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Abstract: In rolling shutter (RS)-based optical camera communication (OCC) links, selecting
the appropriate camera’s exposure time is critical, as it limits the reception bandwidth. In long
exposures, the pixels accumulate over time the incoming irradiance of several consecutive symbols.
As a result, a harmful intersymbol interference corrupts the received signal. Consequently,
reducing the exposure time is required to increase the reception bandwidth at the cost of producing
dark images with impracticable light conditions for human or machine-supervised applications.
Alternatively, deep learning (DL) equalizers can be trained to mitigate the exposure-related ISI.
These equalizers must be trained considering the transmitter clock and the camera’s exposure,
which can be exceptionally challenging if those parameters are unknown in advance (e.g., if
the camera does not reveal its internal settings). In those cases, the receiver must estimate
those parameters directly from the images, which are severely distorted by the exposure time.
This work proposes a DL estimator for this purpose, which is trained using synthetic images
generated for thousands of representative cases. This estimator enables the receiver operation
under multiple possible configurations, regardless of the camera used. The results obtained
during the validation, using more than 7000 real images, registered relative errors lower than
1% and 2% when estimating the transmitter clock and the exposure time, respectively. The
obtained errors guarantee the optimal performance of the following equalization and decoding
receiver stages, keeping bit error rates below the forward error correction limit. This estimator is
a central component of any OCC receiver that operates over moderate exposure conditions. It
decouples the reception routines from the cameras used, ultimately enabling cloud-based receiver
architectures.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical camera communication (OCC) is a branch of visible light communication (VLC) [1], in
which the optical receivers are the pixels of an image sensor. The interest in this technology lies
in the reuse of embedded cameras in a wide range of end-user devices (e.g., smartphones, vehicle
dashcams, laptops). In this way, it is intended to break the market’s entry barriers imposed on
VLC due to the need of using dedicated reception hardware (i.e., photodiode-based receivers) [2].

Notwithstanding, the actual reuse of rolling-shutter (RS) cameras for simultaneous data
acquisition and scene visualization is challenging. Using RS-cameras as receivers requires the
camera to be optimally configured to achieve the highest link throughput [3]. Its exposure time
should be minimized, otherwise, it will restrict the available reception bandwidth (acting as a
low pass filter [4,5]). However, under short exposure conditions, the camera delivers dark images
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with impracticable light conditions for human or machine-supervised applications (i.e., users
cannot perceive objects in the scene) [4].

Consequently, a tradeoff appears in selecting the suitable exposure time for a particular
application. To obtain an in-depth understanding of how the exposure time affects communications
is necessary to examine the RS-cameras’ image acquisition mechanism [6]. In contrast to global
shutter (GS) cameras that expose the whole image sensor during acquisition, RS cameras expose
it sequentially row-by-row of pixels from top to bottom as shown in Fig. 1. In this acquisition,
each row is activated after transcurred a fixed interval, known as the row sampling time, Ts.
After the activation, the row’s pixels remain exposed to light during a configurable amount of
time, known as the exposure time, fexp. As a result, each row samples the light at different
sampling instants, generating an image composed of different intensity bands depending on the
illumination state of the transmitter [6-9].
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Fig. 1. Rolling shutter image acquisition mechanism.

Figure 2(a) shows an example of the generation of the symbol bands (or stripes) for binary
transmission. From this figure, it can be extracted that the row sampling time (which generally
ranges from tens of nanos to microseconds) constitutes, essentially, the receiver’s sampling
period. In contrast, in GS cameras, the receiver’s sampling period corresponds to the time
elapsed between two consecutive frames [7]. Thus, RS cameras outperform GS cameras in terms

of achievable data rate [10].
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Fig. 2. Captures of the same transmission with increasing exposure time.

Fig. 1(a) illustrates an ideal sampling, in which the exposure time equals the row sampling
time (fexp < trow). In this case, there is no overlap between the exposure of two consecutive rows.
On the other hand, Fig. 1(b) illustrates a case where the exposure time is roughly 2.5 times greater
than the symbol time. In this case, the pixels accumulate, over time, the incoming light irradiance
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of several consecutive symbols, corrupting the transmitted signal with a devastating intersymbol
interference (ISI). As seen in this figure, the received signals are comparatively different. Their
brightness increases with the exposure as the pixels accumulate light over a longer time, while
their peak-to-peak amplitude decreases and varies more slowly. Figure 2 shows real captures
under increasing exposure times for the same transmission (i.e., same frequency and data). It
can be appreciated that these examples significantly differ either in shape or brightness, despite
capturing the same transmitted signal, which reveals the complexity faced by the receiver at the
decoding stage.

