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Abstract

Objectives: Joint recognition and ICD-10 linking of diagnoses in bilingual, non-standard Spanish and Catalan primary care notes is challenging.
We evaluate parameter-efficient fine-tuning (PEFT) techniques as a resource-conscious alternative to full fine-tuning (FFT) for multi-label clinical
text classification.

Materials and Methods: On a corpus of 21 812 Catalan and Spanish clinical notes from Catalonia, we compared the PEFT techniques LoRA,
DoRA, LoHA, LoKR, and QLoRA applied to multilingual transformers (BERT, RoBERTa, DistilBERT, and mDeBERTa).

Results: FFT delivered the best strict Micro-F1 (63.0), but BERT-QLoRA scored 62.2, only 0.8 points lower, while reducing trainable parameters
by 67.5% and memory by 33.7%. Training on combined bilingual data consistently improved generalization across individual languages.

Discussion: The small FFT margin was confined to rare labels, indicating limited benefit from updating all parameters. Among PEFT techniques,
QLoRA offered the strongest accuracy-efficiency balance; LoRA and DoRA were competitive, whereas LoHA and LoKR incurred larger losses.
Adapter rank mattered: ranks below 128 sharply degraded Micro-F1. The substantial memory savings enable deployment on commodity GPUs
while delivering performance very close to FFT.

Conclusion: PEFT, particularly QLoRA, supports accurate and memory-efficient joint entity recognition and ICD-10 linking in multilingual, low-
resource clinical settings.

Lay Summary

Primary care providers often rely on Non-Standard Clinical Notes, which are written in free text and may combine multiple languages such as
Spanish and Catalan. These notes capture important details about patients but are difficult for computers to interpret. Automatically linking
them to diagnostic codes such as the International Classification of Diseases, 10th Revision (ICD-10), could help clinicians document care more
efficiently and consistently. Traditional approaches for this task use large models that must be fully retrained. This process is accurate but
requires powerful computers and significant memory, which are rarely available in smaller clinics. In this study, we explored lighter training strat-
egies that adjust only small parts of the models instead of all their internal weights. We tested these approaches on a realistic bilingual dataset
of Non-Standard Clinical Notes. Our results show that these lighter methods achieve accuracy close to full model training while using far less
computing power and memory. Training with bilingual notes further improved performance. These findings suggest that accurate automatic
coding of Non-Standard Clinical Notes is possible even in low-resource primary care settings, opening the way for practical and affordable use
of artificial intelligence tools in everyday healthcare.

Key words: natural language processing; joint entity recognition and linking; ICD-10 codes; parameter-efficient fine-tuning.

Introduction significant challenges due to its inherent noise and unbal-

The integration of artificial intelligence (Al) into healthcare,
particularly in primary care settings, has the potential to
transform clinical decision making by improving recognition
and linking of medical diagnoses. This study focuses on the
application of parameter-efficient fine-tuning (PEFT) meth-
ods for joint entity recognition and linking (JERL) using
ICD-10 codes, specifically on a dataset that closely reflects
real-world challenges. The UPC-IDIAP dataset, characterized
by non-standard language use and bilingual content in Cata-
lan and Spanish (IDIAP data and UPC annotations), presents

anced distribution of diagnoses. Unlike standard benchmark
datasets, state-of-the-art challenges do not address this type
of nonstandard clinical text, making the task fundamentally
different. These characteristics make it a relevant context in
which to evaluate advanced techniques for accurately proc-
essing and analyzing such complex data.

Previous approaches to entity recognition and linking in
clinical texts rely on fully parameterized models, which, while
effective, require considerable computational resources and
memory. This reliance may create a bottleneck, as training
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these models becomes prohibitively expensive in settings
where computational power is a limitation, leading to slower
adoption of Al tools. Traditional fine-tuning methods, which
update all model parameters regardless of task-specific needs,
end up with redundant computational overhead. Addressing
this inefficiency is urgent, as scalable Al solutions are nowa-
days essential to democratize access to advanced diagnostics,
particularly in low-resource primary care settings. Failure to
optimize these models risks perpetuating inequalities in
healthcare quality and accessibility. This study explores the
potential of PEFT methods, in particular LoRA, DoRA,
LoHA, LoKR, and QLoRA, as a more resource-efficient
alternative. These methods aim to maintain high performance
while drastically reducing the number of trainable parame-
ters, making them particularly suitable for resource-
constrained environments.

By adapting the models to the specific linguistic and medi-
cal characteristics of the dataset, this research aims to
improve the accuracy and efficiency of diagnostic coding in
primary care. The results not only highlight the effectiveness
of PEFT models in processing complex clinical data but also
underscore their potential for wider application in multilin-
gual healthcare environments, paving the way for more acces-
sible and scalable Al-based diagnostic tools.

Background and significance

The JERL task for ICD-10 codes combines the challenges of
named entity recognition (NER) and entity linking (EL),
which have traditionally been approached as separate tasks.
It is to note that terminology may be somewhat confusing:
terms such as “normalizing,” “linking,” and “grounding”
are often used interchangeably. In addition, some papers use
“entity linking” to encompass the whole recognition and
linking process, whereas others denote only the second part.
In the text, we will use “linking,” and in doing so, we will
refer only to the second step. With respect to the biomedical
domain, the second step is sometimes also referred to by acro-
nyms like BNEN (biomedical entity normalization)* and BEL
(biomedical entity linking)," whereas in medical settings the
reader may come across with abbreviations such as MER
(medical entity recognition) and MEN (medical entity
normalization).?

