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Abstract
Face detection algorithms are deployed in a wide vari-

ety of applications. Unfortunately, there has been no quan-
titative comparison of how these detectors perform under
uncontrolled circumstances. We created a dataset of low
light and long distance images which possess some of the
problems encountered by face detectors in the real world.
We hope to advance and define the state of the art by chal-
lenging the computer vision community to compete on this
dataset.

The dataset we created is composed of photographs and
semi-synthetic heads photographed under varying condi-
tions of low light, atmospheric blur, and a variety of dis-
tances: 3m, 80m, and 200m.

This paper describes the performance of the partici-
pants’ face detectors against those of the Viola Jones de-
tector and three leading commercial face detectors. We
compared each detector’s ability to both detect and localize
faces and eyes.

1. Introduction

Over the last several decades, face detection has changed
from being solely a topic for research to being common-
place in cheap point-and-shoot cameras1. While this may
lead one to believe that face detection is a solved problem,
it is still an active field of research. Most researchers use
controlled datasets such as FERET[11] and PIE[9], which
are captured under controlled lighting and blur conditions.
While these datasets are useful in the creation and testing

1At the time of writing the Canon PowerShot A495 contains face de-
tection controlled autofocus and sells for under ninety dollars

of detectors, they give little indication of how they will pre-
form in uncontrolled circumstances.

Until now, there has not been a quantitative comparison
of how detectors perform under difficult circumstances. To
address this problem we created a dataset of low light and
long distance images which possess some of the problems
face detectors encounter in uncontrolled circumstances. We
are challenging the computer vision community in this way
in order to identify state-of-the-art algorithms suitable for
real-world face and eye detection.

2. Background

While many toolkits, datasets, and evaluation metrics ex-
ist for evaluating face recognition and identification sys-
tems, [11, 1] these are not designed for evaluating simple
face detection measures. Overall there has been little focus
on detection.

Many descriptions of face detection algorithms include
a small evaluation of their performance, but they often
evaluate only the effects of different changes within that
algorithm[26]. Comparisons to others are usually done in
the context of proving that the discussed algorithm is better
than the state-of-the-art. Because of the inconsistent metrics
used, it is often impossible to compare the results of these
kinds of evaluations across papers. Other formal competi-
tions are focused in the domain of recognition [11, 7, 3].
Intending to solve a different problem, they do not report
simple detection scores.

The Conference on Intelligent Systems Design and Ap-
plications [6] performed a face detection competition with
two contestants in 2010. Their datasets included a law en-
forcement mugshot set of 845 images, controlled digital
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camera captures, uncontrolled captures, and a “tiny face”
set intended to mimic captures from surveillance cameras.
All except the mugshot database had generally good qual-
ity. In their conclusions, they state “Obviously, the biggest
improvement opportunity lies in the surveillance area with
tiny faces.” We hope to help satisfy this opportunity by eval-
uating several algorithms in datasets with similar conditions
such as our 200m-50px set.

3. Dataset
We set out to create a dataset which would pose some of

the problems presented by unconstrained detection. To do
this, we created four sub-sets, each of which presents a dif-
ferent problem in order to isolate how a detector performs
on specific challenges. Our naming scheme generally fol-
lows distance-width, where distance is the capture distance
and width is the approximate width of the face in pixels.

(a) 80m-500px (b) Dark-150px

(c) 200m-300px (d) 200m-50px
Figure 1: Samples from the dataset

3.1. 80m-500px

To create the first sub-set, we photographed semi-
synthetic heads generated from PIE at 80 meters indoors
using a Canon 5D mark II with a Sigma EX 800mm lens.
See Figure 1a. These semi-synthetic heads were generated
according to the protocols discussed in [4, 5]. This cam-
era lens combination produced a controlled mid-distance
dataset which provides a useful base line for the uncon-
trolled long distance sub-sets.

