmission solely on 
the basis of temperature records [28–37]. More recently, 
models have integrated habitat suitability and the esti-
mated number of annual Dirofilaria spp. generations in 
vectors in countries such as Spain, Greece, Italy, Portugal, 
and Serbia [25, 38–41]. At the continental level, infec-
tion risk has so far only been estimated by calculating the 
number of annual generations of Dirofilaria spp. within 
vectors [42, 43].

Therefore, the aim of this study was to assess the risk 
of dirofilariosis infection across Europe by generating 
colorimetric maps at both monthly and annual scales. 
These maps are based on ecological niche modeling of 
the main vectors and the estimated number of parasite 
generations within them. In addition, the study projects 
vector habitat suitability by the year 2100 under climate 
change scenarios. This approach seeks to provide a useful 
prevention and control tool for medical and veterinary 
professionals, pet owners, and the general public, within 
a One Health framework.

Methods
Study area: Europe
Europe covers about 10 million km2 in the Northern 
Hemisphere, bordered by the Arctic Ocean to the north, 
the Atlantic Ocean to the west, and the Mediterranean 
Sea to the south [44]. The most widespread climate 
according to the Köppen–Geiger classification is humid 
continental (Df), located in the center and east of the 
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continent, with cold winters, cool summers, and rainfall 
throughout the year. Countries near the Mediterranean 
Sea have a Mediterranean climate (typical Mediterranean 
climate [Csa] and typical Mediterranean climate with 
warm summers [Csb]), with mild winters, dry and warm 
summers, and rainfall concentrated mainly in spring and 
autumn. Western Europe has an oceanic climate (Cfb) 
with cold or mild winters, cool summers, and rainfall 
throughout the year. In northern Europe, the predomi-
nant climate is subarctic continental (Dfc), characterized 
by very cold, long winters with snowfall and cold sum-
mers. Finally, in the far north, there are areas with a tun-
dra climate (ET), where the average temperature does not 
exceed 10  °C in any month. Noteworthy are the Canary 
Islands (Spain), as well as the Azores and Madeira (Por-
tugal), which have subtropical characteristics, with mild 
temperatures throughout the year, dry summers, and sig-
nificant variations in rainfall [45, 46].

Presence data
Geolocated presence points for the dirofilariosis vec-
tors Cx. pipiens (8691) and Ae. albopictus (19,878) were 
obtained from: (1) the Global Biodiversity Information 
Facility (GBIF) data repository [47]; (2) the European 
Network for Medical and Veterinary Entomology of the 
European Centre for Disease Prevention and Control 
[48]; and (3) additional reported data [38, 49–56]. These 
vectors are the most important and widely distributed 
culicid mosquito species on the European continent [8, 
57]. These data were processed to avoid spatial autocorre-
lation biases in the abundance and distribution of obser-
vations. A 1 km2 grid was superimposed, leaving only one 
observation per square. At the end of the process, the 
number of presence points was 2502 for Cx. pipiens and 
2378 for Ae. albopictus (Supplementary Fig. S1).

Bioclimatic and environmental variables
In total, 19 bioclimatic variables (1970–2000) related to 
temperature and precipitation were downloaded from 
the WorldClim climate database [58], both for the pre-
sent and for projections to 2100 under a climate change 
scenario. To avoid cross-correlation and improve model 
calibration, a multicollinearity test was performed in 
R software [59] using Pearson’s correlation coefficient. 
Variables with a correlation coefficient equal to or greater 
than 0.8 were discarded [60]. After this analysis, the 
selected variables were: annual mean temperature (BIO1), 
isothermality (BIO3), temperature seasonality (BIO4), 
mean temperature of wettest quarter (BIO8), mean tem-
perature of driest quarter (BIO9), annual precipitation 
(BIO12), and precipitation seasonality (BIO15). In addi-
tion, a series of environmental variables important for 
vector survival were also downloaded: human footprint 

(built environment, population density, electrical energy 
infrastructure, cropland, grazing land, roads, railways, 
and waterways) [61], rivers, water bodies, irrigated crops 
[62], and shrub and herbaceous density [63]. All down-
loaded variables had a resolution of 1 km2 per pixel and 
were processed in ArcMap 10.8 software to crop them to 
the same extent (the European continent) and give them 
the same coordinates (GCS_WGS_1984).

