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Abstract
Objectives: Joint recognition and ICD-10 linking of diagnoses in bilingual, non-standard Spanish and Catalan primary care notes is challenging. 
We evaluate parameter-efficient fine-tuning (PEFT) techniques as a resource-conscious alternative to full fine-tuning (FFT) for multi-label clinical 
text classification.
Materials and Methods: On a corpus of 21 812 Catalan and Spanish clinical notes from Catalonia, we compared the PEFT techniques LoRA, 
DoRA, LoHA, LoKR, and QLoRA applied to multilingual transformers (BERT, RoBERTa, DistilBERT, and mDeBERTa).
Results: FFT delivered the best strict Micro-F1 (63.0), but BERT-QLoRA scored 62.2, only 0.8 points lower, while reducing trainable parameters 
by 67.5% and memory by 33.7%. Training on combined bilingual data consistently improved generalization across individual languages.
Discussion: The small FFT margin was confined to rare labels, indicating limited benefit from updating all parameters. Among PEFT techniques, 
QLoRA offered the strongest accuracy-efficiency balance; LoRA and DoRA were competitive, whereas LoHA and LoKR incurred larger losses. 
Adapter rank mattered: ranks below 128 sharply degraded Micro-F1. The substantial memory savings enable deployment on commodity GPUs 
while delivering performance very close to FFT.
Conclusion: PEFT, particularly QLoRA, supports accurate and memory-efficient joint entity recognition and ICD-10 linking in multilingual, low- 
resource clinical settings.

Lay Summary
Primary care providers often rely on Non-Standard Clinical Notes, which are written in free text and may combine multiple languages such as 
Spanish and Catalan. These notes capture important details about patients but are difficult for computers to interpret. Automatically linking 
them to diagnostic codes such as the International Classification of Diseases, 10th Revision (ICD-10), could help clinicians document care more 
efficiently and consistently. Traditional approaches for this task use large models that must be fully retrained. This process is accurate but 
requires powerful computers and significant memory, which are rarely available in smaller clinics. In this study, we explored lighter training strat
egies that adjust only small parts of the models instead of all their internal weights. We tested these approaches on a realistic bilingual dataset 
of Non-Standard Clinical Notes. Our results show that these lighter methods achieve accuracy close to full model training while using far less 
computing power and memory. Training with bilingual notes further improved performance. These findings suggest that accurate automatic 
coding of Non-Standard Clinical Notes is possible even in low-resource primary care settings, opening the way for practical and affordable use 
of artificial intelligence tools in everyday healthcare.
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Introduction
The integration of artificial intelligence (AI) into healthcare, 
particularly in primary care settings, has the potential to 
transform clinical decision making by improving recognition 
and linking of medical diagnoses. This study focuses on the 
application of parameter-efficient fine-tuning (PEFT) meth
ods for joint entity recognition and linking (JERL) using 
ICD-10 codes, specifically on a dataset that closely reflects 
real-world challenges. The UPC-IDIAP dataset, characterized 
by non-standard language use and bilingual content in Cata
lan and Spanish (IDIAP data and UPC annotations), presents 

significant challenges due to its inherent noise and unbal
anced distribution of diagnoses. Unlike standard benchmark 
datasets, state-of-the-art challenges do not address this type 
of nonstandard clinical text, making the task fundamentally 
different. These characteristics make it a relevant context in 
which to evaluate advanced techniques for accurately proc
essing and analyzing such complex data.

Previous approaches to entity recognition and linking in 
clinical texts rely on fully parameterized models, which, while 
effective, require considerable computational resources and 
memory. This reliance may create a bottleneck, as training 
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these models becomes prohibitively expensive in settings 
where computational power is a limitation, leading to slower 
adoption of AI tools. Traditional fine-tuning methods, which 
update all model parameters regardless of task-specific needs, 
end up with redundant computational overhead. Addressing 
this inefficiency is urgent, as scalable AI solutions are nowa
days essential to democratize access to advanced diagnostics, 
particularly in low-resource primary care settings. Failure to 
optimize these models risks perpetuating inequalities in 
healthcare quality and accessibility. This study explores the 
potential of PEFT methods, in particular LoRA, DoRA, 
LoHA, LoKR, and QLoRA, as a more resource-efficient 
alternative. These methods aim to maintain high performance 
while drastically reducing the number of trainable parame
ters, making them particularly suitable for resource- 
constrained environments.

By adapting the models to the specific linguistic and medi
cal characteristics of the dataset, this research aims to 
improve the accuracy and efficiency of diagnostic coding in 
primary care. The results not only highlight the effectiveness 
of PEFT models in processing complex clinical data but also 
underscore their potential for wider application in multilin
gual healthcare environments, paving the way for more acces
sible and scalable AI-based diagnostic tools.

