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This paper investigates and proposes efficient strategies for generating initial populations in the automated de-
sign of jacket-type support structures for offshore wind turbines. The particle swarm optimization algorithm
is employed as search and optimization method, while a finite-element-based model is used to evaluate the
structural feasibility in the design process. This model computes the loads acting on the structure, assesses its
structural response, and verifies key design requirements. Soil-structure interaction is also considered to account
for foundation flexibility. A key contribution of this study is the use of an artificial-neural-network-based sur-
rogate model to estimate the structural utilization factor during the initial population generation phase. Since
high-fidelity evaluation is not essential at this early stage, the neural network is used for its ability to rapidly
estimate the structural performance. The obtained candidates satisfy a wide range of criteria, including ultimate
limit states, fundamental frequency checks, joint and geometric verifications, and foundation requirements. Sev-
eral strategies are proposed for generating initial populations in a pre-optimization phase. Results demonstrate
that these strategies significantly increase not only the number of feasible designs but also their quality, measured
in terms of minimal material usage and compliance with design criteria. The overall algorithm performance is

substantially improved.

1. Introduction

Offshore wind turbines (OWT) support structures are classified into
two primary categories: fixed to the seabed and floating. The former are
utilized in shallow and transitional waters up to 60 m in depth, while the
latter are designed for deep waters, with a potential maximum depth ex-
ceeding 1,000 m (Arent et al., 2012). Most of the support structures for
installed capacity worldwide are fixed to the seabed. Of the 68,258 MW
of total installed capacity in operation worldwide, 55.6 % corresponds
to monopiles, while jackets account for 13.4% (McCoy et al., 2024).
Monopiles are employed in shallow waters due to their ease of instal-
lation and relatively low structural cost. On the other hand, jacket sub-
structures emerge as an alternative for transitional waters, not only for
their adaptability to different soil conditions but also for their ability
to withstand greater depths and more challenging environmental con-
ditions thanks to their lattice design that efficiently distributes loads.
Currently, the deepest installed OWT jacket reaches 58.6 m deep and
is part of the Seagreen project in Scotland (McCoy et al., 2024). How-
ever, jacket structures have higher construction and maintenance costs
due to their complex structural configuration. Currently, XXL monopiles
are being developed, designed to operate at greater depths and compete
with jackets at depths greater than 40 m. Ma et al. (2024) conducted a
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comparative study of monopiles and jackets for transitional waters, con-
cluding that jacket-type substructures perform better than monopiles in
water ranges from 30 to 60 m.

The Global Offshore Wind Report of 2023 (Council, 2023) reveal that
over the next decade, the renewable energy sector is expected to experi-
ence significant growth, with projections indicating 380 GW of new off-
shore wind capacity. In recent years, new offshore wind farms have been
installed progressively farther from the coast, where wind resources are
of better quality and where seabed depths are greater. Available data
from announced projects suggest that bottom-fixed installations could
reach water depths of up to 65m in the coming years (McCoy et al.,
2024). Some less optimistic analyses indicate that the current global
macroeconomic context has slowed the expansion of offshore wind en-
ergy, which could lead to downward revisions in these projections. In-
vestment costs for offshore wind projects have increased by 20 %, at-
tributed to factors such as rising material prices, supply chain disrup-
tions, and inflation (Bahar, 2024). On average, the cost of the support
structure and foundation represents between 12 % and 20 % of the to-
tal investment in offshore wind projects (Council, 2023; Johnston et al.,
2020). In addition to economic challenges, the design of these structures
is characterized by a remarkable technical complexity, which requires
the consideration of numerous variables and substantial computational
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\begin {align}\text {find:}\qquad & \vec {\phi } = \left [\phi _{1} , \ldots , \phi _{n_{\mathrm {var}}} \right ]\\ \text {to minimize:}\qquad & m_{\mathrm {jacket}}\\ \text {subject to:}\qquad & \underline {\phi _i} \leq \phi _i \leq \overline {\phi _i} & \medskip i = [1, \ldots , n_{\mathrm {var}}]\\ \qquad & \gamma _{j} \leq \gamma _{\mathrm {th},j} & \medskip j = [1, \ldots , n_{\mathrm {req}}]\end {align}
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effort, especially in the evaluation of the different loads acting on the
structure, as well as conducting multiple verifications. Consequently,
the objective of extending the structure’s service life while reducing the
amount of material used represents a technical challenge.

The growing ambition to increase installed offshore wind capacity,
along with the interest in developing projects in deeper waters, has
driven a significant increase in research focused on seabed-fixed support
structures for OWT (Jiang, 2021; Wan et al., 2024; Jung and Schindler,
2023). Several studies have focused on identifying the key parameters
influencing the design of substructures. Han et al. (2024) conducted a
sensitivity analysis to identify key design parameters from a structural
reliability perspective, specifically concerning the vibration limit state.
The results showed that Young’s modulus is the predominant factor,
followed by the tower thickness. Additionally, they highlighted that lat-
eral bending stiffness within the soil-structure interaction (SSI) has a
significant impact on the natural frequency of the structure, emphasiz-
ing the importance of considering SSI in the structural design. Regard-
ing loads, wind speed was identified as the most influential variable
affecting tower deformation. While Han et al. (2024) focused on identi-
fying the critical parameters affecting structural reliability in monopile-
supported structures, Quevedo-Reina et al. (2024b) analyzed the global
sensitivity of the fundamental frequency of OWTs supported by jacket-
type structures. They employed artificial neural networks (ANNs) as a
surrogate model for natural frequency computation.

In the field of OWT support structure design and optimization,
other researchers have directed their efforts toward the development of
methodologies. In this regard, Wang et al. (2024) proposed a methodol-
ogy that integrates a finite element model (FEM) for structural analysis
and verification with an optimization stage, aimed at mass reduction.
This optimization was carried out using two strategies: parametric opti-
mization (PO) and genetic algorithms (GA). In the proposed case study,
PO was more computationally efficient, but GA achieved better mass re-
duction results. Tian et al. (2024) proposed a topological optimization
(TO) approach with fatigue constraints for jacket-type support struc-
tures. Based on Miner’s cumulative damage criterion, the study demon-
strated how this method significantly reduces the structure’s mass while
maintaining service life and strength requirements, ensuring its ability
to withstand severe dynamic loads. To verify the effectiveness of this
methodology, they used it to address the well-known OC4 reference
jacket (Vorpahl et al., 2011). Ju and Hsieh (2022) proposed an opti-
mization procedure using the Powell method, which finds the minimum
value of an implicit function with multiple variables without requiring
derivative calculations. This approach was applied to define the optimal
geometry of the structure under extreme load conditions. The calcula-
tion model included a FEM analysis and took soil-structure interaction
into account. Lu et al. (2023) applied the TO technique to tripod-type
substructures, while Zhang et al. (2022) proposed a methodology fo-
cused on the conceptual design of jacket-type structures. For the latter,
the approach was formulated as a multi-objective programming prob-
lem, aiming to minimize deformations and stresses in the structure, as
well as its mass, under different loading conditions. The methodology
began with modal and load analyses on a FEM, followed by the appli-
cation of TO, which consisted in defining which parts of the structure
are essential to support the loads and which are not, thus eliminating
unnecessary elements and reinforcing the most critical areas. This stage
respected volume and symmetry constraints, ensuring that the resulting
design has realistic joints and elements. Once the optimization process
was completed, loads were recalculated, and displacements and stresses
were reassessed. The aforementioned studies were based on an initial
jacket design, to which the described optimization techniques were sub-
sequently applied. However, none adopt a strategy that initiates the op-
timization process at a conceptual stage, starting from site-specific and
turbine data.

