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 a b s t r a c t

This paper investigates and proposes efficient strategies for generating initial populations in the automated de-
sign of jacket-type support structures for offshore wind turbines. The particle swarm optimization algorithm 
is employed as search and optimization method, while a finite-element-based model is used to evaluate the 
structural feasibility in the design process. This model computes the loads acting on the structure, assesses its 
structural response, and verifies key design requirements. Soil-structure interaction is also considered to account 
for foundation flexibility. A key contribution of this study is the use of an artificial-neural-network-based sur-
rogate model to estimate the structural utilization factor during the initial population generation phase. Since 
high-fidelity evaluation is not essential at this early stage, the neural network is used for its ability to rapidly 
estimate the structural performance. The obtained candidates satisfy a wide range of criteria, including ultimate 
limit states, fundamental frequency checks, joint and geometric verifications, and foundation requirements. Sev-
eral strategies are proposed for generating initial populations in a pre-optimization phase. Results demonstrate 
that these strategies significantly increase not only the number of feasible designs but also their quality, measured 
in terms of minimal material usage and compliance with design criteria. The overall algorithm performance is 
substantially improved.

1.  Introduction

Offshore wind turbines (OWT) support structures are classified into 
two primary categories: fixed to the seabed and floating. The former are 
utilized in shallow and transitional waters up to 60m in depth, while the 
latter are designed for deep waters, with a potential maximum depth ex-
ceeding 1,000m (Arent et al., 2012). Most of the support structures for 
installed capacity worldwide are fixed to the seabed. Of the 68,258MW 
of total installed capacity in operation worldwide, 55.6% corresponds 
to monopiles, while jackets account for 13.4% (McCoy et al., 2024). 
Monopiles are employed in shallow waters due to their ease of instal-
lation and relatively low structural cost. On the other hand, jacket sub-
structures emerge as an alternative for transitional waters, not only for 
their adaptability to different soil conditions but also for their ability 
to withstand greater depths and more challenging environmental con-
ditions thanks to their lattice design that efficiently distributes loads. 
Currently, the deepest installed OWT jacket reaches 58.6m deep and 
is part of the Seagreen project in Scotland (McCoy et al., 2024). How-
ever, jacket structures have higher construction and maintenance costs 
due to their complex structural configuration. Currently, XXL monopiles 
are being developed, designed to operate at greater depths and compete 
with jackets at depths greater than 40m. Ma et al. (2024) conducted a 
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comparative study of monopiles and jackets for transitional waters, con-
cluding that jacket-type substructures perform better than monopiles in 
water ranges from 30 to 60m.

The Global Offshore Wind Report of 2023 (Council, 2023) reveal that 
over the next decade, the renewable energy sector is expected to experi-
ence significant growth, with projections indicating 380GW of new off-
shore wind capacity. In recent years, new offshore wind farms have been 
installed progressively farther from the coast, where wind resources are 
of better quality and where seabed depths are greater. Available data 
from announced projects suggest that bottom-fixed installations could 
reach water depths of up to 65m in the coming years (McCoy et al., 
2024). Some less optimistic analyses indicate that the current global 
macroeconomic context has slowed the expansion of offshore wind en-
ergy, which could lead to downward revisions in these projections. In-
vestment costs for offshore wind projects have increased by 20%, at-
tributed to factors such as rising material prices, supply chain disrup-
tions, and inflation (Bahar, 2024). On average, the cost of the support 
structure and foundation represents between 12% and 20% of the to-
tal investment in offshore wind projects (Council, 2023; Johnston et al., 
2020). In addition to economic challenges, the design of these structures 
is characterized by a remarkable technical complexity, which requires 
the consideration of numerous variables and substantial computational 

https://doi.org/10.1016/j.oceaneng.2025.123197
Received 31 July 2025; Received in revised form 25 September 2025; Accepted 14 October 2025

Ocean Engineering 343 (2026) 123197 

Available online 25 October 2025 
0029-8018/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

https://www.elsevier.com/locate/oceaneng
https://www.elsevier.com/locate/oceaneng
https://orcid.org/0009-0002-7906-0286

\begin {align}\text {find:}\qquad & \vec {\phi } = \left [\phi _{1} , \ldots , \phi _{n_{\mathrm {var}}} \right ]\\ \text {to minimize:}\qquad & m_{\mathrm {jacket}}\\ \text {subject to:}\qquad & \underline {\phi _i} \leq \phi _i \leq \overline {\phi _i} & \medskip i = [1, \ldots , n_{\mathrm {var}}]\\ \qquad & \gamma _{j} \leq \gamma _{\mathrm {th},j} & \medskip j = [1, \ldots , n_{\mathrm {req}}]\end {align}


$\vec {\phi }$


$n_{\mathrm {var}}$


$\overline {\phi _i}$


$\underline {\phi _i}$


$m_{\mathrm {jacket}}$


$\gamma _j$


$j$


$n_{\mathrm {req}}$


$\gamma _{\mathrm {th},j}$


$\left ( \mathrm {FF_{output}} \right )$


$\left ( \gamma \right )$


\begin {align}\mathrm {FF_{output}} = \gamma \cdot \iota \qquad \text {if} \quad c_{\gamma } < r_{\gamma } \cdot n_{\mathrm {particles}} \label {Xeqn1-2}\end {align}


$\iota $


$c_{\gamma }$


$r_{\gamma }$


$n_{\mathrm {particles}}$


$\mathrm {FF_{output}}$


\begin {equation}\mathrm {FF_{output}} = \begin {cases} m_{\mathrm {jacket}} & \text {if} \quad \gamma \leq \gamma _{\mathrm {th}} \\ \gamma \cdot (m_{\mathrm {jacket}} + \delta ) & \text {if} \quad \gamma > \gamma _{\mathrm {th}} \text { and } \gamma \leq \kappa \\ \gamma \cdot (m_{\mathrm {jacket}} + \delta ) \cdot e^{(\gamma - \kappa )} & \text {if} \quad \gamma > \kappa \\ \end {cases} \label {Xeqn2-3}\end {equation}


$\kappa $


$\delta $


$\gamma _{j}$


$\gamma _{\mathrm {th}} = 1$


$\gamma _{\mathrm {th}} = 1$


$\gamma _{\mathrm {th}}$


$0.80 \leq \gamma _{\mathrm {th}} \leq 1.20$


$\vec {\phi }$


$D_{\Box }$


$t_{\Box }$


$L_{\mathrm {pile}}$


$\alpha _{\mathrm {leg}}$


$\vec {\phi }$


$^{3}$


$r_{\gamma } = 0.1$


$\iota = 10^{10}$


$\kappa = 1.50$


$\delta = 10^7$


$\left (\gamma _{th}\right )$


$\gamma _{j} \leq 1$


$\gamma _{j} > 1$


$\gamma = 0.992$


$\alpha _{\mathrm {leg}}$


$\alpha _{leg}$


$\alpha _{\mathrm {leg}} = \arctan (\left (S_{\mathrm {base}}-S_{\mathrm {top}}\right )/\left (\sqrt {2} \cdot H_{\mathrm {jacket}}\right ))$


$S_{\mathrm {base}}$


$S_{\mathrm {top}}$


$H_{\mathrm {jacket}}$


$^{\circ }$


$\beta _{\mathrm {br}}$


$\beta _{\mathrm {br}} = \arctan (\left (m-1\right )/\left (\left (m+1\right ) \cdot \tan (\alpha _{\mathrm {leg}})\right ))$


$m = \left ( S_{\mathrm {bottom}}/S_{\mathrm {top}} \right )^{\left (1/N_{\mathrm {br}}\right )}$


$N_{\mathrm {br}}$


$\beta _{\mathrm {br}}$


$^{\circ }$


$^{\circ }$


$^{\circ }$


$\alpha _{\mathrm {leg}}$


\begin {equation}11.1 \, \sqrt {\frac {h_{\mathrm {wave}}}{g}} \leq T_{\mathrm {wave}} \leq 14.3 \, \sqrt {\frac {h_{\mathrm {wave}}}{g}} \label {Xeqn3-4}\end {equation}


$h_{\mathrm {wave}}$


$g$


$\mathrm {m/s^2}$


$\pm \,$


$\alpha _{\mathrm {leg}}$


$^{\circ }$


$\beta _{\mathrm {br}}$


$^{\circ }$


$^{\circ }$

https://orcid.org/0000-0003-4228-0031
https://orcid.org/0000-0001-5975-7145
https://orcid.org/0000-0002-5693-051X
mailto:borja.benitez@ulpgc.es
https://doi.org/10.1016/j.oceaneng.2025.123197
https://doi.org/10.1016/j.oceaneng.2025.123197
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


B. Benítez-Suárez et al.

effort, especially in the evaluation of the different loads acting on the 
structure, as well as conducting multiple verifications. Consequently, 
the objective of extending the structure’s service life while reducing the 
amount of material used represents a technical challenge.

