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Abstract
Highly unsaturated fatty acids are essential components of

cellular membranes of vertebrates and can modulate

physiological processes, including membrane transport,

receptor function and enzymatic activities. In gilthead sea

bream, dietary deficiencies of essential fatty acids of marine

fish raise the basal cortisol levels and alter the pattern of

cortisol release after stress. The aim of the present study was to

clarify the effect of different essential fatty acids on

adrenocorticotropic hormone (ACTH)-induced cortisol

production and release in fish, through in vitro studies of sea

bream interrenal cells maintained in superfusion and

incubated with different types of fatty acids and eicosanoid

production inhibitors. Results showed the first evidence of

the effect of certain fatty acids on cortisol production by
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ACTH-stimulated interrenal cells in fish. Both arachidonic

acid (ARA) and particularly eicosapentaenoic acid (EPA)

promoted cortisol production in sea bream interrenal cells.

Moreover, incubation with indometacin (INDO) reduced

the increased cortisol production induced by EPA and ARA,

suggesting mediation by their cyclooxygenase-derived

products. Docosahexaenoic acid stimulated cortisol pro-

duction to a lesser extent than that caused by EPA or ARA,

but the inhibitory effect of INDO was not as marked as it was

for the other fatty acids. In contrast, supplementation with

dihomogammalinoleic acid reduced cortisol production,

denoting the inhibitor effect of this fatty acid in cortisol

secretion.
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Introduction

Highly unsaturated fatty acids with 20 or more carbon atoms

and three or more double bonds (HUFA) are essential

components of cellular membranes and can modulate

physiological processes, including membrane transport,

receptor function and enzymatic activities. Hence, dietary

fatty acids have been shown to have marked effects on a variety

of immunological and haemostatic parameters (Balfry et al.

2001, Montero et al. 2001). HUFA possess a wide range of

cellular functions. One of the most important functions is to

supply precursors for the synthesis of eicosanoids, which are

produced in response to various extracellular stimuli by two

main types of dioxygenase enzymes: cyclooxygenases (COX)

and lipoxygenases (Horrobin 1983). Following cell stimu-

lation, both arachidonic acid (ARA; 20:4n-6) and eicosapen-

taenoic acid (EPA; 20:5n-3) are released from the membrane

by the action of phospholipase A2. Later these fatty acids are

transformed by a range of lipoxygenases and cyclooxygenases

to yield prostaglandins (PG), leukotrienes, lipoxins and other

compounds, which can modulate several immune functions

(Uhing et al. 1990).

Eicosanoids have been found in a large range of freshwater

and marine fish (Matsumoto et al. 1989, Mustafa & Srivastava
1989) and in many tissues (Henderson & Tocher 1987, Bell

et al. 1994a, Tocher 1995). In fish, a preferred eicosanoid

precursor for cyclooxygenase seems to be ARA (20:4n-6)

(Tocher & Sargent 1987, Bell et al. 1994a, 1994b, 1998), but

EPA (20:5n-3) and dihomo-g-linolenic acid (DHGLA;

20:3n-6) are also important eicosanoid precursors which

can modulate production and biological efficacy of ARA-

derived eicosanoids (Horrobin 1983, Bell et al. 1994a, Ganga

et al. 2005). In addition, the high content of docosahexaenoic

acid (DHA; 22:6n-3) in cellular membranes affects eicosanoid

production (Nablone et al. 1990). This fatty acid is also

recognised as a precursor of certain biologically active

trioxilated derivatives (German et al. 1983, Hong et al.

2005). Therefore, the supply of precursor polyunsaturated

fatty acids with 18 or more carbon atoms and two or more

double bonds (PUFA) for eicosanoid synthesis is directly

related to the fatty acid composition of membrane

phospholipids, which in turn is influenced by dietary PUFA

intake and metabolism (Lands 1989).

In gilthead sea bream, dietary deficiencies on n-3 HUFA,

essential fatty acids for marine fish (Izquierdo 1996), raised

the basal plasma cortisol levels and altered the pattern of

cortisol release after stress (Montero et al. 1998). Cortisol is a

key corticosteroid hormone for homeostatic response to stress
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in all vertebrates, through its effects on metabolism and

immune function (Hontela 1997, Wendelaar Bonga 1997) as

well as the osmoregulation process (Wendelaar Bonga 1997).