Ecological niche models
To generate habitat suitability models for Cx. pipiens 
and Ae. albopictus, the MaxEnt algorithm [64] was used, 
automated by the Kuenm package [60] in R software [59]. 
MaxEnt calculates the habitat suitability of species on the 
basis of their climatic and environmental requirements, 
and Kuenm generates all possible models with param-
eter combinations and selects the best one, taking into 
account statistical significance (partial receiver operating 
characteristic [ROC] < 0.05) with 100 iterations and 50% 
of the presence data used for bootstrapping, the omission 
rate (OR = 5%), and complexity using the Akaike infor-
mation criterion. A total of 119 models were generated 
for each species by combining the following parameters: 
a single set of variables, 17 regularization multiplier val-
ues “M” (0.1–1.0 at intervals of 0.1; 2–6 at intervals of 1, 
8, and 10), and seven possible combinations of three fea-
ture classes “F” (linear, quadratic, and product). All gen-
erated models were validated with the mean ratio of the 
area under the curve (AUC), using independent occur-
rence points (80% for training and 20% for testing). The 
final habitat suitability models for Cx. pipiens and Ae. 
albopictus, selected on the basis of the best performance 
according to Kuenm’s criteria, were generated again using 
the clamping extrapolation option, obtaining ten repli-
cates with the same combination of parameters chosen in 
the previous step. The pixels composing the habitat suit-
ability maps for both species of culicid mosquitoes were 
weighted in the same proportion (50–50) using the fol-
lowing formula, where ENMc and ENMa are the habitat 
suitability values for Cx. pipiens and Ae. albopictus mod-
els, respectively: 

Dirofilaria spp. generations
We calculated the number of generations of Dirofilaria 
spp. per year and in each of the 12  months of the year 
using the method described by Rodríguez-Escolar et  al. 
[25] and Genchi et  al. [42] based on our own R script. 
This methodology adds up the degrees Celsius (grow-
ing degree days or GDDs) in which the average daily 
temperature exceeds 14  °C, the minimum threshold 

ENM weighted =
ENMc*50+ ENMa*50

100
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necessary for the development of L3 larvae of the parasite 
in the mosquito (extrinsic incubation). A complete gen-
eration requires at least 130 GDDs within the mosquito’s 
lifespan, within a maximum of 30  days. The number of 
generations of Dirofilaria spp. per year were calculated 
by averaging the generations contained in each of the 
12 months. To perform these calculations, the most up-
to-date variables of average daily temperature across the 
continent from 1990 to 2016 were downloaded [65].

Dirofilaria spp. risk map and its validation
The habitat suitability model for both species was 
weighted by the number of generations of Dirofilaria spp. 
in a year and in each of the 12 months in the same pro-
portion (50–50), obtaining an average infection risk map 
for the whole of Europe and, in addition, a risk map for 
each month of the year, using the following formula: 

To validate the average infection risk map, we used 
the Natural Jenks classification method (breaks) in Arc-
Map with five risk classes (“very high,” “high,” “medium,” 
“low,” and “very low”). The georeferenced points of dogs 
and cats infected with D. immitis or D. repens (5408) 
were obtained from myVBDmap [66] and other scientific 
reports [8, 41, 57, 67–74] and superimposed on the aver-
age risk map.

Projection to the year 2100 and rank‑change analysis
To make the projection for the year 2100, the ENMs for 
both vectors were generated again using the same param-
eters selected for the models generated today but incor-
porating the projections of the bioclimatic variables for 
the period 2081–2100. The HadGEM3-GC31-LL model 
was used to analyze the effect of climate change under 
the Representative Concentration Pathway (RCP) 8.5 sce-
nario [75, 76], one of the most widely used and evaluated 
general circulation models (GCM) in ecological niche 
modeling studies, as it adequately captures important 
climate patterns for Europe [77, 78]. The current model 
(present) and the model for the year 2100 (future) were 
transformed into binary maps of presence and absence 
using the 10th percentile threshold of the current map. 
Finally, a range change analysis was performed using the 
R package biomod2, which calculates the percentage of 
pixels that gain or lose habitat suitability for both vectors 
in the year 2100 compared with the current model [79].