In conclusion, the exposure time has devastating effects, which are more detrimental depending
on the ratio between the exposure and the symbol time, called the exposure to symbol ratio
(ESR) [4]. Experimentally it can be demonstrated that the exposure effects are neglectable
when the exposure time is less or equal to half the symbol time (fexp < fsym/2 or ESR < 1/2).
This criterion remarkably restricts the number of different camera devices that can be used as
receivers for a given transmitter. First, not all cameras can achieve the required short exposure.
Second, they might rely on automatic algorithms for setting the exposure based on ambient
light conditions. Finally, they might not allow access to their internal settings. Therefore, it is
important to propose equalization stages to mitigate the inevitable exposure-related ISI.

To improve the reception’s bandwidth, Ligiong et al. [11] propose a CNN-based neural
architecture for demodulating on-off keying (OOK) signals captured with an RS camera. In
addition, Yun-Shen et al. [12,13] propose two different Al-assisted approaches for demodulating
4-level pulse amplitude modulation (PAM4) signals: a pixel-per-symbol labelling (PPSL) and a
long short-term memory neural networks (LSTM). Despite these architectures notably improve
data decoding, their performance has been evaluated in relatively good exposure conditions.
Based on the configured exposure time and the attained baud rates, in these works, the exposure
time does not exceed the symbol time (ESR < 1).

On the other hand, Younus et al. [14—16] propose the use of a one-dimensional artificial
neural network (ANN) equalizer. This network can equalize OOK (or 4PAM) signals affected
by exposure times that are up to 4 times the symbol time (ESR < 4), improving the receiver’s
bandwidth by nine times compared to non-equalized receivers. However, this approach did not
take advantage of the spatial redundancy of the data replicated in nearby columns [17], which
can be exploited to increase the signal-to-noise ratio (SNR). Hence, the proposed equalizer is
very sensitive to noise. In addition, the experimental setup used to train the system was very
complex to conduct. It requires placing the receiver camera alongside a photodiode to obtain the
training signals. In other words, the authors propose an ad-hoc solution that involved a highly
time-consuming training phase for equalizing the images captured by a specific camera.

Alternatively, a two-dimensional convolutional autoencoder (CAE) equalizer trained using
exclusively synthetic images was proposed in a previous work [4]. The validation (with real
images) demonstrated that this network records bandwidth improvements of up to 14 times
for OOK signals (compared to non-equalized receivers) under moderate SNR conditions (12
to 18dBs). This equalizer can decode signals with exposure times that are up to seven times
longer than the symbol time (ESR < 7), attaining bit error rates (BER) below the forward error
correction (FEC) limit (i.e., 3.8 x 1073). Furthermore, since the training is conducted using
synthetic images, it can be done offline and on-demand for a wide range of RS cameras with
different characteristics.

For all the works above mentioned there is a common requirement. The receiver must be tuned,
or adjusted, to the transmitter’s clock frequency and the camera’s exposure time. Meeting this
requisite is exceptionally challenging when these parameters are unknown in advance or cannot
be established. For example, when the transmitter dynamically adapts its transmission frequency,
or, when the camera does not provide access to its internal settings [18], or dynamically adjusts
its configuration based on ambient light estimations. In those cases, the receiver must recover
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those parameters directly from the received images, which is an exceptionally complex task
because the images are severely distorted by the exposure.

In this work, a novel estimator block based on convolutional neural networks (CNN) is proposed
to address this challenge. This estimator, pretrained with large synthetic datasets, ingests real
images containing data packets and estimates the required signal parameters delivering them to the
following equalization and the decoding stages: the signal clock and the camera’s exposure time.
Furthermore, the training dataset contains thousands of representative cases and noise conditions,
enabling the estimator to operate effectively in many configurations, regardless of the camera
used in the final deployment. The role of the proposed estimator becomes indispensable in any
RS-OCC link that operates over moderate exposure conditions. It is responsible for recovering,
under harsh conditions, the exposure time used for adjusting the equalizers and the signal clock
required for data decoding. Consequently, it allows decoupling of the receiver’s equalization and
decoding routines from the hardware used (i.e. cameras), enabling cloud architectures that can
handle many different image streams.

In addition, in this work, a dataset containing more than 7000 real-captured images for
different exposure times and transmission frequencies was generated and released to the scientific
community (Dataset 1 [19]).

The remainder of this paper is organized as follows. Section 1 introduces the proposed
architecture and details the role of the estimator, which inputs it takes and which parameters
deliver to the equalizer and the decoder in the reception chain. Section 2 describes the methods,
procedures, metrics and the experimental setup used to evaluate the estimator’s performance,
including the synthetic network training and the validation using real captured images. Section 3
presents the results. Finally, the conclusions of this work are summarized in section 4.

