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Abstract 
Context  Plant landscape genetics is a rapidly 
developing discipline that examines how habitat loss 
and fragmentation due to anthropogenic pressures 
shape plant genetic diversity, gene flow, and potential 
adaptation. Despite its potential, many aspects remain 
underexplored, limiting its effective incorporation 
into conservation planning.

Objectives  This study aims to identify current 
trends, challenges, and practical opportunities for 
applying landscape genetics in plant conservation, 
framed within the Madrid Declaration (XX 
International Botanical Congress, IBC, in Madrid, 
July 2024).
Methods  Insights were gathered from presentations 
and discussions held during the symposium “Across 
Land and Water: Understanding Plant Gene 
Flow at a Landscape Scale” (XX IBC), targeted 
literature review, and interviews with conservation 
practitioners.
Results  Findings highlight major gaps in bryophyte 
genetics and vector ecology. Methodological 
challenges include accounting for life history traits 
and time-lags. Landscape genetics and genomics 
have rarely been applied in conservation planning. 
Effective communication between scientists and 
stakeholders, increased public awareness, and user-
friendly tools are crucial for translating genetic 
research into conservation action.
Conclusions  Addressing methodological challenges 
and fostering interdisciplinary collaboration will 
increase the field’s impact. Improved knowledge 
exchange can strengthen conservation planning, 
promote genetic diversity, and ecosystem resilience in 
human-modified landscapes.
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Introduction

Anthropogenic habitat destruction and climate change 
are significant drivers of biodiversity loss worldwide 
(Fischer and Lindenmayer 2007; Haddad et al. 2015). 
Plants, due to their sessile nature and reliance on 
both biotic and abiotic vectors for dispersal, are par-
ticularly vulnerable to these environmental changes 
(Auffret et al. 2017). Habitat loss and fragmentation 
reduce population size and disrupt the connectivity 
between native habitats (Leimu et al. 2010; Delnevo 
et al. 2021; Pinto et al. 2023), leading to the erosion 
of genetic diversity within increasingly small and iso-
lated plant populations (Aavik et al. 2017; González 
et  al. 2020). This erosion is primarily driven by 
restricted gene flow, increased inbreeding, and genetic 
drift (Templeton et  al. 1990; Young et  al. 1996), 
which may ultimately limit the capacity of popula-
tions to adapt to shifting selection pressures (Chung 
et  al. 2023). Moreover, climate change introduces 
significant stressors by altering temperature and pre-
cipitation patterns, often pushing many plant species 
to exceed their tolerance limits (Thuiller et al. 2005; 
Jump and Peñuelas 2005; Rennenberg et  al. 2009). 
Unlike mobile organisms, plants face significant chal-
lenges in migrating to more favourable environments, 
resulting in a mismatch between their current range 
and future climatic conditions (Corlett and Westcott 
2013). The speed of change of selection pressures 
makes many plant populations highly susceptible to 
local extinction. This risk is greatest in fragmented 
landscapes where potential migration routes are lim-
ited, hindering connectivity between isolated popu-
lations and their ability to colonise new sites (Saltré 
et  al. 2015). In addition, many plants rely on mutu-
alistic relationships for fertilisation (e.g. via animal-
pollinators) and nutrient acquisition (e.g. via mycor-
rhizal fungi), both important factors for population 
survival. Therefore, future plant population success 
depends not only on how plants respond to climate 
change but also on the response of multiple interact-
ing organisms (Kolanowska et al. 2022; Kolanowska 
2023). Landscape genetics and genomics explicitly 

incorporate the spatial context in which plant popu-
lations thrive, considering their interactions with 
biotic and abiotic factors, as well as the structure and 
dynamics of the landscape to understand gene flow 
and adaptation (Manel et al. 2003).

To tackle the urgent plant biodiversity crisis, sci-
entists and practitioners from across the globe gath-
ered at the XX International Botanical Congress in 
Madrid in July 2024, advocating for action through 
ten strategic initiatives presented in the Madrid Dec-
laration (Gostel et  al. 2024). These initiatives high-
light the critical importance of scientific collaboration 
and transdisciplinary approaches in plant research, 
engaging a diverse range of participants, including 
plant scientists, botanical institutions, governments, 
conservation practitioners, indigenous and rural com-
munities, the private sector, and civil society. Within 
this framework, we recognise that plant research 
would greatly benefit from adopting the compre-
hensive approach outlined in landscape genetics and 
genomics.

