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0Abstract

Modern society is heavily dependent on a radio-based wireless communications

infrastructure, which is almost congested as the demand for high-capacity and

low-latency wireless connections grows with the increasing number of devices.

Optical wireless communication (OWC), which operates in the optical spectrum,

emerges as a promising complementary technology, capable of addressing the

capacity challenges of future networks. Within OWC, visible light communication

(VLC), is a technology that repurposes existing lighting systems, such as solid-

state lighting (SSL) systems in offices, homes, hospitals, and airports, to transmit

data using optical spectrum wavelengths through light-emitting diodes (LEDs)

used for illumination, with photodiodes (PDs) serving as receivers. Despite the

providing advantages of VLC in terms of enhanced security, spectrum availability,

and interference immunity, the complexity of integrating this hardware in end-user

devices serving as receivers, has made VLC challenging to be adopted in the

marketplace.

On the contrary, the plethora of off-the-shelf cameras in end-user devices, such

as smartphones and public infrastructure surveillance cameras, eliminates the need

for additional hardware at the reception stage and has led to the emergence of

a new branch of VLC, known as optical camera communication (OCC). OCC is

standardized by the Institute of Electrical and Electronics Engineers (IEEE) and

the International Telecommunications Union (ITU) through the IEEE 802.15.7a

standard and ITU-T G.9992, respectively. By employing cameras as receivers, OCC

enables the operation of cameras both as imaging devices and as communication

tools, in a variety of applications, particularly in dynamic and resource-constrained

environments such as wireless sensor networks (WSNs) and Internet of Things

(IoT) systems. For the first time, OCC allows the development of commercial, low-
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cost wireless optical communication systems by leveraging ubiquitously available

technology, paving the way for innovative and accessible solutions across numerous

industries.

WSNs are composed of spatially distributed sensor nodes that collaborate to

monitor and collect data about their environment. They are designed to observe

one or more physical parameters, such as temperature, humidity, motion, or light,

and transmit wireless data to a central system. WSNs have found widespread appli-

cations in industrial automation, environmental monitoring, healthcare, agriculture,

and smart cities. The WSNs nodes are typically small-sized, battery-powered

devices with sensors, processing units, and wireless communication modules (e.g.

LEDs). Therefore, wearable devices can act as mobile or semi-mobile nodes in

WSNs.

Smartwatches, fitness bands, smart clothing, and medical patches, are examples

of wearable devices that can be seamlessly integrated into daily life. These devices

are equipped with sensors and processors enabling them to collect, process, and

transmit data about their users and their surroundings. Typically, the commercially

available devices use RF technologies such as Bluetooth or near-field commu-

nication (NFC), for data transmission, which face limitations in link distance,

safety, electromagnetic interference, and spectrum usage. For this reason, the

replacement of these modules with LEDs could overcome these limitations.

This thesis experimentally evaluated the feasibility of deploying LED transmitters

in the form of wearable devices, in OCC systems and WSNs. The first objective

(O1) of the research is to establish efficient indoor and outdoor OCC links by

including hybrid solutions that combine image processing and wireless optical

communication. Additionally, (O2) to analyze how the channel conditions related

to the position and configuration of sensor nodes affect data rate performance.

Finally, (O3) proposes the use of an artificial intelligence (AI) algorithm for node

recognition and tracking, in networks with multiple camera receivers.

The core of this thesis is based on several contributions published in high-impact

journals, following the progression of the research. During the exercise of this
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thesis, contributions have been achieved in: (i) making the system available for

widespread use, as in most experimental OCC setups in this research, commercial

devices employed as transmitters (i.e., LED array, LED strip, LED-coupled side-

emitting optical fiber) and receivers (i.e., smartphones, Raspberry Pi cameras), (ii)

developing an image processing algorithm for accurately detecting transmitted bits

within frames, despite the user’s movement, (iii) detecting the user’s position within

the frame, offering valuable insights into the user’s exercise intensity, and could

potentially identify chronic conditions or detect early signs of injuries, (iv) analyzing

critical aspects for the transmitter placement in relationship with the camera

receiver position, (v) making the system applicable in high-risk environments,

where real-time monitoring of users’ physical conditions is critical, with the

integration of deep learning into OCC systems, enabling indoor communication

and monitoring, even under challenging conditions such as low visibility, user

movement and multiple users.
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0Resumen

La comunicación óptica inalámbrica (OWC), que opera en el espectro óptico, es

una tecnoloǵıa complementaria prometedora para coexistir con las tecnoloǵıas

actualmente más utilizadas, capaz de abordar los desaf́ıos de capacidad de las

redes futuras a un coste aceptable y con dispositivos ya disponibles comercialmente.

Dentro de este campo, la comunicación por luz visible (VLC) es una tecnoloǵıa que

reutiliza los sistemas de iluminación existentes, como los sistemas de iluminación de

estado sólido (SSL) en oficinas, hogares, hospitales y aeropuertos, para transmitir

datos utilizando longitudes de onda del espectro óptico a través de diodos emisores

de luz (LED) utilizados para la iluminación, con fotodiodos (PD) que actúan

como receptores. Sin embargo, a pesar de las ventajas que ofrece esta tecnoloǵıa

en términos de su inherente seguridad de los datos, disponibilidad de espectro e

inmunidad a interferencias, la complejidad de integrar este hardware en dispositivos

de usuario final que actúan como receptores ha dificultado su adopción en el

mercado. Esto ha llevado a buscar alternativas en el tipo de receptores a emplear

para captar y procesar información transmitida por medios ópticos como son las

cámaras. Estas, al contrario que los fotodiodos, están disponibles comercialmente

de forma ubicua, en dispositivos de consumo como teléfonos, tablets, monitores

de televisión o sistemas de vigilancia. Su uso, si bien limitado a velocidades

y distancias bajas, elimina la necesidad de hardware adicional en la etapa de

recepción y ha propiciado el surgimiento de una nueva rama de la comunicación

óptica por cámara, conocida como comunicación óptica mediante cámaras (OCC)

y que ha sido estandarizada por el Instituto de Ingenieros Eléctricos y Electrónicos

(IEEE) y la Unión Internacional de Telecomunicaciones (UIT) a través de las

normas IEEE 802.15.7a e ITU-T G.9992, respectivamente.

Al emplear cámaras como receptores, estos se convierten en dispositivos duales
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que simultanean su funcionamiento como dispositivos de imagen y herramientas

de comunicación en diversas aplicaciones, especialmente en entornos dinámicos

y con recursos limitados, como las redes de sensores inalámbricos (WSN) y los

sistemas del Internet de las Cosas (IoT). OCC ha permitido que, por primera vez,

se estén desarrollando sistemas comerciales de comunicación óptica inalámbrica de

bajo costo aprovechando tecnoloǵıa ampliamente disponible, allanando el camino

para soluciones innovadoras y accesibles en numerosos sectores. En concreto,

en el campo de las WSN, estas mallas de sensores distribuidos espacialmente

están diseñadas para observar uno o más parámetros f́ısicos (como temperatura,

humedad, movimiento etc.) transmitiendo datos inalámbricos a un sistema central.