Thus, the increase in plasma cortisol levels is regarded as the

most reliable method for differentiating between stressed and

non-stressed fish (Thompson et al. 1993, Yin et al. 1995,

Rotllant & Tort 1997). Moreover, feeding relatively low levels

of n-3 HUFA, although not affecting growth and feed

efficiency, significantly raised plasma cortisol levels (Montero

et al. 2003).

However, the physiological mechanisms by which these

HUFA regulate the hormone-induced plasma cortisol levels

are not clear. In fish, several studies have suggested that ARA is

involved in the release of cortisol, although the actual

mechanisms have not been investigated (Gupta et al. 1985,

Bessonart et al. 1999, Harel et al. 2001, Koven et al. 2003, Van

Anholt et al. 2004). In mammals, certain studies suggest that

PG play an important role in mediating the corticosteroido-

genic action of adrenocorticotropic hormone (ACTH) (Kocsis

et al. 1999), and thus the role of fatty acids in stress response

seems to be mediated by the production of eicosanoids.

The present study aims to clarify the effect of different

HUFA on ACTH-induced cortisol production and release by

gilthead sea bream interrenal cells.
Material and Methods

Animals

Sexually immature gilthead sea bream (Sparus aurata) of body

weight 54$7G11$2 g supplied by a Spanish fish farm

(Masnou, Barcelona, Spain) were kept for 2 weeks in two

fibreglass tanks of 1000 l held in a semi-closed seawater

circulation system equipped with physical and biological

filters. Water temperature was maintained at 16–18 8C, the

salinity at 35–40% and photoperiod at 12 h light:12 h

darkness. Fish were fed once a day with a commercial feed

until 24 h before the in vitro trials to avoid feed interference.

A total number of 30 fish were employed in the experiments.
Table 1 Effect of two fatty acid concentrations (50 and 150 mM) and
two incubation times (1 h and 3 h) for three polyunsaturated fatty
acids on cortisol secretion stimulation factor

1 h 3 h

Treatment
Control 14$71G2$41 13$28
EPA 50 mM 29$63G2$59 7$79G3$29

150 mM 7$79G3$29 –
ARA 50 mM 22$26C6$29 11$75G4$16

150 mM 12$25G1$86 –
DHA 50 mM 35$72G9$28 2$60G1$16

150 mM 4$47G0$28 –
Superfusion trials

After 2 weeks of acclimatisation, fish were randomly taken

from the tanks in less than 1 min, immediately anaesthetised

with 2-phenoxyethanol (1:1000 v/v) and blood collected

with a hypodermic syringe from the caudal vein to minimise

the haemorrhage. Head kidney tissue was removed from two

fish in each superfusion trial and cut into very small fragments

in Hepes Ringer medium, which was used as the superfusion

medium. Afterwards, head kidney homogenates were pooled

and distributed in eight superfusion chambers (volume:

0$2 ml) in order to obtain a homogeneous aliquot from

each of them. Tissues were superfused with a Hepes (pH 7$4)
Ringer’s solution containing 171 mM NaCl, 2 mM KCl,

2 mM CaCl2H2O, 0$25% (w/v) glucose and 0$03% (w/v)
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bovine serum albumin (Rotllant et al. 2001). The system was

temperature-controlled at 15 8C and superfusion medium was

pumped through the chamber at a rate of 75 ml/min by a

Masterplex L/SR multichannel peristaltic pump (Cole

Parmer Instrument Co. Vernon Hills, IL, USA).

