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Abstract: Detecting people is a key capability for robots that operate in populated
environments. In this paper, we have adopted a hierarchical approach that combines
classifiers created using supervised learning in order to identify whether a person is in
the view-scope of the robot or not. Our approach makes use of vision, depth and thermal
sensors mounted on top of a mobile platform. The set of sensors is set up combining
the rich data source offered by a Kinect sensor, which provides vision and depth at
low cost, and a thermopile array sensor. Experimental results carried out with a mobile
platform in a manufacturing shop floor and in a science museum have shown that the false
positive rate achieved using any single cue is drastically reduced. The performance of our
algorithm improves other well-known approaches, such as C4 and histogram of oriented
gradients (HOG).
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1. Introduction

The deployment of robots as assistants, guides, tutors or social companions in real human
environments poses two main challenges: on the one hand, robots must be able to perform tasks in
complex, unstructured environments, and on the other hand, robots must interact naturally with humans.

A requirement for natural human-robot interaction is the robot’s ability to accurately and robustly
detect humans to generate the proper behavior. In this article, the service proposed for the mobile robot
is to detect people. This would later allow the robot to decide whether or not to approach the closest
person at a given distance with whom to interact. This “engaging” behavior can be useful in potential
robot services, such as a tour guide, healthcare or information provider. Once the target person has been
chosen, the robot plans a trajectory and navigates to the desired position. To achieve the objectives of our
work, the robot must first be able to detect human presence in its vicinity. This must be accomplished
without assuming that the person faces the direction of the robot (the robot operates proactively) or wears
specific clothing (feasible in an industrial environment, but not in a museum, for instance).

The primary requirement of this research has been to investigate the development of a human detection
system based on low-cost sensing devices. Recently, research on sensing components and software led
by Microsoft has provided useful results for extracting the human pose and kinematics Shotton et al. [1],
with the Kinect motion sensor device Kin [2]. Kinect offers visual and depth data at a significantly low
cost. While the Kinect is a great innovation for robotics, it has some limitations. First, the depth map
is only valid for objects that are further than 80 cm away from the sensing device. A recent study about
the resolution of the Kinect by Khoshelham and Elberink [3] proves that for mapping applications, the
object must be in the range of 1–3 m in order to reduce the effect of noise and low resolution. Second,
the Kinect uses an IRprojector with an IR camera, which means that sunlight could negatively affect it,
taking into account that the Sun emits in the IR spectrum. As a consequence, the robot is expected to deal
with environments that are highly dynamic, cluttered and frequently subject to illumination changes.

To cope with this, our work is based on the hypothesis that the combination of a Kinect and a
thermopile array sensors (low-cost Heimann HTPAthermal sensor Hei [4]) can significantly improve
the robustness of human detection. Thermal vision helps to overcome some of the problems related to
color vision sensors, since humans have a distinctive thermal profile compared to non-living objects
(therefore, human pictures are not considered as positive), and there are no major differences in
appearance between different persons in a thermal image. Another advantage is that the sensor data
does not depend on light conditions, and people can also be detected in complete darkness. As a
drawback, some phantom detections near heat sources, such as industrial machines or radiators, may
appear. Therefore, it is a promising research direction to combine the advantages of different sensing
sources, because each modality has complementary benefits and drawbacks, as has been shown in other
works Bellotto and Hu [5], St-Laurent et al. [6], M. Hofmann and Rigoll [7], Johnson and Bajcsy [8],
Zin et al. [9].

Additional requirements for our application arise from the fact that the low-cost thermal sensor
provides a low resolution image and, therefore, does not allow us to build accurate models for detecting
people. Moreover, in order to have a high reaction capability, we are looking for solutions that allow
parallel processing of all the input data instead of sequentially.
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Therefore, the chosen approach is:

• To combine machine learning paradigms with computer vision techniques in order to perform
image classification: first, we apply transformations using computer vision techniques, and second,
we perform classification using machine learning paradigms.
• To construct a hierarchical classifier combining the three sensor source data (images) to improve

person detection accuracy.

We have evaluated the system in two different real scenarios: a manufacturing shop floor, where
machines and humans share the space while performing production activities, and a science museum
with different elements exposed, people moving around and strong illumination changes, due to weather
conditions. Experimental results seem promising considering that the percentage of wrong classifications
using only Kinect-based detection algorithms is drastically reduced.

The rest of the paper is organized as follows: In Section II, related work in the area of human detection
is presented. We concentrate mainly on work done using machine learning for people detection. Section
III describes the proposed approach and Section IV, the experimental evaluation. Section V shows
experimental results and Section VI, conclusions and future work.

2. Related Work

People detection and tracking systems have been studied extensively because of the increasing
demand for advanced robots that must integrate natural human-robot interaction (HRI) capabilities to
perform some specific tasks for the humans or in collaboration with them. A complete review on
people detection is beyond the scope of this work; extensive work can be found in Schiele [10] and
Cielniak [11]. We focus on the recent related work.

To our knowledge, two approaches are commonly used for detecting people on a mobile robot:
(1) vision-based techniques; and (2) combining vision with other modalities, normally range sensors,
such as laser scanners or sonars, like in Wilhelm et al. [12], Scheutz et al. [13], Martin et al. [14].
Martin et al. use a skin color-based detector in a omnidirectional camera and leg profile detectors based
on sonar and a laser range-finder to generate specific probability-based hypotheses about detected people
and combine these probability distributions by covariance intersection.