3.2. Dark-150px

For the second sub-section, we recaptured PIE[9] at
close range, approximately 3m, in a low light environment.
A sample of our dataset is provided in Figure 1b. We cap-
tured this set with a Salvador camera. While the Salvador
can operate in extremely low light conditions, it produces
a low resolution and high noise image. The noise coupled
with low resolution was chosen to test the detectors’ sensi-
tivity to noise and darkness.

3.3. 200m-300px

For the third sub-set, we photographed the same semi-
synthetic heads, this time from 200 meters outside. See
Figure 1c. We used a Canon 5D mark II with a Sigma EX
800mm lens and a Canon EF 2x II Extender, resulting in an
effective 1600mm lens. The captured faces suffered varying
degrees of atmospheric blur.

3.4. 200m-50px

For the fourth sub-set, we rephotographed FERET from
200 meters. See Figure 1d for a zoomed sample. We used
a Canon 5D mark II with a Sigma EX 800mm lens. The
resulting faces were approximately 50 pixels wide and suf-
fered heavy atmospheric blur and loss of contrast. We chose
a subset of these images, distributed such that our configu-
ration of Viola Jones correctly identified the face in 40% of
the images. Of this group, we manually hand-picked only
images that contained discernible detail around the eyes,
nose, and mouth.

3.5. Non-Face Images

To evaluate algorithm performance when given non-face
images, we included a proportional number of images that
did not contain faces. When evaluating the result, we also
considered the false positives and true rejects of images in
this non-face dataset.

3.6. Dataset Composition

Given these datasets, we randomly selected 50 images of
each subset to create the training dataset; each sub-set was
placed into its own folder and distributed to the contestants
prior to the competition for training purposes. The training
set was also released with groundtruth for the face bounding
box and eye coordinates. The purpose of this set was not to
provide a dataset to train an algorithm, 50 images is to few
for that, but for the participants to internally test and tune
their algorithm.

We then randomly selected 200 images of each subset to
create the testing set. The location of the face within the im-
age was randomized. An equal number of non-face images
was added, and the order of images was then randomized.

4. Baseline Algorithms

For completeness, we compared the algorithms’ perfor-
mance against three leading commercial algorithms. Two
of these (“Commercial A (2005)” and “Commercial A
(2011)”) are different versions of the same algorithm de-
veloped six years apart.

We also benchmarked the standard Viola Jones Haar
Classifier, compiled with OpenCV 2.1 using the frontal-
face alt2 cascade, a scale of 1.1, 4 minimum neighbors,



20×20 minimum feature size, and canny edge detection en-
abled. These parameters where chosen by running a number
viola jones instances with varying parameters. The choice
was made to let Viola Jones have a high false positive rate
compared in order to increase the true positive rate. This
choice was made due to the nature of the dataset. Algo-
rithms such as Correlation-based Eye Detection use similar
Viola Jones parameters. These parameters typically yield
high performance in many scenarios[26].

We aimed to detect both face bounding boxes and eye
coordinates. Because Commercial B only detects eye co-
ordinates, we generated bounding boxes by using the ra-
tios described in csuPreprocessnormalize.c, part
of the CSU Face Evaluation and Identification Toolkit [1].
Similarly, because we only used Viola Jones to detects faces
and not eyes, we defined the eyes as points a predefined ra-
tio away from the midpoint of the bounding box along the
X and Y axes. These ratios were empirically determined
because the CSU normalization ratios are designed to yield
bounding boxes when given eye coordinates, not the other
way around.

Detailed descriptions of the contributors’ algorithms are
presented as an appendix.

5. Evaluation metrics

We judged the contestants based on detection and local-
ization of faces. To gather metrics, we compared each con-
testant’s results with hand-created groundtruth. Because of
the nature of our datasets, a simple “true positive” score
does not necessarily reveal the true performance of a given
algorithm. We represent the full spectrum between “true
positive” and “false positive” by assigning a localization er-
ror score to each eye in the ground truth. This score is equal
to the Euclidean distance between the groundtruth eye and
the identified eye.