The growing ambition to increase installed offshore wind capacity, 
along with the interest in developing projects in deeper waters, has 
driven a significant increase in research focused on seabed-fixed support 
structures for OWT (Jiang, 2021; Wan et al., 2024; Jung and Schindler, 
2023). Several studies have focused on identifying the key parameters 
influencing the design of substructures. Han et al. (2024) conducted a 
sensitivity analysis to identify key design parameters from a structural 
reliability perspective, specifically concerning the vibration limit state. 
The results showed that Young’s modulus is the predominant factor, 
followed by the tower thickness. Additionally, they highlighted that lat-
eral bending stiffness within the soil-structure interaction (SSI) has a 
significant impact on the natural frequency of the structure, emphasiz-
ing the importance of considering SSI in the structural design. Regard-
ing loads, wind speed was identified as the most influential variable 
affecting tower deformation. While Han et al. (2024) focused on identi-
fying the critical parameters affecting structural reliability in monopile-
supported structures, Quevedo-Reina et al. (2024b) analyzed the global 
sensitivity of the fundamental frequency of OWTs supported by jacket-
type structures. They employed artificial neural networks (ANNs) as a 
surrogate model for natural frequency computation.

In the field of OWT support structure design and optimization, 
other researchers have directed their efforts toward the development of 
methodologies. In this regard, Wang et al. (2024) proposed a methodol-
ogy that integrates a finite element model (FEM) for structural analysis 
and verification with an optimization stage, aimed at mass reduction. 
This optimization was carried out using two strategies: parametric opti-
mization (PO) and genetic algorithms (GA). In the proposed case study, 
PO was more computationally efficient, but GA achieved better mass re-
duction results. Tian et al. (2024) proposed a topological optimization 
(TO) approach with fatigue constraints for jacket-type support struc-
tures. Based on Miner’s cumulative damage criterion, the study demon-
strated how this method significantly reduces the structure’s mass while 
maintaining service life and strength requirements, ensuring its ability 
to withstand severe dynamic loads. To verify the effectiveness of this 
methodology, they used it to address the well-known OC4 reference 
jacket (Vorpahl et al., 2011). Ju and Hsieh (2022) proposed an opti-
mization procedure using the Powell method, which finds the minimum 
value of an implicit function with multiple variables without requiring 
derivative calculations. This approach was applied to define the optimal 
geometry of the structure under extreme load conditions. The calcula-
tion model included a FEM analysis and took soil-structure interaction 
into account. Lu et al. (2023) applied the TO technique to tripod-type 
substructures, while Zhang et al. (2022) proposed a methodology fo-
cused on the conceptual design of jacket-type structures. For the latter, 
the approach was formulated as a multi-objective programming prob-
lem, aiming to minimize deformations and stresses in the structure, as 
well as its mass, under different loading conditions. The methodology 
began with modal and load analyses on a FEM, followed by the appli-
cation of TO, which consisted in defining which parts of the structure 
are essential to support the loads and which are not, thus eliminating 
unnecessary elements and reinforcing the most critical areas. This stage 
respected volume and symmetry constraints, ensuring that the resulting 
design has realistic joints and elements. Once the optimization process 
was completed, loads were recalculated, and displacements and stresses 
were reassessed. The aforementioned studies were based on an initial 
jacket design, to which the described optimization techniques were sub-
sequently applied. However, none adopt a strategy that initiates the op-
timization process at a conceptual stage, starting from site-specific and 
turbine data.

The PSO algorithm is a swarm intelligence technique inspired by the 
social behavior of birds and fish, developed by Kennedy and Eberhart 
(Kennedy and Eberhart, 1995; Eberhart and Shi, 2000). It is based on 

a group of potential solutions that iteratively move through a search 
space to find a better position. Each candidate adjusts its position ac-
cording to its own experience and that of its neighbors, enabling an 
effective exploration of the solution space and convergence toward lo-
cal and global optima. PSO’s primary strengths lie in its ability to ad-
dress high-dimensional optimization problems, a domain in which tra-
ditional methods frequently encounter challenges due to their compu-
tational complexity or inefficiency. Additionally, PSO’s simple imple-
mentation and independence from gradient information contribute to 
its notable adaptability. The efficacy of PSO in search processes can be 
attributed to its approach to exploration, which involves the identifi-
cation of promising solutions and the subsequent refinement of these 
solutions to identify new regions of the solution space. This adaptabil-
ity frequently results in accelerated convergence, contributing to PSO’s 
reputation as a versatile tool across diverse domains.

In a previous study, Benítez-Suárez et al. (2025) introduced a cost-
effective methodology for autonomously design jacket substructures for 
OWTs using a PSO algorithm coupled with a FE structural model that as-
sumed a rigid base (i.e., disregarded the influence of SSI on the problem 
at hand). Such methodology is able to generate preliminary jacket de-
signs optimized for minimal material use while meeting structural and 
geometrical requirements. A key feature for the success of the method-
ology was the use of pre-computed initial populations instead of the 
random initial populations commonly used in PSO applications. Those 
pre-computed initial populations were derived from compact design ex-
pressions by Jalbi and Bhattacharya (2020), and it was shown that they 
significantly enhance the algorithm’s efficiency compared to random or 
mixed initial swarms, enabling faster convergence to feasible and lighter 
jacket designs.

However, a more specific study on the most appropriate ways of 
generating such pre-computed initial populations, and a deeper under-
standing of their influence on the final results, are still needed. For this 
reason, this study aims not only at providing a more in-depth analysis of 
the effectiveness of various strategies for the generation of initial pop-
ulation strategies on the automatic optimization and design of support 
structures for OWT, but also at proposing and analyzing new and more 
effective strategies for the generation of the pre-computed initial pop-
ulations through a pre-optimization step in which ANNs are used as a 
surrogate structural model. More precisely, this study assesses the pre-
optimization step of initial populations and their influence on the design 
and optimization process of jacket-type support structures for OWT.

The structure of this paper is as follows: Section 2 presents an 
overview of the general design and optimization strategy, describes 
the FE structural model and the ANN surrogate model, and presents 
the different techniques for the generation of initial populations. The 
case study employed to evaluate the proposed initial populations, 
the results of the performance of them, and the geometrical char-
acteristics of the resulting candidate jackets, are presented in Sec-
tion 3. Finally, Section 4 summarizes the conclusions drawn from this
study.

2.  Methodology

2.1.  Overview of the design and optimization strategy

This section aims at presenting an overview of the general design 
and optimization algorithm employed in this study. The ensuing sections 
provide a detailed discussion of certain elements of this strategy, which 
was originally proposed in Benítez-Suárez et al. (2025). The proposed 
work presents a cost-effective methodology for the autonomous design 
of preliminary jacket substructure candidates. Starting from metocean 
conditions and OWT characteristics, a set of jacket candidates is ob-
tained reaching a sufficient level of detail for this early design phase. 
These candidates will subsequently serve as a starting point for more 
advanced design phases.
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Fig. 1. Workflow for the automatic design of jacket-type OWT support structures developed by Benítez-Suárez et al. (2025).