Integrating landscape genetics and genomics more 
broadly into plant research allows for the assess-
ment of spatial, demographic, and adaptive processes 
in plant populations over both short and long-term 
scales. Such an approach enables the identification of 
genetic variation, the evaluation of population viabil-
ity, and the monitoring of adaptive responses to envi-
ronmental changes, ultimately guiding more effective 
restoration strategies that enhance plant resilience, 
facilitate habitat recovery, and promote biodiversity. 
Crucially, fostering effective communication between 
scientists, practitioners, local communities, and gov-
ernments is necessary to translate increasingly com-
plex research findings into actionable public poli-
cies, ensuring that ecosystem restoration efforts are 
both scientifically informed and broadly supported 
by all stakeholders involved. These topics were pre-
sented and discussed in the symposium titled “Across 
Land and Water: Understanding Plant Gene Flow at a 
Landscape Scale” at the XX International Botanical 
Congress. Rather than providing an exhaustive review 
of plant landscape genetics, already covered by Hold-
eregger et  al. (2010) and Cruzan and Hendrickson 
(2020), our work builds on the symposium’s talks and 
conversations to emphasize how landscape genetics 
and genomics can contribute to addressing the plant 
biodiversity crisis and support implementing the key 
initiatives of the Madrid Declaration.
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Definition and scope

Within the literature the terms Landscape Genetics 
and Landscape Genomics are widely used (eg. DiLeo 
and Wagner 2016; Aitken et al. 2024). In its strictest 
sense, the former covers gene flow studies based on 
long-established genetic methods and the latter those 
that incorporate modern Next Generation Sequenc-
ing (NGS) data. However, they are often used inter-
changeably. It would be correct to utilise the over-
arching term Landscape Genetics and Genomics, yet, 
for simplicity, and given the need for practitioners to 
communicate with stakeholders, politicians, and other 
members of the public, allied to the wide understand-
ing of the term ‘genetics’, Landscape Genetics is used 
hereafter in this manuscript.

Landscape Genetics of plants is the understand-
ing of the patterns of neutral and adaptive genetic 
variation in the context of topography, anthropogenic 
factors, the environment, and their biotic and abiotic 
interactions (Auffret et al. 2017). It includes vascular 
plants and bryophytes. While the focus is typically 
upon terrestrial species, it also incorporates riparian, 
riverine, and coastal species, given that freshwater 
and marine plants are also influenced by geographic 
and anthropogenic habitats (Ngeve et al. 2017; Arjona 
et al. 2020; Żukowska and Lewandowski 2025).

Gene flow as the fundamental concept 
of landscape genetics

Selection, drift, and stochastic processes reduce the 
levels of genetic variation within a population. This 
is offset by the source of evolutionary novelty; gene 
flow, mutation, hybridisation, and introgression. 
Given that mutation, hybridisation, and introgression 
are rare, gene flow is therefore the primary source of 
variation within populations. Without this exchange 
of genetic material, the population gene pool may 
become impoverished, resulting in disadvantageous 
aspects such as greater inbreeding (Frankham et  al. 
2019), fixation of deleterious alleles (Andrews 2010), 
and a reduction in overall genetic diversity (Hoff-
mann et al. 2020). This in turn, reduces a population’s 
ability to respond to selection with a corresponding 
rise in extinction risk (Ralls et al. 2017).

Plants are sessile hence, gene flow between 
populations is via pollen movement and dispersal of 

propagules. They also rely upon propagule dispersal 
for the colonisation of new areas. This is a key aspect 
of responding to climate change. These propagules 
may be haploid or diploid and take the form of seeds, 
spores, or vegetative material (Ravigné et  al. 2006; 
Mau et  al. 2021). They may be allied to complex 
and varied dispersal vectors. Plants which rely upon 
animal vectors are also influenced by the interaction 
of the environment on their vectors. In addition 
to these vectors, propagule dispersal is strongly 
influenced by geography, life history, and ecology 
of plants (Croteau 2010). These factors can interact, 
influencing the genetic structure and evolutionary 
potential of the species (Linhart 2014) (see Fig. 1).