To present these scores in Figures 2, we vary the distance
along the X axis and graph the percentage of eyes that sat-
isfy this threshold in the Y-axis. These “localization-error
threshold” (LET) graphs describe the performance of each
algorithm in terms of how many images would be detected
given a desired distance threshold.

The other evaluation metrics are comparatively straight-
forward. In Table 1, a contestant’s bounding box is counted
as a false positive if it does not overlap the groundtruth at
all. Because all of the datasets (modulo the non-face set)
have a face in each image, all images where the contestant
reported no bounding box count as false rejects. In the non-
face set, only true rejects and false positives are relevant
because those images contain no faces.
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Eye: All contestants on 80m-500px
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Eye: All contestants on 200m-300px
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Eye: All contestants on Dark-150px

Figure 2: Eye Localization Error Threshhold (LET) curves.
See Section 5 for details.

6. Results

The results of this competition are summarized in Table
1 and graphically presented as LET curves in Figure 2 as de-
scribed above. To rank contestants, we use the F-measure,



80m-500px Dark-150px 200m-300px 200m-50px Nonface
TP FP FR F TP FP FR F TP FP FR F TP FP FR F TR FP

Pa
rt

ic
ip

an
ts

CBED 194 0 6 0.985 194 0 6 0.985 196 0 4 0.990 100 505 8 0.248 763 51
DEALTE FD 0.4.3 191 1 9 0.974 179 0 21 0.945 177 2 23 0.934 11 120 115 0.066 742 70

MBMCT 192 1 8 0.977 178 0 22 0.942 191 7 9 0.960 1 45 168 0.008 789 13
MOSSE 69 11 120 0.493 132 7 61 0.779 68 92 40 0.378 27 147 26 0.144 702 98
RSFFD 198 0 2 0.995 194 0 6 0.985 200 0 0 1.000 0 1 199 0.000 799 1
SIANI 177 5 18 0.927 122 0 78 0.758 178 5 17 0.930 0 98 102 0.000 726 74

UCSD MPLab 196 1 3 0.987 190 0 10 0.974 195 1 4 0.985 5 8 187 0.047 791 9

C
om

m
er

ci
al Commercial A (2005) 192 0 8 0.980 107 0 93 0.697 173 0 27 0.928 5 6 189 0.047 638 162

Commercial A (2011) 144 0 56 0.837 105 0 95 0.689 187 0 13 0.966 0 0 200 0.000 800 0
Commercial B 198 0 2 0.995 177 11 12 0.912 177 20 3 0.892 6 156 38 0.033 342 458

OpenCV 2.1 198 54 2 0.876 195 6 5 0.973 200 118 0 0.772 80 280 26 0.286 615 257
PittPatt 198 0 2 0.995 191 0 9 0.977 194 0 6 0.985 0 0 200 0.000 800 0

Table 1: Contestant results. See Section 6 for a description of TP, FP, and FR. For the Nonface set, TR is the number of
images where the algorithm reported no face and FP is the number of images where the algorithm found a face.
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Figure 3: Detection Characteristic Curve. Measures how
detection rate changes with image brightness and contrast.
See Section 6.6 for a detailed description.
defined as:

F (precision, recall) =
2× precision× recall

precision + recall
, (1)

where precision is TP
TP+FP and recall is TP

Total . TP is the num-
ber of correctly detected faces that overlap groundtruth, FP
is the number of incorrect bounding boxes returned by the
algorithm, and FR is number of faces the algorithm did not
find. Here is a brief summary of our contestants’ perfor-
mance over each dataset.

6.1. 80m-500px

In this set, three algorithms tied for the highest F-score:
Robust Score Fusion-based Face Detection, PittPatt SDK,
and Commercial B (F=0.995), missing faces in only two im-
ages. UCSD MPLab (F=0.987) secured the fourth-highest
F-score. The lowest F-score belonged to MOSSE(F=0.49).
The second lowest score was from Commercial A (2011)
(F=0.837). Interestingly, the old version of Commercial
A (2005) (F=0.980) outperformed the newer version with
fewer false rejects.