Results
Habitat suitability models for Cx. pipiens and Ae. albopictus
Out of the 119 habitat suitability models generated for 
each vector, the model M_0.3_F_lqp (AUC = 0.828) was 

Riskmap =
ENMweighted ∗ 50+ GenerationsofDirofilaria ∗ 50

100

selected for Cx. pipiens, and M_0.1_F_lp (AUC = 0.877) 
for Ae. albopictus, as they best met the Kuenm selection 
criteria (Supplementary Fig. S2). Regarding variable con-
tribution, for the Cx. pipiens habitat suitability model, the 
most influential variables were BIO4 (temperature sea-
sonality), water bodies, and human footprint, contribut-
ing 22.7%, 22.7%, and 20.9%, respectively. In the case of 
the Ae. albopictus model, the top contributing variables 
were human footprint (20%), BIO1 (mean annual temper-
ature, 16.6%), and water bodies (13.3%). The least influ-
ential variables in both models were river proximity and 
shrubland density (Table  1). Using an equal weighting 
scheme (50–50), the two models were combined to gen-
erate a final habitat suitability map for both vectors. The 
most suitable habitats were located in areas with higher 
average temperatures, coastal regions, river-adjacent 
zones, urban environments, and irrigated agricultural 
lands. High suitability was observed across southern 
countries (Spain, Portugal, France, Italy, and Greece), as 
well as along the Adriatic and Black Sea coasts, south-
western UK, the Belgian and Dutch coastlines, and areas 
near major rivers in central Europe (Fig. 1).

Number of extrinsic generations of Dirofilaria spp.
Supplementary Fig. S3 shows the average annual num-
ber of Dirofilaria spp. extrinsic generations in vectors 
across Europe. The highest number of generations (> 4) 
occurred mainly in southern European regions, such as 
the southwestern Iberian Peninsula and the archipela-
gos of the Canary Islands, Azores, and Madeira (Spain 

Table 1  Percentage contribution of the variables selected in the 
ecological niche model for Cx. pipiens and Ae. albopictus 

Percentage contribution

Variable Culex pipiens (%) Aedes 
albopictus 
(%)

Water bodies 22.7 13.3

Temperature seasonality (BIO4) 22.7 13.1

Human footprint 20.9 20

Annual mean temperature (BIO1) 16 16.6

Isothermality (BIO3) 6.5 11.4

Mean temperature of driest quarter (BIO9) 4.2 9.8

Precipitation seasonality (BIO15) 2.7 4

Annual precipitation (BIO12) 1.7 2.7

Mean temperature of wettest quarter 
(BIO8)

0.7 6.3

Herbaceous density 0.7 1

Shrub density 0.5 0.23

Irrigated crops 0.5 1.4

Rivers 0.1 0.2



Page 5 of 15Rodríguez‑Escolar et al. Parasites & Vectors          (2025) 18:516 	

and Portugal), as well as along Mediterranean coastal 
areas—including the Levantine coast and Balearic Islands 
(Spain), Sicily and Sardinia (Italy), the Aegean coastline 
and islands (Greece), and the southeastern coast of Ana-
tolia (Turkey). The lowest number of generations was 
found in mountainous areas and in northern Europe.

Regarding the monthly generation maps (Fig.  2), July 
showed the greatest number of locations with a high 
number of generations, with very high values (> 8) across 
Mediterranean countries (Spain, Portugal, southern 
France, Italy, Greece, and Turkey), and moderate-to-high 
values across most of the continent, except in northern 
latitudes and high-altitude mountain areas. In contrast, 
January had the lowest generation numbers, reaching 
zero across nearly all of Europe, except for some coastal 
Mediterranean zones.

Annual infection risk map for dirofilariosis and its 
validation
The resulting map from the weighted combination of 
both vector ENMs and the average generation map for 
Dirofilaria spp. is shown in Fig. 3a. This map represents 
the average annual risk of dirofilariosis infection across 

Europe. The highest infection risk areas were mainly 
located in southern countries, such as Spain and Portu-
gal—particularly in the southwestern Iberian Peninsula, 
the Levantine coast, the Ebro Basin, the Balearic and 
Canary Islands (Spain), and the Azores (Portugal). Other 
high-risk regions included the French Riviera, the Italian 
coastline (including Sicily and Islands of Sardinia) with 
the Po Valley, Albania, the Aegean region, and south-
western Turkey. Central Europe presented medium-to-
high infection risk values, whereas northern latitudes 
(e.g., the Scandinavian Peninsula, northern UK), charac-
terized by lower temperatures, displayed low or very low 
infection risk. The validation of the model (Fig. 3b), using 
5408 georeferenced infection cases, showed that 35.9% 
occurred in high/very high-risk zones, 51% in medium-
risk zones, and 13% in low-risk zones.

Monthly infection risk maps for dirofilariosis
Analysis of monthly risk maps throughout the year 
(Fig. 4) revealed that during the winter months, infec-
tion risk was very low across almost the entire conti-
nent, except for some coastal areas of Mediterranean 
countries (Spain, Portugal, Italy, Greece, and France). 