2. Communications scheme

Figure 3 shows the proposed system architecture and its functional blocks. At the transmitter
side, a uniform illuminated flat-panel LED sends non-return to zero (NRZ) Manchester encoded
on-off keying (OOK) pulses. Pseudo-random data bits are grouped into packets with a fixed
length and enclosed with a header consisting of five consecutive ones and a zero-bit trailer. In
addition, after three consecutive bits, a stuffed bit is inserted, preventing the header sequence
from appearing within the payload. This redundant bit is set to one if the preceding bit is zero or
zero otherwise. For instance, considering the following payload bits, *11011°, the transmitted
data packet is "11111-110-1-11-0’. On the receiver side, two independent subsystems are
interconnected through a shared interface: the image and data acquisition subsystems. The former
consist of a generic RS-camera that continuously delivers a stream of compressed JPEG images.
This camera is configured, if possible, to select its lowest exposure time required for human or
machine-supervised applications. The data acquisition subsystem includes functional software
components that can be either embedded in a hardware platform physically interconnected to
the camera or deployed in a cloud infrastructure. The first block, the stream manager, controls
different image streams and constitutes the input interface to the reception chain. Through this
interface, it receives images and stores them in buffers until decoding resources are available.
The blocks that follow the stream controller are responsible for recovering the data embedded
in the image: the equalizer, the decoder and the estimator blocks. In the proposed architecture,
the equalizer consists of a bank of pre-trained CAEs (detailed in [4]) trained for different exposure
times and signal clocks. Their function is to mitigate the exposure-related ISI and reduce the
noise. On the other hand, the decoder uses 2D correlation techniques for packet detection,
synchronization, and data decoding (as detailed in [20]). Figure 3 shows that these subsystems
receive as inputs two important parameters: the number of pixels per symbol (NPPS) and the
exposure to symbol ratio (ESR). The former, as introduced in [16], represents the theoretical
number of samples per symbol. It is the ratio between the symbol time, #sy, and the RS-camera’s
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row sampling period, T, (NPPS = ., /T5). Hence, this parameter is directly related to the signal
clock. As an example, in Fig. 1 the signal’s NPPS is 3, i.e., theoretically, 3 pixels (or samples)
is the expected height for each symbol. Emphasize that the NPPS is not necessarily an integer
value. The latter is the ratio between the exposure, fex, and the symbol times, fgym. It indicates
how deteriorated is the signal due to the exposure time. As an example, in Fig. 1(a) the ESR is
lower than 0.5 (i.e., ~ 0.33) and, hence, the receiver is operating in optimal sampling conditions
(fexp < tsym/2). However, in Fig. 1(b), the ESR is 2.5, and the IS is significant. In conclusion,
these dimensionless parameters (i.e., NPPS and ESR) characterize the signal received and allow
the equalizer to be adjusted for its optimal performance and the decoder to recover the signal
clock and proceed with data acquisition.

Flat panel LED  Image acquisition Data acquisition Embedded or on-cloud receiver

streams - -
‘ Stream controller Equalizer Decoder

- Interface ¥

Fig. 3. Embedded or on-cloud receiver scheme.

Finally, the estimator block is responsible for predicting those parameters when they cannot be
set or known in advance. To accomplish this, it ingests real images containing data packets and
delivers the NPPS and ESR estimates to the corresponding blocks in the reception chain. In this
way, the receiver communication algorithms are decoupled from the hardware used to stream the
images, even from the camera’s configuration.

It should be highlighted the complexity of estimating those parameters from the received signal
when the exposure comes into play. Under ideal exposure conditions, the NPPS can be easily
estimated by counting the number of sequences of ones and zeroes samples after thresholding
the image with a fixed value, as detailed in [21,22]. In those works, the NPPS is known as the
stripe width. Moreover, it is unnecessary to estimate the ESR as there is no need to perform the
exposure-related equalization. This strategy for estimating the NPPS is accurate only under ideal
sampling conditions. In any other case, the ISI severely distorts the signal, altering its shape,
intensity and temporal evolution. This estimator is based on a convolutional neural network
(CNN) (Fig. 4). The topology of this network consists of a sequence of feature extraction blocks
(Fig. 4(b)) that obtains a set of features from the input images (Fig. 4(a)), and a regression
artificial neural network (ANN) (Fig. 4(c)), that estimates the parameters as a function of those
latent features. The feature extraction blocks are composed of depthwise separable convolutional
layers (DSC) [23], replacing the 2D convolutional neural layers (Conv2D) used in traditional
CNNs. Compared to the latter which performs the spatial and channel-wise convolution of the
inputs using three-dimensional kernels (Fig. 4(e)), DSC layers split the computation into two
steps (Fig. 4(f)): a depthwise convolution, followed by a pointwise convolution. The advantage
of using DSC layers compared to Conv2D layers is that the number of training parameters is
considerably reduced. Figure 4(e) compares the Conv2D and the DSC layers. The former uses a
unique kernel, K, with the same number of channels (depth) as the input, /. The result of the
convolution operation, Z, is a two-dimensional tensor, which is expressed in Eq. (1).