The computer vision literature is rich in people detection approaches in color or intensity images.
Most approaches focus on a particular feature: the face Hjelmas and Low [15], Yang et al. [16], the
head, Murphy-Chutorian and Trivedi [17], the upper body or the torso, Kruppa et al. [18], Xia et al. [19],
the entire body,Dalal and Triggs [20], Viola et al. [21], Wu et al. [22], just the legs, Papageorgiou
and Poggio [23] or multimodal approaches that integrate motion information Bellotto and Hu [5]. All
methods for detecting and tracking people in color images on a moving platform face similar problems,
and their performance depends heavily on the current light conditions, viewing angle, distance to people
and variability of the appearance of people in the image.

Apart from cameras, the most common devices used for people tracking are laser sensors. The
common aspect in all these approaches is to use distance information to find the human person and
then to combine with a visual search for faces or human bodies. Martı́nez-Otzeta et al. [24] present
a system for detecting legs and follow a person only with laser readings. A probabilistic model of
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leg shape is implemented, along with a Kalman filter for robust tracking. This work is extended using
thermal information in Susperregi et al. [25], using a particle filter to build a people following behavior in
a robot. Martinez-Mozos et al. [26] address the problem of detecting people using multiple layers of 2D
laser range scans. Other implementations, such as Bellotto and Hu [27], also use a combination of face
detection and laser-based leg detection and use laser range-finders to detect people as moving objects.
The drawbacks of these approaches arise when a person position does not allow one to be distinguished
(in lateral position to the robot or near a wall), in scenarios with slim objects (providing leg-like
scans). Using only depth images, Zhu and Fujimura [28] proposed a human pose estimation method
with Bayesian tracking that is able to detect, label and track body parts. A more promising approach
is combining more than one sensory cue. Most existing combined vision-thermal based methods, in
St-Laurent et al. [6], M. Hofmann and Rigoll [7], Johnson and Bajcsy [8], Zin et al. [9], concern
non-mobile applications in video monitoring applications and especially for pedestrian detection, where
the pose of the camera is fixed. Some works Gundimada et al. [29] show the advantages of using
thermal images for face detection. They suggest that the fusion of both visible- and thermal-based face
recognition methodologies yields better overall performance.

To the authors knowledge, there are few published works on using thermal sensor information to
detect humans on mobile robots. Extensive work can be mainly found in the pedestrian detection
area Meis et al. [30], Li et al. [31]. The main reason for the limited number of applications using
thermal vision so far is probably the relatively high price of this kind of sensor. Treptow et al. [32] and
Treptow et al. [33] show the use of thermal sensors and grey scale images to detect people in a
mobile robot. They build an elliptic contour model and a feature-based model detector to track a
person in the thermal image using a particle filter. Guan et al. [34] propose a head-shoulder detection
based on a stereo-camera fused with the hair and face identified from the thermal-based sensor.
Correa et al. [35] use face detection based on sate-of-the-art detectors (LBPHistograms) in thermal and
visual images for people detection and recognition. These approaches are based on thermal images
that require a good resolution in order to build these models, which is not applicable to the low-cost
(low-resolution) thermal sensor used in this work.

A drawback of most of these approaches is the sequential integration of the sensory cues; people are
firstly detected by thermal information only and are subsequently verified by visual or auditory cues.
Thus, any misdetection using the thermal information cannot be recovered using the other sensors.

Most of the above-mentioned approaches have used predefined body model features for the detection
of people. Few works considered the application of learning techniques. Arras et al. [36] proposed
using supervised learning to create a people detector with the most informative features (AdaBoost).
Martinez-Mozos et al. [26] built classifiers able to detect a particular body part, such as a head, an
upper body or a leg, using laser data. These classifiers are learned using a supervised approach based
on AdaBoost. The final person detector is composed of a probabilistic combination of the outputs
from the different classifiers. Current research in the use of RGB-Dsensors combining color and depth
information is extensive; recent works focus on object recognition using color and depth. Lai et al. [37]
demonstrated in a 300 object dataset that combining color and depth information substantially improves
the quality of results. Mozos et al. [38] presented a new approach to categorize indoor places using an
RGB-D sensor. They built feature vectors combining grey scale images and depth information, which



Sensors 2013, 13 14691

are provided as the input to support vector machines (SVMs) and random forests classifiers, achieving
average correct classification rates above 92%. Spinello and Arras Spinello and Arras [39] proposed
a new adaptive image and depth data fusion architecture for robust object detection. This architecture
allows one to obtain an optimal combination of object detectors, depending on the quality of the sensory
cues. This fusion method is applied to people detection, achieving an 87.4% detection rate in their
experimental setup.

In a previous work Susperregi et al. [40], as the first stage of the present work, a combination of
computer vision transformations with machine learning algorithms to use vision and thermal sensor
readings to detect if a person is on the view point of the robot was introduced. At that point, the
combination was a voting approach; thus, we propose the hierarchical approach in this work.

3. Proposed Approach

We propose a multimodal approach, which is characterized by the processing and filtering of sensory
cues. The proposed detection system is based on an HTPA thermal sensor developed by Heimann
Hei [4] and a Kinect sensor, mounted on top of an RMPSegway mobile platform, which is shown
in Figure 1.

Figure 1. The robotic platform used: a Segway RMP200 provided with the Kinect and the
thermal sensor.

Some preliminary experiments confirm the low people detection ratio achieved by the Kinect sensor-
based algorithms Shotton et al. [41] in the mobile platform. Figure 2 shows the detection ratio achieved
using the dataset collection.The low detection ratio is mainly explained by the algorithms being intended
to work for a static camera and not one mounted to a mobile platform.