Recent studies have demonstrated the benefits of integrat-
ing these 2 tasks, to enhance performance and generalizabil-
ity. Martins et al* followed this approach, showing that
training the NER and EL models together produces superior
results compared to models trained individually. Their
model, inspired by the Stack-LSTM approach, achieved com-
petitive results across both tasks, highlighting the interde-
pendency between entity recognition and linking. Zhao et al®
pioneered a multi-task learning scheme to address disease
JERL: one task took care of the entity recognition, while the
other task dealt with linking. They jointly modeled both of
them by setting an explicit feedback mechanism between
them. In other words, the result of NER was fed into the
input of EL and vice versa, thus converting 2 hierarchical
tasks into a 2-task parallel scheme. They proved several deep
learning architectures and the results improved state-of-the-
art in 2 publicly available datasets.

Biomedical datasets like MedMentions® and MIMIC-IV®
have been instrumental in advancing research in this area.
MedMentions provides a large corpus annotated with UMLS
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concepts, serving as a robust resource for NER and EL in the
biomedical field. MIMIC-IV, a comprehensive electronic
health record dataset, offers a rich source of clinical notes.
However, most real-world electronic health records (EHR)
datasets are affected by significant noise, including mention
imbalances, which distinguish them from more curated data-
sets like MIMIC-IV or MedMentions. This noise, coupled
with severe overall class imbalance, poses substantial chal-
lenges for standard machine learning models, often leading to
reduced generalization. Given that the dataset involved in
this study also exhibits these inherent issues, it is essential to
recognize these challenges as they may impact the accuracy
and reliability of the findings.”* Transformer-based models
have shown promise in entity linking tasks. Lopez-Garcia
et al® demonstrated the efficacy of in-domain adapted
transformers trained on clinical notes in Spanish, achieving
state-of-the-art performance in tasks requiring both entity
recognition and linking.

The importance of fine-tuning pre-trained models on
domain-specific data has been underscored in several studies.
Gligic et al'® used transfer learning to enhance NER in elec-
tronic health records, achieving significant improvements by
pre-training on large, unannotated corpora and fine-tuning
on specific tasks.

Entity linking, particularly in medical contexts, has also
seen advances. Yan et al'" introduced an unsupervised entity
linking model using multi-instance learning (MIL) to improve
the accuracy of linking Chinese medical symptom mentions
to the ICD-10 classification. Also, Noh and Kavuluru'? lever-
aged a SciBERT model to jointly optimize biomedical NER
and entity linking. Although their work advanced JERL for
biomedical texts, it mainly focused on structured scientific lit-
erature (MedMentions dataset) rather than noisy, bilingual
clinical notes like those in primary care settings. They also
did not concentrate on ICD diagnoses, but on a wide range of
medical entities, including also drugs and genes.

Building on these foundations, recent work has begun to
leverage prompt-based learning and candidate-level interac-
tion mechanisms to address long-standing challenges in bio-
medical entity linking. In contrast to traditional re-ranking
models, which typically evaluate each candidate separately
alongside the mention context, the approach proposed by Xu
et al'® processes all candidates jointly. Their method achieves
strong results along 3 benchmark datasets—NCBI disease,
BCS5CDR, and COMETA—demonstrating the value of incor-
porating both contextual and inter-candidate information.

A complementary strategy is proposed by Zhu et al,"* who
introduce a 2-phase linking pipeline. The first phase employs
a bi-encoder to generate candidate entities efficiently, while
the second applies a more refined, prompt-based re-ranking
stage that makes use of contextual cues in the surrounding
text. Their system shows consistent performance gains over
prior methods when evaluated on MedMentions and the
NCBI disease corpus. Collectively, these studies reflect a
broader trend towards using lightweight, flexible mechanisms
like prompt tuning to improve entity linking in complex and
noisy clinical text environments.

Moreover, the emergence of PEFT techniques, although
primarily explored in tasks such as clinical diagnosis predic-
tion as in the CPLLM model by Ben Shoham and Rappo-
port,'® presents a promising avenue for optimizing large
language models in various clinical applications.
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Materials and methods

Objective

The objective of the study is to evaluate which of 4 models
has the best results in JERL of ICD-10 codes from non-
standard bilingual primary care clinical notes. We aim to use
PEFT to improve the utilization of computational resources,
so that healthcare professionals can efficiently and accurately
identify diseases in a manner that reduce computational
costs. Starting from the development of an improved diagnos-
tic mapping system for medical records to ICD-10 codes, this
research aims to help clinical practitioners make more
informed decisions and, therefore, more personalized and
efficient healthcare in a variety of primary care settings. This
will ultimately contribute to better patient outcomes and
resource utilization.