>~

w—1 kn—1kg—1

Zli,jl = (I ® K)[i,j] = ZZI[mnl Kli—m,j—n,l] )

m=0 n=0 1=0
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where i, j are the output’s indexes, m, n, [, the horizontal, vertical and channel kernel’s indexes,
and k,,, kj, kg, the kernel’s width, height and depth. On the other hand, a DSC separates this
computation into two steps. First a depthwise convolution is applied to each independent channel
of the image, I, using a two-dimensional kernel, Kgeptwise. The outputs for each iteration are
then stacked together, obtaining and output tensor that has the same depth as the input, expresed
in Eq. (2). In this step, a kernel vector, Kpointwise With a length, k; equals to the number of input’s
channels is convolved with every spatial point of the stack, resulting in a two dimensional tensor,
Z, which is expressed in Eq. (3).

ko—1 kn
Zij k= 0 )" dim,n,k] - Kaepnwiseli = m,j = &)
n=0 m=0
ka
Z[i,j] = Z Zl[iaja 1- Kpointwise[l] 3
1=0

Following the convolution, the outputs are biased (B[i,]) and transformed using a non-linear
activation function, ¢, which generates a feature map, F[i,j] (Eq. (4)) for the next stage.

Fli.j] = ¢(Z[i.j] + Bli.j1) “

The non-linear activation functions used in this work are the Leaky Rectified Linear Unit
(Leaky ReLU) and the Sigmoid functions [24,25]. Afterwards, a sequence of pooling layers
replaces the outputs in specific locations with a statistical summary of the outputs in the vicinity.
This contributes to increase the non-linearity of the outputs and reduces the total number of
network parameters. In this model, max-pooling and average pooling layers are used. The former
returns the maximum value and the second the average value of a rectangular patch. This pooling
stage starts with an average pooling layer (Fig. 4(g)) with kernel’s dimensions 1xN where N is
the number of columns considered. Then it follows a max-pooling layer (Fig. 4(h)) Mx1 where
M is the number of rows.

(a) Input (z-score) (b) Features extraction block (c) RNN

example column (h)
npps: 5.0, esr: 6.5

(d) Output
npps

esr

Depthwise
convolutional layer
Average pooling
(over columns)
Max-pooling
(over rows)
Flatten layer

Redundancy
(columns) onv2D layer (for comparison)

-
-
-
-
_— N L T e Auinil siudeintuinnly Yhguiy

12

Fig. 4. Deep learning estimator model.

Finally, the RNN consists of a dense neural network with a single hidden layer and an output
layer of 2 neurons, one per estimated parameter (i.e., NPPS and ESR). Also, as the outputs are
normalized between zero and one, the activation function used in this case is the softmax.
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3. Methodology

The evaluation of the proposed estimator’s performance takes place in the following phases. In
the first phase, both the synthetic and real datasets were generated. The algorithm used to create
the synthetic images is detailed in [4]. For generating the real dataset (Dataset 1 [19]), the images
were captured using the experimental setup shown in Fig. 5. It consists of a flat-panel LED
pointing towards an RS-camera separated at a distance of 20 cm. At this distance, the transmitter
occupies the image entirely. The signal is generated using an arbitrary wave generator, and a
power supply is used to feed the light source. Table 1 summarizes the key parameters of the
experiment necessary for its replicability.

The real dataset (Dataset 1 [19]) contains more than 7000 image samples for different NPPS
and ESR. The NPPS values range from 4.0 to 7.0 in steps of 0.5 units and the ESR from 1.0 to
7.0 in steps of 0.5 units. After the generation of both datasets (synthetic and real), a rigorous
analysis is carried out to verify that they are comparable, at least from the perspective of the
neural network.

o Ll b
| RS-camera
g PiCamera V2

Fig. 5. Experimental setup.

Table 1. Experiment’s key parameters.

Parameter Value Parameter Value
Camera Transmitter

Hardware Sony IMX219 [26] LED color Cold white

Aperture lens /2 |Focal length (3 mm) Source voltage (V) 30to 35

Image resolution 1920x1080 pixels Symbol time, tgym | 75 usto 135 pus | 4 to 8
NPPS

Exposure times, fexy 20 ps to 1500 us (step 19 us) | Header, payload, 5,35,12,1
stuffed, and trailer bits

Sampling period, Ts | 18.9035 us Random seed 31415

The following phase is the actual training of the network using the synthetic dataset. The
training is conducted offline using a computer with local access to the datasets stored in memory.
For training, the input images are z-score standardized, and the outputs are normalized between
zero and one using a fixed value. The loss function used for training the network is the Mean
Squared Error (MSE). Additionally, to improve the training results (i.e., minimizing the MSE), a
network hyperparameter optimization is conducted, following the hyperband algorithm detailed
in [27]. The layers of the optimized network model are summarized in Table 2. This table
presents from top to bottom the subsequent layers, starting from the input layer, which ingests
images, and finalizing with the output layer consisting of two neurons (one per estimate). In each
row, it is detailed the layer type (such as DSC, average pooling, max pooling, dense,. . . ), the total
number of trainable parameters (such as the layer’s weights and biases), specific parameters (such
as the number of filters, the kernel size,..), and, finally, the layer’s output shape. The latter is the
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shape of the output tensor delivered from a particular layer. For instance, the input layer returns a
tensor with a shape of 32 images (i.e., corresponding to the training batch size) with a height and
width of 256 and 64 pixels, respectively, and 1 colour channel (i.e., the image is in grayscale).