We aim to apply a new approach to combine machine learning (ML) paradigms with computer vision
techniques in order to perform a binary image classification. Our approach is divided into three phases:
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sensor data prefiltering using computer vision techniques, classification using ML and a combination
of classifiers.

Figure 2. Detection results using Kinect algorithms: IK4-TEKNIKER dataset .

Figure 3. First phase: learning classifiers from three transformed data. Computer vision
transformations over the original images are performed to enrich the input database sources.

1. Computer vision transformations: In order to have several descriptors of the images, different
computer vision transformations over the original images are performed to enrich the input
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database. The main goal of this phase is to have variability in the features extracted for the same
pixel, so that different values are obtained for the same pixel positions; in fact, the information
provided by a collection of image transformations is analyzed. As has been mentioned before, we
aim to use three input images (color, depth, temperature) to construct a classifier. In this way, and
for each of the three data sources, a set of preprocessed images is obtained, one for each of the
transformations used.
To achieve this, we combine some standard image-related algorithms (edge detection, Gaussian
filter, binarization, and so on) in order to obtain different image descriptors, and afterwards,
we apply some standard machine learning classifiers, taking into account the pixel values of
the different modifications of the pictures. Figure 3 shows an example, in which some of the
transformations are used. From the original training database collected, a new training database is
obtained for each of the computer vision transformation used, summing up a total of 24 databases
for each sensor.

2. In the classification phase, the system learns a classifier from a hand-labeled dataset of
images (the above-mentioned original and transformed images). Five well-known ML supervised
classification algorithms with completely different approaches to learning and a long tradition in
classification tasks are used: IB1, Naive-Bayes, Bayesian Network, C4.5 and SVM.

3. Fusion phase: Finally, the goal of our fusion process is to maximize the benefits of each modality
by intelligently fusing their information and by overcoming the limitations of each modality alone.

3.1. Data Acquisition and Transformation

As stated before, three kinds of data sources are used coming from the Kinect sensor and the
thermopile array.

1. The HTPA allows for the measurement of the temperature distribution of the environment, where
very high resolutions are not necessary, such as person detection, surveillance of temperature
critical surfaces, hotspot or fire detection, energy management and security applications. The
thermopile array can detect infrared radiation; we convert this information into an image in which
each pixel corresponds to a temperature value. The sensor only offers a 32 × 31 image, which
allows for a rough resolution of the environment temperature, as is shown in Figure 4. People
present a thermal profile different from their surrounding environment. The temperature detected
in the pixel corresponding to a person is usually around 37 Celsius degrees, with some tendency
of being a bit lower, due to the presence of hair or clothes over the skin.
The benefits of this technology are the very small power consumption, as well as the high
sensitivity of the system.

2. Kinect provides depth data, which we transform into depth images; it uses near-infrared light to
illuminate the subject, and the sensor chip measures the disparity between the information received
by the two IR sensors. It provides a 640 × 480 distance (depth) map in real time (30 fps).

3. In addition to the depth sensor, the Kinect also provides a traditional 640 × 480 RGB image.
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Figure 4. HTPAthermopile image sample and a miniature of its corresponding RGB image.

In order to calibrate both sensors’ data, the following have to be considered:

1. Horizontal FOV: It is known that the Kinect horizontal FOV (RGB) is 62.7 degrees for 640 pixels,
while the thermopile horizontal FOV is 38 degrees for 32 pixels. As the thermopile center is
vertically aligned with the Kinect center, it covers the 387.8788 (640 * 38 / 62.7) central horizontal
pixels of the Kinect RGB image; so, it covers the pixels in the range ([126.06–513.94]).

2. Vertical FOV: In the vertical range, following the same proportions as in the horizontal range,
the thermopile covers 375.7603 (12.1213 * 31) Kinect RGB vertical pixels, which means that, if
the sensors’ centers were to be in the same place, the thermopile would cover the pixels in the
range (52.11985, 427.88015). As the thermopile is located over the Kinect, the pixels in the range
(0, 370) are covered.

3.1.1. Computer Vision Transformations

The three data sources acquired in parallel (image, distance, temperature) are used to build a classifier,
whose goal is to identify whether a person is in the view-scope of the robot or not. Figure 5 shows an
example of the three different images obtained; each original image is scaled to 32 × 24 and converted
to gray scale. The value of each pixel position in the matrix is considered as a predictor variable within
the machine learning database construction, summing up n ×m features, m being the column number
and n, the row number in the image. Each image corresponds to a single row in the generated database.

In order to have different descriptors of the images, modifications over the original images are
performed. The databases contain people in different pose and scales in order to introduce variability
and to provide robustness under translations, rotation or scale changes; see Figure 6.

We have selected some of the most common transformations, in order to show the benefits of the
proposed approach, making use of simple algorithms. Table 1 presents the collection of transformations
used, as well as a brief description of each one of them. It is worth pointing out the fact that any other
CVtransformation could be used apart from the selected ones.
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Figure 5. Image preprocessing and training database creation from a hand-labeled original
dataset and transformed images.

Figure 6. Positive examples in the three data sources (intensity, depth, thermal) with people
with different sizes and positions.

RGB DEPTH TERMO
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Figure 6. Cont.

RGB DEPTH TERMO

Table 1. Image transformation description.