6.2. Dark-150pix

Correlation-based Eye Detection and Robust Score
Fusion-based Face Detection (F=0.985) tied for highest F-
score, both missing six faces. PittPatt SDK (F=0.977) had
third-highest. The algorithms with the lowest F-scores were
Commercial A (2011) (F=0.689) and Commercial A (2005)
(F=0.697). This is ironic because the old version of this
commercial algorithm outperformed the new version. Both
detected just over half of the images in the set. SIANI
(F=0.758) was third-worst.

6.3. 200m-300px

This was one of our most sensible datasets. As such,
the contestants performed very well overall. The algo-
rithm with the highest F-score was Robust Score Fusion-
based Face Detection (F=1.00), who impressively found
no false positives and no false rejects. A close second
was Correlation-based Eye Detection (F=0.990). MOSSE
(F=0.378) had the lowest F-score by far, detecting about
one third of the images in the dataset. Second worst was Vi-
ola Jones (OpenCV 2.1) (F=0.772), finding almost as many
false positives as it found true positives.

6.4. 200m-50px

This dataset was the most brutal set we evaluated.
Though Correlation-based Eye Detection (F=0.248) found
more true positives than Viola Jones (OpenCV 2.1)
(F=0.286), Correlation-based Eye Detection found 505



false faces in this dataset of 200 images, whereas Vi-
ola Jones (OpenCV 2.1) reported 280 false positives.
This likely makes Viola Jones (OpenCV 2.1) slightly bet-
ter suited for real-world detection scenarios. MOSSE
(F=0.144) had the third-highest F-score and the third most
true positives. Because it returned at most one box per
face, it is likely the most pragmatic contestant for this set.
The Submission from DEALTE (F=0.066) had the fourth-
highest F-score.

Most algorithms performed very poorly. Robust Score
Fusion-based Face Detection, SIANI, PittPatt SDK, and
Commercial A (2005) (F=0.00) found no faces at all and
MBMCT (F=0.01) found one face. Commercial A (2005)
(F=0.05) outperformed its newer version (F=0.00) again.

6.5. Nonface

Normal metrics such as “true positives,” “false rejects,”
and “F-score” do not apply in this set because this set con-
tains no faces. Its purpose is to measure false positive and
true reject rates. PittPatt SDK and Commercial A (2011)
(TR: 800) both achieved perfect accuracy. Robust Score
Fusion-based Face Detection (TR: 799) falsely detected one
image, and UCSD MPLab (TR: 791) falsely detected only
nine. The algorithms that reported the most false positives
were Commercial B (TR: 342), Viola Jones (OpenCV 2.1)
(TR: 615), and Commercial A (2005) (TR: 638).

6.6. Detection Characteristic Curves

The above metrics tell us how the algorithms compare on
different datasets, but why did they fail on certain images?
Put more formally, what image qualities make a probe less
likely to be detected? We examined this question along
the dimensions of image brightness and image contrast by
drawing “Detection Characteristic Curves” as seen in Fig-
ure 3.

The X-axis of a DCC curve is image rank, where images
are sorted by brightness (mean) or contrast (standard devia-
tion). The Y-axis is a moving average of the detection rates
where a true positive counts as 1.0 and a false reject counts
as 0. By graphing these metrics this way, we can present a
rough sense of how detection varies as a function of bright-
ness or contrast.

7. Discussion
After processing all the results, some interesting trends

emerged.

• Bounding boxes: Since we did not define a standard-
ized bounding box each group returns a slightly differ-
ent size. Because of this, different algorithms returned
boxes that were consistently tighter or smaller than our
groundtruth. This does not affect the number of de-
tected faces, but it manifests itself on the LET curves

as a shift in the X-axis where the localization accuracy
begins to plateau.

• False positives: In the 200m-50px sub-set, Viola-
Jones based detectors were the only ones that consis-
tently detected faces, but this came at the cost of re-
turning large numbers of false positives.

The Nonface sub-set exposed weaknesses in certain
detectors. Commercial B has 458 false positives and
OpenCV 2.1 has 257 false positives. Both these num-
bers are unacceptable. Commercial A has improved
between versions, dropping from 162 false positive to
0.