Table 2. Model summary.

Layer Train params. | Description Output shape
Input 0 - (32,256, 64, 1)
DSC 47 Filters=16, Kernel=(3,5) (32, 256, 64, 16)
AveragePool 0 Kernel=(1,4), Strides=(1,2) (32, 256, 32, 16)
MaxPooling 0 Kernel=(2,2), Strides=(1,1) | (32, 128, 16, 16)
DSC 688 Filters=32, Kernel=(3,3) (32, 128, 16, 32)
AveragePool | 0 Kernel=(1,2), Strides=(1,1) | (32, 128, 8, 32)
MaxPool 0 Kernel=(2,1), Strides=(1,1) (32,64, 8, 32)
DSC 2400 Filters=64, Kernel=(3,3) (32,64, 8, 64)
AveragePool | 0 Kernel=(1,2), Strides=(1,1) (32,64, 4,64)
MaxPool 0 Kernel=(2,1), Strides=(1,1) (32,32,4,64)
DSC 8768 Filters=128, Kernel=(3,3) (32,32,4,128)
AveragePool | 0 Kernel=(1,2), Strides=(1,1) (32, 32,2, 128)
MaxPool 0 Kernel=(2,1), Strides=(1,1) (32, 16, 2, 128)
DSC 17536 Filters=128, Kernel=(3,3) (32,16, 2, 128)
AveragePool | 0 Kernel=(1,2), Strides(1,1) (32,16, 1, 128)
Flatten 0 - (32, 2048)
Dense 524544 Units=256, bias=True (32, 256)

Dense 16448 Units=64, bias=True (32, 64)

Dense 128 Units=2, bias=False (32,2)

Total trainable params: 570,559

The next phase consists of validating the model training using the real dataset (that has not been
used during training). The validation metric is the root MSE (RMSE) of the estimates. In addition,
based on the results obtained, the training is improved iteratively by refining the synthetic dataset
to make it more similar to the real dataset. In this way, it is possible to progressively enhance the
network’s performance, reducing the validation error. In the last phase, the validation estimates
are analyzed and dissected in the NPPS and ESR dimensions to examine possible influences
between them. For instance, the ESR conditions may influence the estimation of NPPS and
vice versa. Finally, the relative errors (RE) at estimating the transmitter clock and the camera’s
exposure time is computed.

4. Results

This section starts by introducing the preliminary examination and comparison between the
synthetic and the real datasets. Then, the iterative process accomplished to refine the results
obtained in the training and validation of the model is presented. At the end of this section, the
final results obtained for the best training configuration are dissected and discussed, analyzing
the model’s precision and accuracy in estimating the NPPS and the ESR.

Figure 6 displays two example sets (left and right) with three different images to provide a
visual comparison between the real and synthetic datasets. The first image (in those sets) belongs
to the real dataset. It is a grayscale image that takes values between 0 and 255. The second image
is a 2D tensor obtained from the z-score standardization of the previous image. It has values
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between -3 and 3 so that its mean and standard deviation are close to 0 and 1, respectively. The
third image is the synthetic version (z-score standardized) created with the algorithm detailed in
[4]. The left and right sets represent signals with NPPS of 4 and ESRs of 1.1 and 5.6, respectively.
These sets are affected by different SNRs: 20 dB (left) and 7 dB (right). It should be remarked
that only the z-score standardized tensors will be used as inputs in the training and validation.
Therefore, they should be comparatively similar, at least from the perspective of the neural
network. At first glance, they might look quite similar in this visualization. However, to give
rigour to this analysis, the cross-correlation between both datasets was carried out. The resulting
cross-correlation matrix is shown in Fig. 7. Each point of the correlation matrix represents
the maximum correlation value obtained for a pair set (synthetic, real). Highlight that for this
experiment, the transmitter is configured to send packets with the same payload, and the synthetic
versions of these images also contain the same data. The results are distributed in the matrix as
follows. The left axis represents the synthetic images, and the upper axis, the real images used
for the correlation. The axis labels are sorted based on the pair sets (NPPS, ESR). From left to
right and top to bottom, the NPPS value increases. Also, for each NPPS (e.g., 4.0), the ESR is
increased until it reaches its maximum value, obtaining the corresponding pairs sets (e.g. ,(4.0,
1.0), (4.0, 1.5).. .., (4.0, 7.0)).

Real Synthetic Real  Synthetic
Real (z-scored) (z-scored) Real (z-scored) (z-scored)

———
s

DAL
AN

NPPS: 4, ESR: 1.1 NPPS: 4, ESR: 5.6

Fig. 6. Comparison between real and synthetic segments after applying the z-score
standardization.