Transform Command Effect

Transf.1 Convolve Apply a convolution kernel to the image
Transf. 2 Despeckle Reduce the speckles within an image
Transf. 3 Edge Apply a filter to detect edges in the image
Transf. 4 Enhance Apply a digital filter to enhance a noisy image
Transf. 5 Equalize Perform histogram equalization to an image
Transf. 6 Gamma Perform a gamma correction
Transf. 7 Gaussian Reduce image noise and reduce detail levels
Transf. 8 Lat Local adaptive thresholding
Transf. 9 Linear-Str. Linear with saturation histogram stretch
Transf. 10 Median Apply a median filter to the image
Transf. 11 Modulate Vary the brightness, saturation and hue
Transf. 12 Negate Replace each pixel with its complementary color
Transf. 13 Radial-blur Radial blur the image
Transf. 14 Raise Lighten/darken image edges to create a 3D effect
Transf. 15 Selective-blur Selectively blur pixels within a contrast threshold
Transf. 16 Shade Shade the image using a distant light source
Transf. 17 Sharpen Sharpen the image
Transf. 18 Shave Shave pixels from the image edges
Transf. 19 Sigmoidal Increase the contrast
Transf. 20 Transform Affine transform image
Transf. 21 Trim Trim image edges
Transf. 22 Unsharp Sharpen the image
Transf. 23 Wave Alter an image along a sine wave
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3.2. Machine Learning Classifiers

Five well-known ML supervised classification algorithms with completely different learning
approaches and a long tradition in different classification tasks are used: IB1, Naive-Bayes, Bayesian
Network, C4.5 and SVM. Later, the goal of our fusion process is to maximize the benefits of
each modality by intelligently fusing their information and by overcoming the limitations of each
modality alone.

1. IB1
The IB1 Aha et al. [42] is a case-based, nearest-neighbor classifier. To classify a new test sample,
all training instances are stored, and the nearest training instance regarding the test instance is
found; its class is retrieved to predict this as the class of the test instance.

2. Naive-Bayes
The Naive-Bayes (NB) rule Cestnik [43] uses the Bayes theorem to predict the class for each case,
assuming that the predictive attributes are independent given the category. To classify a new sample
characterized by d attributes, X = (X1, X2, ..., Xd), the NB classifier applies the following rule:

cN−B = argmax
cj∈C

p(cj)
d∏

i=1

p(xi|cj)

where cN−B denotes the class label predicted by the Naive-Bayes classifier and the possible l
classes of the problem C = {c1, . . . , cl}.

3. Bayesian Networks
A Bayesian network, belief network or directed acyclic graphical model is a probabilistic graphical
model that represents a set of random variables and their conditional independencies via a
directed acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic
relationships between diseases and symptoms. Given symptoms, the network can be used to
compute the probabilities of the presence of various diseases. There are many classifiers based
on the probability theory. Most of them use ideas from the Bayes theorem and try to obtain the
class whose a posteriori probability is greater given the values of the predictor variables of the case
to be classified. In other words, probabilistic classifiers give to the new case the most likely class
for the values its variables have. In this paper, we have used Bayesian Networks as classification
models, proposed by Sierra et al. [44].

4. C4.5
The C4.5 Quinlan [45] represents a classification model by a decision tree. It is run with the default
values of its parameters. The tree is constructed in a top-down way, dividing the training set and
beginning with the selection of the best variable in the root of the tree. The selection of the best
feature is performed by the maximization of a splitting criterion, which is based on an informatics
theoretic approach. For each continuous attribute, a threshold that maximizes the splitting criterion
is found by sorting the cases of the dataset on their values of the attribute: every pair of adjacent
values suggests a threshold in their midpoint, and the threshold that yields the best value of the
splitting criterion is selected. A descendant of the root node is then created for each possible value
of the selected feature, and the training cases are sorted to the appropriate descendant node. The
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entire process is then recursively repeated using the training cases associated with each descendant
node to select the best feature to test at that point in the tree. The process stops at each node of
the tree when all cases in that point of the tree belong to the same category or the best split of the
node does not surpass a fixed chi-square significancy threshold. Then, the tree is simplified by a
pruning mechanism to avoid overspecialization.

5. Support Vector Machines (SVMs)
SVMs are a set of related supervised learning methods used for classification and regression.
Considering a two-class problem where the input data of each class is viewed as an n-dimensional
vector, an SVM will construct a separating hyperplane in that space, one which maximizes
the margin between the two datasets. To calculate the margin, two parallel hyperplanes are
constructed, one on each side of the separating hyperplane, which are “pushed up against” the
two datasets. Intuitively, a good separation is achieved by the hyperplane that has the largest
distance to the neighboring data points of both classes, since, in general, the larger the margin, the
lower the generalization error of the classifier Meyer et al. [46].

3.3. Combination of Classifiers/Sensors

In order to finally classify the targets as containing a human or not, the estimation of the
RGB-D-based classifiers is combined with the estimation of the temperature-based classifier. After
building the individual classifiers (5 × 24 = 120 for each cue), the aim is to combine the output of
different classifiers to obtain a more robust final people detector.

The last step is to combine the results of the best three classifier obtained, one for each input image
type (intensity, depth, temperature). To achieve this, we use the hierarchical classifier approach by
Martı́nez-Otzeta et al. [47], Sierra et al. [48] in which the decision of each of the three single classifiers
is combined in a tree mode in order to increase the overall accuracy. Figure 7 shows the typical approach
used to perform a classification with this multiclassifier approach.

Figure 7. Hierarchical classifier schemata.