En este caso concreto, se estudian aplicaciones basadas en el control de la salud o la

actividad f́ısica, y dentro de estos, destacan por su interés los dispositivos vestibles

o wearables, según su denominación más extendida. Vienen caracterizadas por la

baja velocidad de transmisión requerida, su pequeño tamaño y baja complejidad en

cuanto a unidades de procesamiento, estar alimentados por bateŕıa y requerir una

alta seguridad y baja latencia. Estos sensores pueden actuar como nodos móviles

o semimóviles en las WSN. Los relojes inteligentes, las pulseras de actividad f́ısica,

la ropa inteligente o los parches médicos, pueden ser en śı mismos ejemplos de

dispositivos wearables que se integran a la perfección en la vida diaria, o bien

dispositivos que interactúan con otros sensores o actuadores que les permiten

recopilar, procesar y transmitir datos sobre sus usuarios y su entorno. Si bien

habitualmente estas interacciones se basan en tecnoloǵıas de radiofrecuencia como

Bluetooth de bajo consumo (LPB) o comunicación de campo cercano (NFC) para

la transmisión de datos, estas tecnoloǵıas presentan limitaciones en cuanto a la

distancia de enlace, la seguridad, la interferencia electromagnética y el uso del

espectro, que aconsejan valorar alternativas como los módulos por LED para tratar

de superar estas limitaciones.

Esta tesis evalúa experimentalmente la viabilidad de implementar transmisores

LED en dispositivos portátiles para sistemas OCC en redes inalámbricas de sensores

(WSN). El primer objetivo ha sido establecer enlaces OCC eficientes en interiores
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y exteriores mediante la inclusión de soluciones h́ıbridas que combinan el procesa-

miento de imágenes y la comunicación óptica inalámbrica. Además, se analiza

cómo las condiciones del canal, relacionadas con la posición y configuración de los

nodos sensores, afectan el rendimiento de la velocidad de datos. Finalmente, se

propone el uso de un algoritmo de inteligencia artificial (IA) para el reconocimiento

y seguimiento de nodos en redes con múltiples receptores de cámara.

El núcleo de esta tesis se basa en varias contribuciones publicadas en revistas

de alto impacto, siguiendo el progreso de la investigación. Durante el desarrollo

de esta tesis doctoral, se han logrado contribuciones en el uso de sistemas OCC

basados en dispositivos comerciales empleados como transmisores (p. ej., matrices

o tiras LED o fibras óptica de emisión lateral acoplada a LED) y receptores

(como teléfonos inteligentes o cámaras Raspberry Pi); También se ha abordado el

desarrollo un algoritmo de procesamiento de imágenes para detectar con precisión

los bits transmitidos dentro de los fotogramas, independientemente del movimiento

del usuario, y se han analizado aspectos cŕıticos para la colocación del transmisor en

relación con la posición del receptor de la cámara, con el fin de mejorar la detección

de la posición del usuario dentro del fotograma, lo que ofrece información valiosa

sobre la intensidad del ejercicio del usuario y podŕıa potencialmente identificar

enfermedades crónicas o detectar signos tempranos de lesiones o ser usado en

entornos de alto riesgo donde las emisiones radioeléctricas convencionales pueden

estar contraindicadas.
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1 Introduction

Optical camera communications (OCC) is a cutting-edge technology within the field
of optical wireless communications (OWC) and visible light communications (VLC),
particularly under the standard of the Institute of Electrical and Electronics Engineers
(IEEE) 802.15.7a [1]. OCC employs light-emitting diodes (LEDs) as transmitters, and
image sensors (i.e. cameras) as receivers, with light (visible, infrared, ultraviolet) serving
as the signal communication carrier. This technology offers many advantages compared
to conventional radio-frequency (RF) technologies, with regard to security, immunity to
electromagnetic interference, cost-effectiveness, and energy efficiency [2].

The plethora of cameras on end-user devices, such as smartphones and public
infrastructure surveillance cameras, has further simplified the use of OCC, eliminating
the need for additional hardware. As shown in Figure 1.1 the global volume in the
digital cameras segment of the consumer electronics market is expected to increase
steadily between 2024 and 2029, by a total of 8.5 million units (+6.71%), reaching a
peak of 135.1 million units in 2029. Besides their elementary functionality of capturing
images, cameras are capable of capturing details beyond the human visual limit and
enable applications such as communication, localization, and activity/motion detection,
which are highly relevant for indoor and outdoor Internet of Things (IoT) applications
[3], [4]. By employing cameras as both image capture devices and communication tools,
OCC eliminates the need for additional hardware, reducing the cost and complexity of
end-user devices while enabling advanced capabilities such as space division multiple
access (SDMA) [5] and color-space based modulations [6]. This makes OCC particularly
attractive to markets, as implementing an OCC-based application on smartphones would
only require a computer vision-based app, as well as, especially valuable in dynamic and
resource-constrained environments, such as wireless sensor networks (WSNs).

WSNs [8] are low-cost and ultra-low-power networks consisting of spatially distributed
sensor nodes that cooperate to sense and collect environmental information. They should
also provide low-latency performance when required for real-time applications [9]. Sensor
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Figure 1.1: Volume of digital cameras Worldwide 2019-2029. Source: Statista [7]
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Chapter 1 Introduction
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Wearable LED with Sensor   
Transmitter

Figure 1.2: Diagram of application of optical camera communication to wearable sensor
networks.

nodes are usually compact, battery-operated devices composed of sensors, processing
units, and wireless communication components (e.g., LEDs) that measure one or more
physical parameters such as temperature, humidity, motion, or light and transmit the
sensed data wirelessly to the central processing system. They find application in the
military [10], agricultural plant monitoring [11], environmental monitoring [12], traffic
management [13], and health monitoring [14].

Wearable devices in WSNs represent a rapidly advancing technology that enables real-
time monitoring of users, as well as the transmission of data about their environments,
with applications in healthcare, fitness, and smart environments, by deploying sensors,
processors, and communication modules. Examples of such wearable technologies include
smartwatches, smart wearables, and glucose monitoring patches-are lightweight and
compact, easily wearable in daily life [15]. By combining OCC with wearable technology,
the data measured by these devices can be forwarded to cameras for processing with
the aid of OCC-enabled LEDs; hence, a secure and power-efficient communication
solution is provided. This would have potential in applications that require high data
integrity and low latency, such as health monitoring and fitness tracking. In this work,
we propose employing OCC in a wearable sensor network with LED-based wearable
transmitters, to transmit sensor data to cameras, as shown in Figure 1.2.