The overall optimization routine proceeds according to the following 
framework: 

find: 𝜙 =
[

𝜙1,… , 𝜙𝑛var

]

(1a)

to minimize: 𝑚jacket (1b)

subject to: 𝜙𝑖 ≤ 𝜙𝑖 ≤ 𝜙𝑖 𝑖 = [1,… , 𝑛var ] (1c)

𝛾𝑗 ≤ 𝛾th,𝑗 𝑗 = [1,… , 𝑛req] (1d)

where 𝜙 is the vector containing the set of continuous design variables to 
be optimized of a total of 𝑛var , 𝜙𝑖 and 𝜙𝑖 represent the upper and lower 
bounds of these variables (further details are given in Section 3.1.3), 
𝑚jacket is the total mass of the jacket, 𝛾𝑗 is the utilization factor cor-
responding to the 𝑗th requirement of a total of 𝑛req, and 𝛾th,𝑗 is the 
threshold utilization factor considered for each specific verification. The 
boundary values of the variables represent one of the limiting factors of 
the algorithm. They must be selected according to the metocean con-
ditions, soil properties, and turbine characteristics. Wide ranges may 
cause the algorithm to converge more slowly to optimal solutions (lo-
cal or global) and to suffer premature stagnation. Conversely, narrower 
boundary ranges may lead to poor exploration, potentially preventing 
the algorithm from finding the optimal solution. A flow chart of the 
design process is shown in Fig. 1.

The optimization algorithm is structured as follows: the starting 
point of the procedure is the input data, which can be categorized into 
three groups: turbine data, soil properties, and metocean conditions. 
Turbine data and metocean conditions are used to calculate gravita-
tional and environmental loads (waves, tides, and wind), while soil 
properties enable an adequate geotechnical characterization.

The initial populations of candidates for the PSO algorithm are then 
generated either randomly (selecting values between the boundary val-
ues of the variables to be optimized) or through a deterministic proce-
dure devised to obtain, with a very low computational effort, the main 
structural parameters of candidate designs that already take into ac-
count the most basic design concepts and requirements for this type of 
structures. This is achieved by a series of closed-form and simple calcu-
lations that are based on the concept design procedure of jacket founda-
tions for offshore wind turbines in 10 steps proposed by Jalbi and Bhat-
tacharya (2020), and that were adapted for this particular approach in 
Benítez-Suárez et al. (2025). This procedure begins by establishing the 
bending stiffness of the tower-jacket system from the system fundamen-
tal frequency’s requirements. This allows to estimate the jacket’s bend-
ing stiffness which, in turn, allows to compute an estimation for the 
required leg cross-sectional area. Diameters and thicknesses are then 
adjusted within a predefined range, ensuring realistic joints through ge-
ometric relations with the bracing members. The strategies for generat-
ing the initial population are enhanced in the present study through the 
pre-optimization of the random or deterministic initial population by a 
process based on ANNs, as described in Section 2.3.

The PSO algorithm is used as a search and optimization tool to 
find candidate jacket solutions that not only meet all the structural
requirements, but do so using the minimal amount of material. To do so, 
the fitness function that governs the process must take into account both 
the structural feasibility and the weight of each particular candidate so-
lution. The first aspect is considered through a global compliance factor 
for each candidate, defined as the maximum value among the partial uti-
lization factors for each structural verification considered. Values below 
unity indicate that all requirements are met, whereas values above unity 
indicate that one or more requirements are not satisfied. These utiliza-
tion factors are computed from the results obtained from the structural 
analysis performed using the finite element approach described in Sec-
tion 2.2.

The fitness function is defined as a conditional function which con-
sists of two stages. Initially, the search process focuses on finding struc-
turally feasible solutions that meet the utilization factor threshold. 
While the population does not contain a minimum percentage of par-
ticles that meet the utilization factor threshold, the fitness function out-
put (FFoutput

) for each candidate is proportional to its global utilization 
factor (𝛾) as follows: 

FFoutput = 𝛾 ⋅ 𝜄 if 𝑐𝛾 < 𝑟𝛾 ⋅ 𝑛particles (2)

where 𝜄 represents a penalization factor, 𝑐𝛾 is the counter tracking the 
number of particles within the swarm that comply with the imposed 
verifications, 𝑟𝛾 is the required proportion of compliant particles prior 
to initiating the mass optimization phase, and 𝑛particles are the number 
of particles of the swarm. This initially directs the autonomous design 
toward candidates that satisfy the established design criteria.

Afterwards, the effort can be redirected towards the mass mini-
mization problem. Once a minimum number of candidates meeting the 
threshold utilization factor is reached, the FFoutput shifts its focus to op-
timizing the mass of each candidate as follows:

FFoutput =

⎧

⎪

⎨

⎪

⎩

𝑚jacket if 𝛾 ≤ 𝛾th
𝛾 ⋅ (𝑚jacket + 𝛿) if 𝛾 > 𝛾th and 𝛾 ≤ 𝜅
𝛾 ⋅ (𝑚jacket + 𝛿) ⋅ 𝑒(𝛾−𝜅) if 𝛾 > 𝜅

(3)

where 𝜅 and 𝛿 are penalization parameters applied to individuals that 
do not satisfy the design constraints. The result of the process is the set 
of particles that constitute the swarm in the final iteration, including the 
candidate that best satisfies the fitness function.

The iterative process is concluded when the best solution obtained is 
no longer improved after a predefined number of iterations (maximum 
stall iterations).

The algorithm was implemented using the MATLAB programming 
language (version R2022.a) (The MathWorks Inc., 2022), employing 
the Global Optimization Toolbox (version 4.7), Deep Learning Toolbox 
(version 14.4), Optimization Toolbox (version 9.3), Parallel Computing 
Toolbox (version 7.6), Statistics and Machine Learning Toolbox (version 
12.3), and Symbolic Math Toolbox (version 9.1).
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2.2.  Finite element structural model

This study utilizes the structural model presented by Quevedo-Reina 
et al. (2024c) to evaluate the feasibility of jacket structures. This model 
evaluates the loads acting on the jacket, computes structural response, 
and analyses main requirements imposed by international standards. 
The structural response is obtained through an equivalent static analy-
sis assuming linear behavior. Jacket elements are represented accord-
ing to Timoshenko beam theory (Friedman and Kosmatka, 1993). Rigid 
joints between tubular elements, and rigid connections among upper 
legs owing to the transition piece are assumed. Additionally, the nat-
ural frequencies of the system are obtained by solving the eigenvalue 
problem.

To account for the influence of pile foundation flexibility on the 
overall structural system, this study incorporates SSI. A surrogate model 
based on ANN, developed by Quevedo-Reina et al. (2024a), capable of 
estimating the stiffness of a pile embedded in a non-homogeneous soil 
is used. This ANN-based model estimates the lateral, rocking, lateral-
rocking coupling, and vertical stiffness of the pile from its geometry and 
the mechanical properties of the pile and the surrounding soil. The ANN-
based model consists of an ensemble of 20 individual networks trained 
on a synthetic dataset of 200,000 samples generated with a numerical 
model (Álamo et al., 2016). The numerical model is based on the inte-
gral formulation of pile-soil interaction using Green’s functions for a lay-
ered half-space, with piles represented as beam elements. It reproduces 
the three-dimensional linear elastic response of a pile embedded in soil, 
while nonlinear soil behavior is not considered. The ANN-based model 
shows close agreement with the numerical model, achieving absolute 
relative errors below 3.6% for 99% of the samples in a test dataset of 
150,000 cases.

This approach neglects dynamic and pile-soil-pile interaction effects; 
however, the low fundamental frequency of these structures and the 
spacing between piles make these assumptions acceptable (Shadlou and 
Bhattacharya, 2016). The utilization of this surrogate model for evalu-
ating the pile-soil interaction aims to reduce computational costs, while 
considering this complex and relevant phenomena in structural assess-
ment. The estimated stiffness matrices for each pile are then incorpo-
rated into the nodes of the global stiffness matrix related to the base of 
the jacket legs, reflecting the foundation’s flexibility.