Background and significance
The JERL task for ICD-10 codes combines the challenges of 
named entity recognition (NER) and entity linking (EL), 
which have traditionally been approached as separate tasks. 
It is to note that terminology may be somewhat confusing: 
terms such as “normalizing,” “linking,” and “grounding” 
are often used interchangeably. In addition, some papers use 
“entity linking” to encompass the whole recognition and 
linking process, whereas others denote only the second part.1

In the text, we will use “linking,” and in doing so, we will 
refer only to the second step. With respect to the biomedical 
domain, the second step is sometimes also referred to by acro
nyms like BNEN (biomedical entity normalization)2 and BEL 
(biomedical entity linking),1 whereas in medical settings the 
reader may come across with abbreviations such as MER 
(medical entity recognition) and MEN (medical entity 
normalization).3

Recent studies have demonstrated the benefits of integrat
ing these 2 tasks, to enhance performance and generalizabil
ity. Martins et al4 followed this approach, showing that 
training the NER and EL models together produces superior 
results compared to models trained individually. Their 
model, inspired by the Stack-LSTM approach, achieved com
petitive results across both tasks, highlighting the interde
pendency between entity recognition and linking. Zhao et al3

pioneered a multi-task learning scheme to address disease 
JERL: one task took care of the entity recognition, while the 
other task dealt with linking. They jointly modeled both of 
them by setting an explicit feedback mechanism between 
them. In other words, the result of NER was fed into the 
input of EL and vice versa, thus converting 2 hierarchical 
tasks into a 2-task parallel scheme. They proved several deep 
learning architectures and the results improved state-of-the- 
art in 2 publicly available datasets.

Biomedical datasets like MedMentions5 and MIMIC-IV6

have been instrumental in advancing research in this area. 
MedMentions provides a large corpus annotated with UMLS 

concepts, serving as a robust resource for NER and EL in the 
biomedical field. MIMIC-IV, a comprehensive electronic 
health record dataset, offers a rich source of clinical notes. 
However, most real-world electronic health records (EHR) 
datasets are affected by significant noise, including mention 
imbalances, which distinguish them from more curated data
sets like MIMIC-IV or MedMentions. This noise, coupled 
with severe overall class imbalance, poses substantial chal
lenges for standard machine learning models, often leading to 
reduced generalization. Given that the dataset involved in 
this study also exhibits these inherent issues, it is essential to 
recognize these challenges as they may impact the accuracy 
and reliability of the findings.7,8 Transformer-based models 
have shown promise in entity linking tasks. L�opez-Garc�ıa 
et al9 demonstrated the efficacy of in-domain adapted 
transformers trained on clinical notes in Spanish, achieving 
state-of-the-art performance in tasks requiring both entity 
recognition and linking.

The importance of fine-tuning pre-trained models on 
domain-specific data has been underscored in several studies. 
Gligic et al10 used transfer learning to enhance NER in elec
tronic health records, achieving significant improvements by 
pre-training on large, unannotated corpora and fine-tuning 
on specific tasks.

Entity linking, particularly in medical contexts, has also 
seen advances. Yan et al11 introduced an unsupervised entity 
linking model using multi-instance learning (MIL) to improve 
the accuracy of linking Chinese medical symptom mentions 
to the ICD-10 classification. Also, Noh and Kavuluru12 lever
aged a SciBERT model to jointly optimize biomedical NER 
and entity linking. Although their work advanced JERL for 
biomedical texts, it mainly focused on structured scientific lit
erature (MedMentions dataset) rather than noisy, bilingual 
clinical notes like those in primary care settings. They also 
did not concentrate on ICD diagnoses, but on a wide range of 
medical entities, including also drugs and genes.

Building on these foundations, recent work has begun to 
leverage prompt-based learning and candidate-level interac
tion mechanisms to address long-standing challenges in bio
medical entity linking. In contrast to traditional re-ranking 
models, which typically evaluate each candidate separately 
alongside the mention context, the approach proposed by Xu 
et al13 processes all candidates jointly. Their method achieves 
strong results along 3 benchmark datasets—NCBI disease, 
BC5CDR, and COMETA—demonstrating the value of incor
porating both contextual and inter-candidate information.

A complementary strategy is proposed by Zhu et al,14 who 
introduce a 2-phase linking pipeline. The first phase employs 
a bi-encoder to generate candidate entities efficiently, while 
the second applies a more refined, prompt-based re-ranking 
stage that makes use of contextual cues in the surrounding 
text. Their system shows consistent performance gains over 
prior methods when evaluated on MedMentions and the 
NCBI disease corpus. Collectively, these studies reflect a 
broader trend towards using lightweight, flexible mechanisms 
like prompt tuning to improve entity linking in complex and 
noisy clinical text environments.

Moreover, the emergence of PEFT techniques, although 
primarily explored in tasks such as clinical diagnosis predic
tion as in the CPLLM model by Ben Shoham and Rappo
port,15 presents a promising avenue for optimizing large 
language models in various clinical applications.
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Materials and methods
Objective
The objective of the study is to evaluate which of 4 models 
has the best results in JERL of ICD-10 codes from non- 
standard bilingual primary care clinical notes. We aim to use 
PEFT to improve the utilization of computational resources, 
so that healthcare professionals can efficiently and accurately 
identify diseases in a manner that reduce computational 
costs. Starting from the development of an improved diagnos
tic mapping system for medical records to ICD-10 codes, this 
research aims to help clinical practitioners make more 
informed decisions and, therefore, more personalized and 
efficient healthcare in a variety of primary care settings. This 
will ultimately contribute to better patient outcomes and 
resource utilization.