Pollen movement may be mediated via wind (ane-
mophily) or by animals (zoophily) (Butcher et  al. 
2020). These may be generalist or specialist interac-
tions, influenced by geographical and biological fac-
tors. For instance, Plantago may be both wind- and 
animal-pollinated (ambophily), utilising additional 
dispersal mechanisms to increase seed production 
(Abrahamczyk et  al. 2020). More specialist species, 
such as those in the Orchidaceae, typically experience 
pollen limitation, in which its utilisation of pollen 
dispersal vectors is restricted (Ackerman et al. 2023), 
resulting in specialist pollinator relationships or auto-
gamy being prioritised (Vitt et  al. 2023; Ackerman 
et al. 2023).

Understanding pollen dispersal distances is a fun-
damental aspect of gene flow in plants. The small 
size of pollen makes the study of the dispersal itself 
difficult and time-consuming, as is tracking wind or 
insects to understand vector movement. Utilising 
genetics to assess pollen dispersal is significantly 
easier, hence the incorporation of such methods into 
gene flow studies. Pollen dispersal distances are vari-
able; Pulsatilla alpina has a mean pollen dispersal 
distance of 3.16 m (Chen and Pannell 2024), whereas 
Euterpe edulis may spread its pollen as far as > 20 km 
(Santos et  al. 2018). It is generally considered that 
species utilising zoophily via large-bodied animals 
have greater pollen dispersal distances (Butcher et al. 
2020), than anemophilic species (Chen and Pannell 
2024).

Seed dispersal distance is the second key com-
ponent of understanding gene flow in seed plants. 
The main dispersal vectors are anemochory (wind), 
hydrochory (water), and zoochory (animal), 
encompassing endo (internal) and ecto-zoochory 
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(external), with anthropochory (human) taking an 
increased role in dispersal (Auffret 2011; Hodkin-
son & Thompson 1997; Lososová et al. 2023).

Data on seed dispersal is still lacking for most 
species despite its importance (Lososová et  al. 
2023; Vittoz & Engler 2007). The development of 
the seed disperser effectiveness (SDE) framework, 
however, has significantly advanced our understand-
ing by better capturing the complexities of this 
mechanism and a deeper appreciation for its ecolog-
ical importance (Schupp 1993; Schupp et al. 2010; 
van Leeuwen et  al. 2022). Subsequent reviews of 
seed dispersal literature have resulted in dispersal 
distance datasets (Chen et al. 2019), with the Euro-
pean flora well represented (Lososová et  al. 2023; 
Vittoz & Engler 2007). These reviews show that 
most seeds have very localised dispersal without 
the mediation of animal vectors (Johnson & Harder 
2023; Lososová et al. 2023).

Many plants are capable of clonal reproduction, 
in which the cost of sexual reproduction is mitigated 
by rapid production via vegetative propagules (Eck-
ert 2001; Barrett 2015; Yang and Kim 2016) such 
as leaves, stems, roots, rhizomes, and stolons (Sádlo 
et al. 2018). These propagules become detached from 
the maternal plant and are subsequently dispersed. 
They may ultimately colonise a new area (Stöck-
lin and Winkler 2004; Thomson et al. 2015). Clonal 
propagules may be dispersed via allochory systems 
such as anemochory, hydrochory, zoochory, and 
anthropochory, and may be spread across a range of 
geographical distances (Fahrig et  al. 1994; Winkler 
and Fischer 2002; Berković et al. 2014; García et al. 
2016). Asexual reproduction may be particularly 
important in extreme environments where sexual 
recruitment is often restricted, such as saltmarsh hab-
itats (Barrett 2015). Therefore, knowledge of the rela-
tive proportions of asexual and sexual reproduction 

Fig. 1   Illustration of seed dispersal and pollination 
mechanisms in a heterogeneous landscape. The figure depicts 
natural dispersal modes including gravity, wind, water and 
animals, as well as anthropogenic influences (blue arrows). 
Genetic exchange also occurs through pollination, mediated 
by insects, animals, wind, and water (orange arrows). 

Geographic barriers, such as mountains and oceans, can 
restrict connectivity, although long-distance dispersers, like 
birds, may help overcome these obstacles. Both seed dispersal 
and pollination are key drivers of gene flow, shaping genetic 
structure and evolutionary potential—central themes in 
landscape genetics
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(outcrossing and inbreeding) is critical to understand-
ing geographic patterns of diversity. It is also impor-
tant to determine if any self-fertilisation or inbreeding 
is a consequence of fragmentation or an intrinsic fea-
ture of the species.

Bryophytes do not produce pollen or seeds. 
Instead, they rely upon specialised diaspores for dis-
persal, and their interplay with the wider environment 
is largely unknown. Moreover, the haploid dominated 
life cycle of bryophytes plus the utilisation of wind 
dispersal means that bryophyte patterns of gene flow 
are likely to be distinctive when compared with the 
broad agents of dispersal in vascular plants.