We have used this multiclassifier to combine the different sensors, selecting, at each step, the classifier
learned in this type of image that increases the accuracy the most. One of the reasons we do that is
mainly related to the computational load: using only three classifiers, one for each sensor, we can make
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the needed preprocess in parallel, obtaining a faster answer. In this way, the resulting model can operate
in real time, a mandatory feature for the task to be accomplished.

4. Experimental Evaluation

In this section, we present the experimental evaluation of our approach carried out using data collected
with a mobile robot in two scenarios: a manufacturing plant and a science museum. The results obtained
using other approaches are relevant to assess whether the method presented is competitive enough and,
therefore, worth continuing in the proposed direction. We have compared our approach with other
relevant approaches in people detection, such as the histogram of oriented gradients (HOG) and the
C4 algorithm.

HOGs are a kind of feature descriptors, which compute the number of occurrences of a gradient
orientation (histogram) in portions of an image. In their seminal work, Dalal and Triggs [49] focused
on the problem of pedestrian detection in static images, though the technique could be applied to other
domains, as well.

A more recent people detection algorithm, C4 Wu et al. [22], detects humans using contour cues,
a cascade classifier and the CENTRIST visual descriptor. The authors claim that C4 has shown a
competitive recognition rate when compared to HOG; the algorithm uses contour information for human
detection, and it is extremely fast. We have decided to collect the recognition rate this algorithm offers
in the databases with which we are working.

It is worth mentioning that we are evaluating only the detection accuracy, although these algorithms
can also provide people tracking capabilities.

4.1. Experimental Data

To obtain positive and negative examples in both scenarios, the robot was operated in two
unconstrained indoor environments (the manufacturing plant and the science museum). At the same
time, image data was collected with a frequency of 1 Hz. The images were hand-labeled as positive
examples if people were visually detected in the image and as negative examples, otherwise.

4.1.1. Dataset in Manufacturing Scenario

The manufacturing plant located at IK4-TEKNIKER is a real manufacturing shop floor, where
machines and humans share the space during production activities. The shop floor, as seen in
Figure 8, can be characterized as an industrial environment, with high ceilings, fluorescent light bulbs,
high windows, etc. The lighting conditions change from one day to another and even in different
locations along the path covered by the robot.

The dataset is composed of 1,064 samples. The input to the supervised algorithms is composed of 301
positive and 763 negative examples. The set of positive examples contains people at different positions
and dressed with different clothing in a typical manufacturing environment. The set of negative examples
is composed of images with no human presence and containing other objects, such as machines, tables,
chairs, walls, etc. Figures 6 and 9 show some database samples. It has to be noticed that the thermal
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images shown in the third column of the figures do not always discriminate the presence of a person, due
to the existence of hot elements in the plant (which could produce false positives) or, on the contrary, the
clothing of a given person who is not looking at the robot, which could give a false negative case.

Figure 8. Manufacturing plant at IK4-TEKNIKER.

Figure 9. Negative examples in the three data sources (intensity, depth, thermal), with
different elements in the environment.

RGB DEPTH TERMO

RGB DEPTH TERMO
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4.1.2. Dataset in Science Museum: EUREKA!

The EUREKA! Science Museum is the second scenario in which the robot has been evaluated to
identify the presence of people. Figure 10 shows some images taken by the robot; the lighting conditions
also affect the image treatment, as there are crystal corridors in the museum. In addition, there are some
aesthetic elements that can be detected as persons.

Figure 10. Images from the Eureka! Science Museum in the three data sources (intensity,
depth, thermal), where different issues relevant to the problem are represented. From the left:
many persons, people and objects with similar silhouettes and Sun incidence in corridors.

This dataset is composed of 619 samples (392 positive and 227 negative). The positive/negative
distribution is different compared with the previous dataset, in order to better appreciate the
generalization capabilities of the approaches used.

4.1.3. Experimental Methodology

These are the steps of the experimental phase:

1. Collect a database of images that contains three data types that are captured by the two sensors:
640 × 480 depth map, 640 × 480 RGB image and 32 × 31 thermopile array.

2. Reduce the image sizes from 640 × 480 pixels to 32 × 24 pixels, and convert color images to
gray-scale ones.

3. For each image, apply 23 computer vision transformations (see Table 1), obtaining 23 transformed
images for each image type. Thus, we have 24 datasets for each image type.

4. Build 120 classifiers, applying 5 machine learning algorithms for each image type training dataset
(5× 24) and using 10-fold cross-validation Stone [50].
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5. Apply 10-fold cross-validation using 5 different classifiers for each of the previous databases,
summing up a total of 3 × 24 × 5 = 360 validations.

6. In each node of the hierarchical multiclassifier, select the classifier with the lowest error rate.
7. Make a final decision combining the results of the classifiers.

4.1.4. Metrics

The performance of the people detection system is evaluated in terms of detection rates (accuracy)
and false positives/negatives. True positives (TPs) are the people images detected from the ground truth.
False negatives (FNs) are the people images not detected from the ground truth, and false positives (FPs)
are images detected as people that do not appear in the ground truth. The performance evaluation is done
with the following score:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

where TP , TN , FP and FN are, respectively, true positives, true negatives, false positives and
false negatives.

Figures 11 and 12 show some examples of the kind of results obtained by our approach and the C4

method, respectively.

Figure 11. Respectively, a true positive, false positive, false negative and true negative
example using our approach.

Figure 12. Respectively, a true positive, false positive, false negative and true negative
example using the C4 approach.