Trials were started after 3 h of superfusion when cortisol

reached a stable baseline level (Rotllant et al. 2000a, 2000b) due

to several factors such as the different dispersion of interrenal

cells in the perfusion preparation, individual differences and the

pre-stress level of each fish. After the stabilisation period of 3 h,

tissues were subsequently incubated with different fatty acids. A

series of preliminary tests were performed in quadruplicate, to

determine the adequate fatty acid concentration (50, 150 or

300 mM) and incubation time (1 or 3 h) for anyof the three fatty

acids assayed (ARA, EPA and DHA). Best cortisol stimulation

was found with fatty acid concentrations of 50 mM and an

incubation time of 1 h (Table 1) and these conditions were used

afterwards in all the research experiments. Both in these

preliminary tests and in the research experiments, perfusion

medium was supplemented with the corresponding concen-

tration of different fatty acids ARA, EPA, DHA and DHGLA

(diluted in less than 0$5% of ethanol/medium v/v) prior to

tissue incubation. In a second series of experiments to clarify the

action mechanisms of these fatty acids, tissues were incubated

with a COX inhibitor indometacin (INDO) for 20 min at a

concentration of 25 mM diluted in superfusion medium. After

incubation with the fatty acids, the perfused tissues were

stimulatedwith ACTHat a concentration of 5 nMhACTH1–39

(Sigma) for 20 min. Subsequently, perfusion wasmaintained for

another 170 min, fraction samples being collected every 20 min

during this period. Cortisol stimulation factor was calculated by

the comparison of maximum cortisol released after ACTH

stimulation with baseline cortisol released (maximum releaseK
baseline release)/(baseline release) (Rotllant et al. 2001). In all

the series of experiments, each treatment was assayed in

quadruplicate.
Cortisol measurements

Cortisol concentration in the perfused fluid was determined

by RIA (Rotllant et al. 2001). The antibody used for the assay

was purchased from Biolink, S.L. (Costa Mesa, CA, USA) in a
www.endocrinology-journals.org
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final dilution of 1:6000. This antibody cross reactivity is 100%

with cortisol, 11$40% with 21-desoxycorticosterone, 8$90%
with 11-desoxycortisol and 1$60% with 17a-hydroxypro-
gesterone. The radioactivity was quantified using a liquid

scintillation counter. Cortisol levels are given as ng/g/h.
Statistical analysis

Significance of difference (P!0$05) between dietary treat-

ments was determined by ANOVA, followed by Duncan’s

multiple comparison test (Sokal & Rolf 1995). Analyses were

performed using SPSS software (SPSS for Windows 11$5;
SPSS Inc., Chicago, IL, USA).
Results

The different incubation times and fatty acid concentrations

assayed showed that 1 h of incubation time and a concentration

of 50 mM of fatty acid were the best conditions to obtain the

highest effect of fatty acid on cortisol secretion stimulation

factor (Table 1). As expected, after the stabilisation period of

3 h, cortisol values remained at basal levels for these fish species

and no significant differences were found among basal values

for the different superfused tissues (Fig. 1).

The effects of supplementation with different HUFA on

cortisol secretion are illustrated in Fig. 1. The production of

cortisol by interrenal cells was modified when the medium

was supplemented with HUFA in comparison with the

control. Addition of n-3 fatty acids, DHA and EPA induced a

higher and earlier cortisol response to ACTH than the control

without fatty acid incubation. Addition of n-6 fatty acids

did not modify the time of cortisol response in comparison
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to the control, but induced a higher response. Cortisol

response was higher when ARA, EPA or DHA was added to

fatty acid and lower when DHGLA was used. Such response

expressed as stimulation factor was significantly (P!0$05)
higher with EPA (33$71G4$5 basal secretion) and ARA

(28$7G4$47) incubation than control and DHGLA treat-

ment groups (Fig. 2). With DHA incubation, no significant

differences were found in the stimulation factor. By contrast,

DHGLA showed the lowest (P!0$05) stimulation factor

with an increase of only 8$95G2$17.
Supplementation of INDO, a COX inhibitor, induced the

stimulation of cortisol production by EPA and ARA observed

in the former set of experiments, with cortisol absolute values

not being different from those of the control (Fig. 3).

However, a significantly higher (P!0$05) cortisol peak was

obtained when the tissue was incubated with DHA, despite

the addition of INDO (Fig. 3).