By repurposing accessible and commercially available devices, such as LED arrays,
LED strips, and side-emitting fibers for transmitters, along with off-the-shelf surveillance
cameras and smartphones as receivers, as shown in Figure 1.3, OCC apart from reducing
the need for additional specialized hardware, enables a cost-efficient and practical
communication and monitoring system. The transmitter side can be implemented using
a simple LED circuit consisting of an LED component, a microcontroller unit (MCU),
and a power source — which is significantly less complex compared to traditional
Bluetooth Low Energy (BLE) circuitry [16] - to transmit the data collected from
wearable sensors or patches. On the receiver side, commercially available closed-circuit
television (CCTV) cameras or smartphones, beyond their primary role in user activity
monitoring, can also capture signals from wearable sensors, transforming them into
communication tools.

The integration of OCC with wearable sensor networks offers new opportunities for
wearables. OCC provides secure communication, addressing critical challenges such as
spectral congestion and energy efficiency in resource-constrained systems. Hence, it is
ideal for applications, such as health monitoring systems, fitness tracking devices, and
safety-focused applications. The increasing number of wearables and the arrival of 6G,
will bring a new era for smart environments and healthcare, characterized by enhanced
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Motivation Section 1.2

Transmitters Receivers

LED array

LED strip Fiber

Smartphone CCTV

Figure 1.3: Example of commercial devices used as LED transmitters and camera receivers.

sensing, processing, and communication capabilities seamlessly integrated into everyday
life.

1.1 Motivation
The OCCAM project, funded by the Agencia Estatal de Investigación (AEI, Spanish
Research Government) under the PID2020-114561RB-100 grant, is directed at research
challenges in optical communication systems, particularly using monitoring cameras
within sensor networks.

The Institute for Technological Development and Innovation in Communications
(IDeTIC), part of the University of Las Palmas de Gran Canaria (ULPGC), consists of
six divisions, among which the Division of Photonics Technology and Communications
holds the OCCAM project. The division has been working on VLC and OCC, with
funding from international and national sources. In this context, the OCCAM project is
funded by highly active and pioneering researchers in the area.

Previous research in IDeTIC, which has provided the foundation for the development
of this thesis, has focused on practical experimental implementations of VLC [17], [18]
and, in particular, on OCC in WSN [19]. In addition, the research includes works
on discovery and tracking systems for OCC [20], on localization [21], smart cities
[22], optical multispectral camera communications [23] and underwater optical wireless
communications [24], [25].

1.2 Hypotheses
Taking into account the continuous advances in smart environments and localization
systems, this work explores how commercially available devices, such as cameras and
LEDs, can be used to receive signals from wearable sensors. The hypotheses of this
work are stated as follows.

Hypothesis 1 (H1)

The ubiquitous availability of cameras, embedded in many devices such as smartphones,
tablets, or surveillance devices that already exist in an indoor or outdoor environment,
can be used for receiving signals from wearable sensors.

OCC systems can be implemented using commercially available cameras, such as those
in smartphones, tablets, or surveillance cameras in indoor and outdoor environments.

3



Chapter 1 Introduction

Many surveillance cameras already installed in many places, can be utilized not only for
video monitoring of user activity but also as means for communication, as these cameras
can serve as receivers for signals transmitted by sensors worn by users, therefore limiting
the need for additional hardware.

Hypothesis 2 (H2)

It is feasible to implement a network where multiple sensors transmit, simultaneously,
to the cameras, within an indoor or an outdoor environment.

Cameras can capture data from multiple sources at the same time and therefore,
serve as central nodes in a sensor network. The system that could enable real-time
tracking and monitoring of many users within the same environment is suitable for
complex indoor and outdoor environments where many people might need monitoring.

Hypothesis 3 (H3)

The artificial intelligence image processing algorithms combined with data decoding
OCC can efficiently track and predict the users’ movement.

Computer vision is a supporting technology within AI that enhances the image
processing capabilities needed for precise tracking. Various neural networks (NNs) have
shown effectiveness in the computer vision applications of deep learning, to track a large
number of users in indoor and outdoor environments, and offer predictive modeling for
the anticipation of future movements.

1.3 Objectives

Objective 1 (O1)

To implement optical communication links based on cameras (OCC) using image sensors
in the optical spectrum including hybrid solutions that combine image processing and
wireless optical communication.

In order to demonstrate H1, experiments must be conducted in an indoor and outdoor
environment to test the feasibility of using commercial off-the-shelf cameras embedded
in many devices such as smartphones, tablets, or surveillance devices for receiving
signals emitted by wearable sensors using optical spectrum image sensors combined
with image processing algorithms and wireless optical communication. This system
can eliminate the need for additional hardware, by reusing cameras already installed for
video monitoring, making it possible to efficiently track and communicate with users
within the indoor or outdoor environment.

This objective is addressed by all the published articles (P1, P2, and P3) presented
in Chapter 5 as a compendium, as they explore different image sensors in indoor OCC
to validate the integration of image processing and wireless optical communication.
In addition, outdoor OCC was studied in the conference paper [26] (see Chapter A),
demonstrating its feasibility. To expand the scope of the optical spectrum, it was
demonstrated that OCC is not limited to visible light but can also utilize near-infrared
(NIR), as shown in the conference paper [27] (see Chapter B).
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Organization of the document Section 1.4

Objective 2 (O2)

To examine the impact of channel conditions related to the position and configuration
of the sensor nodes on data rate performance.

Based on the H2 that it is feasible to implement a network in which multiple wearable
sensors communicate simultaneously with cameras, this study will evaluate how factors
such as the number, positioning, and configuration of sensors as network nodes, as well as
the channel conditions related to position (e.g., near-far distances, obstructions, ambient
light interference), affect data transmission rates, and overall network performance. To
address this, the research tries to optimize network configurations supporting real-time
tracking and monitoring of multiple users in complex indoor or outdoor environments
by analyzing data rates on the number, positioning, and channel conditions of sensors
and cameras, with experimentation in short and long distances and under different light
conditions.

This objective is addressed in publications P2 and P3. The importance of sensor
positioning and environmental factors is supported by the findings in P2, which high-
light how different placements of wearable LED transmitters influence communication
performance. Furthermore, P3 demonstrates how deep learning-based detection and
tracking of wearable LEDs are affected by factors such as movement and lighting condi-
tions. Regarding distances, P1 demonstrates OCC feasibility at a short link distance
of 20-30 cm, while the conference paper for outdoor OCC [26] extends this to 90–120
meters.

Objective 3 (O3)

To deploy networks with multiple receivers and apply node recognition and tracking
algorithms based on artificial intelligence techniques.

It is proposed in H3 that a system using an OCC combined with AI-based image pro-
cessing algorithms can track and predict user movements within an indoor environment.
Computer vision combined with NNs would allow the cameras to monitor many users
and receive signals from their wearable sensors. Predictive modeling further enhances
the system’s ability to predict movements and optimize applications such as positioning,
tracking, and user identification.