Data
The UPC-IDIAP dataset utilized in this project comprises 
clinical notes authored by primary care physicians in Catalo
nia during patient visits. It spans 6 years and includes 21 812 
de-identified notes from 320 multimorbid patients aged over 
50 with heart disease or stroke, with each note corresponding 
to a single visit. On average, there are 68.16 visits per patient 
ranging from 1 to 174. The length of these documents varies 
from a few tokens to 620 tokens, although most are under 40 
tokens. In total, the dataset contains 1 008 548 tokens. This 
dataset was generously provided by the Primary Healthcare 
Research Foundation IDIAP JGol.16 Due to the sensitive 
nature of the data and the conditions under which it was pro
vided, the UPC-IDIAP dataset is not publicly available.

These notes are written in a mix of non-standard Spanish 
and Catalan, featuring elisions, both standard and non- 
standard abbreviations, typos, and a blend of both languages, 
among other distortions, which increase the difficulty of the 
task. This linguistic variability, along with the informal and 
unstructured nature of the notes, contrasts sharply with 
standard clinical corpora used in state-of-the-art benchmarks, 
which are typically monolingual, standardized, and more 
formally written. Therefore, the tasks addressed with this 
dataset require methods capable of handling noisy, code- 
switched, and domain-specific language, posing unique 

challenges rarely covered by existing benchmarks. Some 
examples of these linguistic phenomena are shown in 
Table 1.

Typically, each clinical note is expected to adhere to the 
SOAP structure, comprising 4 sections that align with the 
steps a doctor follows during a visit: Subjective, Objective, 
Assessment, and Plan. However, this structure is largely 
inconsistent within our dataset, and even when present, the 
sections are often indistinct. Consequently, we treated the 
notes as free-text documents.

Three experts in clinical-annotation from IDIAP annotated 
the corpus under established medical guidelines. Each expert 
annotated all the documents. The initial agreement among 
the 3 annotators was 77.8%. Disagreements and edge-cases 
were resolved internally. Authors only performed data pre
processing (eg document-structuring, language identification 
[Spanish/Catalan], case-normalization).

Manual annotation identified 4 types of medical entities 
mentioned in the clinical notes (diagnoses, signs/symptoms, 
drugs and body parts) and several types of relationships 
between entities (eg coadministration and replacement 
between 2 drugs, causality between a diagnosis or a sign/ 
symptom and a diagnosis, location between a diagnosis and a 
body part). Each entity mention was labeled with a list of 
properties including its corresponding code from standard 
medical codings: ICD-10 for diagnoses, ICPC-2 for signs/ 
symptoms, ATC-7 for drugs, and SNOMED-CT for body 
parts.

In this study, we specifically focused on the detection and 
ICD-10 linking of the diagnoses mentioned in the clinical 
notes. In total, 16 000 diagnoses were annotated. As shown 
in Figure 1, the distribution of these annotations was similar 
for both Catalan and Spanish: 8647 and 7353, respectively.

Parameter-efficient fine-tuning
PEFT in NLP leverages pre-trained language models by fine- 
tuning a smaller, task-specific subset of parameters while 
keeping the majority fixed. This significantly reduces compu
tational costs, making it ideal for resource-constrained envi
ronments such as ICD-10 disease classification. PEFT ensures 
high accuracy in clinical settings where computational 

Table 1. Extracts from our bilingual Spanish/Catalan clinical notes.

Language Example Approximate translation

Spanish M: Descartar TBC. ECAR.2139 .E: Pt anterior 
positiva. Cicatriz de B.C.G. No contacto 
conocido de TBC.

S: Discard TBC. ECAR.2139 .O: positive 
anterior Pt. B.C.G Scar. No known TBC 
contact.

Catalan E: 10/2016 RMN Cervical uncodiscartr segm 
C2-7 q condiciona estenosi foraminal segm 
C3-7 amb abombaments discals i hipertrof 
llig grocs associada q condicionen estenosi 
de canal al mateix segment. . . .

O: 10/2016 MRI Cervical spine uncodiscartr 
segm C2-7 conditioning foraminal stenosis 
segm C3-7 with disc bulges and associated 
yellow lig hypertroph conditioning canal 
stenosis at the same segment. . . .

Catalan with Spanish . . . TOS RESIDUAL PER �O MILLORADA de 
l’ofec, ”me encuentro bien ahora”. . . . can
vis cr�onics a bases, cardiomeg�alia aprox. 
ICT 55% No ha aconseguit recollir mostres 
d’esput .E: TA 138/90 .A: ASMA BRON
QUIAL .P: singulair 10 cr�onic þ aerosols si 
calgu�es en exacerb. - ecocardio

. . . RESIDUAL COUGH BUT IMPROVED 
from shortness of breath, ”I feel fine now”. 
. . . chronic changes in bases, approx. cardio
megaly. ICT 55% he couldn’t collect sputum 
samples .O: BP 138/90 .A: BRONCHIAL 
ASTHMA .P: chronic singulair 10þ aerosols 
if needed during exacerb. - echocardio

The English translation tries to reflect the use of non-standard language in the original.
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resources are limited, enhancing healthcare data management 
and patient care.