The general evidence is that small spore size 
(27–32  μm in Sphagnum; Sundberg 2013) ensures 
wide dispersal with very little genetic structuring at a 
landscape scale (Muñoz et al. 2004; Sundberg 2013). 
However, many bryophytes never produce spores 
(Wyatt 1994). Dispersal is then reliant upon asexual 
reproduction whether that be clonal (without mei-
otic divisions) or intragametophytic selfing, implying 
more distinct genetic structuring. This is largely sup-
ported in the few experimental studies documented, 
but there are exceptions (Wyatt 1992; Patiño and 
Vanderpoorten 2018). This lack of knowledge of the 
landscape genetic structure of bryophytes, despite the 
group representing a significant proportion of plant 
diversity, is a significant omission.

Landscape genetics approaches

Depending on the study question, landscape genet-
ics of plants utilises a wide variety of approaches. 
Studies invariably incorporate a genetic component 
and a geographic aspect, and frequently an additional 
approach. This may be distribution modelling, mor-
phology, phylogeny, life history aspects, or other 
approaches to aid interpretation of the context of 
the geospatial genetic information (Cruzan and Hen-
drickson 2020).

The genetic component measures genetic diver-
sity, gene flow, or adaptation. Gene flow and dispersal 
have long been of interest to biologists. These were 
initially investigated by experimental and observa-
tional methods, for instance Darwin’s experiments on 
the duration that seeds maintained buoyancy in sea-
water (Darwin 1859; Costa 2017) through to experi-
ments utilising the radioactively labelled pollen and 

sticky traps (Colwell 1951) or direct observation of 
ant mediated seed dispersal distances (Handel and 
Beattie 1990). Likewise, adaptation was typically 
measured by reciprocal transplant experiments such 
as those of Clausen et al. (1939, 1940) across the Cal-
ifornian climate zone.

The development of molecular methods, initially 
protein variation via allozymes,  latterly DNA varia-
tion, has allowed more sophisticated approaches to be 
adopted. To assess genetic diversity and gene flow, 
most landscape genetic studies have traditionally 
utilised neutral genetic markers (not under natural 
selection), such as microsatellites. These have ena-
bled insights into the species and population biology 
and are frequently interpreted in the light of disper-
sal routes (eg. Sullivan et al. 2019; Quail et al. 2023). 
However, genetic techniques have advanced signifi-
cantly in recent years. Modern methods, such as the 
detection of variability at single-nucleotide poly-
morphism (SNP) markers through next-generation 
sequencing approaches, now enable researchers to 
examine genetic diversity across a much larger num-
ber of loci, allowing for a deeper exploration of adap-
tive genetic diversity (Rellstab et  al. 2015). Despite 
these molecular advancements, careful attention to 
sampling design is crucial, as poor design or biased 
datasets can lead to misleading conclusions about 
gene flow and adaptation. Furthermore, the specific 
limitations of each marker type should also be consid-
ered when designing a study (Allendorf 2017).

As adaptive and neutral loci are subject to differ-
ent processes, they are often not correlated (Chung 
et al. 2023). Importantly, the effects of landscape fea-
tures on gene flow are typically studied using neutral 
markers, while the selective pressures of environmen-
tal factors are more closely associated with adaptive 
genetic diversity (Holderegger et  al. 2010; Cruzan 
and Hendrickson 2020; Chung et  al. 2023). There-
fore, both components should be considered for a 
comprehensive understanding of biodiversity at the 
genetic level. In the studies presented at landscape 
genetics symposium in IBC, both types of markers 
were used depending on the study question. It shows 
that despite the clear shift of conservation genetics 
into the genomics era over the past decade (Ouborg 
et al. 2010; Wright et al. 2020; Heuertz et al. 2023), 
microsatellites continue to be useful for answering 
questions about the role of landscape characteristics, 
habitat connectivity, gene flow, and genetic drift on 
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shaping the structure of plant populations. Neverthe-
less, it needs to be kept in mind that patterns assessed 
at neutral genetic loci, such as microsatellites, can-
not be directly used for predicting population fitness 
or adaptability, which is an important key question in 
conservation applications.