2.2.1.  Design loads
A reduced set of wind and wave load combinations, as proposed 

by Arany et al. (2017), is considered for the analyses. Wind conditions 
are defined based on load cases and turbulence definitions outlined in 
IEC-61400-1 (International Electrotechnical Commission (IEC), 2019). 
The wind load acting on the rotor of the wind turbine is assumed to 
be concentrated at the center of the rotor, while structural drag forces 
on elements above sea level are determined using DNVGL-RP-C205 (Det 
Norske Veritas AS, 2019c). Regarding sea loads, both wave action and 
marine currents are considered. Currents’ velocity profile is superposed 
to waves’ velocity profile, while the acceleration profile derives only 
from wave motion. The resulting drag force on submerged tubular el-
ements is also assessed (Det Norske Veritas AS, 2019c). Gravitational 
loads, including the weight of all structural components (tower, Rotor–
Nacelle Assembly (RNA), transition piece, among others), as well as 
buoyancy forces on submerged elements, are also taken into account. 
Additional details can be found in Benítez-Suárez et al. (2025).

2.2.2.  Structural verifications
The verifications considered in this study can be grouped into three 

categories: ultimate limit states (ULS), fatigue limit states (FLS), and 
geometric constraints. This comprehensive approach ensures the struc-
tural safety and long-term performance of the substructure of the OWT. 
Regarding ULS verifications, the section capacity of tubular members is 
assessed using the von Mises yield criterion, while buckling of the mem-
bers (column and shell buckling) is analyzed according to DNVGL-RP-

C202 (Det Norske Veritas AS, 2019a). Additionally, a global buckling 
analysis is performed. The failure of pile foundations is evaluated by 
verifying the section’s head capacity, along with axial and lateral bear-
ing capacities following the API Recommended Practice 2A-WSD (API, 
2014).

As part of the verifications in the category of FLS, the natural fre-
quencies of the whole structural system must always be sufficiently apart 
from the spectral ranges of the main dynamic actions, i.e., the 1P, the 
3P and the wave excitation spectral bands. The natural frequencies are 
computed taking SSI into account.

Furthermore, geometric constraints are verified. This includes 
making sure that the minimum jacket height (DNVGL-ST-0126 Det 
Norske Veritas AS, 2021) is reached, and that the geometry of the 
welded joints follows the requirements of the DNVGL-ST-C203 standard 
(Det Norske Veritas AS, 2019b). Regarding the geometric constraints of 
piles, both the minimum pile thickness for pile installation, as specified 
in API Recommended Practice 2A-WSD (API, 2014), and a minimum 
embedded pile length, as recommended by Arany et al. (2017), are ver-
ified.

Each of the aforementioned verifications are associated with a partial 
utilization factor 𝛾𝑗 . This factor compares the actual demands imposed 
on the structure with its load-bearing capacity. A value of one indicates 
that the structure is at the limit of its capacity, while values greater than 
one indicate that this capacity is exceeded, meaning the verification is 
not satisfied.

2.3.  Artificial neural network surrogate model

As stated above, one of the key steps of the aforementioned process 
is the generation of pre-computed initial populations composed by de-
terministically computed candidate solutions that already meet certain 
general criteria. One of the aims of this work is to perform a detailed 
study of these pre-computed initial populations, proposing strategies to 
optimize these initial sets before starting the design process. For this 
purpose, the surrogate model based on an ANN developed by Quevedo-
Reina (2024) is used to estimate the feasibility of the jacket support 
structure. This model consists of a regression model that estimates the 
utilization factors related to the imposed structural requirements based 
on the most relevant characteristics of the wind turbine, the site condi-
tions and the jacket support structure itself.

A maximum of 26 input variables are considered. The wind turbine’s 
RNA is defined by its diameter, mass, and inertia relative to the roll and 
yaw axes. The tower structure includes the dimensions of the height, and 
diameter and thickness at both the base and top. The operating condi-
tions are defined by the rated wind speed and the specific minimum 
and maximum rotor speeds. Site conditions encompass elements from 
wind, sea, and soil. Wind characteristics include mean velocity at 10m 
above sea level and the Weibull shape parameter for wind distribution. 
Marine factors include water depth, circulational currents, and extreme 
sea states and wave heights for 1- and 50-year return periods. Soil prop-
erties involve shear wave propagation velocity, Poisson’s ratio, density, 
and internal friction angle. Jacket component features geometric details 
are defined by the number of legs, number of bracing levels, height, and 
leg spacing at both the base and top. Tubular members of legs and braces 
are defined by their diameters and thicknesses from level 1 to 10. Pile 
dimensions are defined by its diameter, thicknesses, and length. Con-
sidered material properties are the elastic strength and the mass of the 
jacket platform.

The model outputs 10 partial utilization factors corresponding to 
the different requirements stated in Section 2.2.2. Verifications cover 
lateral and bearing pile capacities, pile head section strengths, sec-
tion capacities, and tubular member buckling at each bracing level, for 
both legs and braces. Global buckling analysis is performed to confirm 
structural stability. FLS checks guarantee non-resonance by eliminating 
coincidences between natural frequencies and rotor speeds. Geometry
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verifications include welded joint assessment to ensure compliance with 
minimum standards.

The model employs an ensemble of 20 fully connected neural net-
works. Each network contains 72 input neurons for capturing the prob-
lem’s variables, followed by four hidden layers, each one with 200 neu-
rons and using the ReLU activation function. The output layer comprises 
26 neurons for predicting the utilization factors of each one of the im-
posed requirements.

The training process was performed using a synthetic dataset of 
300,000 diverse samples covering a wide range of wind turbines, site 
conditions, and jacket designs (Quevedo-Reina, 2024). Sample gener-
ation relied on relationships among input variables defined according 
to international standards and case studies from the literature. Random 
values within these limits were assigned to each variable, and the re-
sulting samples were evaluated using the structural model employed in 
this study. After training 20 individual networks, ensemble performance 
was tested on a dataset of 50,000 samples. The prediction of jacket fea-
sibility achieved a Matthews correlation coefficient of 0.655, a strong 
result given the high imbalance of feasible (0.295%) and non-feasible 
(99.705%) samples in the dataset.

The ANN surrogate model thus approximates the reference model 
at a much lower computational cost. However, accuracy declines near 
the feasibility boundary, where the structural model remains necessary 
for reliable assessment. For this reason, the surrogate is applied in the 
first stage only before launching the structural model-based optimiza-
tion process.

Additionally, the geometric requirements that are straightforward to 
evaluate are not included in the neural network’s training process. These 
include minimum jacket height, pile thickness, and length, as well as 
specific ratios between diameters and thicknesses of tubular sections in 
the legs and braces of the structure. These requirements are assessed 
separately, serving as a complement to the ANN model’s predictions. 
This dual approach enhances the overall structural analysis by combin-
ing computational predictions with direct geometric evaluations.

2.4.  Strategies for the development and generation of initial populations

The aim of this section is to present the different strategies for gen-
erating initial populations that are tested and evaluated in this study. 
In addition to the direct strategies for generating the initial populations 
used in the previous study (Benítez-Suárez et al., 2025), three ANN-
based strategies for refining the initial population are proposed:

• FPOP (Final POPulation): The initial pre-optimized population cor-
responds to the swarm resulting from the last iteration of the refine-

ment process. Therefore, the whole pre-optimized initial population 
is computed after a single run of the ANN-based optimization. In this 
strategy, the global utilization factor threshold is set as: 𝛾th = 1.

• BEST (BEST individuals): This pre-optimized initial population is 
composed of the best particle obtained from independent executions. 
Therefore, the ANN-based optimization process is executed as many 
times as the number of particles needed to build the initial refined 
population. This strategy also considers: 𝛾th = 1.

• VUFT (Variable Utilization Factor Threshold): In this strategy, the 
ANN-based optimization process is also executed as many times as 
particles are needed to build the pre-optimized initial population but, 
in this case, each execution is launched with a different value of 𝛾th in 
a range of: 0.80 ≤ 𝛾th ≤ 1.20. This allows to obtain a more diversified 
initial population and, at the same time, partially overcomes the loss 
of accuracy of the ANN model in the boundary between the feasible 
and non-feasible regions.