This matrix shows that the maximum values are in the diagonal, indicating that the synthetic
generated versions match the camera images successfully. On the other hand, it can be appreciated
that the correlation values decay softly from the diagonal towards the edges (i.e., the correlation
values decrease softly as the ESR slightly increases or decreases). There is an explanation for this,
and it is related to the inherent behaviour of the genuine acquisition regarding the exposure time.
As the camera’s exposure duration is increased (with respect to the original exposure conditions),
the obtained images progressively lose their similarity with the initial image. The point at which
increasing the exposure time makes two images significantly different can be determined from
this matrix. This is the point where the correlation value decreases from 0.95 (high correlation)
to 0.65 (low correlation). At this point, the ESR has increased (or decreased) by roughly one unit,
as can be observed in Fig. 7(b). Finally, this matrix shows that the correlation output values are
low for different NPPS (i.e., the images with different NPPS can be successfully distinguished).
From these results, it can be preliminarily concluded that the model would perform worst at
estimating the ESR compared to the NPPS.

Once the similarity of the images has been verified, it is important to highlight the benefits of
using a synthetic dataset for training rather than the real dataset. The first advantage is reducing
the generation time and memory resources. Capturing real images requires building and adapting
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Fig. 7. Cross-correlation matrix of the real and synthetic datasets.

an experimental setup which consumes lots of resources and time. On the other hand, there is
no need to rely on cameras to generate synthetic images; hence, they can be made in parallel
at high speed. Moreover, specific parameters such as SNR and additional image compression
effects are more controllable and rigorous in synthetic images. For example, in real images, to
vary the SNR, it is required to precisely adjust the light power of the source, as it is considerably
complex to control the noise contributions. In addition, the estimation of the SNR accurately in
real images is a remarkably elaborate task. In contrast, different controlled noise contributions
can be easily added to synthetic images. Finally, the use of synthetic images allows decoupling
the network’s training from the camera that will be used in the final deployment. This enables
the training for a wide range of generic RS cameras.

Regarding the network’s training, Fig. 8(a) shows the training and validation losses per
training epoch. The solid blue line represents the validation loss achieved using the best training
configuration. The blue dashed line represents, on the other hand, the training loss. Alternatively,
the pink lines (solid and dashed) represent the losses (obtained in validation and training) for
previous training configurations. These pink lines are used as references only to provide a visual
comparison of the improvements obtained in each iteration. As shown in this graph, there is
always an irreducible gap between validation and training losses. This is because the synthetic
dataset (used for training) and the real dataset (used for validation) are not perfectly similar.
However, despite this gap, the validation loss precisely follows the training loss, indicating that
the model can optimally generalize the features of the training images without overfitting.

Highlight that the effectiveness of the training depends not only on the network’s architecture
but also on the design and selection of the appropriate training and validation datasets. Therefore,
although the network hyperparameters were optimized using the original datasets, it is possible
to further reduce the validation losses by adjusting the training dataset. This iterative dataset
refinement procedure is analyzed in Fig. 8(b-f) based on the MSE obtained in the validation.
Remark that this metric follows the same evolution as the loss, as the latter is derived from
the MSE. However, the loss values are higher because of the regularizing parameters. In these
graphs, the validation (solid line) and training (dashed line) MSE curves are coloured in red
for the latest best training configuration (reference) and blue after introducing a new change.
The pink lines are also maintained as references to other iterations. In the first iteration, the
original synthetic generation algorithm [4] is modified by adding a binary quantization of the
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Fig. 8. Training and validation losses and MSE over epochs.

synthetic images, restringing its values to integers between 0 and 255. This step introduces
a quantization error that the network can exploit efficiently. Furthermore, it makes synthetic
images more representative by removing non-discrete values that can not happen in real images.
In addition, a JPEG compression stage follows this binarization with different qualities (from 75
to 90). This introduces some artificial effects observed in real images. As shown in Fig. 8(b),
these modifications turn out to be adequate and further reduce the gap between the validation
and training MSE. In the second iteration (Fig. 8(c)), a gamma transformation of 1.8 is applied
to the samples of the synthetic dataset, reducing the validation MSE considerably. In the third
iteration (Fig. 8(d)), the SNR range used to generate the training images is increased. Instead
of using an interval of 5 to 30 dB, it was extended from -2 to 40 dB. It can be seen that this
approach does not reduce the validation MSE significantly. Furthermore, it has a drawback as it
makes the validation unpredictable and unstable. For this reason, the original SNR range was
preserved in the following iterations. In the fourth iteration (Fig. 8(e)), the number of images
used from training is augmented. The NPPS and ESR’s resolution step of 0.5 units is reduced
to 0.25 units. The result is a slight improvement in the validation MSE. Based on the previous
result, a combined strategy is accomplished in the last iteration (Fig. 8(f)). First, the gamma
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is increased to 2.2 (matching the gamma commonly used in JPEG-encoded images). Second,
the training space was generated using random uniform distributed values for the NPPS and the
ESR instead of picking them from a grid with a fixed resolution step. This procedure provides a
significant improvement in the final validation MSE.

The model and the weights trained in this last iteration will be used in the final evaluation that
is presented in the remainder of this section.