Symposium talks addressing the adaptation of 
plant populations to changing conditions used SNPs. 
These markers may be both neutral or adaptive, so 
it must be determined if a SNP is neutral or adap-
tive in a particular situation. This is typically done 
by screening thousands of loci and identifying those 
potentially adaptive (Balkenhol et  al. 2015). Two 
common methods for detecting putatively adaptive 
markers are (1) the outlier approach, which looks at 
the allele frequencies (frequencies of gene variants) 
of thousands of loci and compares the frequencies 
to those assumed under neutral expectations, and (2) 
genome–environment association (GEA) analysis, 
which links allele frequencies to environmental fac-
tors (Balkenhol et al. 2015). Most landscape genetic 
studies exploring adaptive signatures in plants have 
focused on climate as the environmental variables 
of interest, while other factors like soil nutrients 
and light conditions, though also highly significant 
resources for plants, are often overlooked due to the 
difficulty of obtaining fine-scale data (Cortés et  al. 
2018; Lasky et  al. 2023; Dauphin et  al. 2023). The 
symposium talk on the genetic diversity of a grass-
land specialist, Primula veris, in fragmented semi-
natural grasslands addressed this gap by discrimi-
nating neutral loci from putatively adaptive SNPs 
showing a relationship to soil and light variables 
(Reinula et  al. 2024, Reinula et  al., unpublished). 
This study showed a contrasting response of adaptive 
and neutral genetic diversity to habitat fragmentation, 
with adaptive genetic diversity being higher in con-
nected grassland systems and lower in fragmented 
grasslands, while the reverse trend occurred for neu-
tral genetic diversity. This finding clearly shows that 
caution is needed when using diversity assessed at 
neutral loci as a proxy for adaptive potential of plants.

As the ultimate aim of landscape genetics of plants 
is to understand genetic variation in the context of 
topography, land use, and other factors relevant to 
long-term population sustainability, DNA approaches 
are combined with other methods. These include con-
ducting common garden experiments to validate the 
relevance of putatively adaptive loci (Johnson et  al. 

2022), utilising species distribution models, resist-
ance analysis, and metabolomics. Alongside these 
approaches is a recognition of the importance of life 
history characteristics of the species under study. 
Along with the advancement of genetic techniques, 
the availability and complexity of landscape and 
environmental data have also increased (e.g. LiDAR 
data). This brings additional opportunities, but also 
challenges for data analysis, and makes collaboration 
with different scientific fields even more important.

The symposium talks demonstrated the 
usefulness of different tools to assess the relative 
role of landscape quality around and between study 
populations on the genetic diversity and gene 
flow, respectively. Assessment of the proportion 
of different landscape elements in both node- and 
link-based approaches (DiLeo and Wagner 2016; 
Reinula et  al. 2021; Sarmiento et  al., submitted, 
Figs. 2, 3) to disentangle the effect of these elements 
on genetic structure was applied in several studies. 
These approaches have been criticised for missing 
likely gene flow routes (Balkenhol et  al. 2015). 
Alternative approaches, such as the assessment of 
least-cost paths or resistance surfaces have also 
been utilised. Assigning resistance values can be 
subjective, though recent methods like ResistanceGA 
reduce this bias (Peterman 2018). Studies presented 
at the symposium revealed no consensus on the best 
method for studying landscape effects on gene flow. 
Using different methods on the same dataset allow 
for testing distinct hypotheses and may yield different 
outcomes. Furthermore, the response of gene flow to 
different landscape elements when applying distinct 
tools can depend on the measure of gene flow, but 
also on landscape context, suggesting that caution is 
needed when interpreting the results based on only 
one approach, genetic measure, or landscape setting 
(Balkenhol et  al. 2015; Epps and Keyghobadi 2015; 
Reinula et al. 2024).

From the various approaches presented in the sym-
posium, there is no fixed set of research methods in 
landscape genetics. This reflects the nascent nature of 
the subject and the rapid evolution of molecular tools 
and computational capacities, alongside the increas-
ing availability of environmental information (Dau-
phin et  al. 2023). This is a strength and reflects the 
adaptability of the subject. Additional methods will 
doubtless be added in the future. At the same time, 
it is crucial to consider species-specific biology both 
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Fig. 2   An infographic summarizing key landscape factors 
influencing the genetic diversity and gene flow of a 
characteristic grassland species (Primula veris) populations 
in the semi-natural grasslands of Western Estonia (Reinula 
et  al. 2021). The map shows the location of the populations 
along with the historical (yellow) and current (green) area of 