Fig. 1  Weighted (50–50) habitat suitability map (ecological niche model) for Culex pipiens and Aedes albopictus in Europe
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In spring, infection risk gradually increased from south 
to north. In summer (Fig. 5), infection risk rose signifi-
cantly across most of the continent, except at higher 
latitudes (northern UK, northern Russia, and Scandina-
via) and in mountainous areas. Southern Europe, with 
its warmer climate, showed very high infection risk val-
ues, while central Europe ranged from moderate to high 

risk. Finally, during autumn, infection risk declined 
gradually from north to south.

Projection of habitat suitability for vectors in 2100
The future projection of habitat suitability for Cx. pipi-
ens on 2100, under a climate change scenario, generated 
a gain of 84.89% and a loss of 0.11%. For Ae. albopic-
tus, the gain in habitat suitability was 336.13% and the 

Fig. 2  Number of generations of Dirofilaria spp. in Europe every 2 months (January, March, May, July, September, and November)
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Fig. 3  A Risk map of dirofilariosis infection in Europe and B with the georeferenced points of dogs and cats infected with D. immitis or D. repens 
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loss was 1.06% (Supplementary Fig. S4). The future 
projection for both species (Fig. 6a) shows a consider-
able increase in habitat suitability for both vectors. The 
range-change analysis for each species is shown in Sup-
plementary Fig. S5 and for both species in Fig. 6b. The 
latter indicates a 161.6% increase in suitability at the 
European territory level. This increase occurs mainly 
in the north-eastern regions of the continent, at higher 
latitudes, and in higher altitude areas, which currently 

have cold climates and low suitability for the presence 
of these vectors. In the rest of the territories, the risk 
remains stable.

Discussion
In Europe, dirofilariosis has continued to expand over 
recent decades [3–5, 8]. Several factors are associ-
ated with this expansion, including climate change, the 

Fig. 4  Risk map of dirofilariosis infection in Europe from January to June (first 6 months of the year)
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increasing number of pet travel, and the lack of preven-
tive actions in animal hosts [8, 15].

Studies aiming to assess the infection risk of dirofilari-
osis in Europe as a control strategy are still scarce. Some 
have relied exclusively on temperature records, often 
assuming an oceanic climate throughout Western Europe 
with sufficient humidity and warmth for the parasite 
to develop within the vector [30, 35, 36, 38, 42, 43, 80]. 

Other studies, conducted at national or regional scales in 
Spain, Portugal, Italy, Serbia, and Greece, have integrated 
habitat suitability models for one vector species with 
the estimated development of Dirofilaria spp. within 
that vector [25, 39–41]. However, these efforts remain 
geographically limited and fail to provide an integrated 
overview of the infection risk across the entire European 
continent.

Fig. 5  Risk map of dirofilariosis infection in Europe from July to December (last 6 months of the year)
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Fig. 6  A Projection of weighted (50–50) habitat suitability for Cx. pipiens and Ae. albopictus in Europe for the year 2100 under the RCP 8.5 climate 
change scenario. B Range-change analysis of weighted (50–50) range change for Cx. pipiens and Ae. albopictus in Europe for the year 2100, showing 
areas of gain and loss and those that remain unchanged in terms of habitat suitability
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In our study, we evaluated the potential risk of Dirofi-
laria spp. infection across Europe by generating a color-
coded map at both annual and monthly scales. This was 
carried out by modeling the habitat suitability of the 
two most relevant and widely distributed vector species 
in Europe (Culex pipiens and Aedes albopictus) using 
ecological niche models (ENMs), and weighting these 
maps by the estimated number of parasite generations 
within the vector. This approach represents a significant 
advancement, as it yields temporally targeted depiction 
of the current infection risk across Europe. In addition, 
the high spatial resolution (~1 km2) allows for the devel-
opment of more localized prevention strategies.

The ENMs developed for both vector species yielded 
high AUC values (> 0.8), indicating strong predictive 
performance in discriminating between presence loca-
tions and background environmental conditions. The 
most influential variables in the distribution of Cx. pipi-
ens were temperature seasonality (BIO4) and proximity 
to water bodies (22.7% each), while for Ae. albopictus, 
human footprint and mean annual temperature (BIO1) 
were the main contributors (≥ 16.6% each). This confirms 
the pivotal role of temperature-related variables in vector 
survival, with low precipitation acting as a limiting factor 
for mosquito establishment [8, 81, 82]. However, the neg-
ative effects of low rainfall are often compensated by the 
presence of natural and artificial water bodies, irrigated 
agricultural zones, and urban areas that provide suitable 
habitats for vector reproduction—areas where previous 
studies have reported high prevalence of canine dirofilar-
iosis [74]. In the case of Ae. albopictus, the high contri-
bution of human footprint as a predictor variable aligns 
with its well-known anthropophilic and urban-adapted 
behavior [41, 83]. Therefore, it is not surprising that 
aside from temperature-related factors, water availability 
and human activity are among the main contributors to 
the habitat suitability of Cx. pipiens and Ae. albopictus, 
respectively.