Regarding the estimator performance, Fig. 9(a) shows the estimates obtained from the validation
dataset. The x-axis represents the NPPS, and the y-axis represents the ESR. The black star
markers denote the target points, i.e., the ground truth. The black dots denote the mean of the
estimates. Finally, the coloured dots represent the estimates obtained for different images. Dots
with the same colour belong to the same target value. The colour does not hold any special
meaning. It is only used to ease the identification of different clusters. At first glance, it can
be seen that the dots in the lower part of the graph form clusters that are smaller than in the
upper part (i.e., where the dots are more spread). This indicates that the model estimations are
more precise under short to moderate exposure conditions (i.e., ESR from 1 to 3) than under
high conditions (i.e., ESR from 5 to 7). In other words, the estimations under short to moderate
exposure conditions have a lower error. Consequently, different errors are obtained depending on
the location of the target values in the space domain.

Estimates (N=1)

EVM - Mean: 0.04
Min: 0.19, Max: 0.92

NPPS RMSE - Mean: 0.03
Min: 0.09, Max: 0.19

ESR RMSE - Mean: 0.02
Min: 0.15, Max: 0.92

8
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Fig. 9. NPPS and ESR estimates for the validation dataset.

The error vector magnitude (EVM) is used to quantify the errors in the estimations. Figure 9(b)
shows the EVM obtained at different points in the space domain. The areas coloured in red
represent areas where the estimates have the greatest observed error considering their target
values (i.e., EVM equals 1). On the other hand, the areas coloured in blue represent the areas
with the lowest estimation errors. As it can be seen, the point (NPPS=6.5, ESR=6) has the
highest estimation error, while the point (NPPS=5, ESR=1.5) has the lowest.

However, although this metric quantifies well the estimation error, it does not provide an
in-depth analysis of the nature of the error made. Ultimately the EVM metric combines the error
obtained in the NPPS and ESR dimensions. Therefore, it is necessary to analyze the NPPS and
the ESR errors independently. For this purpose, Fig. 9(c) shows RMSE obtained for the NPPS
and Fig. 9(d) the RMSE for the ESR, respectively. In both cases, the RMSE values vary from 0
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(blue) to 1 (red). These graphs reveal that the model can estimate the NPPS more accurately than
the ESR. The ESR estimation errors contribute highly to the EVM.

Examining the EVM map in detail, it is observed that the errors are greater as the ESR
increases, which is in line with the expected behaviour of the network. The longer the exposure
time, the more severe distortion affects the received signal.

On the other hand, the errors also increase with the NPPS. This seems to contradict the
expected behaviour, since increasing the redundancy per symbol (higher NPPS) should help the
network at estimating the output parameters. However, the opposite seems to be happening. The
reason behind this lies in the fact that the dimensions of the network’s input image are fixed to
256x64x1 pixels. Hence, the samples of the transmitted signal correspond just to 256 pixel rows.
Consequently, increasing the redundancy of symbol samples comes at the cost of reducing the
number of different symbols that fit inside the image. In other words, increasing the redundancy
reduces the variability of the signal samples. For instance, for NPPS equal to 7, the number of
symbols within the image is approximately 36 (36 = 256 / 7), while for NPPS equal to 4, this
number is 64. As a consequence, for higher NPPS, the network might deliver estimates that
greatly deviate from their target value, estimation outliers. For example, in Fig. 9(a) can be seen
a few purple-coloured dots around the coordinates (NPPS=6.5, ESR=3.5) when they should
be located near their target point (NPPS=6.5, ESR=6). Nevertheless, these outliers represent a
rare case. For this particular target point (NPPS=6.5, ESR=6), only four estimates of 85 fall
in a region far distant from their target point. Furthermore, it is experimentally validated that
these outliers are generated systematically and predictably. They appear when the transmitted
payload bitstream has a considerable number of ‘01’ or ‘10 bit sequences chained together (e.g.
‘01010101- - - ). This causes the final transmitted signal, which is Manchester encoded, to be
confused with another one generated with half the actual clock frequency. This is a classical
problem in traditional clock recovery systems based on Manchester encoded systems, which is
solved by inserting packet preambles or by sending pilot clock signals. Definitely, the estimator
might be confused when facing those rare cases, which are more likely to appear when the NPPS
is higher, due to the fixed size of the input image. These outliers can be avoided by changing
the proposed bit stuffing technique to prevent the presence of ‘01’ or ‘10’ bit sequences or by
inserting packet preambles.

Alternatively, outlier-resistant methods can be applied to a set of different estimates to
effectively eliminate the presence of these outliers, revealing the actual trend of the errors that
the network makes in the estimation of the output parameters.

The first strategy consists of computing the mean of a set of N estimates. This set is generated
by collecting the estimates delivered from N random input images. The final ESR and NPPS
estimates are obtained by computing the mean of the previous set.