grasslands highlighting the drastic loss and fragmentation 
of these grasslands. This infographic is an example of 
how to make complex genetic and conservation results 
more accessible to a broader audience (e.g. conservation 
practitioners, policy-makers, municipality)
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Fig. 3   Infographic summarizing key factors influencing gene 
flow in endemic violets of Tenerife (Viola cheiranthifolia), 
using a landscape genetics approach, based on Sarmiento 
Cabello et  al., (submitted). Green elements indicate factors 
that enhance gene flow, while red elements highlight resistance 
to gene flow. The map below illustrates genetic connectivity 

between populations, with black lines representing pollination-
mediated gene flow. This example of an infographic is 
designed to make complex genetic, and conservation results 
accessible to a broader audience. Background photo:  © Jose 
Luis Martín Esquivel
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when designing the studies as well as interpreting 
the results. In particular, given that seed and plant 
longevity influence genetic diversity, the incorpo-
ration of such demographic characteristics would 
be a necessary addition to the field. Seeds typically 
remain viable for long periods, some enduring for 
years (El-Maarouf-Bouteau and Bailly 2022) while 
many plants, especially trees, but also many perennial 
grassland plants are long-lived (Ehrlén et  al. 2002). 
Thus, practitioners need to be confident that patterns 
of connectivity reflect the current habitat condition 
situation rather than being a signature of historical 
patterns of gene flow (time-lag effects).

Landscape genetics and conservation policies

Despite decades of scientific advancement and 
international agreements, genetic diversity remained 
marginalized in practical conservation policy until 
very recently. Key international agreements aimed 
at protecting biodiversity, for instance the Rio 
convention (1992) and Paris Convention (2016) did 
not explicitly consider the conservation of genetic 
diversity. Consequently, it has been absent from core 
agreements on biodiversity protection, such as the 
Convention of Biological Diversity (CBD); and the 
Habitats Directive of the European Union (EU). Only 
with the Kunming-Montreal Global Biodiversity 
Framework (GBF; CBD/COP/DEC/15/4, CBD/
COP/DEC/15/5), agreement in 2022, was policy 
implemented to address the loss of genetic diversity 
in both model and non-model wild species. Effective 
population sizes (Ne) below 500 and the loss of 
genetically distinct populations are the key indicators 
standardising the measurement of genetic diversity 
loss (Laikre et al. 2020; Hoban et al. 2020). Although 
their effectiveness remains debated (Teixeira and 
Huber 2021), these indicators have been adopted in 
the GBF (CBD 2022a, 2022b), thus requiring parties 
of the CBD to report progress over the next decade 
(Hoban et al. 2024; Mastretta-Yanes et al. 2024). The 
next crucial step is to establish a well-thought-out and 
robust consensus on how to assess Ne and genetic 
distinctiveness between populations in practice to 
effectively inform conservation (Fedorca et al. 2024). 
Also in this process, landscape genetics can provide 

valuable insights, such as delineating population 
boundaries in different landscape settings.

The EU has very recently adopted the Nature Res-
toration Law (NRL 2024), setting ambitious goals 
for the conservation and restoration of biodiversity 
for the near future. EU Member States are required 
to define areas where intensification of land use and 
other anthropogenic factors have led to insufficient 
connectivity and impoverished diversity of habitats 
to prioritise national-level restoration planning (NRL 
2024). Although, the restoration of landscape-scale 
diversity and connectivity of habitats encompasses 
an important aim of NRL, it does not include the 
need to enhance gene flow and genetic diversity, thus 
neglecting the understanding that the species diver-
sity and related ecosystem functions can be protected 
and supported through maintaining genetic variability 
(O’Brien et al. 2025).

Despite the lack of formal legislation specifying 
genetic diversity at a landscape scale, some national 
and local governments have developed initiatives to 
support biodiversity conservation and the sustain-
able use of genetic resources. In Spain, for example, 
the Strategic Plan for Natural Heritage, Biodiversity 
and Plant Conservation (RD 1057/2022) focuses on 
the sustainable use and preservation of plant genetic 
resources, highlighting the role of biodiversity pres-
ervation initiatives in this effort. At a regional level, 
the Smart Specialisation Strategy (UE 2021/1058) in 
the Canary Islands recognises the region’s biological 
and geographical diversity as one of its most valuable 
assets, advocating for its protection to promote green 
growth and sustainability.