Data

The UPC-IDIAP dataset utilized in this project comprises
clinical notes authored by primary care physicians in Catalo-
nia during patient visits. It spans 6 years and includes 21 812
de-identified notes from 320 multimorbid patients aged over
50 with heart disease or stroke, with each note corresponding
to a single visit. On average, there are 68.16 visits per patient
ranging from 1 to 174. The length of these documents varies
from a few tokens to 620 tokens, although most are under 40
tokens. In total, the dataset contains 1 008 548 tokens. This
dataset was generously provided by the Primary Healthcare
Research Foundation IDIAP JGol.'® Due to the sensitive
nature of the data and the conditions under which it was pro-
vided, the UPC-IDIAP dataset is not publicly available.

These notes are written in a mix of non-standard Spanish
and Catalan, featuring elisions, both standard and non-
standard abbreviations, typos, and a blend of both languages,
among other distortions, which increase the difficulty of the
task. This linguistic variability, along with the informal and
unstructured nature of the notes, contrasts sharply with
standard clinical corpora used in state-of-the-art benchmarks,
which are typically monolingual, standardized, and more
formally written. Therefore, the tasks addressed with this
dataset require methods capable of handling noisy, code-
switched, and domain-specific language, posing unique

Table 1. Extracts from our bilingual Spanish/Catalan clinical notes.

challenges rarely covered by existing benchmarks. Some
examples of these linguistic phenomena are shown in
Table 1.

Typically, each clinical note is expected to adhere to the
SOAP structure, comprising 4 sections that align with the
steps a doctor follows during a visit: Subjective, Objective,
Assessment, and Plan. However, this structure is largely
inconsistent within our dataset, and even when present, the
sections are often indistinct. Consequently, we treated the
notes as free-text documents.

Three experts in clinical-annotation from IDIAP annotated
the corpus under established medical guidelines. Each expert
annotated all the documents. The initial agreement among
the 3 annotators was 77.8%. Disagreements and edge-cases
were resolved internally. Authors only performed data pre-
processing (eg document-structuring, language identification
[Spanish/Catalan], case-normalization).

Manual annotation identified 4 types of medical entities
mentioned in the clinical notes (diagnoses, signs/symptoms,
drugs and body parts) and several types of relationships
between entities (eg coadministration and replacement
between 2 drugs, causality between a diagnosis or a sign/
symptom and a diagnosis, location between a diagnosis and a
body part). Each entity mention was labeled with a list of
properties including its corresponding code from standard
medical codings: ICD-10 for diagnoses, ICPC-2 for signs/
symptoms, ATC-7 for drugs, and SNOMED-CT for body
parts.

In this study, we specifically focused on the detection and
ICD-10 linking of the diagnoses mentioned in the clinical
notes. In total, 16 000 diagnoses were annotated. As shown
in Figure 1, the distribution of these annotations was similar
for both Catalan and Spanish: 8647 and 7353, respectively.

Parameter-efficient fine-tuning

PEFT in NLP leverages pre-trained language models by fine-
tuning a smaller, task-specific subset of parameters while
keeping the majority fixed. This significantly reduces compu-
tational costs, making it ideal for resource-constrained envi-
ronments such as ICD-10 disease classification. PEFT ensures
high accuracy in clinical settings where computational

Language Example Approximate translation

Spanish M: Descartar TBC. ECAR.2139 .E: Pt anterior S: Discard TBC. ECAR.2139 .O: positive
positiva. Cicatriz de B.C.G. No contacto anterior Pt. B.C.G Scar. No known TBC
conocido de TBC. contact.

Catalan E: 10/2016 RMN Cervical uncodiscartr segm 0O:10/2016 MRI Cervical spine uncodiscartr

C2-7 q condiciona estenosi foraminal segm
C3-7 amb abombaments discals i hipertrof
llig grocs associada q condicionen estenosi

de canal al mateix segment. . ..
Catalan with Spanish

calgués en exacerb. - ecocardio

.. TOS RESIDUAL PERO MILLORADA de
Pofec, ”me encuentro bien ahora™. ... can-
vis cronics a bases, cardiomegalia aprox.
ICT 55% No ha aconseguit recollir mostres
d’esput .E: TA 138/90 .A: ASMA BRON-
QUIAL .P: singulair 10 cronic + aerosols si

segm C2-7 conditioning foraminal stenosis
segm C3-7 with disc bulges and associated
yellow lig hypertroph conditioning canal
stenosis at the same segment. . . .

.. RESIDUAL COUGH BUT IMPROVED
from shortness of breath, I feel fine now™.
... chronmic changes in bases, approx. cardio-
megaly. ICT 55% he couldn’t collect sputum
samples .O: BP 138/90 .A: BRONCHIAL
ASTHMA .P: chronic singulair 10 + aerosols
if needed during exacerb. - echocardio

The English translation tries to reflect the use of non-standard language in the original.
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Figure 1. Label distribution across Catalan (left) and Spanish (right) clinical documents. Each column represents an interval of 4 mentions (ie the first
column in each diagram encompasses labels having 1-4 annotated mentions). Both languages share the same pattern: an unbalanced long-tailed
distribution where the vast majority of labels have a handful of mentions, although labels with dozens or even hundreds of annotations do exist.

resources are limited, enhancing healthcare data management
and patient care.
We explore 3 key PEFT techniques:

* LoRA: Low-Rank Adaptation (LoRA) technique focuses
on updating a new low-rank subset of weights rather than
the existing weights set, leading to more efficient parame-
ter training. It strikes a balance between efficiency and
accuracy by training less parameters than the original
model.'”