This objective is supported by P3, where YOLOv8, a CNN-based object detection
algorithm, is utilized to identify and track multiple wearable LED transmitters in dynamic
environments. The study demonstrates the ability of OCC in providing communication
and tracking capabilities.

1.4 Organization of the document

This thesis is composed of a compendium of indexed journal publications, which serve
as the primary experimental contributions of this work. Each article is included in its
final post-print version, formatted according to the respective journal’s guidelines. To
provide context for the project and its methodologies, review relevant literature, outline
the foundational principles of the research, and detail the experimental design, the
thesis includes preliminary chapters prior to the presentation of the articles.
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Figure 1.4: Thesis structure with the contents of each chapter.

This document is organized as illustrated in Figure 1.4 and follows the structure
outlined below. Chapter 1 states the main objectives of the work. Chapter 2 presents a
literature review of OCC in wearable sensor networks, emphasizing its applications and
challenges. Chapter 3 discusses the principle of OCC and the technologies implemented
in this thesis. Chapter 4 describes materials and methods, such as the experimental
design, the digital signal processing (DSP), the image processing techniques applied,
the object detection algorithm developed, and the exercise analysis. The following
chapter, Chapter 5, contains the results in the form of a compendium of publications
discussing experiments conducted with OCC using wearable LEDs. Finally, Chapter 6
summarizes the conclusions drawn from the research along with the major contributions
and gives possible directions for future research.

1.5 List of publications

The research carried out during this thesis resulted in the publication of three articles in
indexed journals and five papers in conference proceedings. Additionally, the author con-
tributed as a secondary collaborator to two other conference papers in partnership with
fellow researchers. The following sections provide a complete list of these publications.

1.5.1 Journal articles

The publications included in the compendium (see Chapter 5) are entitled as follows:

• Niarchou, E., Matus, V., Rabadan, J., Guerra, V., Perez-Jimenez, R. (2024).
“Optical Camera Communications in Healthcare: A Wearable LED Transmitter
Evaluation during Indoor Physical Exercise,” MDPI Sensors, 24(9):2766.

• Niarchou, E., Eollos-Jarosikova, K., Matus, V., Perez-Jimenez, R., Zvanovec, S.,
Komanec, M., Rabadan, J. (2024). “Experimental evaluation of wearable LED
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strip and side-emitting fiber for optical camera communications systems,” Optics
Express, 32(14), 25, 091–25, 103.

• Niarchou, E., Usmani, A.F., Matus, V., Rabadan, J., Guerra, V., Alves, L.N.,
and Perez-Jimenez, R. (2025), “CNN-Based Human Detection and Identification
in Indoor Optical Camera Communication Systems Using a Wearable LED Strip.”
IET Optoelectronics, 19: e70005. https://doi.org/10.1049/ote2.70005

1.5.2 Conference proceedings

The camera-ready conference proceedings are included in the Appendix A, and are
entitled as follows:

• Niarchou, E., Matus, V., Rabadan, J., Guerra, V., Perez-Jimenez, R. (2023).“Ex-
perimental Evaluation of LED-Based Wearable Transmitter for Optical Camera
Communications Systems” in 2023 17th International Conference on Telecommu-
nications (ConTEL), Graz, Austria, 11-13 July 2023.

• Niarchou, E., Matus, V., Perez-Jimenez, R., Rabadan, J., Guerra, V. (2024).“Ex-
perimental Evaluation of LED-Based Wearable Transmitter for Optical Camera
Communications Systems” in 2024 14th International Symposium on Communi-
cation Systems, Networks and Digital Signal Processing (CSNDSP), Rome, Italy,
17-19 July 2024.

1.5.3 Collaborations

The following list contains articles in which the author has participated as a collaborator,
included in the Appendix B.

• Younus, O., Niarchou, E., Teli, S., Ghassemlooy, Z., Zvanovec, S., Le Minh,
H. (2022) “Near-Infrared based Optical Camera Communications” in 2022 13th
International Symposium on Communication Systems, Networks and Digital Signal
Processing (CSNDSP), Porto, Portugal, 20-22 July 2022.

• Eollos-Jarosikova, K., Neuman, V., Niarchou, E., Gomez-Cardenes, O., Zvanovec,
S., Perez-Jimenez, R. (2023) “Pilot Experiments of Side-Emitting Fiber-Based
Optical Camera Communication for Wearable Applications” in 2023 4th South
American Conference On Visible Light Communications (SACVLC), Santiago,
Chile, 8-10 November 2023.
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2 Literature review: a
state-of-the-art analysis

This chapter provides a comprehensive literature review of OCC technology within the
context of wearable sensor networks. It outlines the applications of OCC technologies
with wearable devices and the current challenges that need to be addressed. A more
specific review of related works is provided in the individual papers.

OCC technology, a branch of VLC technology [2],[3], has attracted interest in
engineering and scientific communities due to the use of cameras as optical receivers
instead of conventional photodiodes (PDs). With the growing number of devices that
have built-in complementary metal oxide semiconductor (CMOS) cameras, such as
smartphones, laptops, and tablets, OCC technology has become increasingly viable,
because these cameras are more cost-effective than charge-coupled device (CCD)
cameras. CMOS cameras, such as those in modern smartphones are capable of
capturing high-resolution photos and videos, with an average viewport resolution of
360×800 px [28], which translates into an actual resolution of 1080×2400 px (Full High
Definition). Their recording speed of 30-60 frames per second (fps) or higher, provides
data rates in the range of 10 bps-100 kbps, which is more than adequate for low-speed
applications [29] and IoT systems [4]. One critical aspect of OCC technology is the
type of camera’s image acquisition mechanism, which can be categorized into rolling
shutter (RS) or global shutter (GS) (as will be further analyzed in the next chapter),
which affects the data rate or the link ranges of OCC systems [3], [30].

Wearable devices, due to their mobility and compact design, can serve as mobile or
semi-mobile nodes within WSNs [31]. Each wearable node includes low-power sensors, a
wireless transceiver, electronic processing elements (i.e. microcontroller) and the power
supply unit, which must be miniaturized, lightweight and long lasting.

The field of wearable devices has received increased popularity due to the widespread
availability of consumer electronics such as smartphones, smartwatches, smart rings,
fitness bands, smart glasses, smart clothes, and medical patches. These devices are
mobile electronic devices that can be worn as accessories, attached to clothing, or directly
on the body and are often designed to be lightweight and compact, offering convenience
to users and seamlessly integrated into daily life without disrupting normal activities
to measure heart pulse, acceleration, temperature, oxygen, and sugar levels. Typically,
they are equipped with sensors, processors, as well as communication capabilities, with
the aim of providing specific functionalities, such as recognizing human activities, health
monitoring and fitness metrics [32], [33], [34], [35], [36].