Within the UK the Lawton report (2010), commis-
sioned by the government, called for ‘more, bigger 
and joined up’ nature reserves. The ‘joined up’ aspect 
is underpinned by habitat connectivity, and by infer-
ence, genetic connectivity. This has led to schemes by 
various NGOs to enhance such connectivity. Indeed, 
habitat connectivity analysis has become an integral 
part of many modern conservation strategies (Crooks 
and Sanjayan 2006), offering a better understanding 
of how landscape and habitat features influence spe-
cies responses (Baguette et al. 2013; González et al. 
2017; Resasco 2019; Hendrickson and Cruzan 2024). 
Landscape genetic studies have helped to bring 
insight into the complex relationships between land-
scape characteristics and the structuring of genetic 
variation in plants, as demonstrated by earlier studies 
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(Damschen et  al. 2008, 2019) and broadened by the 
talks in the symposium.

Landscape genetics can directly support the fulfil-
ment and assessment of the goals of the Kunming-
Montreal agreement as well as EU NRL, alongside 
other regional and national action plans in several 
crucial ways. Firstly, landscape genetics addresses 
habitat fragmentation by identifying connectiv-
ity corridors within fragmented landscapes and by 
understanding landscape elements critical for enhanc-
ing and maintaining landscape-scale connected-
ness between plant populations (Reinula et al. 2021, 
2024; See Fig. 2). Secondly, it can identify areas of 
high genetic diversity and adaptive potential, substan-
tial for helping ecosystems adapt to environmental 
changes. Finally, landscape genetics informs land-use 
planning by identifying genetic refugia and areas with 
significant evolutionary potential that should be pri-
oritised for conservation efforts of threatened plant 
species (Aavik et al. 2017).

One major advantage of landscape genetics is 
the availability of existing environmental data, the 
potential of which has been underused until recently 
(Dauphin et  al. 2023). Vast background information 
reduces the need for new data collection and accel-
erates research. Typically, it is only the genetic data 
that is absent. Additionally, similar landscape fea-
tures often affect multiple species in the same way, 
allowing for broader predictions when species are 
grouped by their dispersal mechanisms or life history 
traits– an approach which could be particularly ben-
eficial for planning and monitoring EU NRL (Rico 
et al. 2014). Lastly, landscape genetics enhances con-
servation communication by providing clear, action-
able insights into how specific landscape features 
influence gene flow, i.e. the patterns of functional 
connectivity, which may not be mirrored in the spatial 
diversity and arrangement of habitats (Auffret et  al. 
2017). This knowledge enables more precise land-use 
planning, such as creating buffer zones that enhance 
connectivity while preserving local adaptations.

Besides addressing the effective management of 
rare or threatened plant species, landscape genetics, 
by identifying patterns of structural and functional 
connectivity, supports the development of more 
targeted, cost-effective, and practical management 
strategies against invasive species. For example, 
studies have shown a link between human population 
density and genetic differentiation in invasive 

plant populations movement (Alvarado-Serrano 
et  al. 2018; Arredondo et  al. 2018), emphasising 
the significant role of human activity in shaping 
population connectivity and driving species (Fig. 1). 
These results are critical for informing management 
strategies, as they help identify high-risk areas 
influenced by human activity, enabling more focused 
and effective prevention and control efforts.

Implementation challenges of landscape genetics 
in conservation

Conservation efforts prioritise several key goals: con-
ducting successful restoration initiatives, overcoming 
obstacles that threaten species survival in their habi-
tats, and addressing climate change impacts. To gain 
insights into these priorities, we interviewed conser-
vationists of two National Parks in the Canary Islands, 
where genetic research has been a cornerstone of 
conservation strategies (Sosa et  al. 2010; Sosa Hen-
ríquez 2021). In these parks, directors emphasised 
the importance of carefully selecting replanting sites, 
examining the genetic diversity of plant communities, 
and overcoming germination challenges. They also 
noted the difficulties posed by invasive herbivores, 
which hinder replanting efforts and complicate cli-
mate mitigation plans. Additionally, they highlighted 
the need to improve public understanding and support 
for conservation work.

Landscape genetics can provide valuable tools for 
addressing these conservation priorities. For example, 
it can identify optimal replanting zones by analys-
ing genetic connectivity and corridors (Manel et  al. 
2003; Rico et al. 2023). It can also examine whether 
invasive herbivores disrupt gene flow (Sarmiento 
Cabello et al., submitted), as well as assessing herbi-
vore dispersal patterns (Frantz et  al. 2012; Berkman 
et  al. 2018). Furthermore, landscape genetics allows 
researchers to assess habitat connectivity under 
projected climate scenarios, offering guidance for 
long-term conservation planning (Sork et  al. 2010; 
Johnson et al. 2017). By working closely with conser-
vation practitioners, landscape genetics has the poten-
tial to make significant contributions to conservation 
success.