We explore 3 key PEFT techniques:

� LoRA: Low-Rank Adaptation (LoRA) technique focuses 
on updating a new low-rank subset of weights rather than 
the existing weights set, leading to more efficient parame
ter training. It strikes a balance between efficiency and 
accuracy by training less parameters than the original 
model.17

� DoRA: By decomposing weights into direction and mag
nitude, DoRA refines the adaptation process, stabilizing 
training and enhancing performance, especially when 
dealing with lower rank sizes. This method is particularly 
useful for scenarios that require high stability and 
precision.18

� LoHA: Low-Rank Hadamard Product (LoHA) is a var
iant of Low-Rank Adaptation (LoRA) that approximates 
large weight matrices using multiple low-rank matrices 
combined via the Hadamard product. This approach 
enhances parameter efficiency while achieving perform
ance comparable to standard LoRA methods.19

� LoKR: Low-Rank Kronecker Product (LoKR) is a techni
que that utilizes the Kronecker product to combine low- 
rank matrices for model adaptation. By leveraging the 
Kronecker product, LoKR captures complex interactions 
within the model parameters, facilitating efficient and 
effective fine-tuning.20

� QLoRA: Integrating quantization with LoRA, QLoRA 
reduces model precision to decrease memory usage and 
computational requirements, making it especially effective 
for very large models. Despite reduced precision, QLoRA 
maintains performance levels, crucial for large-scale clini
cal applications.21

Models
In this study, we used a range of language models designed to 
meet the unique linguistic and domain-specific needs of our 
dataset.

� BERT Base Multilingual Cased (BERT): Pre-trained on 
104 languages, including Spanish and Catalan, using a 

masked language modeling objective. This model’s robust 
multilingual capabilities are essential for interpreting clin
ical notes containing mixed languages, ensuring accurate 
entity recognition and linking.22

� DistilBERT Base Multilingual Cased (DistilBERT): This 
distilled version of BERT retains much of the original 
model’s performance while being smaller and faster. It is 
particularly well-suited for processing large volumes of 
clinical notes efficiently, without sacrificing accuracy.23

� mDeBERTa V3 Base (mDeBERTa): A multilingual ver
sion of DeBERTa developed by Microsoft, utilizing the 
same architecture as DeBERTa and trained with multilin
gual data from CC100. This model was trained using 2.5 
trillion tokens from the CC100 dataset, making it highly 
proficient in natural language understanding tasks across 
multiple languages.24

� RoBERTa Es WikiCAT Es (RoBERTa): Pre-trained using 
texts from the Spanish National Library and WikiCAT, 
this model is fine-tuned for Spanish and Catalan text clas
sification. Developed by the Barcelona Supercomputing 
Center, it excels in handling the bilingual nature of our 
dataset. 

Hyperparameters
We employed a comprehensive grid search strategy for hyper
parameter optimization, essential to ensure that our models 
achieved stable and reliable performance. The hyperpara
meters considered include:

� Number of training epochs: fixed at 50. 
� Batch size: values 4, 8, and 16 were tested. 
� Learning rate: A range of values between 1e-04 and 2e-06 

was explored. 
� Learning rate scheduler: an Exponential Learning Rate 

Scheduler was used, with a gamma value tested in the 
range of 0.50 to 0.99. 

� Rank size for PEFT models: Values of 8, 16, 32, 64, 128, 
and 256 were tested. 

� Alpha parameter for PEFT: Values of 64, 128, 256, 512, 
1024, and 2048 were tested. 

� Dropout rate: Values of 0.0, 0.1, 0.3, and 0.5 were tested. 

Figure 1. Label distribution across Catalan (left) and Spanish (right) clinical documents. Each column represents an interval of 4 mentions (ie the first 
column in each diagram encompasses labels having 1-4 annotated mentions). Both languages share the same pattern: an unbalanced long-tailed 
distribution where the vast majority of labels have a handful of mentions, although labels with dozens or even hundreds of annotations do exist.
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� Quantization precision in QLoRA: Fixed at 4-bit Normal
Float (NF4). 

� Compute data type in QLoRA: Fixed at bfloat16. 

These values were carefully selected and fine-tuned based 
on the specific characteristics of the dataset and the need for 
stable convergence in training. The final values for these 
hyperparameters and the optimal combinations will be dis
cussed in Results section.

Mention preprocess
For preprocessing, we used the BIO tagging technique. In this 
method, “B-ZZ.Z” marks the beginning of a mention with 
code “ZZ.Z,” which corresponds to one of the possible ICD- 
10 codes, “I-ZZ.Z” continues the mention, and “O” marks 
the remaining segments of the diagnosis that are not of inter
est. This tagging ensures the precise identification of ICD-10 
mentions within clinical notes.

The text was then tokenized, padded, and converted into 
numerical identifiers, with special tokens and padding labeled 
“X” (numerical value of -100) to be ignored during the loss 
calculation. When words split into multiple tokens, the first 
token receives the BIO tag, while subsequent tokens are 
labeled as “X.” The output from the transformer blocks is 
finally mapped to ICD-10 mentions through a linear classifi
cation layer. The processing flow is depicted in Figure 2.

Evaluation
Baseline models, including BERT, DistilBERT, mDeBERTa, 
and RoBERTa, were trained without PEFT optimizations to 
serve as comparisons. The dataset was partitioned into train
ing (70%), validation (10%), and test (20%) sets, ensuring a 
robust evaluation framework. Both effectiveness and effi
ciency metrics were used, as defined in the following sections. 
Considering both effectiveness and efficiency, our evaluation 
approach ensures that the models are optimized for deploy
ment in real-world, resource-constrained clinical settings, 
providing reliable and scalable solutions for healthcare 
providers.