• Image characteristics: Image brightness and contrast
played an interesting role in our experiments. For ex-
ample, as can be seen from the brightness detection
characteristic curve in Figure 3, the algorithms gen-
erally detected more dark images than bright ones. As
the images get brighter, the performance begins to drop
off and falls sharply on very bright images. In partic-
ular, the majority of images detected by MOSSE were
very dark, and its detection rate quickly plateaued as
brightness increased.

As for contrast, we found that better detection gener-
ally correlates with increasing contrast. The excep-
tions to this rule included MOSSE where detection
peaked on images of mid-level contrast, and Commer-
cial A (2011) where detection rates dropped sharply
on images with very high contrast. Interestingly, Com-
mercial A (2005) did not exhibit this trend.

8. Conclusions

This paper presented a performance evaluation of face
detection algorithms on a variety of hard datasets. Twelve
different detection algorithms from academic and commer-
cial institutions participated.

The performance of our contestants’ algorithms ranged
from exceptional to experimental. Many classes of algo-
rithms behaved differently on different datasets; for ex-
ample, MOSSE had the worst F-score on 80m and 200m-
300px and the third highest F-score on 200m-50px. None
of the contestants did particularly well on the small, dis-
torted faces in the 200m-50px set; this is a possible area for
researchers to focus on.

There are many opportunities for future improvements
on our competition model. For example, future competi-
tions may wish to provide a more in-depth analysis of im-
age characteristics, perhaps comparing detection rates on
images of varying blur, in-plane and out-of-plane rotation,
scale, compression artifacts, and noise levels. This will give
researchers a better idea of why their algorithms might fail.
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Appendix: Descriptions of Participants
Algorithms

A. Correlation-based Eye Detection
BRIAN HEFLIN

Securics Inc, Colorado Springs, CO

It can be argued that face detection is one of the most
complex and challenging problems in the field of com-
puter vision due to the large intra-class variations caused
by the changes in facial appearance, expression, and light-
ing. These variations cause the face distribution to be highly
nonlinear and complex in any space which is linear to the
original image space. Additionally, in applications such
as surveillance the camera limitations and pose variations
make the distribution of human faces in feature space more
dispersed and complicated than that of frontal faces. This
further complicates the problem of robust face detection.

To detect faces on the two datasets for this competi-
tion, we selected the Viola-Jones face detector [28]. The
Haar classifier used for both datasets was the haarcascade-
frontalFace-alt2.xml. The scale factor was set at 1.1 and the
“minimum neighbors” parameter was set at 2. The Canny
edge detector was not used. The minimum size for the first
dataset was (90,90) by default and (20,20) for 200m-50px.

A.1. Correlation Filter Approach for Eye Detection

The correlation based eye detector is based on the
Unconstrained Minimum Average Correlation Energy
(UMACE) filter [13]. The UMACE filter was synthesized
with 3000 eye images. One advantage of the UMACE filter
over other types of correlation filters such as the Minimum
Average Correlation Energy (MACE) filter [10] is that
over-fitting of the training data is avoided by averaging
the training images. Because eyes are symmetric, we use
one filter to detect both eyes by horizontally flipping the
image after finding the left eye. To find the location of the
eye, a 2D correlation operation is performed between the
UMACE filter and the cropped face image. The global
maximum is the detected eye location. One issue of
correlation based eye detectors is that they will show a
high response to eyebrows, nostrils, dark rimmed glasses,
and strong lighting such as glare from eye glasses [14].
Therefore, we modified our eye detection algorithm to
search for multiple correlation peaks on each side of the
face and to determine which correlation peak is the true
location of the eye. This process is called “eye perturba-
tion” and it consists of two distinct steps: First, to eliminate
all but the salient structures in the correlation output, the
initial correlation output is thresholded at 80% of the
maximum value. Next, a unique label is assigned to each
structure using connected component labeling [15]. The
location of the maximum peak within each label is located
and returned as a possible eye location. This process is



then repeated for both sides of the face. Next, geometric
normalization is performed using all of the potential eye
coordinates. All of the geometrically normalized images
are then compared against an UMACE based “average”
face filter using frequency based cross correlation. This
“average” is the geometric normalization of all of the faces
from the FERET data set [11]. A UMACE filter was then
synthesized from all of the normalized images. After the
cross correlation operation is performed, only a small
region around the center of the image is searched for a
global maximum. The top two left and right (x, y) eye
coordinates corresponding to the image with the highest
similarity are returned as potential eye coordinates and sent
to the facial alignment test.