Fig. 2 shows the part of the workflow that is responsible for generat-
ing the initial population of the automatic design process. Based on the 
three proposed strategies, a total of eight combinations are obtained. 
Two of them correspond to the randomized and pre-computed initial 
population strategies, which are applied directly in the design and opti-
mization algorithm without being refined with the ANNs. The purpose 
of including these populations in the study is to provide a reference for 
assessing the improvement achieved by enhancing the initial popula-
tions via the ANN and to compare the candidate set obtained in the de-
sign and optimization algorithm. The remaining six combinations con-
sist of mixtures of the three proposed pre-optimization strategies using 
either pre-computed or random populations as a base. Consequently, the 
eight considered combinations are denoted as: RNG, PC, RNG-NN-FPOP, 
RNG-NN-BEST, RNG-NN-VUFT, PC-NN-FPOP, PC-NN-BEST, and PC-NN-
VUFT. During the pre-optimization of the initial population and for the 
automatic design and optimization processes, the swarm size, number 
of runs, fitness function, and stopping criteria are kept unchanged.

3.  Results

This section analyzes the results obtained by applying the different 
strategies presented in the previous sections to a specific case study, 
based on the well known NREL-5MV reference OWT (Jonkman et al., 
2009). The turbine characteristics are presented in Section 3.1.1, while 
the metoceanic conditions and soil properties are described in Sec-
tion 3.1.2. The considered design variables are detailed in Section 3.1.3. 
Section 3.2 examines the influence of initial populations on the gener-
ated candidates, while Section 3.3 analyzes the main characteristics of 

Fig. 2. Workflow for the computation of the initial population, summarizing the three tested alternatives for obtaining the pre-optimized initial populations.
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the resulting candidates. Finally, Section 3.4 evaluates the computation 
time and the total number of iterations performed by the automatic de-
sign algorithm.

3.1.  Case study

3.1.1.  Wind turbine model
The NREL-5MW reference OWT model, developed by Jonkman et al. 

(2009), is used as a case study for testing the different strategies de-
scribed above. This reference OWT has become a standard in the sci-
entific literature for the analysis, design, and optimization of support 
structures for OWTs. The NREL-5MW design includes a tower height of 
70m, a hub height above mean sea level of 90.55m, a rotor diameter 
of 126m, and a rated power of 5MW. The remaining key parameters of 
the turbine are detailed in Table 1.

3.1.2.  Site conditions
Table 2 presents the values of the metoceanic conditions considered 

in the study, including wind, current, and wave data and soil proper-
ties. The wind, wave, and current conditions are those corresponding to 
the Dutch North Sea, as employed by Vemula et al. (2010) for the de-
velopment of the OC4 reference jacket (Vorpahl et al., 2011). The soil 
conditions are considered to be dense sand.

3.1.3.  Design variables
The optimization process considers the following variables: the di-

ameters and thicknesses of the legs, braces, and piles, as well as the leg 
inclination angle. On the other hand, the number of legs and braces is 
defined as a fixed input parameter. A four-legged jacket is considered, 
with the number of braces ranging from 4 to 10. The upper spacing be-
tween the legs is set at 8m, and the transition piece is modeled as a 
steel plate with a thickness of 20 cm, covering the entire upper surface 

Table 1 
Key parameters of the NREL 5-MW OWT (Jonkman 
et al., 2009). 
 Parameter  Value
 Rating  5.0MW
 Rotor orientation  Upwind
 Configuration  3 blades
 Rotor diameter  126.0m
 Cut-in, cut-out, rated wind speed  3.0, 25.0, 11.4m/s
 Cut-in, rated rotor speed  6.9, 12.1 rpm
 RNA mass 3.5 × 105 kg
 Inertia RNA roll 4.4 × 107 kg ⋅m2

 Inertia RNA yaw 2.5 × 107 kg ⋅m2

 Hub height  90.0m
 Top tower diameter  4.0m
 Top tower thickness  30.0mm
 Bottom tower diameter  5.6m
 Bottom tower thickness  32.0mm

Table 2 
Environmental conditions and soil data for load calculation 
and soil characterization. 
 Variable  Value
 Average wind speed at 10m mean sea level  6.47m/s
 Weibull distribution shape parameter  2.04
 1-y Extreme Sea State  7.10m
 50-y Extreme Sea State  9.40m
 1-y Extreme Wave Height  13.21m
 50-y Extreme Wave Height  17.48m
 Water depth  50.00m
 Historical average sea current velocity  0.60m/s
 Shear wave propagation velocity  214.80m/s
 Soil Poisson’s ratio  0.45
 Soil density  2,000.00 kg/m3

 Internal friction angle  33.00 deg

Table 3 
Continue design variables and their boundary values. 
 Variable (𝜙𝑖

)  Lower bound 
(

𝜙𝑖

)

 Upper bound 
(

𝜙𝑖

)

𝛼leg [deg]  0.50  10.00
𝐷leg, 𝑖 [m]  0.30  3.00
𝐷br, 𝑖 [m]  0.06  3.00
𝑡leg, 𝑖 [mm]  4.00  180.00
𝑡br, 𝑖 [mm]  0.90  180.00
𝐷pile [m]  0.20  4.00
𝑡pile [m]  0.01  0.25
𝐿pile [m]  15.00  60.00

of the jacket. The continuous variables are represented by the vector 𝜙, 
defined as follows:
𝜙 =

(

𝐷leg,1, 𝑡leg, 1, 𝐷br, 1, 𝑡br, 1, … , 𝐷leg,nbr , 𝑡leg,nbr , 𝐷br,nbr , 𝑡br,nbr , 𝛼leg,

𝐷pile, 𝑡pile, 𝐿pile
)

∈ ℝ𝑛var

where 𝐷□ and 𝑡□ the outer diameter and thickness of the tubular sec-
tions (legs, braces and piles), 𝐿pile is the embedded length of the pile, 
and 𝛼leg is the angle of inclination of the legs with respect to the ver-
tical. The diameter and thickness of the legs and braces are defined at 
each brace level. Table 3 shows the upper and lower limits of the vector 
𝜙. The variables are continuous and are defined to provide sufficiently 
wide ranges that can represent all possible solutions, while remaining 
within realistic margins. Also, it is ensured that these ranges are within 
those used to train the structural surrogate model.

Regarding the material properties, the yield strength of steel is con-
sidered to be 350MPa, the elastic modulus is set at 210GPa, Poisson’s 
ratio is taken as 0.30, and the steel density is assumed to be 7,850 kg/m3.

The algorithm implementation requires the definition of several key 
parameters. The swarm size is set to 40 particles. The stopping crite-
rion is triggered after 10 consecutive iterations in which there has been 
no improvement in the fitness function. The procedure is repeated four 
times for each brace level and for each initial population generation 
method, resulting in a total of 224 runs. Finally, the values of the fitness 
function parameters, which are assumed to be the same as proposed in 
Benítez-Suárez et al. (2025), are defined as follows: 𝑟𝛾 = 0.1, 𝜄 = 1010, 
𝜅 = 1.50, and 𝛿 = 107.

3.2.  Performance analysis of different initial populations in the 
optimization process

The purpose of this section is to analyze the different strategies pro-
posed to generate the initial populations. Firstly, to analyze the quality 
of the populations obtained from each strategy, Fig. 3 presents a horizon-
tal bar chart illustrating, in green, the percentage of initial populations 
that contain one or more particles that meet all the design requirements 
and, in red, the percentage of initial populations for which all particles 
fail to meet all or any of the design requirements. This information is 
given for each one of the different methodologies tested for the genera-
tion of the initial populations. For each proposed methodology, a total 
of 28 initial populations are considered, derived from the 7 evaluated 
bracing levels, with 4 algorithm repetitions per level. Once the particles 
of the 28 initial populations were obtained, they were evaluated using 
the FE model to assess their fitness with respect to the design criteria and 
to determine the global utilization factor of every candidate structure.