Recent advances in stretchable conductive inks and hybrid 3D printing have enhanced
wearable devices through the potential for producing soft, flexible electronics [37].
This technique combines direct ink writing of conductive materials with automated
component placement, to achieve seamless integration of electronic circuits. Wearable
sensors therefore become flexible, long-lasting, and adaptive, making them ideal for
wearable electronics applications, soft robotics, and biomedical devices.

Despite their utility, most commercially available wearables rely on RF technologies,
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such as BLE or near-field communication (NFC) for data transmission [38]. However,
these technologies face challenges related to the potential health effects of exposure
to electromagnetic radiance, limited range, security, electromagnetic interference, and
spectrum availability. To overcome these limitations, by replacing the RF modules with
LEDs, OCC enhances security, reduces electromagnetic interference, and provides a
more efficient and reliable alternative for wearable sensor networks.

2.1 Applications of wearable sensors
To date, only a limited number of research works have explored the integration of
wearable sensors with LEDs as transmitters. In the field of OWC, an all-optical
bidirectional wireless communication system has been proposed in [39] for health
monitoring that used infrared (IR) for the uplink and visible light (VL) for the downlink,
which evaluated the transmission of sensor data from extreme positions, such as the ankle,
considering variations in transceiver orientation due to random body part mobility, and
addressed trade-offs between emitting power and data rate to maintain a given quality
of service. Furthermore, the performance of an optical code-division multiple access
in extra wireless body-area networks, which also used an IR uplink, has been analyzed
in [40], which evaluated the impact of multiple access interference and link outages
due to line-of-sight (LOS) blockages, showing that random Tx orientations degrade link
performance, especially at greater distances from the access point (AP). It demonstrated
that using multiple APs improves link reliability, despite the increased system complexity,
and highlighted the beneficial role of first-order reflections in enhancing link performance.

Particularly in the field of OCC, wearable sensors are mostly used in healthcare
applications. For instance, in [41], a sensor patch collected a patient’s heart rate and
oxygen saturation data and employed an LED array modulated using color intensities to
transmit data to a CCTV camera, for real-time remote monitoring, ensuring reliable
reception regardless of LED orientation. A neural network (NN) was utilized to detect
individual LEDs, while another NN-based feature extraction method accurately identified
colors. The study achieved a data rate of 4.68 kbps with a low bit-error rate (BER) at
1 m and 1.172 kbps at 3 m.

Similarly, in [42] several wearable sensors transmitted multiple clinical data, including
electrocardiogram (ECG), photoplethysmogram, and respiration signals, in a home-
based rehabilitation system via an LED light source and received by a smartphone
camera. The reliability of the system was evaluated by analyzing the relationship
between BER and signal-to-noise ratio (SNR) under different lighting conditions. An
Android mobile application was also developed for local interface, data analysis, and
cloud-based clinician supervision.

Additionally, in [43] body sensors data were transmitted to a CCTV system, in a
deep learning-based OCC system integrated with the You Only Look Once (YOLO)
object detection model, for real-time health monitoring and indoor location tracking of
multiple patients with an LED array. The data were securely transmitted to an edge
server and displayed via a web interface for real-time patient updates.

OCC can also be integrated with RF technologies, leading to hybrid systems with
enhanced robustness. In scenarios where OCC connections may be disrupted by the
mobility of the nodes, BLE integration guarantees seamless communication. For

10



Applications of wearable sensors Section 2.1

instance, in [44], OCC integrated with BLE was used for efficient, remote, real-time ECG
transmission. A hybrid patch circuit was developed for the collection and transmission
of ECG data through an LED array and BLE transmitter while minimizing power
consumption. A network selection algorithm was proposed to provide reliable network
access, using fuzzy logic for optimal camera selection in multi-camera scenarios. A
handover mechanism was also added in order to ensure continuous connectivity for
mobile patients. The simulation results demonstrated that the hybrid system improved
network selection and reduced outage probability in eHealth applications. Similarly in
[45], OCC integrated with BLE was used for real-time health monitoring by transmitting
data from body sensors to a central gateway. A hybrid OCC/RF architecture was
proposed, where an access point selection algorithm prioritized OCC given its high-
performance characteristics. The selection mechanism included parameters such as the
angle of view of the camera and the distance between the camera and the patient. The
simulation results have proven the feasibility of the proposed system, thus demonstrating
its potential to facilitate efficient and reliable health data transmission in eHealth
applications.

This thesis proposes the application of OCC in wearable sensor networks. In particular,
an LED-based wearable transmitter can be implemented as shown in the example in
Figure 2.1, with the sensing node consisting of an MCU and a power source, to transmit
data collected by the sensors via LEDs to a surveillance camera, enabling monitoring
purposes. This system can be used in high-risk environments where monitoring of
physiological health is critical, such as in industries, mining, construction, and by safety
and airport ground personnel. The integration of LEDs into wearables or uniforms not
only enhances visibility and comfort for the user but also enables transferring critical
health information, thus helping to bring about better protection and health monitoring
in challenging environments.

LEDMCU

Example in wearablesSensing node block

Figure 2.1: Example of sensor node with LED transmitter in wearable sensor networks.

In addition, this system can be applied to monitor the activities of people - both
healthy and with chronic health conditions - at homes, gyms, ambulances, hospitals,
intensive care units, rehabilitation centers, and nursing homes for the elderly, as shown
in Figure 2.2. It can also be used for baby monitoring, providing a non-intrusive solution
to track vital signs, movements, and sleep patterns to ensure their safety and well-being.
Specifically, it can aid in rehabilitation processes, sports training, elderly treatment,
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even in the earliest detection of musculoskeletal or cognitive disorders, as well as in
assessing falls and balance.

Applications

Hospital

Home

Gym

Mining

Baby 
monitoring

Figure 2.2: Possible applications of our system.

The analysis of human exercise routine data is a research area that can provide
valuable insights into health monitoring. For instance, in [46] a smart exercise bike was
developed for Parkinson’s rehabilitation to investigate the impact of cycling on changes
in motor skills for riders with Parkinson’s disease, explaining how variability analysis of
biomechanical and physiological parameters during exercise can predict improvements
in motor function. Furthermore, in [47] a camera-based monitoring system provides
insights into cardiovascular health and optimized training protocols, indicating that
individuals who exercise regularly have a lower resting heart rate, reduced heart rate
variability, less fluctuation in heart rate and heart rate variability during exercise, and
quicker heart rate recovery post-exercise compared to non-exercisers. Similarly, in [48] a
video-based heart rate detection system was proposed for the monitoring of individuals
during intensive exercise, demonstrating precise heart rate monitoring throughout the
entire fitness cycle. Additionally, in [49], an autonomous system was designed to monitor
the presence patterns of elderly individuals, showing that otherwise hidden but relevant
events (e.g., fall incidents and irregular sleep patterns) can be detected and reported
to the caregiver, enabling a targeted intervention. Moreover, in [50], a system was
proposed capable of determining body posture and identifying the physical condition
and health of users, thus saving the trouble of manual angle measurement in traditional
physical therapy.