Effectiveness metrics

� Precision: Measures the accuracy of the model in identify
ing true positives among all recognized entities. It is 
defined as the ratio of correctly identified entities (true 
positives) to the total number of entities recognized by the 
model (true positives þ false positives). 

Precision ¼
True Positives

True PositivesþFalse Positives 

� Recall: Also known as sensitivity, it measures the model’s 
ability to correctly identify all relevant entities in the data
set. It is defined as the ratio of correctly identified entities 
(true positives) to the total number of actual relevant enti
ties (true positives þ false negatives). 

Recall ¼
True Positives

True PositivesþFalse Negatives 

� Micro-F1 score: The primary metric for evaluating model 
performance, emphasizing exact boundary and entity type 
matches, crucial for assessing precision in entity recogni
tion. It is defined as the harmonic mean of precision (ratio 
of correctly bounded and ICD-10-linked diagnoses to the 
diagnoses recognized by the model) and recall or sensitiv
ity (ratio of correctly bounded and ICD-10 linked diagno
ses to the total of diagnoses). 

F1micro ¼
2×Precision×Recall

PrecisionþRecall 

� Macro-F1 score: Provides additional insight by evaluating 
performance across all classes, highlighting the model’s 
effectiveness in handling both frequent and underrepre
sented entities. 

F1macro ¼
1
N

XN

i¼1

F1i 

Efficiency metrics

� Trainable parameters: Assesses the total number of parame
ters subject to training, particularly relevant for PEFT meth
ods where minimizing resource usage is critical. 

� Training time: Measures the total time required for train
ing, crucial for assessing model suitability in real-time 
clinical environments. 

� Document inference: Evaluates how quickly the model 
processes new data, an important factor in time-sensitive 
applications such as clinical decision support systems. 

� Memory allocated: Tracks the memory usage of the 
model during training and inference, ensuring that it can 
be deployed on systems with limited resources. 

Results
All experiments were conducted using the best hyperparameter 
configurations obtained through systematic hyperparameter 
search. Unless otherwise stated, models were trained for 50 
epochs with a batch size of 4 and a dropout of 0.2 in the classifi
cation head. In the result tables, a dagger symbol (†) indicates 
experiments trained with a batch size of 8, which was selected 
as optimal in some cases during tuning. This variation should 
be taken into account when comparing memory usage between 
models.

Full fine-tuning (FFT) models used a learning rate of 3e-5. 
All PEFT methods, including LoRA, QLoRA, DoRA, LoHA, 
and LoKR, were configured with rank r¼ 256, α¼ 2048, and 
no bias adaptation unless otherwise specified. QLoRA models 
additionally employed NF4 quantization. LoHA and LoKR 
models used α¼ 1024 with rank and module dropout set to 
0.0.

Figure 2. The processing and training flow of the architectures, illustrating steps from input text through BIO-tagging, tokenization, padding and special 
tokens handling, transformer blocks, linear classification layer, to the output results.
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The results are reported in Tables 2-4, which include strict 
Micro-F1 and Macro-F1 scores for validation and test sets in 
3 settings: joint training on Catalan and Spanish notes, train
ing on Catalan notes only, and training on Spanish notes 
only. Moreover, we report the number of trainable parame
ters, training time, inference speed, and GPU memory usage. 
Joint training consistently led to mutual performance gains 
compared to training on each language independently.

The model that overall performs best is BERT with FFT, 
which achieved a strict Micro-F1 of 63.0 on the joint test set. 
The best PEFT approach is BERT with QLoRA, which 
reached 62.2, a difference of 0.8 points, or 1.27% relative 
performance gap. Despite this, QLoRA requires only 64.8M 
trainable parameters, compared to 199.6M for FFT, repre
senting a 67.5% reduction. Furthermore, QLoRA consumes 
2644.5 MB of memory during inference, compared to 3992.1 
MB for FFT, a 33.7% reduction.

This small performance gap translates into only 189 missed 
mentions in total. These mismatches spanned 189 unique 
labels, whose frequency statistics are summarized below.

Max occurrences per label: 152
Min occurrences: 1
Mean ± standard deviation: 8.76 ± 16.50
Focusing on the difference in correct predictions per label 
between FFT and QLoRA:
Max difference: 7
Min difference: 1
Mean ± standard deviation: 1.31 ± 0.81
The label with the highest difference was T14.2 (fracture 
of unspecified body region), where FFT predicted 7 more 
correct instances than QLoRA.

To quantify the parameter-performance trade-off, we var
ied QLoRA rank r in BERT: FFT gives 63.0 Strict Micro-F1 
with 199.6 M parameters and 4 GB memory; rank 256 
reaches 62.2/64.8 M/2.6 GB, rank 128 59.4/43.5 M/2.3 GB, 
rank 64 56.3/32.9 M/2.2 GB, and rank 32 52.8/27.6 M/2.2 
GB. Smaller ranks save resources but erode accuracy, as 
shown in Figure 3.

The lowest memory footprint was obtained by QLoRA 
with BERT at rank 32, which required only 2155 MB during 
inference. However, this comes at a significant performance 
cost, with strict Micro-F1 dropping to 52.8, more than 10 
points below the FFT baseline.