Comparison of cortisol stimulation factorswhen INDOwas

added showed a significantly higher (P!0$05) cortisol

secretion in the tissue supplemented with EPA, ARA and

DHA (Fig. 4). Thus, the stimulation factor of cortisol

was 7$83G3$31 when tissue was supplemented with EPA,

6$97G4$56 with ARA, 13$67G2$66 with DHA and only

1$58G0$45 for control.
In addition, the comparison of cortisol stimulation factors

between experiments with or without INDO showed that

the addition of INDO significantly decreased ACTH-

stimulated cortisol secretion in all the treatment use of this

COX inhibitor (Fig. 5). However, this impaired stimulation

of cortisol production was lower in the DHA-supplemented

group in which INDO caused a 40$84% reduction in cortisol

secretion, giving values that were significantly different

(P!0$05) compared to EPA treatment where INDO caused
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a 76$76% reduction in cortisol secretion and a 75$71%
reduction with ARA treatment.
Discussion

Thepresent study showed thefirst evidenceof the effect ofHUFA

on cortisol production by ACTH-stimulated interrenal cells in

fish.These results are in agreementwith the observedmodulating

effect of dietary fatty acids in sea bream plasma cortisol levels
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(Montero et al. 1998, 2001) and confirm the hypothesis of these

authors about the effective action of these fatty acids on the

cortisol secretion by the interrenal cells in gilthead sea bream.

Both ARA and EPA promoted ACTH-induced cortisol

production in sea bream interrenal cells used in the present

experiment. Dietary EPA has been shown to affect fish stress

resistance in several species. Although it promoted the growth

and survival of the red sea bream (Watanabe et al. 1989),

gilthead sea bream (Liu et al. 2002) and Japanese flounder

(Furuita et al. 1998), its effects on larval stress resistance seem to

depend on species and dietary levels. For instance, elevation of

dietary EPA increased red sea bream handling stress resistance

(Watanabe et al. 1989) and gilthead sea bream resistance to air

exposure and temperature shock, but not to salinity stress (Liu

et al. 2002).On the contrary, too high EPA levels reduced stress

resistance to air exposure in Japanese flounder (Furuita et al.

1998). ARA has also been shown to affect stress resistance in

several fish species. Dietary ARA levels of about 1% dryweight

feed are necessary not only for optimum growth and survival

of sea bream larvae (Bessonart et al. 1999), but also for

improved stress resistance after handling (Koven et al. 2003,

VanAnholt et al. 2004). Dietary ARA levels close to those used

by these authors did not affect the handling of stress resistance

in Japanese flounder, whereas higher ones reduced larval stress

resistance (Furuita et al. 1998).

These differences of the effects of dietary EPA or ARA on

stress resistance in different species may also be related to

different ratios among these fatty acids, since both are

competing substrates for cyclooxygenase enzymes (Izquierdo

et al. 2001). For instance, in Atlantic salmon, alteration in the

dietary ratio of n-3/n-6 fatty acids has been shown to prevent

stress susceptibility to transport (Bell et al. 1991). The present
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study shows the first evidence found in fish that cyclo-

oxygenase-derived metabolites are involved in ACTH-

induced cortisol release by interrenal cells. The strong

reduction of cortisol release caused by INDO addition in

EPA and ARA supplemented groups suggested that the effect

of these fatty acids was, at least partly, mediated by their

cyclooxygenase-derived metabolites. Both fatty acids have

been found to be good precursors of cyclooxygenase-derived

PG in fish (Bell et al. 1994a, Ganga et al. 2005). In turn,

cyclooxygenase-derived PG have been shown to increase

in vitro cortisol release in interrenal tissue of female frogs during
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ovulation (Gobbetti & Zerani 1993) and in human adrenal

cells as well (Vakharia & Hinson 2005).

Interestingly, DHA stimulation of ACTH-induced cortisol

production was lower than that caused by EPA or ARA.

Besides, the inhibitory effect of INDO in the DHA-

supplemented group was not so marked as in the other

treatments, suggesting that the action of DHA in cortisol

release from ACTH-stimulated interrenal cells is less

dependent on COX metabolites in gilthead sea bream.