A.2. Facial alignment

Once the eye perturbation algorithm finishes, the top two
images will be returned as input into the facial alignment
test. The purpose of this test is to eliminate slightly rotated
face images. The first step in the eye perturbation algorithm
will usually return the un-rotated face, but it is possible to
receive a greater correlation score between the rotated im-
age and the average face UMACE filter. The facial image
is preprocessed by the GRAB normalization operator [12].
Next, the face image is split in half along the vertical axis
and the right half is flipped. Normalized cross-correlation
is then performed between the halves. A small window
around the center is searched and the image with the great-
est peak-to-sidelobe ratio (PSR) is then chosen as the image
with the true eye coordinates.
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B. DEALTE FD 0.4.3
AN ANONYMOUS COMMERCIAL SUBMISSION FROM DEALTE

DEALTE, Saultekio al. 15, LT-10224 Vilnius, Lithuania

This face detector uses a variation of RealAdaBoost with
weak classifiers built using trees with modified LBP-like
elements of features. It scans input images in all scales
and positions. To speed-up detection several techniques are
used:

• Feature-centric weak classifiers at the initial stage of
the detector

• Estimation of face presence probability in somewhat
bigger windows at the second stage and a deeper scan-
ning of these bigger windows at the last stage

The algorithm analyzes and accepts/rejects samples when
they exceed a predefined threshold of probability to be a
face or non-face.

C. MBMCT
SÉBASTIEN MARCEL AND COSMIN ATANASOAEI

Idiap Research Institute, Marconi 19, Martigny, Switzerland

Our face detector uses a new feature – the Multi-Block
Modified Census Transform (MBMCT) – that combines the
multi-block idea proposed in [18] and the MCT features
proposed in [17]. The MBMCT features are parametrized
by the top-left coordinate (x, y) and the size w × h of the
rectangular cells in the 3 × 3 neighborhood. This gives a
region of 3w × 3h pixels to compute the 9-bit MBMCT:

MBMCT (x, y, w, h) =
∑
i=0:8

δ(pi ≥ p̄) ∗ 2i, (2)

where δ is the Kronecker delta function, p̄ is the average
pixel intensity in the 3×3 region and pi is the average pixel
intensity in the cell i. The feature is computed in constant
time for any parametrization using the integral image. Var-
ious patterns at multiple scales and aspect ratios can be ob-
tained by varying the parameters w and h.

The MBMCT feature values are non-metric codes and
this restricts the type of weak learner to boost. We use the
multi-branch decision tree (look-up-table) proposed in [18]
as weak learner. This weak learner is parametrized by a
feature index (e.g. dimension in the feature space) and a set
of fixed outputs, one for each distinct feature value. More
formally, the weak learner g is computed for a sample x and
a feature d with:

g(x) = g(x; d,a) = a[u = xd], (3)



where a is a look-up table with 512 entries au (because
there are 512 distinct MCT codes) and d indexes the space
of x, y, w, h possible MBMCT parametrizations. The goal
of the boosting algorithm is then to compute the optimum
feature d and au entries using a training set of face and non-
face images.
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D. MOSSE
MOHAMMAD NAYEEM TELI

Computer Vision Group, Colorado State University, Fort Collins, CO

This face detector is based on the Minimum Output Sum
of Squared Error (MOSSE) [19]. It is a correlation based
approach in the frequency domain. MOSSE works by iden-
tifying a point in the image that correlates to a face. To
train we created a Gaussian filter for each image, centered
at a point between the eyes. Then, we took the element-
wise product of the Fast Fourier Transform (FFT) of each
image and its Gaussian filter to give a resulting correlation
surface. The peak of the correlation surface identifies the
targeted face in the image.