Discussion
The results presented above provide a concise evaluation of 
PEFT for Joint Entity Recognition and Linking (JERL) in 
Catalan and Spanish non-standard primary-care notes.

FFT vs PEFT approaches
FFT with BERT achieved the best strict Micro-F1 (63.0) with 
199.6M trainable parameters and �4GB inference memory. 
BERT-QLoRA (rank 256) reached 62.2, only 0.8 points 
lower, while cutting trainable parameters by >66% and 
memory by 33.7%. The extra 189 correct FFT predictions 
were dispersed across low-frequency labels; the largest indi
vidual gain (7 instances) concerned “T14.2: Fracture of 
unspecified body region.” Thus, FFT’s margin is confined to 
the rare tail of the label distribution rather than widespread 
across common entity types.

Table 2. Parameter-efficient fine-tuning (PEFT) experiments in primary care notes (Catalan and Spanish).

Model Experiment Strict micro-F1 Strict macro-F1 Trainable  
parameters

Training  
time

Document  
inference

Memory  
allocated

Val Test Test CA Test ES Val Test

RoBERTa FFT 62.7 61.2 62.7 59.5 38.0 30.5 146.4M 592.3 min 11.4 docs/s 2976.5 MB
RoBERTa LoRA 61.7 60.6 61.8 59.1 36.8 29.5 64.8M 644.5 min 11.3 docs/s 2569.6 MB
RoBERTa† DoRA 62.2 60.7 61.4 59.8 35.5 28.9 64.9M 643.5 min 11.2 docs/s 5139.8 MB
RoBERTa QLoRA 62.9 60.5 62.3 58.2 35.6 28.6 64.8M 750.1 min 11.3 docs/s 2424.3 MB
RoBERTa† LoHA 58.6 57.2 59.0 55.1 33.2 26.4 107.2M 619.4 min 11.3 docs/s 4491.6 MB
RoBERTa† LoKR 44.9 45.2 47.6 42.1 18.7 15.3 22.5M 592.7 min 11.3 docs/s 3521.9 MB
DistilBERT FFT 61.8 60.4 61.9 58.7 37.2 32.6 157.0M 551.0 min 11.5 docs/s 3151.2 MB
DistilBERT LoRA 60.9 59.8 61.3 57.9 35.0 29.6 43.5M 613.6 min 11.1 docs/s 1974.8 MB
DistilBERT† DoRA 62.9 61.2 63.1 58.9 37.2 30.3 43.6M 621.9 min 11.0 docs/s 3497.9 MB
DistilBERT QLoRA 54.8 55.7 56.4 54.7 25.5 22.1 43.5M 670.8 min 11.1 docs/s 1843.6 MB
DistilBERT† LoHA 60.3 58.6 60.6 56.2 35.3 30.2 64.8M 613.5 min 10.9 docs/s 3169.6 MB
DistilBERT† LoKR 51.4 49.9 50.9 48.6 22.5 18.9 22.4M 597.3 min 11.1 docs/s 2682.2 MB
BERT FFT 64.0 63.0 64.2 61.5 39.1 35.8 199.6M 604.1 min 11.3 docs/s 3992.1 MB
BERT† LoRA 63.1 61.1 61.9 60.0 37.3 30.6 64.8M 598.3 min 11.2 docs/s 4070.5 MB
BERT DoRA 59.7 57.7 58.5 56.6 31.1 25.0 64.9M 759.4 min 10.7 docs/s 3442.0 MB
BERT QLoRA 63.5 62.2 62.8 61.5 38.8 32.2 64.8M 765.1 min 11.3 docs/s 2644.5 MB
BERT† LoHA 62.5 60.3 62.2 57.9 40.1 33.1 107.2M 643.7 min 11.2 docs/s 4744.2 MB
BERT† LoKR 53.5 52.4 54.3 50.1 25.9 21.8 22.5M 619.2 min 11.1 docs/s 3771.6 MB
mDeBERTa FFT 60.7 57.7 59.2 56.0 35.9 27.4 300.5M 662.9 min 11.3 docs/s 5936.2 MB
mDeBERTa LoRA 59.7 58.5 60.4 56.2 32.5 26.6 64.8M 727.6 min 11.2 docs/s 4163.0 MB
mDeBERTa† DoRA 62.5 59.6 61.8 56.8 36.4 28.3 64.9M 669.7 min 11.1 docs/s 7765.9 MB
mDeBERTa† QLoRA 54.2 51.1 52.4 49.6 24.2 17.2 64.8M 692.9 min 10.9 docs/s 6372.4 MB
mDeBERTa† LoHA 57.6 54.8 56.6 52.7 31.4 25.8 107.2M 657.7 min 11.2 docs/s 7045.7 MB
mDeBERTa† LoKR 44.6 42.5 43.5 41.3 17.8 14.3 22.5M 644.0 min 11.1 docs/s 6065.5 MB

† Models with batch size 8.
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Effectiveness and limits of Adapter-Based methods
QLoRA offered the most robust gains, whereas LoRA and 
DoRA stayed within 1-2 points on several bases (eg RoB
ERTa, DistilBERT). By contrast, LoHA and especially LoKR 

degraded performance sharply (eg BERT-LoKR 45.2), failing 
to exchange accuracy for additional efficiency; their rank- 
aware projections appear unable to capture the fine-grained 
context JERL requires.