Indeed, this fatty acid is a poorer substrate for COX than EPA

or DHA. The action of DHA on interrenal cells, whether it is

direct or mediated by its lipoxygenase derivatives, still has to

be elucidated since lipoxygenase metabolites have been

shown to modify the hormone-induced release of cortisol

in mammal adrenal tissues (Wang et al. 2000, Yamazaki et al.

2001). Using nordihydroguaiaretic acid, a lipoxygenase

inhibitor, cortisol secretion was inhibited in response to

ACTH in bovine adrenocortical cells (Wang et al. 2000).

DHA has long been known for its high value as an essential

fatty acid for marine fish (Watanabe 1982), particularly during

larval stages (Izquierdo et al. 1989) when it invariably

promotes growth, survival and stress resistance to a higher

extent than EPA or ARA in all the studied species (Watanabe

et al. 1989, Kanazawa 1997, Rodrı́guez et al. 1997, Furuita

et al. 1999, Izquierdo et al. 2005). In gilthead sea bream,

dietary deficiencies of n-3 HUFA and especially DHA have

been shown to increase plasma cortisol levels after both acute

(net chasing) and chronic (high stocking density) stress

(Montero et al. 1998, 2001). Besides, imbalances in the

dietary n-3/n-6 fatty acids ratio induced by the inclusion of

vegetable oils in the diet have been shown to alter the release

of cortisol after stress in this species (Montero et al. 2003) and

in other species such as chinook salmon (Welker & Congleton

2003). The role of dietary oils on stress response in fish

remains unclear, but results indicate that dietary fatty acids

could be regulating the in vivo stress response through the

mechanisms discussed above. Moreover, vegetable oils in fish

diets have been shown to regulate COX-derived eicosanoids

directly (Ganga et al. 2005). Dietary supplementation of other

fatty acids such as ARA seems to be affecting plasma cortisol

levels after stress (Van Anholt et al. 2004), although the effect

on cortisol release in vivo is dose dependent, since high levels

of ARA in diet seem to be detrimental to chronic stress

resistance in larval gilthead sea bream (Koven et al. 2003).

Concentrations of fatty acids used in the present study were

those providing the maximum cortisol stimulation factor

(50 mM). However, higher concentrations reduced and even

inhibited cortisol secretion (Acerete L, Ganga R, Tort L &

Izquierdo MS. unpublished results), suggesting a concen-

tration dependency in the type of effect of these fatty acids.

This is the case in other organs such as testicles where medium

concentrations of ARA (3-30 mM) induced testosterone

production in testicular cells of male sea bass, whereas high

concentrations (300 mM) inhibited it (Asturiano 1999).

Despite the fact that no previous data has been published on

in vitro exposures of fish interrenal cells to fatty acids, cytotoxic
Journal of Endocrinology (2006) 190, 39–45
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effects at the membrane level have been found in mammalian

tissues, including renal cells (Zager et al. 1997). Particularly,

excess of ARA and its derived eicosanoids has been found to

cause apoptosis associated with oxidative stress in human

leukocytes (Pompeia et al. 2002). Studies are being conducted

at present to elucidate the effect of low and high physiological

concentrations of fatty acids on ACTH-induced cortisol

release by fish interrenal cells. Although this superfusion

method is widely used for studies of interrenal tissue in fish

(Rotllant et al. 2001), it prevents the possible control of blood

flow by COX-derived prostanoids. Nevertheless, new results

have shown the vasoregulatory function of COX-derived

products in fish (Stensløkken et al. 2002), none of them relate

though to interrenal tissues.

In summary, the role of ARA and EPA in the ACTH-

induced release of cortisol from gilthead sea bream interrenal

cells seems to be partly related to COX-derived metabolites

dependent on ARA and EPA, whereas the role of DHA seems

to be dependent on other factors. Both EPA and ARA as

single supplemented fatty acids increased the ACTH-induced

cortisol release from gilthead sea bream interrenal cells

whereas the effect of DHA was weaker. A well-balanced

supplementation of these three fatty acids could be necessary

to regulate cortisol release from interrenal cells in gilthead

sea bream.
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