Despite its potential, there are significant 
challenges in implementing landscape conservation 
measures informed by genetic data. Although 
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landscape genetic concepts (such as gene flow) are 
often easy to understand, practical difficulties arise 
from differences in priorities between researchers and 
government bodies (Keller et  al. 2015). Researchers 
provide essential, science-based guidance, yet 
decision-making bodies may not always act on these 
recommendations. This can result from limited public 
interest, funding constraints, or the need to balance 
conservation with established human activities that 
communities value, such as recreational practices or 
traditional land use. These competing priorities can 
sometimes lead policymakers to make compromises 
that do not fully align with scientific advice.

Increasing public awareness of landscape genetics 
could help bridge these gaps, as public support can 
shape policies favouring science-driven conservation. 
A straightforward and powerful strategy for enhanc-
ing public engagement is to share research findings 
visually through maps, websites, infographics (eg. 
Figures  2, 3), and territory planning tools. These 
need to be engaging, accessible, and communicate 
complex genetic and environmental data effectively 
(Manel et  al. 2003; Pedregal et  al. 2015). Further-
more, emerging tools now integrate landscape genet-
ics within single platforms, some with user-friendly 
interfaces that eliminate the need for coding skills 
(Chambers et  al. 2023; Sunny et  al. 2025), which 
facilitates the use of these analyses into conservation 
planning. By making research more accessible and 
engaging, public awareness and education efforts can 
help build a foundation for policies that align with 
long-term, science-based conservation goals, ulti-
mately ensuring that landscape genetics can be more 
widely and effectively applied in conservation prac-
tices (see Figs. 2, 3).

To effectively address challenges related to com-
municating the potential of landscape genetics for 
conservation, the research community should also 
turn more attention to diminishing internal barri-
ers that hinder the broader implementation of these 
tools. First, although landscape genetics has advanced 
rapidly—driven by progress in genomic tools and its 
relatively recent emergence—its theoretical founda-
tions and conceptual framework remain fragmented 
and lack sufficient integration. This conceptual ambi-
guity weakens the coherence of the field and hampers 
efforts to build a shared understanding. Second, the 
absence of consolidated frameworks, combined with 
rapidly evolving methodologies, makes it difficult to 

establish a solid educational foundation for formally 
teaching landscape genetics in academic programs. 
We believe that addressing these academic gaps is 
essential to strengthening the discipline and foster-
ing stronger links between research and practical 
conservation.

Concluding remarks

Plant landscape genetics is a developing discipline 
enabled by developments in DNA analysis, map-
ping, and computational power. It aims to understand 
the extent and apportionment of genetic diversity, 
the connectivity of sessile photosynthetic organisms 
across an increasingly fragmented and urbanised 
landscape in a time of rapidly shifting environmental 
pressures. Hence, it is key to understanding plant spe-
cies mobility. This understanding can then be incor-
porated into conservation policy such that we maxim-
ise the opportunity to have a resilient interconnected 
planet that maintains biodiversity.

As such landscape genetics should underpin wider 
public and political conservation action. This raises 
the demand of its practitioners to communicate their 
findings to stakeholders, whether they be conserva-
tion practitioners, politicians or the general public.

The challenges to this are multiple, though not 
insurmountable. Significant amongst these challenges 
is the requirement for landscape genetics scientists to 
communicate to the intelligent layperson, conserva-
tionist and politician the concept, findings and impli-
cations of the discipline in an accessible and easily 
understood format.

The XX International Botanical Congress in 2024 
set out the Madrid Declaration detailing ten points 
for action for a sustainable future (Gostel et  al., 
2024). “Across Land and Water: Understanding Plant 
Gene Flow at a Landscape Scale” symposium was 
a significant part of that Congress and the subject 
is implicitly relevant to the majority of the ten 
points. We have selected three points to which it is 
particularly relevant (Box 1); It plays a major role in 
conservation (Point 6), and this information enables 
society to make evidence-based decisions (Point 7), 
using communication strategies suggested in this 
work. Finally, nature-based solutions (Point 8), which 
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will give us a resilient and biodiverse planet are 
underpinned by landscape genetic knowledge.
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