The first conclusion that can be drawn from this result is that the only 
methodologies able to generate initial populations that already contain 
at least one feasible structural particle are those that involve an ini-
tial pre-computed population that is further refined through the ANN-
based optimization. The other alternatives (all randomly-generated pop-
ulations, even if they are later refined with ANNs, and the initial pre-
computed populations) do not contain any feasible structure. This result 
is attributed to two main factors: a) although the simplified formulation 
proposed by Jalbi and Bhattacharya (2020) does not take into account 
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Fig. 3. Percentage of initial populations containing one or more particles that satisfy the design requirements (green bars) and those that do not (red bars), categorized 
by the initial population generation method.

environmental conditions and soil characterization, it is able to effec-
tively constrain the design problem, and b) the proposed ANN-based 
methodology for the refining of the initial populations is able to ade-
quately lead the optimization process to feasible solutions if the starting 
population already takes into account basic structural relationships (as 
it is the case with the pre-computed initial populations). Therefore, the 
use of the ANN-based surrogate model to pre-optimize the particles en-
hances the design process, as the algorithm is able to identify feasible 
solutions. The VUFT strategy is identified as the one able to produce 
the largest number of initial populations that already include feasible 
particles, reaching a proportion that almost doubles that obtained with 
the BEST strategy. Since the threshold utilization factor (𝛾𝑡ℎ

) is changed 
during the VUFT strategy, the error arising from evaluating particles in 
the ANNs at the boundary between feasible and non-feasible solutions 
can be mitigated. On the contrary, with the FPOP strategy, very few 
initial populations include any feasible particles.

In order to identify which structural verifications are limiting the 
design in the generation of the initial population, Fig. 4 shows a set of 
distributions, one for each proposed strategy, with the box-and-whisker 
plot of the fulfillment of each one of the structural verifications sepa-
rately. The results presented herein encompass all particles for all initial 
populations. The region where the partial verifications meet the design 
requirement (𝛾𝑗 ≤ 1, highlighted in green) and the region where the re-
quirements are not met (𝛾𝑗 > 1, highlighted in red) are indicated. The 
verifications of each graphic are detailed as follows: the first verification 
corresponds to the fatigue limit state (Natural frequency), followed by 
the soil bearing capacity (Soil capacity). Next, the ultimate limit states 
of the pile (ULS pile), legs and braces (ULS of the leg and braces from the 
1st to the 10th level) are represented. Subsequently, the global buckling 
check (Global buckling) and the verification of the pile’s active length 
(Minimum pile depth) are included. Finally, the checks related to the 
minimum pile thickness for pile installation (Minimal t/d), the jacket 
height (Jacket height), and the verification of jacket basic geometrical 
requirements are presented (Geometric checks). For further details on 
the design criteria and verifications, refer to Section 2.2.2.

The partial utilization factor corresponding to the verification on the 
admissible frequency range for the fundamental frequency of the system 
jacket-OWT has a significant impact on the design, being the one that 
presents the least dispersion in all strategies. The different levels of legs 
and braces exhibit a decreasing trend in terms of the average value of 

the material utilization factor. The bottom level of the jacket (the one 
in contact with the seabed) is labeled as level 1, while the highest level 
may range from level 4 (if the jacket has 4 braces) to level 10 (if it has 10 
braces). As observed, the partial utilization factor for the lower sections 
of the structure approaches the threshold value. This is due to higher 
demands for this levels compared to the upper ones.

In general terms, the initial populations using the pre-computed 
strategy exhibit less dispersion in the partial utilization factors com-
pared to their randomly generated counterparts. Moreover, the average 
utilization factors are closer to the threshold value, which indicates a 
more effective optimization process and suggesting that the increased 
constrains yield improved results. The use of pre-computed initial pop-
ulations refined with ANNs successfully overcomes the first stage of the 
conditional objective function, where the optimization process aims to 
obtain particles that meet the design requirements, without considering 
the jacket mass.

After analyzing the compliance of the initial populations, the focus 
is shifted to the candidate solutions obtained after the design process. 
First, the best candidates (defined as those with the lowest mass and 
full compliance with the design requirements) will be studied. Then, 
the global utilization factor and masses of all generated candidates will 
be analyzed. In all cases, the analysis will distinguish between the dif-
ferent strategies used to generate the initial populations, whether pre-
optimized or not.

Fig. 5 shows a diagram with four distribution bars, each correspond-
ing to the top five, top ten, top twenty-five, and top fifty candidates 
obtained after the design and optimization process. All represented can-
didates meet the design requirements. The order is established from 
lower to higher mass of the jacket structures. Pre-computed initial pop-
ulation generation methodologies are represented using warm colors, 
while random methodologies are indicated with cool colors. The verti-
cal axis represents the percentage of candidates obtained by each type 
of initial population generation strategy. Across all bars in the diagram, 
a notable presence of warm colors is found, indicating that the best can-
didates are obtained based on pre-computed and pre-optimized initial 
population generation strategies. Among the strategies using random 
pre-populations, the RNG-NN-FPOP and RNG-NN-BEST methodologies 
stand out as those yielding the highest-quality candidates.

It is worth noting that the best candidate was obtained using the 
PC-NN-BEST strategy. Regarding the different braces, the best 4-braced 
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Fig. 4. Distribution of the partial utilization factor for each methodology, corresponding to the structural verifications and considering all particles and all initial 
populations.

Fig. 5. Distribution of top candidates according to different initial populations strategies. Warm colors denote pre-computed methods, cool colors indicate random-
based approaches.
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Fig. 6. Percentage of mass-optimized jacket candidates that meet the design requirements (green bars) and those that do not (red bars), distributed by initial 
population generation methodology.

Fig. 7. Masses of candidates that meet the design requirements depending on the strategy used to determine the initial population.

candidate was obtained using the PC-NN-FPOP strategy, while the oth-
ers 5-, 6-, 7-, 8-, 9-, and 10-braced candidates were generated with PC-
NN-BEST strategy.

An analysis of the overall compliance factor is shown in Fig. 6, for 
the mass-optimized candidates obtained through the different proposed 
strategies. The horizontal axis indicates the percentage of candidates 
that meet (in green) and do not meet (in red) all the established design 
requirements. The results indicate that methodologies based on pre-
computed initial populations, whether pre-optimized (PC-NNN-FPOP, 
PC-NN-BEST, and PC-NN-VUFT) or not (PC), consistently yield a higher 
number of feasible candidates compared to those based on random pop-
ulations, whether pre-optimized (RNG-NNN-FPOP, RNG-NN-BEST, and 
RNG-NN-VUFT) or not (RNG). For the automatic design algorithm us-
ing random populations, the percentage of feasible candidates ranges 
from 21% to 46%. In contrast, pre-computed populations yield a range 
between 57% and 96%. When these pre-computed populations are sub-
jected to a pre-optimization process using the ANNs, the percentage 
further improves, ranging from 75% to 96%, representing a notable 
increase in the number of feasible candidates generated.

Fig. 7 presents the distribution of the mass of the candidates ob-
tained in the optimization algorithm, for each initial population gener-

ation strategy. Additionally, the results are overlaid as individual points 
to facilitate the visualization of the distribution. It is important to note 
that the data represented correspond exclusively to candidates that meet 
all the established design requirements.

In general, the use of pre-computed populations significantly im-
proves the results obtained, not only in terms of the number of feasi-
ble candidates, as previously mentioned, but also in the quality of these 
candidates. Notably, initial populations pre-optimized with ANNs, par-
ticularly those based on previously pre-computed populations, exhibit 
lower mean masses than non-optimized pre-computed populations. In 
this regard, the use of ANNs in the pre-optimization of initial popula-
tions demonstrates enhanced performance in the design and optimiza-
tion process.

3.3.  Analysis of the obtained candidates

This section presents a detailed analysis of the candidates obtained 
during the design process, aiming to identify the most significant geo-
metric relationships. The purpose of this study is to evaluate the consis-
tency of the results with established trends and standards for jacket-type 
support structures.

Ocean Engineering 343 (2026) 123197 

9 



B. Benítez-Suárez et al.

Fig. 8. Masses of feasible and non-feasible jackets for different bracing levels. 
The red squares indicate designs that do not meet the established design require-
ments, while the green ones signify feasible solutions.