The PSO algorithm is a swarm intelligence technique inspired by the
social behavior of birds and fish, developed by Kennedy and Eberhart
(Kennedy and Eberhart, 1995; Eberhart and Shi, 2000). It is based on
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a group of potential solutions that iteratively move through a search
space to find a better position. Each candidate adjusts its position ac-
cording to its own experience and that of its neighbors, enabling an
effective exploration of the solution space and convergence toward lo-
cal and global optima. PSO’s primary strengths lie in its ability to ad-
dress high-dimensional optimization problems, a domain in which tra-
ditional methods frequently encounter challenges due to their compu-
tational complexity or inefficiency. Additionally, PSO’s simple imple-
mentation and independence from gradient information contribute to
its notable adaptability. The efficacy of PSO in search processes can be
attributed to its approach to exploration, which involves the identifi-
cation of promising solutions and the subsequent refinement of these
solutions to identify new regions of the solution space. This adaptabil-
ity frequently results in accelerated convergence, contributing to PSO’s
reputation as a versatile tool across diverse domains.

In a previous study, Benitez-Suarez et al. (2025) introduced a cost-
effective methodology for autonomously design jacket substructures for
OWTs using a PSO algorithm coupled with a FE structural model that as-
sumed a rigid base (i.e., disregarded the influence of SSI on the problem
at hand). Such methodology is able to generate preliminary jacket de-
signs optimized for minimal material use while meeting structural and
geometrical requirements. A key feature for the success of the method-
ology was the use of pre-computed initial populations instead of the
random initial populations commonly used in PSO applications. Those
pre-computed initial populations were derived from compact design ex-
pressions by Jalbi and Bhattacharya (2020), and it was shown that they
significantly enhance the algorithm’s efficiency compared to random or
mixed initial swarms, enabling faster convergence to feasible and lighter
jacket designs.

However, a more specific study on the most appropriate ways of
generating such pre-computed initial populations, and a deeper under-
standing of their influence on the final results, are still needed. For this
reason, this study aims not only at providing a more in-depth analysis of
the effectiveness of various strategies for the generation of initial pop-
ulation strategies on the automatic optimization and design of support
structures for OWT, but also at proposing and analyzing new and more
effective strategies for the generation of the pre-computed initial pop-
ulations through a pre-optimization step in which ANNs are used as a
surrogate structural model. More precisely, this study assesses the pre-
optimization step of initial populations and their influence on the design
and optimization process of jacket-type support structures for OWT.

The structure of this paper is as follows: Section 2 presents an
overview of the general design and optimization strategy, describes
the FE structural model and the ANN surrogate model, and presents
the different techniques for the generation of initial populations. The
case study employed to evaluate the proposed initial populations,
the results of the performance of them, and the geometrical char-
acteristics of the resulting candidate jackets, are presented in Sec-
tion 3. Finally, Section 4 summarizes the conclusions drawn from this
study.

2. Methodology
2.1. Overview of the design and optimization strategy

This section aims at presenting an overview of the general design
and optimization algorithm employed in this study. The ensuing sections
provide a detailed discussion of certain elements of this strategy, which
was originally proposed in Benitez-Sudrez et al. (2025). The proposed
work presents a cost-effective methodology for the autonomous design
of preliminary jacket substructure candidates. Starting from metocean
conditions and OWT characteristics, a set of jacket candidates is ob-
tained reaching a sufficient level of detail for this early design phase.
These candidates will subsequently serve as a starting point for more
advanced design phases.
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Fig. 1. Workflow for the automatic design of jacket-type OWT support structures developed by Benitez-Sudrez et al. (2025).

The overall optimization routine proceeds according to the following
framework:

find: =10, | (1a)

to minimize: Mg (1b)
subject to: ¢ < ¢ < & i=[1, ..., 0] (10
v; < Yy J=1 e ng] ad

where ¢ is the vector containing the set of continuous design variables to
be optimized of a total of n,,,, ¢; and ¢, represent the upper and lower
bounds of these variables (further details are given in Section 3.1.3),
Mo 18 the total mass of the jacket, y; is the utilization factor cor-
responding to the jth requirement of a total of n,., and y,; is the
threshold utilization factor considered for each specific verification. The
boundary values of the variables represent one of the limiting factors of
the algorithm. They must be selected according to the metocean con-
ditions, soil properties, and turbine characteristics. Wide ranges may
cause the algorithm to converge more slowly to optimal solutions (lo-
cal or global) and to suffer premature stagnation. Conversely, narrower
boundary ranges may lead to poor exploration, potentially preventing
the algorithm from finding the optimal solution. A flow chart of the
design process is shown in Fig. 1.

The optimization algorithm is structured as follows: the starting
point of the procedure is the input data, which can be categorized into
three groups: turbine data, soil properties, and metocean conditions.
Turbine data and metocean conditions are used to calculate gravita-
tional and environmental loads (waves, tides, and wind), while soil
properties enable an adequate geotechnical characterization.

The initial populations of candidates for the PSO algorithm are then
generated either randomly (selecting values between the boundary val-
ues of the variables to be optimized) or through a deterministic proce-
dure devised to obtain, with a very low computational effort, the main
structural parameters of candidate designs that already take into ac-
count the most basic design concepts and requirements for this type of
structures. This is achieved by a series of closed-form and simple calcu-
lations that are based on the concept design procedure of jacket founda-
tions for offshore wind turbines in 10 steps proposed by Jalbi and Bhat-
tacharya (2020), and that were adapted for this particular approach in
Benitez-Suarez et al. (2025). This procedure begins by establishing the
bending stiffness of the tower-jacket system from the system fundamen-
tal frequency’s requirements. This allows to estimate the jacket’s bend-
ing stiffness which, in turn, allows to compute an estimation for the
required leg cross-sectional area. Diameters and thicknesses are then
adjusted within a predefined range, ensuring realistic joints through ge-
ometric relations with the bracing members. The strategies for generat-
ing the initial population are enhanced in the present study through the
pre-optimization of the random or deterministic initial population by a
process based on ANNS, as described in Section 2.3.

The PSO algorithm is used as a search and optimization tool to
find candidate jacket solutions that not only meet all the structural
requirements, but do so using the minimal amount of material. To do so,
the fitness function that governs the process must take into account both
the structural feasibility and the weight of each particular candidate so-
lution. The first aspect is considered through a global compliance factor
for each candidate, defined as the maximum value among the partial uti-
lization factors for each structural verification considered. Values below
unity indicate that all requirements are met, whereas values above unity
indicate that one or more requirements are not satisfied. These utiliza-
tion factors are computed from the results obtained from the structural
analysis performed using the finite element approach described in Sec-
tion 2.2.