A MOSSE filter is constructed such that the output sum
of squared error is minimized. The pairs fi, gi are the train-
ing images and the desired correlation output respectively.
This desired output image gi is synthetically generated such
that the point between the eyes in the training image fi has
the largest value and the rest of pixels have very small val-
ues. More specifically, gi is generated using a 2D Gaussian.
The construction of the filter requires transformation of the
input images and the Gaussian images into the Fourier do-
main in order to take advantage of the simple element-wise
relationship between the input and the output. Let Fi, Gi be
the Fourier transform of the lower case counterparts. The
exact filter Hi is defined as,

H∗
i =

Gi

Fi
, (4)

where the division is performed element-wise. The exact
filters, like the one defined in Equation 4, are specific to

their corresponding image. In order to find a filter that gen-
eralizes across the dataset, we generate the MOSSE filterH
such that it minimizes the sum of squared error between the
actual output and the desired output of the convolution. The
minimization problem is represented as:

minH∗

∑
i

|Fi �H∗ −Gi|2 , (5)

where Fi and Gi are the input images and the correspond-
ing desired outputs in the Fourier domain. This equation
can be solved to get a closed form solution for the final
filter H . Since the operation involves element-wise mul-
tiplication, each element of the filter H can be optimized
independently. In order to optimize each element of H in-
dependently we can rewrite equation 5 as

Hwv = minHwe

∑
i

|Fiwv �H∗
wv −Gi|2 , (6)

where w and v index the elements of H . This function is
real valued, positive, and convex which implies the presence
of a single optima. This optima is obtained by taking the
partial derivative of Hwv w.r.t. H∗

wv and setting it to 0. By
solving for H∗, we obtain a closed form expression for the
MOSSE filter to be

H∗ =

∑
iGi � F ∗

i∑
i Fi � F ∗

i

(7)

where H∗ is the complex conjugate of the final filter H in
the Fourier domain. A complete derivation of this expres-
sion is in the appendix of the MOSSE paper [19].
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CVIP Laboratory, University of Louisville, KY

This face detector starts by identifying the possible fa-
cial regions in the input image using the OpenCV imple-
mentation [20] of the Viola-Jones (VJ) object detection al-
gorithm [27]. By itself, the VJ OpenCV implementation
suffers from false positive errors as well as occasional false
negative results when directly applied to the input image.
Jun and Kim [22] proposed the concept of face certainty
maps (FCM) to reduce false positive results. We use FCM
to help reduce the occurrence of non-face detected regions.

The following sections describe the steps of our face de-
tection algorithm, which is based on the face detection mod-
ule of [25].
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E.1. Preprocessing

First, each image’s brightness is adjusted according to a
power law (Gamma) transformation. The images are then
denoised using a median filter. Smaller images are further
denoised with the stationary wavelet transform (SWT) ap-
proach [21]; SWT denoising is not applied to the larger im-
ages because of processing time concerns.

Face detection is then performed at different scales. At
each scale, there are some residual detected rectangular re-
gions. These regions (for all scales) are transformed to a
common reference frame. The overlapped rectangles from
different scales are combined into a single rectangle. A
score that represents the number of combined rectangles is
generated and assigned to each combined rectangle.

E.2. Facial Features Detection

After a facial region is detected, the next step is to locate
some facial features (two eyes and mouth) using the same
OpenCV VJ object detection approach but with a different
cascade XML file. Every facial feature has its own train-
ing XML file acquired from various sources [20, 24]. The
geometric structure of the face (i.e., expected facial feature
locations) is taken into consideration to constrain the search
space. The FCM concept above is again used to remove
false positives and negatives. Each candidate rectangle is
given another score that corresponds to the number of facial
features detected inside.