Fig. 8 shows the mass of the obtained candidates in the autonomous 
design and optimization algorithm. The red squares indicate designs that 
do not meet the established design requirements, while the green ones 
represent feasible solutions. For the environmental conditions and the 
specifications of the wind turbine of the case study (see Tables 2 and 
1), the results regarding the number of braces follow a trend where the 
lighter configurations are around 8 braces. Both a higher number of 
braces (increased number of elements) and a lower number (reduced 
structural stiffness, forcing an increase in the cross-sectional areas of the 
legs to withstand the forces) result in less competitive designs in terms 
of mass. The best result obtained achieves a mass of 322.21 tons, with 
a geometric configuration of 8 braces and a global compliance factor of 
𝛾 = 0.992.

Fig. 9 shows a three-dimensional representation of the best candi-
dates by brace level, where the cross-sectional area of each member is 
represented on a color scale. The distribution of cross-sectional areas 
in the members of a jacket is primarily determined by the structural de-
mands associated with operational and environmental loads. Areas with 
larger cross-sections (indicated by warmer colors) are concentrated at 
the base of the legs and in the wave impact region. These areas experi-
ence the most significant stresses, derived from both the vertical loads 
caused by the weight of the wind turbine and the structure, as well as 
those induced by the horizontal forces corresponding to waves, ocean 
currents, and wind. For a high number of braces, the trend of assigning 
larger cross-sectional areas to the legs and braces located in the upper 
and lower regions of the jacket is not followed. In this case, the design 
and optimization process includes a greater number of bars in the set of 
design variables, which may lead to premature algorithm convergence.

One of the variables used in the design is the angle of inclination of 
the jacket legs, denoted as 𝛼leg. Fig. 10 plots 𝛼𝑙𝑒𝑔 and the masses for the 
candidates that meet the design requirements. The angle is computed as 
𝛼leg = arctan(

(

𝑆base − 𝑆top
)

∕
(
√

2 ⋅𝐻jacket

)

), being 𝑆base the distance be-
tween legs at the base, 𝑆top the top leg spacing, and 𝐻jacket the jacket 
height. The average angle of inclination of the legs for all cases that meet 
the design requirements is around 3.1◦. In Fig. 10, an increasing trend of 
the batter angle can be observed as the mass of the candidates obtained 
decreases. A higher batter angle implies a longer leg length and, con-
sequently, an increase in the lever arm available to resist the stresses. 
In that sense, the automatic design algorithm effectively balances jacket 
mass and the angle of inclination of the legs.

One of the parameters associated with variables of the design al-
gorithm is the brace inclination angle 𝛽br . This angle remains con-

stant for all reinforcement levels, with the height of the braces vary-
ing at each level. The angle is obtained using the expression pro-
posed by Jalbi and Bhattacharya (Jalbi and Bhattacharya, 2020) 𝛽br =
arctan((𝑚 − 1)∕

(

(𝑚 + 1) ⋅ tan(𝛼leg)
)

), where 𝑚 =
(

𝑆bottom∕𝑆top
)

(

1∕𝑁br
)

, be-
ing 𝑁br the number of braces. Fig. 11 shows the mass and the 𝛽br for all 
jacket candidates that meet the design requirements. For lattice struc-
tures, the most common range for this angle is between 30◦ and 60◦
(API, 2014; Det Norske Veritas AS, 2014). In the obtained results, the 
average angle is 36.02◦.

To analyze the influence of the number of braces, Fig. 12 presents the 
distribution of the batter angle of the legs (a) and the brace inclination 
angle (b) for each brace number and for the candidates meeting design 
requirements. The black boxes in (b) represent the boundaries of the 
brace inclination angle. The upper and lower limits depend on the angle 
of inclination of the legs (see the limits of the 𝛼leg variable in Table 3). 
The mean of the batter angles tends to decrease as the number of braces 
increases, suggesting that the increase in structural stiffness results from 
the greater number of braces rather than the leg inclination. Similarly, 
the mean brace angles also decrease as the number of bracings increases. 
It is worth noting that the brace angle is directly dependent on both the 
number of braces and the batter angle of the legs.

Finally, the fundamental frequency of the candidates is studied. Con-
sidering the rotor rotational speeds (see Table 1), the 1P range is deter-
mined to be between 0.115 and 0.202Hz, while the 3P range lies be-
tween 0.345 and 0.605Hz. The wave excitation frequency is computed 
based on the wave period, which is obtained according to the standard 
DNVGL-ST-0437 (Det Norske Veritas AS, 2024), using the following ex-
pression:

11.1

√

ℎwave
𝑔

≤ 𝑇wave ≤ 14.3

√

ℎwave
𝑔

(4)

where ℎwave is the wave height and 𝑔 the acceleration due to gravity in 
m∕s2. Thus, it is established that the wave excitation frequency range 
lies between 0.05 and 0.106Hz. Therefore, to ensure proper structural 
behavior against vibrations, the natural frequency of the jacket must fall 
within the 1P-3P interval, i.e., from 0.202 to 0.345Hz.

Fig. 13 presents the distribution of the fundamental frequency of the 
candidates that meet the design requirements, for different brace levels. 
Additionally, the 1P and 3P boundary limits are indicated, regions that 
the jacket-OWT system must avoid to prevent resonance (highlighted 
red zone in the figure). These limits are displaced owing to the ±5% 
uncertainty established in the DNV-ST-0126 (Det Norske Veritas AS, 
2021). The operating range is set between 0.212 and 0.328Hz. It can be 
observed that designs with 4 and 10 braces exhibit, on average, greater 
stiffness than those with intermediate levels. With fewer braces, the al-
gorithm tends to stiffen the structure to withstand the loads, while as the 
number of braces increases, the structure becomes more rigid by design. 
Greater dispersion in frequency is seen for intermediate configurations 
(e.g., with 7 to 9 braces), suggesting a higher sensitivity to design pa-
rameters in these configurations.

It is noteworthy that the autonomous design and optimization al-
gorithm demonstrates notable performance in generating solutions that 
meet the imposed requirements, in terms of stresses, geometric verifica-
tions, and fundamental frequency limits. Partially, this accomplishment 
can be attributed to the employment of sophisticated initial population 
generation strategies proposed in this paper.

3.4.  Computing time

This section evaluates the time required and the total number of iter-
ations used by each case during the automatic design and the generation 
of the initial population. The study was conducted on a computing clus-
ter that allowed the parallelization of 40 processes (equivalent to the 
number of candidates) using two Intel Xeon Platinum 8362 processors 
with 256GB of RAM. The total computation time depends on several 
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Fig. 9. Representation of the best candidates, categorized by brace level. Lengths are expressed in meters.

Fig. 10. Distribution of leg batter angles and jacket mass for candidates meeting 
the design requirements.

factors, primarily the total number of iterations, the number of bars or 
elements to be analyzed, and PSO-related processes such as updating the 
velocity and position of the candidates at each iteration, among others. 
Therefore, processes that require a higher number of iterations or in-
volve jackets with a greater number of legs or braces require more time, 
both in FEM analysis and in the overall design process.

Fig. 14 presents a distribution of the total computation time for each 
initial population generation strategy. The blue boxes represent the time 

Fig. 11. Distribution of bracing angles (constant for all levels) and mass for 
candidates meeting all the design requirements.

spent on the automatic design and optimization process (only candidates 
that meet the design requirements are considered), while the black boxes 
indicate the time required for the generation of the initial population. 
Partial data are also shown as green squares to illustrate their dispersion, 
but only for the autonomous design process.

In general, pre-computed populations require, on average, less time 
than randomly generated ones, and their behavior is, in general terms, 
superior (they offer a greater number of candidates and, as previously 
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Fig. 12. Distribution of the angle of inclination (a) and the angle of inclination of the braces (b) for each brace level. The boxes in (b) represent the range of the 
brace angle.

Fig. 13. Distribution of the system fundamental frequency by brace level.

discussed, of higher quality). As has been previously noted, the compu-
tational effort required for pre-computed populations is minimal when 
compared to the results obtained (in term of mass and compliance with 
verifications). However, this type of initial population can lead to a stag-
nation of the algorithm and to higher computational times, which results 
in a greater dispersion of results and computational times. As can be 
seen in Fig. 14, the impact of ANNs on the total computational time is 
minimal, but their efficiency is very high. Consequently, the exclusion 
of ANN-based pre-optimization initial populations reduces the compet-
itiveness of the algorithm.