The fitness function is defined as a conditional function which con-
sists of two stages. Initially, the search process focuses on finding struc-
turally feasible solutions that meet the utilization factor threshold.
While the population does not contain a minimum percentage of par-
ticles that meet the utilization factor threshold, the fitness function out-

put (FFompm) for each candidate is proportional to its global utilization
factor (y) as follows:
FFoutpul =v-1 if ¢, <ry- Mparticles (2)

where 1 represents a penalization factor, ¢, is the counter tracking the
number of particles within the swarm that comply with the imposed
verifications, r, is the required proportion of compliant particles prior
to initiating the mass optimization phase, and 7, e, are the number
of particles of the swarm. This initially directs the autonomous design
toward candidates that satisfy the established design criteria.

Afterwards, the effort can be redirected towards the mass mini-
mization problem. Once a minimum number of candidates meeting the
threshold utilization factor is reached, the FF,, shifts its focus to op-
timizing the mass of each candidate as follows:

if y<w
if y>yppandy <k 3)

mjackel
output — 7V ° (mjackel + )
7+ (Mjgeer +0) - e if y>k

FF,

where k and § are penalization parameters applied to individuals that
do not satisfy the design constraints. The result of the process is the set
of particles that constitute the swarm in the final iteration, including the
candidate that best satisfies the fitness function.

The iterative process is concluded when the best solution obtained is
no longer improved after a predefined number of iterations (maximum
stall iterations).

The algorithm was implemented using the MATLAB programming
language (version R2022.a) (The MathWorks Inc., 2022), employing
the Global Optimization Toolbox (version 4.7), Deep Learning Toolbox
(version 14.4), Optimization Toolbox (version 9.3), Parallel Computing
Toolbox (version 7.6), Statistics and Machine Learning Toolbox (version
12.3), and Symbolic Math Toolbox (version 9.1).
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2.2. Finite element structural model

This study utilizes the structural model presented by Quevedo-Reina
et al. (2024c) to evaluate the feasibility of jacket structures. This model
evaluates the loads acting on the jacket, computes structural response,
and analyses main requirements imposed by international standards.
The structural response is obtained through an equivalent static analy-
sis assuming linear behavior. Jacket elements are represented accord-
ing to Timoshenko beam theory (Friedman and Kosmatka, 1993). Rigid
joints between tubular elements, and rigid connections among upper
legs owing to the transition piece are assumed. Additionally, the nat-
ural frequencies of the system are obtained by solving the eigenvalue
problem.

To account for the influence of pile foundation flexibility on the
overall structural system, this study incorporates SSI. A surrogate model
based on ANN, developed by Quevedo-Reina et al. (2024a), capable of
estimating the stiffness of a pile embedded in a non-homogeneous soil
is used. This ANN-based model estimates the lateral, rocking, lateral-
rocking coupling, and vertical stiffness of the pile from its geometry and
the mechanical properties of the pile and the surrounding soil. The ANN-
based model consists of an ensemble of 20 individual networks trained
on a synthetic dataset of 200,000 samples generated with a numerical
model (Alamo et al., 2016). The numerical model is based on the inte-
gral formulation of pile-soil interaction using Green’s functions for a lay-
ered half-space, with piles represented as beam elements. It reproduces
the three-dimensional linear elastic response of a pile embedded in soil,
while nonlinear soil behavior is not considered. The ANN-based model
shows close agreement with the numerical model, achieving absolute
relative errors below 3.6 % for 99 % of the samples in a test dataset of
150,000 cases.

This approach neglects dynamic and pile-soil-pile interaction effects;
however, the low fundamental frequency of these structures and the
spacing between piles make these assumptions acceptable (Shadlou and
Bhattacharya, 2016). The utilization of this surrogate model for evalu-
ating the pile-soil interaction aims to reduce computational costs, while
considering this complex and relevant phenomena in structural assess-
ment. The estimated stiffness matrices for each pile are then incorpo-
rated into the nodes of the global stiffness matrix related to the base of
the jacket legs, reflecting the foundation’s flexibility.

2.2.1. Design loads

A reduced set of wind and wave load combinations, as proposed
by Arany et al. (2017), is considered for the analyses. Wind conditions
are defined based on load cases and turbulence definitions outlined in
IEC-61400-1 (International Electrotechnical Commission (IEC), 2019).
The wind load acting on the rotor of the wind turbine is assumed to
be concentrated at the center of the rotor, while structural drag forces
on elements above sea level are determined using DNVGL-RP-C205 (Det
Norske Veritas AS, 2019¢). Regarding sea loads, both wave action and
marine currents are considered. Currents’ velocity profile is superposed
to waves’ velocity profile, while the acceleration profile derives only
from wave motion. The resulting drag force on submerged tubular el-
ements is also assessed (Det Norske Veritas AS, 2019c). Gravitational
loads, including the weight of all structural components (tower, Rotor—
Nacelle Assembly (RNA), transition piece, among others), as well as
buoyancy forces on submerged elements, are also taken into account.
Additional details can be found in Benitez-Suarez et al. (2025).

2.2.2. Structural verifications

The verifications considered in this study can be grouped into three
categories: ultimate limit states (ULS), fatigue limit states (FLS), and
geometric constraints. This comprehensive approach ensures the struc-
tural safety and long-term performance of the substructure of the OWT.
Regarding ULS verifications, the section capacity of tubular members is
assessed using the von Mises yield criterion, while buckling of the mem-
bers (column and shell buckling) is analyzed according to DNVGL-RP-
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C202 (Det Norske Veritas AS, 2019a). Additionally, a global buckling
analysis is performed. The failure of pile foundations is evaluated by
verifying the section’s head capacity, along with axial and lateral bear-
ing capacities following the API Recommended Practice 2A-WSD (API,
2014).

As part of the verifications in the category of FLS, the natural fre-
quencies of the whole structural system must always be sufficiently apart
from the spectral ranges of the main dynamic actions, i.e., the 1P, the
3P and the wave excitation spectral bands. The natural frequencies are
computed taking SSI into account.

Furthermore, geometric constraints are verified. This includes
making sure that the minimum jacket height (DNVGL-ST-0126 Det
Norske Veritas AS, 2021) is reached, and that the geometry of the
welded joints follows the requirements of the DNVGL-ST-C203 standard
(Det Norske Veritas AS, 2019b). Regarding the geometric constraints of
piles, both the minimum pile thickness for pile installation, as specified
in API Recommended Practice 2A-WSD (API, 2014), and a minimum
embedded pile length, as recommended by Arany et al. (2017), are ver-
ified.

Each of the aforementioned verifications are associated with a partial
utilization factor y;. This factor compares the actual demands imposed
on the structure with its load-bearing capacity. A value of one indicates
that the structure is at the limit of its capacity, while values greater than
one indicate that this capacity is exceeded, meaning the verification is
not satisfied.