* DoRA: By decomposing weights into direction and mag-
nitude, DoRA refines the adaptation process, stabilizing
training and enhancing performance, especially when
dealing with lower rank sizes. This method is particularly
useful for scenarios that require high stability and
precision.'®

¢ LoHA: Low-Rank Hadamard Product (LoHA) is a var-
iant of Low-Rank Adaptation (LoRA) that approximates
large weight matrices using multiple low-rank matrices
combined via the Hadamard product. This approach
enhances parameter efficiency while achieving perform-
ance comparable to standard LoRA methods."”

* LoKR: Low-Rank Kronecker Product (LoKR) is a techni-
que that utilizes the Kronecker product to combine low-
rank matrices for model adaptation. By leveraging the
Kronecker product, LoKR captures complex interactions
within the model parameters, facilitating efficient and
effective fine-tuning.””

* QLoRA: Integrating quantization with LoRA, QLoRA
reduces model precision to decrease memory usage and
computational requirements, making it especially effective
for very large models. Despite reduced precision, QLoRA
maintains performance levels, crucial for large-scale clini-
cal applications.*!

Models

In this study, we used a range of language models designed to
meet the unique linguistic and domain-specific needs of our
dataset.

* BERT Base Multilingual Cased (BERT): Pre-trained on
104 languages, including Spanish and Catalan, using a

masked language modeling objective. This model’s robust
multilingual capabilities are essential for interpreting clin-
ical notes containing mixed languages, ensuring accurate
entity recognition and linking.**

* DistilBERT Base Multilingual Cased (DistilBERT): This
distilled version of BERT retains much of the original
model’s performance while being smaller and faster. It is
particularly well-suited for processing large volumes of
clinical notes efficiently, without sacrificing accuracy.®

* mDeBERTa V3 Base (mDeBERTa): A multilingual ver-
sion of DeBERTa developed by Microsoft, utilizing the
same architecture as DeBERTa and trained with multilin-
gual data from CC100. This model was trained using 2.5
trillion tokens from the CC100 dataset, making it highly
proficient in natural language understanding tasks across
multiple languages.**

* RoBERTa Es WikiCAT Es (RoBERTa): Pre-trained using
texts from the Spanish National Library and WikiCAT,
this model is fine-tuned for Spanish and Catalan text clas-
sification. Developed by the Barcelona Supercomputing
Center, it excels in handling the bilingual nature of our
dataset.

Hyperparameters

We employed a comprehensive grid search strategy for hyper-
parameter optimization, essential to ensure that our models
achieved stable and reliable performance. The hyperpara-
meters considered include:

* Number of training epochs: fixed at 50.

* Batch size: values 4, 8, and 16 were tested.

* Learning rate: A range of values between 1e-04 and 2e-06
was explored.

* Learning rate scheduler: an Exponential Learning Rate

Scheduler was used, with a gamma value tested in the

range of 0.50 to 0.99.

* Rank size for PEFT models: Values of 8, 16, 32, 64, 128,

and 256 were tested.

* Alpha parameter for PEFT: Values of 64, 128, 256, 512,

1024, and 2048 were tested.
* Dropout rate: Values of 0.0, 0.1, 0.3, and 0.5 were tested.
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* Quantization precision in QLoRA: Fixed at 4-bit Normal-
Float (NF4).
» Compute data type in QLoRA: Fixed at bfloat16.

These values were carefully selected and fine-tuned based
on the specific characteristics of the dataset and the need for
stable convergence in training. The final values for these
hyperparameters and the optimal combinations will be dis-
cussed in Results section.

Mention preprocess

For preprocessing, we used the BIO tagging technique. In this
method, “B-ZZ.Z” marks the beginning of a mention with
code “ZZ.Z,” which corresponds to one of the possible ICD-
10 codes, “I-ZZ.Z” continues the mention, and “O” marks
the remaining segments of the diagnosis that are not of inter-
est. This tagging ensures the precise identification of ICD-10
mentions within clinical notes.

The text was then tokenized, padded, and converted into
numerical identifiers, with special tokens and padding labeled
“X” (numerical value of -100) to be ignored during the loss
calculation. When words split into multiple tokens, the first
token receives the BIO tag, while subsequent tokens are
labeled as “X.” The output from the transformer blocks is
finally mapped to ICD-10 mentions through a linear classifi-
cation layer. The processing flow is depicted in Figure 2.

Evaluation

Baseline models, including BERT, DistilBERT, mDeBERTa,
and RoBERTa, were trained without PEFT optimizations to
serve as comparisons. The dataset was partitioned into train-
ing (70%), validation (10%), and test (20%) sets, ensuring a
robust evaluation framework. Both effectiveness and effi-
ciency metrics were used, as defined in the following sections.
Considering both effectiveness and efficiency, our evaluation
approach ensures that the models are optimized for deploy-
ment in real-world, resource-constrained clinical settings,
providing reliable and scalable solutions for healthcare
providers.