Table 3. Parameter-efficient fine-tuning (PEFT) experiments in primary care notes (Catalan).

Model Experiment Strict micro-F1 Strict macro-F1 Trainable  
parameters

Training  
time

Document  
inference

Memory  
allocated

Val Test Val Test

RoBERTa FFT 54.4 54.5 31.2 28.0 146.4M 340.3 min 11.6 docs/s 2966.2 MB
RoBERTa LoRA 53.3 51.8 25.1 20.5 64.8M 395.3 min 11.2 docs/s 2569.6 MB
RoBERTa† DoRA 54.7 53.1 28.1 23.7 64.9M 369.2 min 11.2 docs/s 5137.8 MB
RoBERTa QLoRA 56.7 55.8 30.0 25.8 64.8M 431.0 min 11.6 docs/s 2424.3 MB
RoBERTa† LoHA 52.3 51.9 28.1 23.3 107.2M 356.8 min 10.9 docs/s 4490.3 MB
RoBERTa† LoKR 39.0 37.5 15.1 12.7 22.5M 342.1 min 11.5 docs/s 3521.9 MB
DistilBERT FFT 58.5 58.8 34.6 32.3 157.0M 314.9 min 11.8 docs/s 3146.3 MB
DistilBERT LoRA 47.5 47.0 20.0 17.0 43.5M 351.0 min 11.4 docs/s 1974.8 MB
DistilBERT† DoRA 52.1 51.9 24.9 21.2 43.6M 353.2 min 11.3 docs/s 3492.9 MB
DistilBERT QLoRA 50.6 48.5 22.0 17.4 43.5M 354.0 min 11.7 docs/s 1843.6 MB
DistilBERT† LoHA 53.0 53.2 29.4 25.9 64.8M 324.5 min 11.6 docs/s 3167.6 MB
DistilBERT† LoKR 47.9 45.0 19.8 17.5 22.4M 312.7 min 11.7 docs/s 2682.2 MB
BERT FFT 56.8 56.2 35.0 29.2 199.6M 368.4 min 11.2 docs/s 3982.8 MB
BERT† LoRA 48.5 47.1 19.0 15.2 64.8M 364.4 min 11.2 docs/s 4071.5 MB
BERT DoRA 54.3 52.0 25.9 21.6 64.9M 439.5 min 11.3 docs/s 3442.0 MB
BERT QLoRA 39.1 36.7 9.4 6.2 64.8M 448.3 min 11.2 docs/s 2644.5 MB
BERT† LoHA 55.4 54.2 32.2 27.9 107.2M 365.3 min 11.3 docs/s 4744.9 MB
BERT† LoKR 45.9 45.2 22.1 18.0 22.5M 345.6 min 11.4 docs/s 3771.6 MB
mDeBERTa FFT 55.8 53.6 32.6 25.6 300.5M 384.1 min 11.6 docs/s 5915.7 MB
mDeBERTa LoRA 52.0 50.7 25.9 18.8 64.8M 426.0 min 11.2 docs/s 4163.0 MB
mDeBERTa† DoRA 46.9 45.7 19.5 14.9 64.9M 409.8 min 10.9 docs/s 7768.4 MB
mDeBERTa† QLoRA 44.1 44.7 16.5 13.4 64.8M 388.0 min 11.1 docs/s 6371.7 MB
mDeBERTa† LoHA 47.5 45.7 23.4 17.8 107.2M 385.7 min 11.2 docs/s 7044.4 MB
mDeBERTa† LoKR 34.5 33.3 12.0 9.2 22.5M 373.6 min 11.2 docs/s 6067.5 MB

† Models with batch size 8.

Table 4. Parameter-efficient fine-tuning (PEFT) experiments in primary care notes (Spanish).