Figure 10 shows the estimates obtained for N equal 5. In this figure, it can be observed
that the impact of outliers is partially mitigated. The RMSE errors for the NPPS and the
ESR are considerably reduced. However, Fig. 10(a) shows that there are still some estimates
that spread over the ESR dimension. For example, the dots belonging to the target points
(NPPS=6.5, ESR=4.0) and (NPPS=7, ESR=4) are spread within the range of ESR from 4.0 to
4.5. Consequently, with this approach, the outliers still significantly impact the ESR estimation.

On the other hand, given the low probability of the appearance of the outliers, the delivered
estimations can be further improved by using the median instead of the mean. Figure 11 shows
the estimates obtained for N equal 5. In contrast with the mean, the median produces much better
results. The dispersion of the estimates in the ESR domain using the median is significantly
reduced. This graph verifies that after eliminating the effect of the outliers, the behaviour of the
network corresponds to what is expected. The errors are greater for low NPPS and high ESR.

Finally, Fig. 12 displays the relative error (RE) obtained for the NPPS and the ESR separately
using the median approach, with N equals 10. To improve the visualization, the colour scale
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Fig. 10. NPPS and ESR estimates using the average of the outputs of 5 random images.
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Fig. 11. NPPS and ESR estimates using the median of the outputs of 5 random images.

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0



Research Article Vol. 30, No. 12/6 Jun 2022/ Optics Express 20275 |

Optics EXPRESS N

ranges from O to 0.14. These plots show that the maximum and minimum RE observed for the
NPPS are approximately 3% and 0.2%, respectively. In the case of the ESR, they are 9% and
0.6%, respectively. On average, the error for both estimations is approximately 2%. From the
communications perspective, these results imply, on the one hand, that the estimation of the signal
clock, related to the NPPS, has a minimum and a maximum RE of 0.2% and 3% respectively.
Furthermore, if the transmission clock frequency is known, the camera’s row sampling time can
be characterized by using the relation (NPPS = fiy, /Ts). The error made in the estimation of the
row sampling time can be computed using the error propagation theory.
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Fig. 12. NPPS and ESR RE using the median of the outputs of 10 random images.

On the other hand, the RE made at estimating the camera’s exposure time is upper bounded to
9%. As discussed in the previous work [4], an exposure-equalizer trained for a given exposure
time can successfully equalize images exposed with slightly higher or lower exposure times.
Those equalizers allow a maximum deviation of up to 11% for the target exposure time while
ensuring a Bit Error Rate (BER) lower than the Forward Error Correction (FEC) limit (3.8x1073).
Therefore, as the estimator’s ESR estimates have an average RE of 2% (upper bounded to 9%), it
is ensured that the receiver will select the optimal equalizer based on the delivered ESR.

5. Conclusions

This work presents and evaluates a deep learning-based approach to accurately estimate two
fundamental parameters of optical signals acquired with RS-cameras: the NPPS and the ESR.
These dimensionless parameters relate the transmitted symbol duration with the camera’s
sampling frequency and exposure time, respectively. Hence, the NPPS is directly related to the
signal clock and the ESR with the camera’s exposure settings. These parameters are required
during the equalization and decoding stages at reception. Its precise estimation will allow the
receiver to select the optimal equalizer to mitigate the exposure-related ISI and recover the
clock for synchronization and decoding, even when the transmission frequency and the camera’s
internal settings are unknown. Therefore it becomes an essential part of RS receivers operating
over moderate exposure conditions. In addition, this estimator decouples the reception algorithms
from the image stream providers, enabling cloud architectures that can practically handle multiple
camera devices (or another type of image streamers). On the other hand, it can be used to
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characterize cameras in the time domain if needed. For example, if the camera does not reveal its
internal settings due to operative system constraints. In addition, the network’s training using
synthetic images covers a vast training space, with thousands of representative cases considering
multiple configurations for the NPPS and the ESR and different SNR conditions. Furthermore, the
network’s validation using a real dataset favoured the introduction and evaluation of incremental
training improvements by refining the original datasets. The final evaluation of the model
shows that the minimum, mean, and maximum relative errors for the NPPS estimates are 0.2%,
1.3%, and 3%, respectively. This implies an average RE of 1% at determining the transmission
frequency of the source. Furthermore, these errors are significantly low when the exposure time
is shorter. On the other hand, the minimum, mean and maximum relative errors for the ESR
estimates are 0.6%, 3% and 9%, respectively. In this estimation, the neural network produced
worse estimates, and still, the REs obtained are consistently lower (i.e. RE < 9%) than the 11%
ESR deviation supported by pretrained equalizers. Therefore, it is ensured that the BERs after the
equalization will remain below the FEC limit (3.8 x 107%) under the stated conditions. It should
be highlighted that the RE does not exceed 3% in most cases, which indicates that the system
is significantly robust in this estimation, favouring a better performance of the equalizers. In
conclusion, this estimator is essential in all RS-based OCC links, in which both the signal clock
and the exposure time must be retrieved from the images. Consequently, it enables the design of
novel generic OCC links that do not require setting rigid requirements for the transmitter and the
camera settings. Instead, those links will cover many different RS camera devices.
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