Effectiveness metrics

* Precision: Measures the accuracy of the model in identify-
ing true positives among all recognized entities. It is
defined as the ratio of correctly identified entities (true
positives) to the total number of entities recognized by the
model (true positives + false positives).

.. True Positives
Precision =

True Positives + False Positives

* Recall: Also known as sensitivity, it measures the model’s
ability to correctly identify all relevant entities in the data-
set. It is defined as the ratio of correctly identified entities
(true positives) to the total number of actual relevant enti-
ties (true positives + false negatives).

«<» - — .

Recall = True Positives

True Positives + False Negatives

* Micro-F1 score: The primary metric for evaluating model
performance, emphasizing exact boundary and entity type
matches, crucial for assessing precision in entity recogni-
tion. It is defined as the harmonic mean of precision (ratio
of correctly bounded and ICD-10-linked diagnoses to the
diagnoses recognized by the model) and recall or sensitiv-
ity (ratio of correctly bounded and ICD-10 linked diagno-
ses to the total of diagnoses).

2 X Precision X Recall

F1,.,0 =
iero Precision + Recall

¢ Macro-F1 score: Provides additional insight by evaluating
performance across all classes, highlighting the model’s
effectiveness in handling both frequent and underrepre-
sented entities.

1 N

:NZFL-

i=1

Fl mdacro

Efficiency metrics

* Trainable parameters: Assesses the total number of parame-
ters subject to training, particularly relevant for PEFT meth-
ods where minimizing resource usage is critical.

Training time: Measures the total time required for train-
ing, crucial for assessing model suitability in real-time
clinical environments.

* Document inference: Evaluates how quickly the model
processes new data, an important factor in time-sensitive
applications such as clinical decision support systems.
Memory allocated: Tracks the memory usage of the
model during training and inference, ensuring that it can
be deployed on systems with limited resources.

Results

All experiments were conducted using the best hyperparameter
configurations obtained through systematic hyperparameter
search. Unless otherwise stated, models were trained for 50
epochs with a batch size of 4 and a dropout of 0.2 in the classifi-
cation head. In the result tables, a dagger symbol (') indicates
experiments trained with a batch size of 8, which was selected
as optimal in some cases during tuning. This variation should
be taken into account when comparing memory usage between
models.

Full fine-tuning (FFT) models used a learning rate of 3e-S5.
All PEFT methods, including LoRA, QLoRA, DoRA, LoHA,
and LoKR, were configured with rank r =256, a = 2048, and
no bias adaptation unless otherwise specified. QLoRA models
additionally employed NF4 quantization. LoHA and LoKR
models used a = 1024 with rank and module dropout set to
0.0.

Figure 2. The processing and training flow of the architectures, illustrating steps from input text through BIO-tagging, tokenization, padding and special
tokens handling, transformer blocks, linear classification layer, to the output results.
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The results are reported in Tables 2-4, which include strict
Micro-F1 and Macro-F1 scores for validation and test sets in
3 settings: joint training on Catalan and Spanish notes, train-
ing on Catalan notes only, and training on Spanish notes
only. Moreover, we report the number of trainable parame-
ters, training time, inference speed, and GPU memory usage.
Joint training consistently led to mutual performance gains
compared to training on each language independently.

The model that overall performs best is BERT with FFT,
which achieved a strict Micro-F1 of 63.0 on the joint test set.
The best PEFT approach is BERT with QLoRA, which
reached 62.2, a difference of 0.8 points, or 1.27% relative
performance gap. Despite this, QLoRA requires only 64.8M
trainable parameters, compared to 199.6M for FFT, repre-
senting a 67.5% reduction. Furthermore, QLoRA consumes
2644.5 MB of memory during inference, compared to 3992.1
MB for FFT, a 33.7% reduction.

This small performance gap translates into only 189 missed
mentions in total. These mismatches spanned 189 unique
labels, whose frequency statistics are summarized below.

Max occurrences per label: 152

Min occurrences: 1

Mean = standard deviation: 8.76 = 16.50

Focusing on the difference in correct predictions per label
between FFT and QLoRA:

Max difference: 7

Min difference: 1

Mean = standard deviation: 1.31 = 0.81

The label with the highest difference was T14.2 (fracture
of unspecified body region), where FFT predicted 7 more
correct instances than QLoRA.

JAMIA Open, 2025, Vol. 8, No. 5

To quantify the parameter-performance trade-off, we var-
ied QLoRA rank 7 in BERT: FFT gives 63.0 Strict Micro-F1
with 199.6 M parameters and 4 GB memory; rank 256
reaches 62.2/64.8 M/2.6 GB, rank 128 59.4/43.5 M/2.3 GB,
rank 64 56.3/32.9 M/2.2 GB, and rank 32 52.8/27.6 M/2.2
GB. Smaller ranks save resources but erode accuracy, as
shown in Figure 3.

The lowest memory footprint was obtained by QLoRA
with BERT at rank 32, which required only 2155 MB during
inference. However, this comes at a significant performance
cost, with strict Micro-F1 dropping to 52.8, more than 10
points below the FFT baseline.

Discussion

The results presented above provide a concise evaluation of
PEFT for Joint Entity Recognition and Linking (JERL) in
Catalan and Spanish non-standard primary-care notes.