Model Experiment Strict micro-F1 Strict macro-F1 Trainable  
parameters

Training  
time

Document  
inference

Memory  
allocated

Val Test Val Test

RoBERTa FFT 56.3 52.0 39.0 28.7 146.4M 243.2 min 11.2 docs/s 2976.4 MB
RoBERTa LoRA 54.2 48.6 31.7 23.9 64.8M 263.1 min 11.3 docs/s 2569.6 MB
RoBERTa† DoRA 52.0 49.7 30.4 21.9 64.9M 260.1 min 11.0 docs/s 5137.6 MB
RoBERTa QLoRA 45.1 41.5 22.9 15.8 64.8M 294.2 min 11.3 docs/s 2424.2 MB
RoBERTa† LoHA 47.5 45.7 29.7 22.8 107.2M 270.0 min 11.0 docs/s 4495.6 MB
RoBERTa† LoKR 31.0 30.2 13.5 10.0 22.5M 249.6 min 11.2 docs/s 3521.6 MB
DistilBERT FFT 56.1 50.7 36.1 26.6 157.0M 206.1 min 11.8 docs/s 3151.1 MB
DistilBERT LoRA 51.2 48.9 29.9 22.4 43.5M 216.2 min 11.7 docs/s 1974.7 MB
DistilBERT† DoRA 53.1 49.9 31.5 24.0 43.6M 213.6 min 11.6 docs/s 3492.7 MB
DistilBERT QLoRA 44.5 42.3 21.6 15.2 43.5M 235.0 min 11.7 docs/s 1843.6 MB
DistilBERT† LoHA 48.5 48.0 29.8 25.2 64.8M 212.8 min 11.7 docs/s 3168.3 MB
DistilBERT† LoKR 41.8 41.0 19.3 16.0 22.4M 206.1 min 11.8 docs/s 2682.0 MB
BERT FFT 57.1 54.6 38.9 30.3 199.6M 243.8 min 11.3 docs/s 3992.0 MB
BERT† LoRA 50.3 49.7 27.5 22.5 64.8M 260.1 min 11.2 docs/s 4071.2 MB
BERT DoRA 47.3 45.8 25.9 19.2 64.9M 312.0 min 10.8 docs/s 3441.9 MB
BERT QLoRA 54.9 51.9 34.0 25.3 64.8M 303.4 min 11.1 docs/s 2644.4 MB
BERT† LoHA 51.1 47.8 31.5 24.8 107.2M 255.3 min 11.2 docs/s 4744.7 MB
BERT† LoKR 43.0 41.0 20.7 16.1 22.5M 228.9 min 11.5 docs/s 3771.4 MB
mDeBERTa FFT 51.6 49.5 33.7 23.9 300.5M 254.8 min 11.6 docs/s 5935.1 MB
mDeBERTa LoRA 32.4 31.3 11.6 8.0 64.8M 292.9 min 11.2 docs/s 4162.9 MB
mDeBERTa† DoRA 42.9 42.8 21.3 16.1 64.9M 257.1 min 11.2 docs/s 7769.2 MB
mDeBERTa† QLoRA 26.3 25.8 8.7 5.3 64.8M 254.0 min 10.9 docs/s 6371.5 MB
mDeBERTa† LoHA 37.4 35.6 18.2 13.2 107.2M 254.1 min 11.2 docs/s 7046.4 MB
mDeBERTa† LoKR 23.7 26.7 8.2 6.7 22.5M 248.0 min 11.4 docs/s 6067.3 MB

† Models with batch size 8.
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Impact of language composition
Joint Catalan-Spanish training consistently benefited FFT, 
QLoRA, and DoRA, exploiting the languages’ lexical prox
imity. Yet aggressive compression (LoKR or QLoRA rank 
32) sometimes harmed cross-lingual transfer, indicating that 
adapter capacity must balance parameter savings with repre
sentational breadth.

Rank sensitivity in QLoRA
Reducing QLoRA rank exposed a clear efficiency-accuracy 
trade-off: dropping from 256 to 128 cost 2.8 F1, and to 32 
cost 9.4, while nearly halving parameters and trimming sev
eral hundred MB of memory. Complex, token-level tasks like 
JERL therefore still demand relatively high ranks.

Implications for clinical NLP deployment
QLoRA delivers near-FFT accuracy on commodity GPUs, 
enabling rapid domain adaptation in resource-constrained 
clinics. Because the performance gap concentrates in a hand
ful of rare entities, selective fine-tuning or lightweight ensem
bles could bridge it without retraining the full model. These 
findings make advanced NLP accessible even to institutions 
with modest hardware footprints.

Limitations and future work
Our experiments cover one domain and 2 related languages; 
behavior in distant language pairs or heterogeneous records 
remains untested.

Our dataset focuses on multimorbid patients aged over 50 
with heart disease or stroke, introducing selection bias and 
skewed ICD-10 label distributions that limit generalizability.

We also omit domain-adaptive pre-training. Future 
research should explore the integration of PEFT with medical 
ontologies or knowledge graphs to improve tail-entity 
linking.

Conclusion
This study evaluates PEFT methods as a practical alternative 
to FFT for multilabel classification of diagnoses in bilingual 
clinical notes. Working with real-world data written in non- 
standard Spanish and Catalan, which present unique linguis
tic challenges not addressed by existing state-of-the-art 
approaches, the results show that PEFT techniques, 

particularly QLoRA, can offer competitive performance 
while substantially reducing computational requirements.

Although FFT still provides the best predictive accuracy, 
the difference is relatively small when compared with 
QLoRA. For instance, using BERT trained on a combined 
Catalan-Spanish corpus, QLoRA achieves a strict Micro-F1 
score of 62.2, just 1.27% below the fully fine-tuned model, 
while requiring 67.5% fewer trainable parameters and reduc
ing memory usage by 33.7%. These savings are especially rel
evant in clinical settings where access to high-end computing 
resources may be limited or inconsistent.

Another key finding is the benefit of training on bilingual 
data. Models trained on the combined corpus consistently 
generalize better, even when evaluated in a single language. 
This highlights the value of leveraging multilingual signals in 
clinical natural language processing, especially in regions 
with diverse linguistic practices.

Looking ahead, one promising direction is the application 
of PEFT strategies to large language models (LLMs), which 
could improve contextual understanding while maintaining 
manageable resource demands. Combining approaches like 
QLoRA or LoRA with domain-specific LLMs, along with 
techniques such as quantization or sparse fine-tuning, may 
further enhance performance and scalability.

These findings underscore the potential of PEFT methods 
to enable accurate and efficient clinical NLP systems, particu
larly in multilingual and resource-constrained healthcare 
settings.
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