5. Results

5.1. IK4-TEKNIKER

In order to make a fast classification (a real-time response is expected), we first transform, as
mentioned above, the color images to gray-scale 32 × 24, and reduce, as well, the size of the infrared
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images to a 32 × 24 size matrix. Hence, we have to deal with 768 predictor variables, instead of
307, 200× (three colors) of the original images taken by the Kinect camera.

First of all, we have used the five classifiers using the reduced original databases (32×24 for intensity
and depth, 31 × 31 for thermal pictures). Table 2 shows the 10-fold cross-validation accuracy obtained
using the input images without transformation. The best result is 92.11% for the thermal image original
database, using SVM as the classifier. The real-time Kinect’s algorithms accuracy for the same images
was quite poor (37.50%), as the robot was moving. As a matter of fact, that has been the main motivation
of the presented research.

Table 2. 10-fold cross-validation accuracy percentage obtained for each classifier using
IK4-TEKNIKER original images. NB, Naive-Bayes; SVM, support vector machine.

Data source BN NB C4.5 K-NN SVM

Visual 89.20 71.74 82.63 90.89 85.35
Depth 86.29 68.64 83.29 90.89 84.04
Thermal 89.67 86.10 87.79 91.74 92.11

Table 3. IK4-TEKNIKER intensity images: 10-fold cross-validation accuracy percentage
obtained for each classifier using each of the proposed transformations.

Images BN NB C4.5 K-NN SVM

Transf. 1 89.20 71.74 90.89 82.63 85.35
Transf. 2 87.89 72.30 90.99 84.41 86.29
Transf. 3 83.19 74.84 87.98 75.87 81.41
Transf. 4 88.92 71.92 90.89 82.44 86.20
Transf. 5 86.76 71.64 89.77 80.47 80.66
Transf. 6 87.98 71.36 90.89 83.29 86.29
Transf. 7 87.79 64.79 91.83 85.92 84.79
Transf. 8 76.81 78.03 85.07 71.36 76.90
Transf. 9 88.54 73.90 91.17 81.31 84.98
Transf. 10 87.98 69.48 90.70 82.82 84.69
Transf. 11 85.54 72.96 91.55 82.07 85.26
Transf. 12 88.92 71.74 90.89 82.63 85.35
Transf. 13 88.73 68.64 90.99 82.63 85.45
Transf. 14 88.83 71.74 90.89 83.76 85.54
Transf. 15 89.20 71.74 90.89 82.63 85.35
Transf. 16 83.85 75.12 86.38 77.93 81.78
Transf. 17 89.77 71.46 90.23 83.00 82.44
Transf. 18 88.73 71.55 90.61 82.35 85.35
Transf. 19 88.17 70.61 91.46 82.82 86.10
Transf. 20 89.11 70.99 90.80 82.63 84.98
Transf. 21 89.20 71.74 90.89 82.63 85.35
Transf. 22 88.83 71.36 90.33 82.35 82.72
Transf. 23 88.73 72.30 90.80 83.85 85.82
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The same accuracy validation process has been applied to each image transformation on each image
format. Table 3 shows the results obtained by each classifier on the resulting transformed 23-image
databases. The best result is obtained by the C4.5 classifier after transforming the images using
Transformation 7 (Gaussian one). This classifier is selected as the best intensity-based classifier to be
combined with the other two best classifiers.

After performing the validation over the depth images, the results shown in Table 4 are obtained. The
best result is obtained again by the C4.5 classifier after transforming the images using Transformation
7 (Gaussian one), with a 92.82 accuracy. This classifier is selected as the distance image (depth) one to
take part in the final combination.

Table 4. IK4-TEKNIKER depth images: 10-fold cross-validation accuracy percentage
obtained for each classifier using each of the proposed transformations.

Distances BN NB C4.5 K-NN SVM

Transf. 1 86.29 68.64 90.89 83.29 84.04
Transf. 2 86.38 68.45 91.27 83.38 82.91
Transf. 3 83.66 78.87 87.23 78.97 81.60
Transf. 4 86.10 68.54 90.89 82.91 83.29
Transf. 5 85.35 70.80 90.89 80.38 81.97
Transf. 6 86.38 70.33 90.61 82.25 83.76
Transf. 7 85.92 66.95 92.86 85.26 84.23
Transf. 8 83.19 73.62 84.04 73.15 78.40
Transf. 9 85.26 67.70 90.33 83.00 83.19
Transf. 10 85.54 68.92 92.30 85.16 85.35
Transf. 11 84.69 68.26 90.99 81.50 82.35
Transf. 12 86.67 68.64 90.89 83.38 84.04
Transf. 13 85.35 68.08 92.21 82.54 83.29
Transf. 14 86.57 68.73 90.89 83.76 84.13
Transf. 15 86.29 68.64 90.89 83.29 84.04
Transf. 16 83.66 78.69 87.14 80.38 85.35
Transf. 17 85.63 71.27 90.52 82.25 81.50
Transf. 18 85.63 66.20 89.77 82.72 82.54
Transf. 19 86.48 70.05 90.89 83.85 83.94
Transf. 20 86.67 69.01 90.70 83.29 83.85
Transf. 21 85.45 70.33 91.36 83.29 82.82
Transf. 22 85.73 71.08 90.42 81.78 81.60
Transf. 23 85.92 68.64 91.27 80.47 83.10

Finally, the classifiers are applied to the thermal images, obtaining the results shown in Table 5. In this
case, we obtain the best result (93.52) for the SVM classifier, and for two of the used transformations
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(Transf.8 (Lat) and Transf. 9 (Linear-stretch)). Moreover, the obtained results are identical for both
paradigms, so any of them can be used in the final combination, obtaining indistinct results.