2.3. Artificial neural network surrogate model

As stated above, one of the key steps of the aforementioned process
is the generation of pre-computed initial populations composed by de-
terministically computed candidate solutions that already meet certain
general criteria. One of the aims of this work is to perform a detailed
study of these pre-computed initial populations, proposing strategies to
optimize these initial sets before starting the design process. For this
purpose, the surrogate model based on an ANN developed by Quevedo-
Reina (2024) is used to estimate the feasibility of the jacket support
structure. This model consists of a regression model that estimates the
utilization factors related to the imposed structural requirements based
on the most relevant characteristics of the wind turbine, the site condi-
tions and the jacket support structure itself.

A maximum of 26 input variables are considered. The wind turbine’s
RNA is defined by its diameter, mass, and inertia relative to the roll and
yaw axes. The tower structure includes the dimensions of the height, and
diameter and thickness at both the base and top. The operating condi-
tions are defined by the rated wind speed and the specific minimum
and maximum rotor speeds. Site conditions encompass elements from
wind, sea, and soil. Wind characteristics include mean velocity at 10 m
above sea level and the Weibull shape parameter for wind distribution.
Marine factors include water depth, circulational currents, and extreme
sea states and wave heights for 1- and 50-year return periods. Soil prop-
erties involve shear wave propagation velocity, Poisson’s ratio, density,
and internal friction angle. Jacket component features geometric details
are defined by the number of legs, number of bracing levels, height, and
leg spacing at both the base and top. Tubular members of legs and braces
are defined by their diameters and thicknesses from level 1 to 10. Pile
dimensions are defined by its diameter, thicknesses, and length. Con-
sidered material properties are the elastic strength and the mass of the
jacket platform.

The model outputs 10 partial utilization factors corresponding to
the different requirements stated in Section 2.2.2. Verifications cover
lateral and bearing pile capacities, pile head section strengths, sec-
tion capacities, and tubular member buckling at each bracing level, for
both legs and braces. Global buckling analysis is performed to confirm
structural stability. FLS checks guarantee non-resonance by eliminating
coincidences between natural frequencies and rotor speeds. Geometry
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verifications include welded joint assessment to ensure compliance with
minimum standards.

The model employs an ensemble of 20 fully connected neural net-
works. Each network contains 72 input neurons for capturing the prob-
lem’s variables, followed by four hidden layers, each one with 200 neu-
rons and using the ReLU activation function. The output layer comprises
26 neurons for predicting the utilization factors of each one of the im-
posed requirements.

The training process was performed using a synthetic dataset of
300,000 diverse samples covering a wide range of wind turbines, site
conditions, and jacket designs (Quevedo-Reina, 2024). Sample gener-
ation relied on relationships among input variables defined according
to international standards and case studies from the literature. Random
values within these limits were assigned to each variable, and the re-
sulting samples were evaluated using the structural model employed in
this study. After training 20 individual networks, ensemble performance
was tested on a dataset of 50,000 samples. The prediction of jacket fea-
sibility achieved a Matthews correlation coefficient of 0.655, a strong
result given the high imbalance of feasible (0.295 %) and non-feasible
(99.705 %) samples in the dataset.

The ANN surrogate model thus approximates the reference model
at a much lower computational cost. However, accuracy declines near
the feasibility boundary, where the structural model remains necessary
for reliable assessment. For this reason, the surrogate is applied in the
first stage only before launching the structural model-based optimiza-
tion process.

Additionally, the geometric requirements that are straightforward to
evaluate are not included in the neural network’s training process. These
include minimum jacket height, pile thickness, and length, as well as
specific ratios between diameters and thicknesses of tubular sections in
the legs and braces of the structure. These requirements are assessed
separately, serving as a complement to the ANN model’s predictions.
This dual approach enhances the overall structural analysis by combin-
ing computational predictions with direct geometric evaluations.

2.4. Strategies for the development and generation of initial populations

The aim of this section is to present the different strategies for gen-
erating initial populations that are tested and evaluated in this study.
In addition to the direct strategies for generating the initial populations
used in the previous study (Benitez-Sudrez et al., 2025), three ANN-
based strategies for refining the initial population are proposed:

e FPOP (Final POPulation): The initial pre-optimized population cor-
responds to the swarm resulting from the last iteration of the refine-
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ment process. Therefore, the whole pre-optimized initial population
is computed after a single run of the ANN-based optimization. In this
strategy, the global utilization factor threshold is set as: y,, = 1.
BEST (BEST individuals): This pre-optimized initial population is
composed of the best particle obtained from independent executions.
Therefore, the ANN-based optimization process is executed as many
times as the number of particles needed to build the initial refined
population. This strategy also considers: y,;, = 1.

VUFT (Variable Utilization Factor Threshold): In this strategy, the
ANN-based optimization process is also executed as many times as
particles are needed to build the pre-optimized initial population but,
in this case, each execution is launched with a different value of y,;, in
a range of: 0.80 < y,;, < 1.20. This allows to obtain a more diversified
initial population and, at the same time, partially overcomes the loss
of accuracy of the ANN model in the boundary between the feasible
and non-feasible regions.

Fig. 2 shows the part of the workflow that is responsible for generat-
ing the initial population of the automatic design process. Based on the
three proposed strategies, a total of eight combinations are obtained.
Two of them correspond to the randomized and pre-computed initial
population strategies, which are applied directly in the design and opti-
mization algorithm without being refined with the ANNs. The purpose
of including these populations in the study is to provide a reference for
assessing the improvement achieved by enhancing the initial popula-
tions via the ANN and to compare the candidate set obtained in the de-
sign and optimization algorithm. The remaining six combinations con-
sist of mixtures of the three proposed pre-optimization strategies using
either pre-computed or random populations as a base. Consequently, the
eight considered combinations are denoted as: RNG, PC, RNG-NN-FPOP,
RNG-NN-BEST, RNG-NN-VUFT, PC-NN-FPOP, PC-NN-BEST, and PC-NN-
VUFT. During the pre-optimization of the initial population and for the
automatic design and optimization processes, the swarm size, number
of runs, fitness function, and stopping criteria are kept unchanged.

3. Results

This section analyzes the results obtained by applying the different
strategies presented in the previous sections to a specific case study,
based on the well known NREL-5MV reference OWT (Jonkman et al.,
2009). The turbine characteristics are presented in Section 3.1.1, while
the metoceanic conditions and soil properties are described in Sec-
tion 3.1.2. The considered design variables are detailed in Section 3.1.3.
Section 3.2 examines the influence of initial populations on the gener-
ated candidates, while Section 3.3 analyzes the main characteristics of

Define initial population

- Random generation
between variable bounds
(see Table 3)

RNG

ANN pre-optimization?

- Precomputed
candidates through
closed formulation (see
Section 2.1)

generation strategy

Select initial population
PC

No

Selection of the strategy for the refinement of the

initial population

The pre-optimized
population is generated
in one refinement run,
using a global utilization
threshold of yu = 1.

FPOP

The pre-optimized
population is built by
selecting the best
particles from n
independent runs, each
using yn = 1.

Optimization procedure (PSO)
and structural analysis
(FEM)

BEST

The pre-optimized
population is generated
by the best particle
from n runs varying yn
as: 0.80 <ym <1.20.