With regard to the continental risk map for dirofilari-
osis, high-risk zones were mainly located in areas with 
elevated temperatures, both natural and artificial water 
sources, and high human footprint—settings where dogs 
and humans coexist closely, increasing the zoonotic 
infection potential [1, 8]. Conversely, colder regions and 
mountainous zones presented low risk values, in line 
with the limited vector presence reported in such areas. 
Monthly infection risk maps revealed seasonal variation, 
with very low risk during winter months except for some 
coastal Mediterranean areas. Risk increased progres-
sively throughout spring, reaching its peak in summer 
across most of Europe—except in the highest latitudes 
and mountainous areas—consistent with the seasonal 

dynamics of the disease described in previous studies [28, 
42, 43].

Our projection for the year 2100 suggests a 161.6% 
increase in habitat suitability for both vector species as 
a result of climate change. This projection indicates a 
potential spread of Cx. pipiens and Ae. albopictus into 
northeastern Europe, more northern latitudes, and 
mountainous regions—areas that were previously non-
endemic—unless control measures are implemented. 
Climate change appears to influence the thermal limits 
for transmission, which may substantially alter the sea-
sonal patterns and geographic distribution of zoonotic 
diseases in cooler countries, as reflected in our findings 
[35, 84–88].

An additional factor that may influence the distri-
bution and persistence of dirofilariosis, particularly in 
southern Europe, is the growing population of stray or 
unowned dogs and cats. These animals often remain 
outside veterinary surveillance programs and do not 
receive prophylactic treatment, enabling the mainte-
nance of local transmission cycles even in areas where 
preventive measures are widely applied to owned pets. 
Their presence in urban and periurban environments, 
frequently overlapping with high-risk zones identified 
on our maps, may thus contribute to sustaining para-
site circulation and reintroduction after control efforts. 
Incorporating data on stray animal populations and 
their infection rates into future models would improve 
the accuracy of risk assessment and help design more 
effective One Health-based intervention strategies.

Among the limitations of our study, the vector component 
should be highlighted first. The present records compiled 
from GBIF/VectorNet and literature are subject to spatial 
sampling biases and temporal heterogeneity. Furthermore, 
the 50–50 weighting of the two vector ENMs implicitly 
assumes an equal contribution across space and seasons, 
whereas vector competition, urban versus rural bionomics, 
and diapause vary geographically. Second, the thermal devel-
opment module uses generalized thresholds (≥ 14  °C; ≥ 130 
GDD in ≤ 30  days) and does not explicitly account for 
humidity, vector longevity, microclimatic effects (e.g., urban 
heat islands), or nonlinear thermal responses. Third, envi-
ronmental layers and different time bases may smooth 
microhabitats and introduce temporal mismatch. Fourth, 
validation using georeferenced cases of dogs and cats is lim-
ited by underreporting, diagnostic variability, uncertainty 
about the timing of infection, travel history, and geolocation 
inaccuracies; consequently, monthly risk could not be empir-
ically validated. Finally, climate projections were based on a 
single global climate model and a high emissions pathway, 
which does not reflect structural and scenario uncertainty. 
These caveats delineate priorities for future work, includ-
ing multivector ENMs with biased background correction, 
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integration of host and intervention layers, joint climate pro-
jections, and prospective entomological and serological vali-
dation with monthly resolution.

Conclusions
This study presents the first Europe-wide assessment of 
Dirofilaria spp. infection risk. The spatiotemporal maps 
show a clear seasonal pattern, with risk increasing from 
winter to summer and peaking in July, particularly in 
southern and Mediterranean regions where conditions 
favor vector and parasite development. These maps pro-
vide a valuable tool for guiding surveillance, diagnosis, 
and control of dirofilariosis in Europe. Their application 
supports targeted prevention, prioritization of interven-
tion areas, and incorporation of the One Health approach 
into the management of this emerging vector-borne 
zoonosis.
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