Behavioral analysis has also been explored using machine learning (ML) techniques.
For instance, in [51] typing patterns were examined to detect depressive disorders and
contribute to a non-invasive, high-frequency tracking of tendencies toward depression
during everyday life. Similarly, [52] analyzed keyboard interaction in the evaluation
of clinical conditions such as multiple sclerosis, showing that combining keyboard
interaction data with ML techniques can be used as an unobtrusive monitoring tool to
estimate various levels of clinical disability in individuals with multiple sclerosis based
on their daily activities. Keystroke dynamics have also been studied in relation to early
loneliness detection and intervention development in [53], indicating that people with
very high levels of loneliness tended to use mobile keyboards during late-night hours and
showed little variation in smartphone usage behavior between weekdays and weekends.
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2.2 Challenges
Despite the aforementioned advantages of OCC technology over other technologies
- thanks to the use of cameras as receiving tools and their ability to capture details
beyond the capabilities of the human eye — there are still some challenges that need
to be addressed.

2.2.1 Transmitter detection and tracking

The detection process of the transmitting source within the image frame, defined as
the region of interest (ROI), as well as its tracking throughout a video sequence, are
major challenges in OCC systems and computer vision [20], [54], because cameras lack
the human ability to detect, recognize, and track objects within images or videos. As a
result, recognizing human activities in surveillance systems is a consequent challenge, in
numerous practical applications, including elderly care monitoring, rehabilitation activity
tracking, sports performance analysis, and identification of security intrusions [55], [56].

In scenarios involving low visibility, multiple users, and user mobility it is important
the accurate detection and tracking in communication and monitoring systems. In low
visibility environments, it is challenging to accurately detect and continuously track
the users, especially when their LEDs are off. Furthermore, systems must differentiate
between overlapping signals and track each transmitter effectively to avoid interference
when dealing with multiple and mobile users. Ensuring the system’s performance in
such scenarios requires advanced ML strategies and the use of multiple camera receivers
that capture from different angles.

The detection and tracking processes rely on algorithms that employ pattern recogni-
tion techniques, such as correlation analysis or ML methods, to identify the transmitter’s
ROI within the image effectively. However, the computational demands of these algo-
rithms could affect the link latency. The method of ROI detection differs depending on
the camera’s image acquisition mechanism, RS or GS, as shown in Figure 2.3. Com-
mercial CMOS cameras implement the RS technique for image acquisition, exposing
rows of pixels sequentially, and sampling light at different times as the shutter remains
open. This creates illuminated stripes in the image based on the light source’s state
during row exposure. In these cameras, the ROI is detected in the image as a template
corresponding to the LED’s transmitted signal, through a correlation process (Chapter
4). On the other hand, GS cameras, expose all pixels simultaneously when capturing a
frame, resulting in light sampling at the camera’s frame rate (typically 30–120 fps). In
these cameras, the ROI is identified as the transmitter’s location within the frame, with
ML methods. The GS technique is primarily implemented by CCD cameras. However,
depending on the data rate requirements, it can also be employed by CMOS cameras
[3].

2.2.2 OCC in resource-constrained environments

The combination of computer vision, a subfield of artificial intelligence (AI) that will be
further analyzed in the next chapter, with OCC functionality is a challenging issue, re-
sulting from the above challenge to detect the transmitter’s ROI and track it throughout
a video sequence. In resource-constrained environments, where computational power
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ROI

Image frame in GS effectImage frame in RS effect

ROI

Figure 2.3: The detected region of interest (ROI) within an image frame, captured in different
acquisition mechanisms, rolling shutter (RS) and global shutter (GS).

is limited, computer vision complements image processing techniques through neural
networks (NNs).

Object detection [57], an important and challenging field in computer vision, serves
as the foundation for more advanced applications, such as image segmentation [58],
object tracking [59], and behavior recognition [60]. Convolutional Neural Networks
(CNNs) have been widely used for object detection since the 1990s and have proven
effective for deep learning-based tasks in the field [61]. Beyond object detection,
CNNs have been applied in a variety of areas, such as image and pattern recognition
[62], speech recognition [63], video analysis [64], human activity recognition [65] and
human fall detection [66]. Lately, CNN-based object detection has been applied in
autonomous driving [67], virtual reality (VR) [68], and intelligent video surveillance
[69], demonstrating its potential for OCC applications, especially in dynamic and
resource-limited environments.

The application of neural networks in OCC has demonstrated significant improvements
in system performance. For instance, in [70] an NN-based decoder was introduced to
enhance the decoding of the modulation scheme in OCC, demonstrating robustness
against blurring, noise effects, and various channel conditions. NNs have also been
implemented in [71] to improve the performance of a smartphone camera-based device-
to-device system, by exploiting two-dimensional data transmission capability in OCC. In
[72], NNs estimate camera position using coordinate information transmitted by LED,
and in [73] trained neurons perform repetitive analysis to provide efficient and reliable
motion detection in OCC. Moreover, in [74] an NN-based technique can estimate target
vehicle’s position in OCC.

CNNs have been employed in various OCC applications. For instance, in [75] CNN
has been applied to vehicle systems for recognizing and detecting LED array patterns of
target objects or ROIs, which provides correct recognition even at remote distances, as
well as signal blockage and adverse weather conditions. Similarly, in [76] CNN was used
in the mobile OCC decoding scheme to extract features from bright and dark stripes,
reversing stripe distortion and reducing bit error rates (BERs) in dynamic environments.
Also, in [77] a CNN was used at the OCC receiver to estimate the optimum decoding
strategy, enabling efficient decoding of data symbols from images of LED transmitters
under varying real-world scenarios.

Among these, the You Only Look Once (YOLO) algorithm, a CNN-based framework,
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firstly introduced in 2016 [78], is regarded as a cutting-edge solution for real-time object
tracking.

To date, the YOLO architecture has evolved through eleven versions, from YOLOv1
to YOLOv11, with each version addressing specific challenges in object detection. The
first generation of YOLO in [79] was processing images at high speed (45 fps for the base
model and 155 fps for the smaller model), while in [80] was modified by enhancing the
loss function, adding a spatial pyramid pooling layer, and incorporating a convolutional
inception model, resulting in better object detection performance. Later, YOLOv2 was
proposed for real-time human detection in [81].

An improved method of YOLOv3 was used in [82] for initializing the width and
height of predicted bounding boxes, which improves convergence speed, selects more
representative initial values, and achieves better performance in terms of recall, mean
average precision, and F1-score compared to the original method. In [83], YOLOv3
was used for object detection in image datasets, while YOLOv4 was applied to video
datasets, for detecting multiple objects in video surveillance, achieving accuracy of 98%
and 99%, respectively. YOLOv4 was applied in [84] with image processing techniques
for the extraction of the color barcode area from electronic displays for the OCC system.