Table 4 summarizes, for each strategy, the number of feasible and 
non-feasible candidates, the total mean simulation time, and the aver-
age time required by the algorithm to obtain a feasible solution. All 
cases using random (RNG) pre-populations, whether optimized or not, 
require longer computation times to achieve feasible results. For these 
cases, the use of ANNs to pre-optimize the initial populations reduces the 
computational effort needed to obtain feasible solutions. Nevertheless, 
strategies based on RNG populations still demand more computational 

Table 4 
Computational performance of the different proposed strategies. 
 Strategy Feasible 

candidates
Non-feasible 
candidates

Mean total 
time [min]

Mean time to get a 
feasible solution [min]

 RNG 6 22 361 1685
 RNG-NN-FPOP 9 19 382 1188
 RNG-NN-BEST 13 15 340 732
 RNG-NN-VUFT 13 15 414 892
 PC 16 12 287 502
 PC-NN-FPOP 21 7 327 436
 PC-NN-BEST 24 4 459 536
 PC-NN-VUFT 27 1 343 356

resources compared to cases employing pre-computed (PC) populations. 
For the PC strategies, the computational improvement achieved by pre-
optimizing the initial populations is less pronounced than in RNG pre-
populations. In fact, for the PC-NN-BEST strategy, the computational 
performance worsens slightly, but this is balanced by the increase in 
feasible solutions obtained.

The best-performing strategy, yielding the lowest time to get feasible 
solutions, is PC-NN-VUFT. This result is reinforced by the fact that this 
strategy also achieved the highest number of feasible solutions. Con-
versely, the worst-performing strategy, in terms of computational effort 
to obtain feasible solutions, is, as expected, the one based on fully RNG 
non-optimized initial populations. This is further supported by the fact 
that this strategy resulted in the lowest number of feasible solutions 
found.

Finally, Fig. 15 shows a distribution of the total number of iterations 
employed by each candidate that meets the design requirements during 
the automatic design process, according to the initial population gen-
eration strategy. The trends observed are similar to those in Fig. 14: 
strategies based on previously computed initial populations tend to
require a lower average number of iterations compared to random ones, 
although the maximum values are comparable. The reduced number of 
iterations in strategies with pre-computed initial populations reflects a 
greater efficiency of the automatic design algorithm in locating higher-
quality candidates (lower mass and meeting the design requirements).
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Fig. 14. Computation time for the whole optimization process (blue boxes) and for the initial population generation (black boxes). Only runs that generated feasible 
candidates are presented.

Fig. 15. Total number of iterations for each strategy. Only runs that generated feasible candidates are presented.

4.  Conclusions

In a previous work (Benítez-Suárez et al., 2025), a methodology was 
presented that is capable of autonomously design and optimize jacket-
type support structures for OWT. For this purpose, the PSO metaheuris-
tic algorithm was coupled with a FE structural model. The methodology 
allows for the development of preliminary jacket designs based on meto-
cean conditions, soil characterization, and wind turbine specifications. 
Compared to other optimization strategies, it does not require an ini-
tial concept to begin the process. Another key feature of the approach 
is the use of deterministically computed candidates as initial popula-
tions, which significantly enhances the performance of the design and 
optimization procedure.

In the present work, an in-depth study is made to determine suitable 
methods for generating initial populations and to assess their impact on 
the design and optimization process. To address this, the present work 

proposes a pre-optimization process for the initial populations using a 
surrogate model based on ANNs for estimating the utilization factor.

The proposed approach consists of pre-optimizing an initial set of 
particles, either random or deterministically computed candidates, us-
ing a procedure based on PSO coupled with an ANN as a surrogate 
model. Three methodologies have been developed to generate the initial 
populations. Based on these three methodologies and the application of 
ANN-based pre-optimization, eight different configurations are evalu-
ated. These include combinations with and without pre-optimization, 
using either random or pre-computed initial populations. The study of 
the different strategies proposed for the development of the initial pop-
ulations leads to the following main conclusions:

• Only the initial populations that use pre-computed optimized popu-
lations included particles meeting the design requirements. The strat-
egy that yields the greatest number of particles that meet the design 
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requirements is the strategy that varies in the fitness function the 
threshold utilization factor and use the pre-computed pre-population 
(PC-NN-VUFT). This strategy allows to obtain a more diversified and 
rich refined initial population.

• Pre-computed initial populations, compared to their random coun-
terparts, exhibit lower dispersion in the partial utilization factors 
of the different design verifications, indicating that the use of pre-
computed pre-populations successfully overcomes the first stage of 
the conditional objective function, where the optimization process 
aims to obtain particles that meet the design requirements. The veri-
fication related to the admissible frequency range for the fundamen-
tal frequency shows the lowest dispersion across all strategies.

• Refining the initial populations significantly improves the obtained 
candidate designs. In the pre-optimized strategies, 64% of the 
candidates meet all design requirements, whereas in the non-pre-
optimized ones, only 39% fulfill these requirements. In the case 
of pre-computed populations (regardless pre-optimized or not), 
78.6% of the candidates meet all design requirements, whereas for 
randomly-generated once (pre-optimized or not), only 36.6% of the 
candidates satisfy the design requirements.

• The best candidate obtained by the automatic design and optimiza-
tion algorithm corresponds to the strategy that conducts the ANN-
based optimization as many times as the swarm size. Among the 
10 best candidates, all of them were obtained using ANN-optimized 
populations. Of these, 8 were obtained using pre-computed initial 
populations, while the remaining 2 resulted from the use of random 
populations.

• Pre-optimized initial populations using ANNs significantly enhance 
candidate quality and overall algorithm performance, with minimal 
computational cost. Excluding ANN-based pre-optimization notably 
reduces the algorithm’s competitiveness, despite potential increases 
in runtime variability.

After analyzing the conceptual jacket candidates obtained from the 
different initial population generation strategies for the reference 5-MW 
OWT case study, it is found that:

• On average, the jackets with the lowest mass were the 8-brace con-
figuration. Jackets with a higher number of elements, as well as those 
with fewer braces (which require an increase in cross-sectional area 
to ensure structural stiffness), were found to be less competitive.

• The mean angle of inclination of the legs is 𝛼leg = 3.1◦. The aver-
age brace inclination angle is 𝛽br = 36.02◦, which is in line with the 
recommendations of international organizations and standards (API, 
2014; Det Norske Veritas AS, 2014), which recommends a range be-
tween 30 and 60◦ for this angle.

• From the study conducted to verify the range of admissible frequen-
cies, jackets with a high number of braces exhibit greater dispersion 
in the distribution of the first vibration mode (due to their topologi-
cal configuration). On the other hand, candidates with fewer braces 
show less dispersion in the first vibration mode, and these values are 
close to the 3P limit, indicating the high stiffness of these geomet-
ric configurations. It should be noted that jackets with a low num-
ber of braces have greater mass, suggesting that stiffness is achieved 
through an increase in the cross-sectional area or by an increase in 
the batter angle of the legs. Jacket height remains constant in all 
cases. Finally, jackets with an intermediate number of braces display 
higher variability in the fundamental frequency value, confirming 
that the number of braces is a determining factor in the design.

Among the methodologies and the different strategies proposed in 
this study for generating initial populations and their subsequent in-
tegration into the automatic design and optimization algorithm, devel-
oped in Benítez-Suárez et al. (2025), it is confirmed that using ANN opti-
mized pre-computed initial populations enhances both the quantity and 
quality of the resulting candidates. Among the evaluated approaches, 
PC-NN-BEST emerges as the most comprehensive, as it yields the high-

est percentage of candidates fulfilling all requirements, has the lowest 
median computational time, and delivers structurally more efficient so-
lutions in terms of both mass and global compliance factor. The behavior 
and performance of the proposed methodology have been studied with 
a focus on specific metocean and soil conditions (described in Table 2) 
and for the NREL-5 MW OWT (described in Table 1). Future work should 
address the scalability of the algorithm by analyzing its performance for 
different metocean and soil conditions, for greater water depths, and for 
larger turbines.
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