Table 5. IK4-TEKNIKER thermal images: 10-fold cross-validation accuracy percentage
obtained for each classifier using each of the proposed transformations.

Thermal images BN NB C4.5 K-NN SVM

Transf. 1 89.67 86.10 91.74 87.79 92.11
Transf. 2 90.99 84.32 92.39 91.46 92.58
Transf. 3 89.30 86.67 90.80 86.29 92.39
Transf. 4 89.11 83.85 92.49 89.39 90.33
Transf. 5 85.73 84.60 92.77 90.33 85.63
Transf. 6 89.67 85.92 91.74 87.79 91.83
Transf. 7 86.57 82.16 89.67 87.79 89.95
Transf. 8 89.11 85.92 91.64 84.04 93.52
Transf. 9 90.80 88.08 92.39 87.89 93.52
Transf. 10 84.98 81.97 86.29 80.56 85.63
Transf. 11 71.74 71.74 71.74 71.74 71.74
Transf. 12 89.77 85.63 91.74 87.79 92.11
Transf. 13 90.05 84.69 92.77 90.14 91.08
Transf. 14 89.11 86.01 91.08 87.89 91.83
Transf. 15 89.67 86.10 91.74 87.79 92.11
Transf. 16 89.48 86.85 91.17 90.33 89.95
Transf. 17 89.67 87.23 91.74 87.04 90.99
Transf. 18 89.11 85.63 91.55 85.63 89.86
Transf. 19 89.67 85.07 91.83 87.79 91.83
Transf. 20 89.77 86.01 91.74 87.79 92.68
Transf. 21 83.57 47.89 84.41 82.54 72.02
Transf. 22 89.77 85.82 91.92 87.79 91.17
Transf. 23 90.05 85.45 92.02 90.33 91.27

5.2. Science Museum

The same process has been applied to the science museum dataset. Table 6 shows the results obtained
with the original intensity images. The best result (87.08) is obtained for the intensity images using the
K-NNalgorithm. For Depth data, the best result (79.16) is obtained by means of a Bayesian Network
classifier, while for the Thermal data, the K-NN classifier obtains 80.45 as the best result.

When the transformations are applied, an increment in the obtained accuracy is achieved for all
the data sources and all the classifiers used. The obtained results are shown in Table 7; once again,
the best result is obtained for the intensity images using the K-NN algorithm (90.79), using the sixth
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transformation; using Depth data, the best result (80.94) is obtained by the Bayesian Network classifier
after the 12th CV transformation, while for the Thermal data, the K-NN classifier obtains 84.49 as the
best result, combined with the sixth transformation.

Table 6. Best 10-fold cross-validation accuracy percentage obtained for each classifier using
the EUREKA! original images.

Data source BN NB C4.5 K-NN SVM

Intensity 81.74 59.94 79.64 87.08 83.84
Depth 79.16 63.00 72.54 74.47 72.86
Thermal 79.97 60.01 78.03 80.45 77.38

Table 7. EUREKA!: best 10-fold cross-validation accuracy percentage obtained for each
classifier using transformed images. The corresponding transformation is indicated.

Data source BN NB C4.5 K-NN SVM

Intensity 87.24 73.02 83.52 90.79 85.14
Transf.4 Transf.15 Transf.6 Transf.6 Transf.5

Depth 80.94 65.75 75.44 78.03 75.61
Transf.12 Transf.4 Transf.17 Transf.6 Transf.15

Thermal 82.39 74.34 80.61 84.49 79.16
Transf.4 Transf.2 Transf.3 Transf.6 Transf.8

5.2.1. Bayesian Network Structure

Bayesian Networks are paradigms used to represent the joint probability of a set of (discrete)
variables. As stated before, they can be used as classifiers in a supervised classification problem, and in
this case, the existence of a variable of interest has to be taken into account: that corresponding to the
class. It is worth mentioning that the Bayesian Network classifier takes as predictor variables the pixels
of the images.

As can be seen, the Bayesian Network structure can be very complex, and it is necessary to put
emphasis on those nodes belonging to the so-called Markov Blanket of the Class node, composed of its
parents, its direct descendants and the parents of those descendants.

5.3. Hierarchical Multiclassifier

The last step is to combine the three best classifiers obtained, one for each sensor. This has been done
using a hierarchical multiclassifier Martı́nez-Otzeta et al. [47]. A tree-shaped classifier is constructed.
The decision of each node is performed by a single classifier, learned for the corresponding data. We
have decided to specialize each node for one sensor data type (among the three used), and thus, this
sensor type data is not to be used in the nodes below. Figure 13 shows an example of the multiclassifier
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used. As can be seen, in this example, the top node (also known as the root of the tree) is devoted to the
thermal sensor data. For this data, the best (CV Transformation, Classifier) pair is selected. To continue
with the classifier construction, for each of the arcs of the tree, a database is needed in order to learn the
corresponding classifier, which aims to correct some of the errors made by its top node model.

Figure 13. Example of a hierarchical classifier.

Thermal Sensor
(CV transformation + Classifier)

NO YES

NO YES

YES

YESNO

NO

No Person Person

No Person
Person

Person

(CV transformation + Classifier) (CV transformation + Classifier)

(CV transformation + Classifier)

Deph Sensor

RGB Sensor

RGB Sensor

First Layer

Second Layer

Third Layer

To do this, using a 10-fold cross-validation, the cases classified as No person are selected, and the
corresponding cases of the other two sensors are used to obtain the best CV transformation and the
combination of classifiers. The example assumes that the best results are obtained using the intensity
data for some CV transformation and classifier.