VUFT

n represents the swarm size

Fig. 2. Workflow for the computation of the initial population, summarizing the three tested alternatives for obtaining the pre-optimized initial populations.
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the resulting candidates. Finally, Section 3.4 evaluates the computation
time and the total number of iterations performed by the automatic de-
sign algorithm.

3.1. Case study

3.1.1. Wind turbine model

The NREL-5MW reference OWT model, developed by Jonkman et al.
(2009), is used as a case study for testing the different strategies de-
scribed above. This reference OWT has become a standard in the sci-
entific literature for the analysis, design, and optimization of support
structures for OWTs. The NREL-5MW design includes a tower height of
70m, a hub height above mean sea level of 90.55m, a rotor diameter
of 126 m, and a rated power of 5 MW. The remaining key parameters of
the turbine are detailed in Table 1.

3.1.2. Site conditions

Table 2 presents the values of the metoceanic conditions considered
in the study, including wind, current, and wave data and soil proper-
ties. The wind, wave, and current conditions are those corresponding to
the Dutch North Sea, as employed by Vemula et al. (2010) for the de-
velopment of the OC4 reference jacket (Vorpahl et al., 2011). The soil
conditions are considered to be dense sand.

3.1.3. Design variables

The optimization process considers the following variables: the di-
ameters and thicknesses of the legs, braces, and piles, as well as the leg
inclination angle. On the other hand, the number of legs and braces is
defined as a fixed input parameter. A four-legged jacket is considered,
with the number of braces ranging from 4 to 10. The upper spacing be-
tween the legs is set at 8 m, and the transition piece is modeled as a
steel plate with a thickness of 20 cm, covering the entire upper surface

Table 1
Key parameters of the NREL 5-MW OWT (Jonkman
et al., 2009).
Parameter Value
Rating 5.0MW
Rotor orientation Upwind
Configuration 3 blades
Rotor diameter 126.0m
Cut-in, cut-out, rated wind speed 3.0, 25.0, 11.4m/s
Cut-in, rated rotor speed 6.9, 12.1rpm
RNA mass 3.5x10°kg

Inertia RNA roll
Inertia RNA yaw

4.4 %107 kg - m?
2.5% 107 kg - m?

Hub height 90.0m
Top tower diameter 4.0m
Top tower thickness 30.0 mm
Bottom tower diameter 5.6m
Bottom tower thickness 32.0mm

Table 2
Environmental conditions and soil data for load calculation
and soil characterization.

Variable Value

Average wind speed at 10 m mean sea level ~ 6.47 m/s
Weibull distribution shape parameter 2.04

1-y Extreme Sea State 7.10m
50-y Extreme Sea State 9.40m

1-y Extreme Wave Height 13.21m
50-y Extreme Wave Height 17.48 m
Water depth 50.00m
Historical average sea current velocity 0.60m/s
Shear wave propagation velocity 214.80m/s

Soil Poisson’s ratio 0.45
Soil density 2,000.00 kg/m?
Internal friction angle 33.00deg
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Table 3
Continue design variables and their boundary values.

Variable (¢,)  Lower bound (ﬁ ) Upper bound (a)

g [deg] 0.50 10.00
Dy ; [m] 0.30 3.00
Dy, [m] 0.06 3.00
l1eg,; [mm] 4.00 180.00
tyr,; [mm] 0.90 180.00
Dy [m] 0.20 4.00
tyie [m] 0.01 0.25
Ly [m] 15.00 60.00

of the jacket. The continuous variables are represented by the vector ¢,
defined as follows:

¢ = (Dleg,l’ Ileg,l’ Dbr,l’ tbr,lv tres Dleg,nbr’ lleg,nb,’ Dbr,nb,’ Ibr,nbr’ aleg’

Dpi]e7 tpi]e’ Lpile) € RMar
where D and # the outer diameter and thickness of the tubular sec-
tions (legs, braces and piles), L. is the embedded length of the pile,
and a, is the angle of inclination of the legs with respect to the ver-
tical. The diameter and thickness of the legs and braces are defined at
each brace level. Table 3 shows the upper and lower limits of the vector
$. The variables are continuous and are defined to provide sufficiently
wide ranges that can represent all possible solutions, while remaining
within realistic margins. Also, it is ensured that these ranges are within
those used to train the structural surrogate model.

Regarding the material properties, the yield strength of steel is con-
sidered to be 350 MPa, the elastic modulus is set at 210 GPa, Poisson’s
ratio is taken as 0.30, and the steel density is assumed to be 7,850 kg/m>.

The algorithm implementation requires the definition of several key
parameters. The swarm size is set to 40 particles. The stopping crite-
rion is triggered after 10 consecutive iterations in which there has been
no improvement in the fitness function. The procedure is repeated four
times for each brace level and for each initial population generation
method, resulting in a total of 224 runs. Finally, the values of the fitness
function parameters, which are assumed to be the same as proposed in
Benitez-Suérez et al. (2025), are defined as follows: r, = 0.1, 1 = 107,

x =1.50, and & = 107.

3.2. Performance analysis of different initial populations in the
optimization process

The purpose of this section is to analyze the different strategies pro-
posed to generate the initial populations. Firstly, to analyze the quality
of the populations obtained from each strategy, Fig. 3 presents a horizon-
tal bar chart illustrating, in green, the percentage of initial populations
that contain one or more particles that meet all the design requirements
and, in red, the percentage of initial populations for which all particles
fail to meet all or any of the design requirements. This information is
given for each one of the different methodologies tested for the genera-
tion of the initial populations. For each proposed methodology, a total
of 28 initial populations are considered, derived from the 7 evaluated
bracing levels, with 4 algorithm repetitions per level. Once the particles
of the 28 initial populations were obtained, they were evaluated using
the FE model to assess their fitness with respect to the design criteria and
to determine the global utilization factor of every candidate structure.

The first conclusion that can be drawn from this result is that the only
methodologies able to generate initial populations that already contain
at least one feasible structural particle are those that involve an ini-
tial pre-computed population that is further refined through the ANN-
based optimization. The other alternatives (all randomly-generated pop-
ulations, even if they are later refined with ANNs, and the initial pre-
computed populations) do not contain any feasible structure. This result
is attributed to two main factors: a) although the simplified formulation
proposed by Jalbi and Bhattacharya (2020) does not take into account
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Fig. 3. Percentage of initial populations containing one or more particles that satisfy the design requirements (green bars) and those that do not (red bars), categorized

by the initial population generation method.

environmental conditions and soil characterization, it is able to effec-
tively constrain the design problem, and b) the proposed ANN-based
methodology for the refining of the initial populations is able to ade-
quately lead the optimization process to feasible solutions if the starting
population already takes into account basic structural relationships (as
it is the case with the pre-computed initial populations). Therefore, the
use of the ANN-based surrogate model to pre-optimize the particles en-
hances the design process, as the algorithm is able to identify feasible
solutions. The VUFT strategy is identified as the one able to produce
the largest number of initial populations that already include feasible
particles, reaching a proportion that almost doubles that obtained with
the BEST strategy. Since the threshold utilization factor (y,,) is changed
during the VUFT strategy, the error arising from evaluating particles in
the ANNs at the boundary between feasible and non-feasible solutions
can be mitigated. On the contrary, with the FPOP strategy, very few
initial populations include any feasible particles.