YOLOv5 was applied in [54] for LED detection and decoding in a multiple-input
multiple-output camera on–off keying (MIMO C-OOK) scheme that increases the data
transmission rate and decreases the BER effectively, under long-range and mobility
constraints.

YOLOv6 was utilized in [85] for real-time object detection, with transfer learning to
balance detection accuracy and inference speed, to enable efficient operation in practical
scenarios and pave the way for future applications in IoT and vision aid systems for
visually impaired individuals.

YOLOv7 was used in [86] for small target detection of aircraft, vehicles, and ships
in remote sensing images using image segmentation and high-level detection features,
where achieved superior performance with an average precision of 77%, outperforming
all YOLOv5 variants in accuracy and with higher robustness.

YOLOv8 was applied in [87] for real-time OCC systems operating under high-mobility
conditions, to showcase the flexibility of the proposed approach in a rapidly evolving
setting. Moreover, in [43], YOLOv8 proved effective for real-time health monitoring and
indoor location tracking applications, mainly for Internet of Medical Things (IoMT),
showing its capability in numerous fields. In [88] the YOLOv8-based transmitter tracking
algorithm was proposed for precise tracking of light sources in dynamic environments,
with a deep learning decoder in order to reduce BER values for a 2D-MIMO scheme, and
thereby to improve the overall system performance. Versions v1 to v8 were evaluated
in [89] in the context of human fall detection, taking into account their structures,
datasets, metrics, and performance, with focus on advances from YOLOv5 onwards.

YOLOv9 was compared to its previous version in [90] for thermal-based person
detection in surveillance and monitoring applications, whereas it was used alone in [91]
for real-time monitoring of vehicles in urban surveillance systems. In [65] YOLOv9 was
evaluated for human activity recognition, showing significant improvements in accuracy
(98.23%), precision (98.53%), recall (98.65%), and F1-score (98.75%) over previous
versions.

YOLOv10 was evaluated in [92] for real-time pedestrian detection in autonomous
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vehicles. In [93] for underwater object detection, improving detection achieving a
3.04% improvement in mean Average Precision (mAP). In [94] an improved version of
YOLOv10 was used for infrared image classification and detection of power equipment,
achieving significant improvements in detection performance with a 13.3% higher mAP
than the original version.

The latest version YOLOv11 was used for miner detection in underground coal mines
in [95].

The next chapter provides the theoretical framework, presenting the fundamental
technical knowledge on which this thesis is based.
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3 Theoretical Framework

This chapter provides the theoretical framework on which this research and its resulting
published articles are based. It covers fundamental concepts such as signal modulation
schemes that exploit the characteristics of the devices implemented and AI strategies for
optimizing OCC receivers. The key technologies implemented in the transmission and
reception stages of the OCC systems, including LED-based transmitters and camera
receivers, are also presented.

3.1 Fundamentals

This subsection presents the essential principles of OCC, including signal modulation
schemes that exploit the characteristics of LED-based transmitters and camera-based
receivers, as well as the role of AI in optimizing the performance of the proposed systems
and introducing new capabilities.

3.1.1 Modulation schemes

Modulations and coding schemes are the key drivers in the performance of a communi-
cations system. Unlike the conventional photodetector (PD)-based VLC systems, OCC
systems use a camera as a receiver. Hence, the light emitted from LEDs is captured
as images or video frames by the camera. Consequently, the conventional modulation
schemes that were designed for PD-based VLC systems may not be suitable for OCC
systems. Therefore, new modulation schemes are required to accommodate both
lighting and OCC functionalities. Moreover, since OCC operates as an asynchronous
communication system, synchronizing requires special methods. The OCC system
primarily utilizes four modulation schemes: on-off keying (OOK), undersampled-based
modulation, rolling shutter (RS) effect-based modulation, and liquid-crystal display
(LCD)-based modulation [2].

OOK is the simplest amplitude shift keying (ASK) modulation, where digital data
are represented by the presence or absence of a carrier wave [96]. In the simplest
form, the presence of a carrier for a certain interval of time represents a binary one,
while the absence of a carrier represents a binary zero, as shown in Fig.3.1. Since
communication is based on light modulation, OOK is highly compatible with VLC
systems. A straightforward method to achieve this is by switching the LED on and
off, so that the receiver detects the light signals as binary 1 or binary 0, respectively.
However, due to the relatively low frame rate of commercial cameras (e.g., ≤ 60 fps),
OOK can introduce flickering. To ensure flicker-free lighting, the modulation frequency
must be higher than the critical flicker fusion frequency (CFF) of the human eye (i.e.,
50-90 Hz [97]). Additionally, RGB OOK modulation can be used to enhance data rates
by utilizing multiple color channels for transmission [98].
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Figure 3.1: On-off keying (OOK) modulation scheme.

Undersampled modulation [99], a type of subcarrier intensity modulation (SIM),
enables flicker-free communication by transforming a baseband signal into a passband
signal with a frequency above the CFF. A special case of this is undersampled frequency
shift OOK (UFSOOK), in which distinct square wave patterns trigger modulation of the
baseband signal into higher frequencies to represent binary 1 or 0. The camera undersam-
ples the signal, detecting steady or blinking states of the LED to decode the transmitted
data. Several variations of undersampled modulation have been proposed for greater
spectral efficiency, such as undersampled phase shift OOK (UPSOOK), undersampled
m-ary pulse amplitude modulation (UPAM), and modulation with wavelength-division
multiplexing (WDM) or color shift keying (CSK). These schemes follow a similar struc-
ture with a baseband modulation module and a square-wave SIM modulator. WDM
creates multiple parallel transmission channels, different from each other in the modula-
tion scheme, while CSK uses RGB LEDs to produce non-flickering white light. These
techniques, do not require high frame rate cameras, thereby enabling long-distance, and
high-spectral-efficiency communication and enhancing data rates through techniques
such as multi-amplitude and multi-wavelength transmission.

RS effect-based modulation extracts information from all pixels of each video frame
by exploiting the RS effect of the CMOS camera. In this scheme, the camera scans the
image row by row and records dark and bright bands created by the flickering LEDs.
When the LED is on, the camera captures the illuminated row, and when the LED is
off, a dark row is captured. The width of these bands depends on symbol duration
and scanning rate, from which a waveform can be extracted from the video frame,
representing multiple bits of information. This modulation offers higher data rates
compared to undersampled-based modulation. However, synchronization is necessary
between the LED state and camera capture, as not all data blocks may be captured
in the same frame by the camera. Other protocols such as Manchester coding and
block detection can ensure complete data extraction [100]. Experiments show that this
scheme can achieve faster data rates than the camera’s frame rate, with additional
techniques like binary frequency shift keying (BFSK) modulation and frequency division
multiple access (FDMA) allowing multiple LED-based transmitters [101].