The construction of the multiclassifier continues in this manner, a new case selection is performed for
the images classified as containing persons (right side) and for the images classified as not containing
persons (left side). In this example, when images are labeled as No person by the root node (thermal
data), trying to outperform, through the depth data, the results obtained using the intensity data to correct
some errors made by the thermal data, no improvements are obtained. Thus, the depth sensor is not used
on the right side of the tree, i.e., the results given by the intensity based classifier are the final answer
of the multiclassifier. On the left side of this example, the best results are obtained using data from the
depth sensor (with a corresponding transformation and classifier CV); a new experiment is performed to
correct some errors, and these are corrected using the intensity-based classifier. Therefore, to classify
a new case, when the paradigm based on the thermal sensor classifies as Person, but the depth sensor
classifier gives No person, the RGB sensor classifier sets the final decision.
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Table 8 shows the results obtained using each cue as the root node. As can be seen, in the
IK4-TEKNIKER database, the best obtained accuracy is 96.74%, using the thermal sensor data to
construct the root node classifier. It significantly improves the result of the best previous classifiers
(93.52) for the thermal images. The best classifier obtained for the EUREKA! database has a 94.99% of
well-classified cases, which outperforms as well the best previous result (90.79) as well.

Table 8. Hierarchical multiclassifier: 10-fold cross-validation accuracy percentage obtained
selecting each sensor image as the root node.

Database Source First Layer Second Layer Third Layer

IK4-Tekniker Visual 91.83 94.55 –
Depth 92.86 95.68 –

Thermal 93.52 94.55 96.74
Eureka! Visual 90.79 94.99 –

Depth 80.94 91.11 –
Thermal 84.49 88.85 92.33

5.4. Results Obtained by HOG

To obtain HOG-based proposals, we use the GPUimplementation in OpenCV. The detector can
process 640 × 480 images in 5–10 Hz. The full body detections are obtained from the model trained on
our databases.

Table 9 shows the results obtained by the HOG algorithm. The results indicate that the best accuracy
is obtained for the intensity images provided by Kinect (72.24%), followed by the application to the
depth cue, an approach similar to HODSpinello Spinello and Arras [51] with a false negative rate of
72.78%. With the thermal images, 99.87% of images are classified as not containing any person.

Table 9. Results obtained by the histogram of oriented gradients (HOG) approach,
compared with those obtained with the proposed approach. TP, true positive; FP, false
positive; TN, true negative; FN, false negative.

Approach Accuracy TP FP TN FN Prec. Recall

Intensity (HOG) 72.24 63.79 36.21 27.22 47.25 0.6379 0.5745
Depth (HOD) 72.02 63.79 36.21 52.75 72.78 0.6379 0.4671
Thermal (HOG) 51.93 1.13 98.67 0.13 99.87 0.0113 0.0112

Our Approach 96.74 95.36 4.64 98.12 1.88 0.9536 0.9807

5.5. Results Obtained by C4

Table 10 shows the results obtained by the C4 algorithm; original images have been used, as the
results using the reduced size are very poor.
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As can be seen, the best accuracy is obtained for the intensity images provided by Kinect (77.00%),
with a false negative rate of 17.80%. With the thermal images, as the size is too small (32 × 31) the
method is not adequate and classifies all the images as not containing any person.

Table 10. Results obtained by the C4 approach, compared with those obtained with the
proposed approach.

Approach Accuracy TP FP TN FN Prec. Recall

Intensity (C4) 77.00 63.79 36.21 82.20 17.80 0.6379 0.7818
Depth (C4) 72.39 51.16 48.84 80.76 19.24 0.5116 0.7267
Thermal (C4) 71.17 0.00 1.00 1.00 0.00 0 NAN

Our Approach 96.74 95.36 4.64 98.12 1.88 0.9536 0.9807

6. Conclusions and Future Work

This paper has presented a people detection system for mobile robots using an RGB-D and thermal
sensor fusion. The system uses a hierarchical classifier combination of computer vision and machine
learning paradigms to decide if a person is in the view-scope of the robot or not. This approach has
been designed to manage three kinds of input images, color, depth and temperature, to detect people.
We have provided an experimental evaluation of its performance. On the one hand, we have shown that
the person detection accuracy is improved, while decreasing the FPR by cooperatively classifying the
feature matrix computed from the input data. On the other hand, experimental results have shown that
our approach performs well, comparing with state-of-the-art people detection algorithms in the datasets
used. This work serves as an introduction to the potential of multi-sensor fusion in the domain of people
detection in mobile platforms.

In the near future, we envisage:

• evaluating the system in other scenarios, comparing with current state-of-the-art approaches.
• using input feature selection that is invariant under translations or changes in scale; improving

results, adding more sophisticated transformation and applying other computer vision paradigms,
such as key point detectors (SIFT, etc.) or geometrical shape constraints (wavelets, etc.).
• extending the detection algorithms in order to distinguish single and multiple people in the image.
• improving people detection by: using other detection algorithms (HOG, C4) and motion

information as the input; using other stacking combination approaches for classifiers.
• developing trackers combining/fusing visual cues using particle filter strategies, including face

recognition, in order to track people or gestures; integrating with robot navigation planning ability
to explicitly consider humans in the loop during robot movement.
• optimizing implementations in order to achieve high detection speeds to use in real-time

applications.
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