FFT vs PEFT approaches

FFT with BERT achieved the best strict Micro-F1 (63.0) with
199.6M trainable parameters and ~4GB inference memory.
BERT-QLoRA (rank 256) reached 62.2, only 0.8 points
lower, while cutting trainable parameters by >66% and
memory by 33.7%. The extra 189 correct FFT predictions
were dispersed across low-frequency labels; the largest indi-
vidual gain (7 instances) concerned “T14.2: Fracture of
unspecified body region.” Thus, FFT’s margin is confined to
the rare tail of the label distribution rather than widespread
across common entity types.

Table 2. Parameter-efficient fine-tuning (PEFT) experiments in primary care notes (Catalan and Spanish).

Model Experiment Strict micro-F1 Strict macro-F1 Trainable Training Document Memory
parameters time inference allocated
Val Test TestCA TestES Val Test

RoBERTa FFT 62.7 61.2 62.7 59.5 38.0 30.5 146.4M 5923 min  11.4docs/s 2976.5 MB
RoBERTa LoRA 61.7 60.6 61.8 59.1 36.8 29.5 64.8M 644.5min  11.3 docs/s 2569.6 MB
RoBERTa! DoRA 62.2  60.7 61.4 59.8 35.5 28.9 64.9M 643.5min  11.2docs/s 5139.8 MB
RoBERTa QLoRA 62.9 60.5 62.3 58.2 35.6 28.6 64.8M 750.1 min  11.3 docs/s  2424.3 MB
RoBERTa! LoHA 58.6 572 59.0 551 33.2 26.4 107.2M 619.4min  11.3 docs/s 4491.6 MB
RoBERTa' LoKR 449 452 47.6 42.1 18.7 15.3 22.5M 592.7min  11.3 docs/s  3521.9 MB
DistilBERT FFT 61.8 60.4 61.9 58.7 37.2 32.6 157.0M 551.0min  11.5docs/s 3151.2 MB
DistilBERT LoRA 60.9 59.8 61.3 57.9 35.0 29.6 43.5M 613.6min  11.1docs/s 1974.8 MB
DistilBERT® DoRA 62.9 612 63.1 58.9 37.2 30.3 43.6M 621.9min  11.0 docs/s  3497.9 MB
DistilBERT QLoRA 54.8 55.7 56.4 54.7 25.5 22.1 43.5M 670.8 min  11.1 docs/s  1843.6 MB
DistilBERTT LoHA 60.3 58.6 60.6 56.2 35.3 30.2 64.8M 613.5min  10.9 docs/s 3169.6 MB
DistilBERT® LoKR 514 499 50.9 48.6 22.5 18.9 22.4M 597.3min  11.1docs/s 2682.2 MB
BERT FFT 64.0 63.0 64.2 61.5 39.1 35.8 199.6M 604.1 min  11.3 docs/s  3992.1 MB
BERT' LoRA 63.1 61.1 61.9 60.0 37.3 30.6 64.8M 598.3min 11.2docs/s 4070.5 MB
BERT DoRA 59.7 57.7 58.5 56.6 31.1 25.0 64.9M 759.4min  10.7 docs/s  3442.0 MB
BERT QLoRA 63.5 622 62.8 61.5 38.8 322 64.8M 765.1min  11.3 docs/s  2644.5 MB
BERT? LoHA 62.5 60.3 62.2 57.9 40.1 33.1 107.2M 643.7min  11.2 docs/s  4744.2 MB
BERTT LoKR 53.5 524 54.3 50.1 25.9 21.8 22.5M 619.2min  11.1docs/s 3771.6 MB
mDeBERTa FFT 60.7 57.7 59.2 56.0 35.9 27.4 300.5M 662.9min  11.3 docs/s  5936.2 MB
mDeBERTa LoRA 59.7 585 60.4 56.2 32.5 26.6 64.8M 727.6 min  11.2 docs/s 4163.0 MB
mDeBERTa' DoRA 62.5 59.6 61.8 56.8 36.4 28.3 64.9M 669.7min  11.1docs/s 7765.9 MB
mDeBERTa' QLoRA 542 511 52.4 49.6 24.2 17.2 64.8M 6929 min  10.9 docs/s  6372.4 MB
mDeBERTa' LoHA 57.6 548 56.6 52.7 314 25.8 107.2M 657.7min  11.2 docs/s  7045.7 MB
mDeBERTa' LoKR 446 425 43.5 41.3 17.8 14.3 22.5M 644.0min  11.1docs/s 6065.5 MB