In order to identify which structural verifications are limiting the
design in the generation of the initial population, Fig. 4 shows a set of
distributions, one for each proposed strategy, with the box-and-whisker
plot of the fulfillment of each one of the structural verifications sepa-
rately. The results presented herein encompass all particles for all initial
populations. The region where the partial verifications meet the design
requirement (y; < 1, highlighted in green) and the region where the re-
quirements are not met (y; > 1, highlighted in red) are indicated. The
verifications of each graphic are detailed as follows: the first verification
corresponds to the fatigue limit state (Natural frequency), followed by
the soil bearing capacity (Soil capacity). Next, the ultimate limit states
of the pile (ULS pile), legs and braces (ULS of the leg and braces from the
1st to the 10th level) are represented. Subsequently, the global buckling
check (Global buckling) and the verification of the pile’s active length
(Minimum pile depth) are included. Finally, the checks related to the
minimum pile thickness for pile installation (Minimal t/d), the jacket
height (Jacket height), and the verification of jacket basic geometrical
requirements are presented (Geometric checks). For further details on
the design criteria and verifications, refer to Section 2.2.2.

The partial utilization factor corresponding to the verification on the
admissible frequency range for the fundamental frequency of the system
jacket-OWT has a significant impact on the design, being the one that
presents the least dispersion in all strategies. The different levels of legs
and braces exhibit a decreasing trend in terms of the average value of

the material utilization factor. The bottom level of the jacket (the one
in contact with the seabed) is labeled as level 1, while the highest level
may range from level 4 (if the jacket has 4 braces) to level 10 (if it has 10
braces). As observed, the partial utilization factor for the lower sections
of the structure approaches the threshold value. This is due to higher
demands for this levels compared to the upper ones.

In general terms, the initial populations using the pre-computed
strategy exhibit less dispersion in the partial utilization factors com-
pared to their randomly generated counterparts. Moreover, the average
utilization factors are closer to the threshold value, which indicates a
more effective optimization process and suggesting that the increased
constrains yield improved results. The use of pre-computed initial pop-
ulations refined with ANNs successfully overcomes the first stage of the
conditional objective function, where the optimization process aims to
obtain particles that meet the design requirements, without considering
the jacket mass.

After analyzing the compliance of the initial populations, the focus
is shifted to the candidate solutions obtained after the design process.
First, the best candidates (defined as those with the lowest mass and
full compliance with the design requirements) will be studied. Then,
the global utilization factor and masses of all generated candidates will
be analyzed. In all cases, the analysis will distinguish between the dif-
ferent strategies used to generate the initial populations, whether pre-
optimized or not.

Fig. 5 shows a diagram with four distribution bars, each correspond-
ing to the top five, top ten, top twenty-five, and top fifty candidates
obtained after the design and optimization process. All represented can-
didates meet the design requirements. The order is established from
lower to higher mass of the jacket structures. Pre-computed initial pop-
ulation generation methodologies are represented using warm colors,
while random methodologies are indicated with cool colors. The verti-
cal axis represents the percentage of candidates obtained by each type
of initial population generation strategy. Across all bars in the diagram,
a notable presence of warm colors is found, indicating that the best can-
didates are obtained based on pre-computed and pre-optimized initial
population generation strategies. Among the strategies using random
pre-populations, the RNG-NN-FPOP and RNG-NN-BEST methodologies
stand out as those yielding the highest-quality candidates.

It is worth noting that the best candidate was obtained using the
PC-NN-BEST strategy. Regarding the different braces, the best 4-braced
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candidate was obtained using the PC-NN-FPOP strategy, while the oth-
ers 5-, 6-, 7-, 8-, 9-, and 10-braced candidates were generated with PC-
NN-BEST strategy.

An analysis of the overall compliance factor is shown in Fig. 6, for
the mass-optimized candidates obtained through the different proposed
strategies. The horizontal axis indicates the percentage of candidates
that meet (in green) and do not meet (in red) all the established design
requirements. The results indicate that methodologies based on pre-
computed initial populations, whether pre-optimized (PC-NNN-FPOP,
PC-NN-BEST, and PC-NN-VUFT) or not (PC), consistently yield a higher
number of feasible candidates compared to those based on random pop-
ulations, whether pre-optimized (RNG-NNN-FPOP, RNG-NN-BEST, and
RNG-NN-VUFT) or not (RNG). For the automatic design algorithm us-
ing random populations, the percentage of feasible candidates ranges
from 21 % to 46 %. In contrast, pre-computed populations yield a range
between 57 % and 96 %. When these pre-computed populations are sub-
jected to a pre-optimization process using the ANNs, the percentage
further improves, ranging from 75% to 96 %, representing a notable
increase in the number of feasible candidates generated.

Fig. 7 presents the distribution of the mass of the candidates ob-
tained in the optimization algorithm, for each initial population gener-

ation strategy. Additionally, the results are overlaid as individual points
to facilitate the visualization of the distribution. It is important to note
that the data represented correspond exclusively to candidates that meet
all the established design requirements.

In general, the use of pre-computed populations significantly im-
proves the results obtained, not only in terms of the number of feasi-
ble candidates, as previously mentioned, but also in the quality of these
candidates. Notably, initial populations pre-optimized with ANNs, par-
ticularly those based on previously pre-computed populations, exhibit
lower mean masses than non-optimized pre-computed populations. In
this regard, the use of ANNs in the pre-optimization of initial popula-
tions demonstrates enhanced performance in the design and optimiza-
tion process.

3.3. Analysis of the obtained candidates

This section presents a detailed analysis of the candidates obtained
during the design process, aiming to identify the most significant geo-
metric relationships. The purpose of this study is to evaluate the consis-
tency of the results with established trends and standards for jacket-type
support structures.
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Fig. 8. Masses of feasible and non-feasible jackets for different bracing levels.
The red squares indicate designs that do not meet the established design require-
ments, while the green ones signify feasible solutions.

Fig. 8 shows the mass of the obtained candidates in the autonomous
design and optimization algorithm. The red squares indicate designs that
do not meet the established design requirements, while the green ones
represent feasible solutions. For the environmental conditions and the
specifications of the wind turbine of the case study (see Tables 2 and
1), the results regarding the number of braces follow a trend where the
lighter configurations are around 8 braces. Both a higher number of
braces (increased number of elements) and a lower number (reduced
structural stiffness, forcing an increase in the cross-sectional areas of the
legs to withstand the forces) result in less competitive designs in terms
of mass. The best result obtained achieves a mass of 322.21 tons, with
a geometric configuration of 8 braces and a global compliance factor of
y = 0.992.