E.3. Final Decision

Every candidate face is assigned two scores that are
combined into a single score, representing the sum of the
number of overlapped rectangles plus the number of facial
features detected. Candidates with scores above a certain
threshold are considered as faces; if all candidates scores
are below the threshold, the image has no faces.
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As an experiment, this approach combines detectors and ev-
idence accumulation. To ease repeatability, we selected the
Viola Jones [28] general object detection framework via its
implementation in OpenCV [27] but these ideas could eas-
ily be applied with other detection frameworks.

Our hypothesis is that we can get better performance
by introducing different heuristics in the face search.
In this sense, we used the set of detectors available
in the latest OpenCV release for frontal face detection
(frontalface default (FD), frontalface alt (FA) and
frontalface alt2 (FA2)), and for facial feature detec-
tion, we used mcs lefteye, mcs righteye, mcs nose and
mcs mouth [26]).

The evidence accumulation is based on the simultaneous
face and facial elements detection, or if the face is not lo-
cated, in the simultaneous co-occurrence of facial feature
detections. The simultaneous activation of different detec-
tors (face and multiple facial features or just multiple facial
features) effectively reduces the influence of false alarms.
These elements include the left and right eyes, nose, and
mouth.

The approach is described algorithmically as follows:
nofacefound← false
nofacefound← FaceDetectionandFFsInside()
if !nofacefound then
nofacefound← FaceDetectionbyFFs()

end if
if nofacefound then
SelectBestCandidate()

end if
According to the competition, the images have at most

one face per image. A summarized description of each mod-
ule:

• FaceDetectionandFFsInside(): Face detection is per-
formed using FA2, FA and FD classifiers until a face
candidate with more than two facial features is de-
tected. The facial feature detection is applied within
their respective expected Region of Interest (ROI)
where a face container is provided. Each ROI is scaled
up before searching the element. The different ROIs
(format left upper corner and dimensions), consider-
ing that sx and sy are the face container dimensions
(width and height respectively), are:

– Left eye: (0, 0) (sx ∗ 0.6, sy ∗ 0.6).



– Right eye: (sx ∗ 0.4, 0) (sx ∗ 0.6, sy ∗ 0.6).

– Nose: (sx ∗ 0.2, sy ∗ 0.25) (sx ∗ 0.6, sy ∗ 0.6).

– Mouth: (sx ∗ 0.1, sy ∗ 0.4) (sx ∗ 0.8, sy ∗ 0.6).

• FaceDetectionbyFFs(): If there is no face candidate,
facial feature detection is applied in the whole image.
The co-occurrence of at least three geometrically co-
herent facial features provides evidence of a face pres-
ence. The summarized geometric rules are: The mouth
must be below any other facial feature; the nose must
be below both eyes but above the mouth; the centroid
of the left eye must be to the left of any other facial
feature and above the nose and the mouth; the centroid
of the right eye must be to the right of any other facial
feature and above the nose and the mouth; and the sep-
aration distance between two facial features must be
coherent with the element size.

• SelectBestCandidate(): Because no more than one face
is accepted per image, the best candidate is preferred
attending the number of facial features.

The described approach could successfully detect the
faces contained in the training set by considering just two
inner facial features (at least one eye). To ensure our al-
gorithm performed well on the non-face set, the minimum
number of facial features required was fixed to 3. This ap-
proach worked well on all datasets except 200m-50px.
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G. UCSD MPLab
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Machine Perception Laboratory, University of California San Diego, CA

We used the facial feature detection architecture de-
scribed in [31]. Briefly, the face finder is a Viola Jones

style cascaded detector [35]. The features used were Haar
wavelets that were variance-normalized. The classifier was
GentleBoost [32] with cascade thresholds set by the Wald-
Boost algorithm [34].

No FDHD images were used in training. Instead, a
custom combined dataset of about 10,000 faces was used.
The sources included publicly available databases such as
FDDB, GEMEP-FERA, and GENKI-SZSL [33, 29, 30]
along with custom sources such as TV shows, movies, and
movie trailers.
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