T Models with batch size 8.
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Table 3. Parameter-efficient fine-tuning (PEFT) experiments in primary care notes (Catalan).
Model Experiment Strict micro-F1 Strict macro-F1 Trainable Training Document Memory
parameters time inference allocated
Val Test Val Test
RoBERTa FFT 54.4 54.5 31.2 28.0 146.4M 340.3 min 11.6 docs/s 2966.2 MB
RoBERTa LoRA 533 51.8 251 20.5 64.8M 395.3 min 11.2 docs/s 2569.6 MB
RoBERTa® DoRA 54.7 53.1 28.1 23.7 64.9M 369.2 min 11.2 docs/s 5137.8 MB
RoBERTa QLoRA 56.7 55.8 30.0 25.8 64.8M 431.0 min 11.6 docs/s 2424.3 MB
RoBERTa' LoHA 52.3 51.9 28.1 23.3 107.2M 356.8 min 10.9 docs/s 4490.3 MB
RoBERTa' LoKR 39.0 37.5 151 12.7 22.5M 342.1 min 11.5 docs/s 3521.9 MB
DistilBERT FFT 58.5 58.8 34.6 32.3 157.0M 314.9 min 11.8 docs/s 3146.3 MB
DistilBERT LoRA 47.5 47.0 20.0 17.0 43.5M 351.0 min 11.4 docs/s 1974.8 MB
DistilBERT? DoRA 521 51.9 24.9 21.2 43.6M 353.2 min 11.3 docs/s 3492.9 MB
DistilBERT QLoRA 50.6 48.5 22.0 17.4 43.5M 354.0 min 11.7 docs/s 1843.6 MB
DistilBERT? LoHA 53.0 53.2 29.4 25.9 64.8M 324.5 min 11.6 docs/s 3167.6 MB
DistilBERT' LoKR 47.9 45.0 19.8 17.5 22.4M 312.7 min 11.7 docs/s 2682.2 MB
BERT FFT 56.8 56.2 35.0 29.2 199.6M 368.4 min 11.2 docs/s 3982.8 MB
BERT LoRA 48.5 47.1 19.0 15.2 64.8M 364.4 min 11.2 docs/s 4071.5 MB
BERT DoRA 54.3 52.0 25.9 21.6 64.9M 439.5 min 11.3 docs/s 3442.0 MB
BERT QLoRA 39.1 36.7 9.4 6.2 64.8M 448.3 min 11.2 docs/s 2644.5 MB
BERTT LoHA 55.4 54.2 32.2 27.9 107.2M 365.3 min 11.3 docs/s 4744.9 MB
BERT? LoKR 45.9 45.2 22.1 18.0 22.5M 345.6 min 11.4 docs/s 3771.6 MB
mDeBERTa FFT 55.8 53.6 32.6 25.6 300.5M 384.1 min 11.6 docs/s 5915.7 MB
mDeBERTa LoRA 52.0 50.7 25.9 18.8 64.8M 426.0 min 11.2 docs/s 4163.0 MB
mDeBERTa® DoRA 46.9 45.7 19.5 14.9 64.9M 409.8 min 10.9 docs/s 7768.4 MB
mDeBERTat QLoRA 44.1 44.7 16.5 13.4 64.8M 388.0 min 11.1 docs/s 6371.7 MB
mDeBERTa® LoHA 47.5 45.7 23.4 17.8 107.2M 385.7 min 11.2 docs/s 7044.4 MB
mDeBERTat LoKR 34.5 333 12.0 9.2 22.5M 373.6 min 11.2 docs/s 6067.5 MB
T Models with batch size 8.
Table 4. Parameter-efficient fine-tuning (PEFT) experiments in primary care notes (Spanish).
Model Experiment Strict micro-F1 Strict macro-F1 Trainable Training Document Memory
parameters time inference allocated
Val Test Val Test
RoBERTa FFT 56.3 52.0 39.0 28.7 146.4M 243.2 min 11.2 docs/s 2976.4 MB
RoBERTa LoRA 54.2 48.6 31.7 23.9 64.8M 263.1 min 11.3 docs/s 2569.6 MB
RoBERTa® DoRA 52.0 49.7 30.4 21.9 64.9M 260.1 min 11.0 docs/s 5137.6 MB
RoBERTa QLoRA 451 41.5 22.9 15.8 64.8M 294.2 min 11.3 docs/s 2424.2 MB
RoBERTa' LoHA 47.5 45.7 29.7 22.8 107.2M 270.0 min 11.0 docs/s 4495.6 MB
ROBERTa' LoKR 31.0 30.2 13.5 10.0 22.5M 249.6 min 11.2 docs/s 3521.6 MB
DistilBERT FFT 56.1 50.7 36.1 26.6 157.0M 206.1 min 11.8 docs/s 3151.1 MB
DistilBERT LoRA S1.2 48.9 29.9 22.4 43.5M 216.2 min 11.7 docs/s 1974.7 MB
DistilBERT? DoRA 53.1 49.9 31.5 24.0 43.6M 213.6 min 11.6 docs/s 3492.7 MB
DistilBERT QLoRA 44.5 42.3 21.6 15.2 43.5M 235.0 min 11.7 docs/s 1843.6 MB
DistilBERT? LoHA 48.5 48.0 29.8 25.2 64.8M 212.8 min 11.7 docs/s 3168.3 MB
DistilBERT' LoKR 41.8 41.0 19.3 16.0 22.4M 206.1 min 11.8 docs/s 2682.0 MB
BERT FFT 571 54.6 38.9 30.3 199.6M 243.8 min 11.3 docs/s 3992.0 MB
BERTT LoRA 50.3 49.7 27.5 22.5 64.8M 260.1 min 11.2 docs/s 4071.2 MB
BERT DoRA 47.3 45.8 25.9 19.2 64.9M 312.0 min 10.8 docs/s 3441.9 MB
BERT QLoRA 54.9 51.9 34.0 25.3 64.8M 303.4 min 11.1 docs/s 2644.4 MB
BERTT LoHA S1.1 47.8 31.5 24.8 107.2M 255.3 min 11.2 docs/s 4744.7 MB
BERT! LoKR 43.0 41.0 20.7 16.1 22.5M 228.9 min 11.5 docs/s 3771.4 MB
mDeBERTa FFT 51.6 49.5 33.7 23.9 300.5M 254.8 min 11.6 docs/s 5935.1 MB
mDeBERTa LoRA 32.4 31.3 11.6 8.0 64.8M 292.9 min 11.2 docs/s 4162.9 MB
mDeBERTat DoRA 42.9 42.8 21.3 16.1 64.9M 257.1 min 11.2 docs/s 7769.2 MB
mDeBERTat QLoRA 26.3 25.8 8.7 5.3 64.8M 254.0 min 10.9 docs/s 6371.5 MB
mDeBERTat LoHA 37.4 35.6 18.2 13.2 107.2M 254.1 min 11.2 docs/s 7046.4 MB
mDeBERTat LoKR 23.7 26.7 8.2 6.7 22.5M 248.0 min 11.4 docs/s 6067.3 MB