Fig. 9 shows a three-dimensional representation of the best candi-
dates by brace level, where the cross-sectional area of each member is
represented on a color scale. The distribution of cross-sectional areas
in the members of a jacket is primarily determined by the structural de-
mands associated with operational and environmental loads. Areas with
larger cross-sections (indicated by warmer colors) are concentrated at
the base of the legs and in the wave impact region. These areas experi-
ence the most significant stresses, derived from both the vertical loads
caused by the weight of the wind turbine and the structure, as well as
those induced by the horizontal forces corresponding to waves, ocean
currents, and wind. For a high number of braces, the trend of assigning
larger cross-sectional areas to the legs and braces located in the upper
and lower regions of the jacket is not followed. In this case, the design
and optimization process includes a greater number of bars in the set of
design variables, which may lead to premature algorithm convergence.

One of the variables used in the design is the angle of inclination of
the jacket legs, denoted as a,. Fig. 10 plots a;,, and the masses for the
candidates that meet the design requirements. The angle is computed as
Yo = arctan((Shyse = Stop)/ (\/5 - Hjackel)), being Sy, the distance be-
tween legs at the base, S, the top leg spacing, and Hj,q. the jacket
height. The average angle of inclination of the legs for all cases that meet
the design requirements is around 3.1°. In Fig. 10, an increasing trend of
the batter angle can be observed as the mass of the candidates obtained
decreases. A higher batter angle implies a longer leg length and, con-
sequently, an increase in the lever arm available to resist the stresses.
In that sense, the automatic design algorithm effectively balances jacket
mass and the angle of inclination of the legs.

One of the parameters associated with variables of the design al-
gorithm is the brace inclination angle f,.. This angle remains con-
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stant for all reinforcement levels, with the height of the braces vary-
ing at each level. The angle is obtained using the expression pro-
posed by Jalbi and Bhattacharya (Jalbi and Bhattacharya, 2020) g, =
arctan((m — 1)/ ((m + 1) - tan(ay,))), where m = (Sbonom/Swp)(l/N"'), be-
ing Ny, the number of braces. Fig. 11 shows the mass and the g, for all
jacket candidates that meet the design requirements. For lattice struc-
tures, the most common range for this angle is between 30° and 60°
(API, 2014; Det Norske Veritas AS, 2014). In the obtained results, the
average angle is 36.02°.

To analyze the influence of the number of braces, Fig. 12 presents the
distribution of the batter angle of the legs (a) and the brace inclination
angle (b) for each brace number and for the candidates meeting design
requirements. The black boxes in (b) represent the boundaries of the
brace inclination angle. The upper and lower limits depend on the angle
of inclination of the legs (see the limits of the Apeg variable in Table 3).
The mean of the batter angles tends to decrease as the number of braces
increases, suggesting that the increase in structural stiffness results from
the greater number of braces rather than the leg inclination. Similarly,
the mean brace angles also decrease as the number of bracings increases.
It is worth noting that the brace angle is directly dependent on both the
number of braces and the batter angle of the legs.

Finally, the fundamental frequency of the candidates is studied. Con-
sidering the rotor rotational speeds (see Table 1), the 1P range is deter-
mined to be between 0.115 and 0.202 Hz, while the 3P range lies be-
tween 0.345 and 0.605 Hz. The wave excitation frequency is computed
based on the wave period, which is obtained according to the standard
DNVGL-ST-0437 (Det Norske Veritas AS, 2024), using the following ex-

pression:
h h
1114 =2 < Ty < 1434/ =22 (C))
g 4
where A, is the wave height and g the acceleration due to gravity in

m/s2. Thus, it is established that the wave excitation frequency range
lies between 0.05 and 0.106 Hz. Therefore, to ensure proper structural
behavior against vibrations, the natural frequency of the jacket must fall
within the 1P-3P interval, i.e., from 0.202 to 0.345 Hz.

Fig. 13 presents the distribution of the fundamental frequency of the
candidates that meet the design requirements, for different brace levels.
Additionally, the 1P and 3P boundary limits are indicated, regions that
the jacket-OWT system must avoid to prevent resonance (highlighted
red zone in the figure). These limits are displaced owing to the +5%
uncertainty established in the DNV-ST-0126 (Det Norske Veritas AS,
2021). The operating range is set between 0.212 and 0.328 Hz. It can be
observed that designs with 4 and 10 braces exhibit, on average, greater
stiffness than those with intermediate levels. With fewer braces, the al-
gorithm tends to stiffen the structure to withstand the loads, while as the
number of braces increases, the structure becomes more rigid by design.
Greater dispersion in frequency is seen for intermediate configurations
(e.g., with 7 to 9 braces), suggesting a higher sensitivity to design pa-
rameters in these configurations.

It is noteworthy that the autonomous design and optimization al-
gorithm demonstrates notable performance in generating solutions that
meet the imposed requirements, in terms of stresses, geometric verifica-
tions, and fundamental frequency limits. Partially, this accomplishment
can be attributed to the employment of sophisticated initial population
generation strategies proposed in this paper.

3.4. Computing time

This section evaluates the time required and the total number of iter-
ations used by each case during the automatic design and the generation
of the initial population. The study was conducted on a computing clus-
ter that allowed the parallelization of 40 processes (equivalent to the
number of candidates) using two Intel Xeon Platinum 8362 processors
with 256 GB of RAM. The total computation time depends on several
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Fig. 10. Distribution of leg batter angles and jacket mass for candidates meeting
the design requirements.

factors, primarily the total number of iterations, the number of bars or
elements to be analyzed, and PSO-related processes such as updating the
velocity and position of the candidates at each iteration, among others.
Therefore, processes that require a higher number of iterations or in-
volve jackets with a greater number of legs or braces require more time,
both in FEM analysis and in the overall design process.

Fig. 14 presents a distribution of the total computation time for each
initial population generation strategy. The blue boxes represent the time
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Fig. 11. Distribution of bracing angles (constant for all levels) and mass for
candidates meeting all the design requirements.

spent on the automatic design and optimization process (only candidates
that meet the design requirements are considered), while the black boxes
indicate the time required for the generation of the initial population.
Partial data are also shown as green squares to illustrate their dispersion,
but only for the autonomous design process.

In general, pre-computed populations require, on average, less time
than randomly generated ones, and their behavior is, in general terms,
superior (they offer a greater number of candidates and, as previously
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discussed, of higher quality). As has been previously noted, the compu-
tational effort required for pre-computed populations is minimal when
compared to the results obtained (in term of mass and compliance with
verifications). However, this type of initial population can lead to a stag-
nation of the algorithm and to higher computational times, which results
in a greater dispersion of results and computational times. As can be
seen in Fig. 14, the impact of ANNs on the total computational time is
minimal, but their efficiency is very high. Consequently, the exclusion
of ANN-based pre-optimization initial populations reduces the compet-
itiveness of the algorithm.

Table 4 summarizes, for each strategy, the number of feasible and
non-feasible candidates, the total mean simulation time, and the aver-
age time required by the algorithm to obtain a feasible solution. All
cases using random (RNG) pre-populations, whether optimized or not,
require longer computation times to achieve feasible results. For these
cases, the use of ANNs to pre-optimize the initial populations reduces the
computational effort needed to obtain feasible solutions. Nevertheless,
strategies based on RNG populations still demand more computational

12

Table 4
Computational performance of the different proposed strategies.

Strategy Feasible Non-feasible Mean total  Mean time to get a
candidates  candidates  time [min]  feasible solution [min]

RNG 6 22 361 1685

RNG-NN-FPOP 9 19 382 1188

RNG-NN-BEST 13 15 340 732

RNG-NN-VUFT 13 15 414 892

PC 16 12 287 502

PC-NN-FPOP 21 7 327 436

PC-NN-BEST 24 4 459 536

PC-NN-VUFT 27 1 343 356

resources compared to cases employing pre-computed (PC) populations.
For the PC strategies, the computational improvement achieved by pre-
optimizing the initial populations is less pronounced than in RNG pre-
populations. In fact, for the PC-NN-BEST strategy, the computational
performance worsens slightly, but this is balanced by the increase in
feasible solutions obtained.

The best-performing strategy, yielding the lowest time to get feasible
solutions, is PC-NN-VUFT. This result is reinforced by the fact that this
strategy also achieved the highest number of feasible solutions. Con-
versely, the worst-performing strategy, in terms of computational effort
to obtain feasible solutions, is, as expected, the one based on fully RNG
non-optimized initial populations. This is further supported by the fact
that this strategy resulted in the lowest number of feasible solutions
found.

Finally, Fig. 15 shows a distribution of the total number of iterations
employed by each candidate that meets the design requirements during
the automatic design process, according to the initial population gen-
eration strategy. The trends observed are similar to those in Fig. 14:
strategies based on previously computed initial populations tend to
require a lower average number of iterations compared to random ones,
although the maximum values are comparable. The reduced number of
iterations in strategies with pre-computed initial populations reflects a
greater efficiency of the automatic design algorithm in locating higher-
quality candidates (lower mass and meeting the design requirements).
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4. Conclusions

In a previous work (Benitez-Suarez et al., 2025), a methodology was
presented that is capable of autonomously design and optimize jacket-
type support structures for OWT. For this purpose, the PSO metaheuris-
tic algorithm was coupled with a FE structural model. The methodology
allows for the development of preliminary jacket designs based on meto-
cean conditions, soil characterization, and wind turbine specifications.
Compared to other optimization strategies, it does not require an ini-
tial concept to begin the process. Another key feature of the approach
is the use of deterministically computed candidates as initial popula-
tions, which significantly enhances the performance of the design and
optimization procedure.

In the present work, an in-depth study is made to determine suitable
methods for generating initial populations and to assess their impact on
the design and optimization process. To address this, the present work
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proposes a pre-optimization process for the initial populations using a
surrogate model based on ANNs for estimating the utilization factor.

The proposed approach consists of pre-optimizing an initial set of
particles, either random or deterministically computed candidates, us-
ing a procedure based on PSO coupled with an ANN as a surrogate
model. Three methodologies have been developed to generate the initial
populations. Based on these three methodologies and the application of
ANN-based pre-optimization, eight different configurations are evalu-
ated. These include combinations with and without pre-optimization,
using either random or pre-computed initial populations. The study of
the different strategies proposed for the development of the initial pop-
ulations leads to the following main conclusions:

¢ Only the initial populations that use pre-computed optimized popu-
lations included particles meeting the design requirements. The strat-
egy that yields the greatest number of particles that meet the design
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requirements is the strategy that varies in the fitness function the
threshold utilization factor and use the pre-computed pre-population
(PC-NN-VUFT). This strategy allows to obtain a more diversified and
rich refined initial population.

e Pre-computed initial populations, compared to their random coun-
terparts, exhibit lower dispersion in the partial utilization factors
of the different design verifications, indicating that the use of pre-
computed pre-populations successfully overcomes the first stage of
the conditional objective function, where the optimization process
aims to obtain particles that meet the design requirements. The veri-
fication related to the admissible frequency range for the fundamen-
tal frequency shows the lowest dispersion across all strategies.

Refining the initial populations significantly improves the obtained

candidate designs. In the pre-optimized strategies, 64% of the

candidates meet all design requirements, whereas in the non-pre-
optimized ones, only 39% fulfill these requirements. In the case
of pre-computed populations (regardless pre-optimized or not),

78.6 % of the candidates meet all design requirements, whereas for

randomly-generated once (pre-optimized or not), only 36.6 % of the

candidates satisfy the design requirements.

o The best candidate obtained by the automatic design and optimiza-
tion algorithm corresponds to the strategy that conducts the ANN-
based optimization as many times as the swarm size. Among the
10 best candidates, all of them were obtained using ANN-optimized
populations. Of these, 8 were obtained using pre-computed initial
populations, while the remaining 2 resulted from the use of random
populations.

e Pre-optimized initial populations using ANNs significantly enhance
candidate quality and overall algorithm performance, with minimal
computational cost. Excluding ANN-based pre-optimization notably
reduces the algorithm’s competitiveness, despite potential increases
in runtime variability.

After analyzing the conceptual jacket candidates obtained from the
different initial population generation strategies for the reference 5-MW
OWT case study, it is found that:

¢ On average, the jackets with the lowest mass were the 8-brace con-
figuration. Jackets with a higher number of elements, as well as those
with fewer braces (which require an increase in cross-sectional area
to ensure structural stiffness), were found to be less competitive.

 The mean angle of inclination of the legs is ,,, = 3.1°. The aver-
age brace inclination angle is ,, = 36.02°, which is in line with the
recommendations of international organizations and standards (API,
2014; Det Norske Veritas AS, 2014), which recommends a range be-
tween 30 and 60° for this angle.

e From the study conducted to verify the range of admissible frequen-
cies, jackets with a high number of braces exhibit greater dispersion
in the distribution of the first vibration mode (due to their topologi-
cal configuration). On the other hand, candidates with fewer braces
show less dispersion in the first vibration mode, and these values are
close to the 3P limit, indicating the high stiffness of these geomet-
ric configurations. It should be noted that jackets with a low num-
ber of braces have greater mass, suggesting that stiffness is achieved
through an increase in the cross-sectional area or by an increase in
the batter angle of the legs. Jacket height remains constant in all
cases. Finally, jackets with an intermediate number of braces display
higher variability in the fundamental frequency value, confirming
that the number of braces is a determining factor in the design.

Among the methodologies and the different strategies proposed in
this study for generating initial populations and their subsequent in-
tegration into the automatic design and optimization algorithm, devel-
oped in Benitez-Suérez et al. (2025), it is confirmed that using ANN opti-
mized pre-computed initial populations enhances both the quantity and
quality of the resulting candidates. Among the evaluated approaches,
PC-NN-BEST emerges as the most comprehensive, as it yields the high-
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est percentage of candidates fulfilling all requirements, has the lowest
median computational time, and delivers structurally more efficient so-
lutions in terms of both mass and global compliance factor. The behavior
and performance of the proposed methodology have been studied with
a focus on specific metocean and soil conditions (described in Table 2)
and for the NREL-5 MW OWT (described in Table 1). Future work should
address the scalability of the algorithm by analyzing its performance for
different metocean and soil conditions, for greater water depths, and for
larger turbines.
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