T Models with batch size 8.

Effectiveness and limits of Adapter-Based methods

QLoRA offered the most robust gains, whereas LoRA and
DoRA stayed within 1-2 points on several bases (eg RoB-
ERTa, DistilBERT). By contrast, LoHA and especially LoKR

degraded performance sharply (eg BERT-LoKR 45.2), failing
to exchange accuracy for additional efficiency; their rank-
aware projections appear unable to capture the fine-grained
context JERL requires.
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Figure 3. Strict Micro-F1 vs number of trainable parameters for QLoRA
with BERT at varying adapter ranks, evaluated on the joint Catalan-
Spanish dataset. Lower ranks lead to improved efficiency at the cost of
performance.

Impact of language composition

Joint Catalan-Spanish training consistently benefited FFT,
QLoRA, and DoRA, exploiting the languages’ lexical prox-
imity. Yet aggressive compression (LoKR or QLoRA rank
32) sometimes harmed cross-lingual transfer, indicating that
adapter capacity must balance parameter savings with repre-
sentational breadth.

Rank sensitivity in QLoRA

Reducing QLoRA rank exposed a clear efficiency-accuracy
trade-off: dropping from 256 to 128 cost 2.8 F1, and to 32
cost 9.4, while nearly halving parameters and trimming sev-
eral hundred MB of memory. Complex, token-level tasks like
JERL therefore still demand relatively high ranks.

Implications for clinical NLP deployment

QLoRA delivers near-FFT accuracy on commodity GPUs,
enabling rapid domain adaptation in resource-constrained
clinics. Because the performance gap concentrates in a hand-
ful of rare entities, selective fine-tuning or lightweight ensem-
bles could bridge it without retraining the full model. These
findings make advanced NLP accessible even to institutions
with modest hardware footprints.

Limitations and future work

Our experiments cover one domain and 2 related languages;
behavior in distant language pairs or heterogeneous records
remains untested.

Our dataset focuses on multimorbid patients aged over 50
with heart disease or stroke, introducing selection bias and
skewed ICD-10 label distributions that limit generalizability.

We also omit domain-adaptive pre-training. Future
research should explore the integration of PEFT with medical
ontologies or knowledge graphs to improve tail-entity
linking.

Conclusion

This study evaluates PEFT methods as a practical alternative
to FFT for multilabel classification of diagnoses in bilingual
clinical notes. Working with real-world data written in non-
standard Spanish and Catalan, which present unique linguis-
tic challenges not addressed by existing state-of-the-art
approaches, the results show that PEFT techniques,

JAMIA Open, 2025, Vol. 8, No. 5

particularly QLoRA, can offer competitive performance
while substantially reducing computational requirements.

Although FFT still provides the best predictive accuracy,
the difference is relatively small when compared with
QLoRA. For instance, using BERT trained on a combined
Catalan-Spanish corpus, QLoRA achieves a strict Micro-F1
score of 62.2, just 1.27% below the fully fine-tuned model,
while requiring 67.5% fewer trainable parameters and reduc-
ing memory usage by 33.7%. These savings are especially rel-
evant in clinical settings where access to high-end computing
resources may be limited or inconsistent.

Another key finding is the benefit of training on bilingual
data. Models trained on the combined corpus consistently
generalize better, even when evaluated in a single language.
This highlights the value of leveraging multilingual signals in
clinical natural language processing, especially in regions
with diverse linguistic practices.

Looking ahead, one promising direction is the application
of PEFT strategies to large language models (LLMs), which
could improve contextual understanding while maintaining
manageable resource demands. Combining approaches like
QLoRA or LoRA with domain-specific LLMs, along with
techniques such as quantization or sparse fine-tuning, may
further enhance performance and scalability.

These findings underscore the potential of PEFT methods
to enable accurate and efficient clinical NLP systems, particu-
larly in multilingual and resource-constrained healthcare
settings.
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