In LCD-based OCC, information is transmitted using dynamic 2D images, such as
quick response (QR) codes [102], rather than LED lamps. A smart device with a built-in
camera captures these changing images to wirelessly receive data. Despite the low frame
rate of commercial smart devices, high data rates can be achieved using large QR codes.
By incorporating RGB coding, the data rates may be tripled, thereby improving the
communication speed. However, the system requires the receiving device be stationary
to avoid motion blur, which can hinder decoding. Invisible codes [103] embed data
within images or video frames in a way that the coding is invisible to human perception
and utilizes spatial and temporal modulation to reduce visible artifacts. These codes
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allow screen-camera communication but are limited to short-range applications (typically
10–110 cm).

3.1.2 Artificial intelligence for optical camera communications

AI plays an important part in enhancing data transmission, improving signal detection,
and optimizing performance of the receiver under various environmental conditions.
AI-driven techniques, particularly machine learning (ML) and deep learning (DL), have
significantly advanced OCC [104], [105].

Specifically, neural networks (NNs) have been key to the enhancement of image
processing in smartphones (supported by Google [106], [107]), implemented with neural
processing units (NPUs) [108] for AI-based accelerated processing.

Machine learning techniques [109], especially supervised and unsupervised learning
models, have been assessed to enhance OCC performance. These models are trained
on large datasets of captured optical signals, detecting and predicting transmission
patterns in different lighting conditions, motion scenarios, and signal interference. With
classification and regression algorithms, ML models enhance error correction, symbol
detection, and channel estimation.

Deep learning, a subset of ML based on artificial neural networks, has shown potential
in OCC [110], [87] as it involves processing a huge amount of visual data. NNs,
particularly Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
networks [111], have been modeled temporal dependencies in optical signals enhancing
robustness in a dynamic environment. These deep learning models improve the decoding
of modulated signals by learning complex relationships between transmitted and received
light patterns.

Although NNs and other pattern-recognition algorithms have been developed over the
past 50 years, CNNs have developed significantly in recent years. The improved network
structures of CNNs lead to memory savings and reduced computational complexity and,
at the same time, offers better performance for numerous applications.

While there are CNN models in various configurations, their fundamental architecture
has a fixed structure. As detailed in [61], the architecture consists of an input layer,
alternate convolutional and pooling layers, one or more fully connected layers, activation
functions, and a final output layer.

Image classification [112] in computer vision is an important challenge that involves
discriminating among objects based on their visible characteristics. The main steps
are image preprocessing, feature extraction, and classification using the pre-trained
model, with feature extraction considered to be the most critical. Traditional methods
may perform well on simpler tasks and fail on more complex classifications. CNNs, on
the other hand, use convolution kernels to learn feature representations from big data
sets automatically and offer better generalization for complex tasks in contrast with
traditional methods dependent on manual feature extraction.

As mentioned in the previous chapter, object detection can solve complex tasks.
Object detection and recognition can be considered to be two major steps: first, to find
and localize the positions of target objects in the candidate image, and then to classify
the detected objects into predefined classes. Unlike image classification, where attention
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is focused on the whole image, an object detection approach focuses on certain regions
of interest to recognize particular object classes.

The known strategies for object detection are the region-based object detection
algorithm (two-stage detectors) [113] and the regression-based object detection algorithm
(one-stage detectors). Two-stage detectors scan the whole image through multiple
fixed-size sliding windows for the generation of region proposal boxes. These proposals
are then selected for the localization and classification tasks that will detect objects
inside the selected regions. On the other hand, one-stage detectors eliminate the need
for region proposals by merging three operations into a single CNN—feature extraction,
object classification, and position regression—thereby simplifying the object detection
into an end-to-end regression task. A typical algorithm of this kind is the YOLO
algorithm.

The core idea of YOLO [114] is to divide the image into a number of cells, where
each cell predicts the coordinates of bounding boxes, classifies the objects in those
boxes, and assigns confidence scores to its predictions. These overlapping boxes are
pruned with a non-maximum suppression algorithm to enhance the result, maintaining
only the most relevant predicted boxes for distinguishing objects. The YOLO-based
object detection model training process involves several steps for accurate and efficient
performance [115], [116].

• Data collection and annotation. The first step is to create a dataset of images
with the target objects taken under different conditions. Every image needs to be
annotated with bounding boxes, known as anchor boxes, and the correct class
names so that the model gets important information regarding object locations
and identities. Properly annotated datasets ensure the model learns to detect
and classify objects correctly.

• Data preprocessing. The next step is then carried out to standardize and en-
hance the dataset. It includes steps for resizing images to a uniform dimension,
normalization of pixel values, and data augmentation techniques like rotation,
scaling, flipping, etc. These augmentations help in making the model robust
against different appearances of objects in terms of light condition or background
noise and hence, enhancing its generalization ability.

• Model configuration. After preprocessing select YOLO architecture versions
according to the application requirements. Next, the model has been tuned with
optimized hyperparameters like learning rate, batch size, and number of training
epochs. On another front, the anchor boxes were defined in such a way that their
dimensions correlate well with of the objects from the dataset so as to improve
an object’s detection accuracy.

• Training. Once the model is configured, training is started on the prepared dataset.
The model learns to predict bounding boxes and class probabilities by iteratively
minimizing a predefined loss function. The model’s detection ability improves
after a number of iterations. Training continues until it has stabilized, according
to the evaluation metrics on a validation set.
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• Validation. The validation set helps to enhance the training period and as well
acts as a litmus test for ensuring that the model performs well on unseen data. A
separate validation set is used to detect overfitting and fine-tune hyperparameter
values, ensuring that the trained model generalizes well to different datasets.
The performance of the system for prediction, detection, and tracking can be
evaluated using appropriate metrics. However, relying on a single evaluation
metric is insufficient for a comprehensive assessment of the model’s performance
[95], [89]. Key evaluation metrics include:
Precision in object detection is the ratio of correctly identified objects. It is
calculated by dividing the number of true positives (TP) (correctly identified
positive instances) by the sum of true positives and false positives (FP) (incorrectly
identified positive instances). Hence, the precision score would vary between 0
and 1, as expressed in Eq. 1.

Precision = True Positives
True Positives + False Positives (1)

Recall measures the ratio of actual positive instances that were correctly identified
by the model. It is measured by dividing the number of TP by the total of TP
and false negatives (FN) (incorrectly classified negative instances). The recall
score ranges from 0 to 1, as demonstrated in Eq. 2.

Recall = True Positives
True Positives + False Negatives (2)

The F1-score is a combined metric which assesses the accuracy of a model by both
precision and recall. It provides a balanced measure between correctly identifying
instances and the elimination of false detections. The F1-score ranges from 0 to
1, and higher values indicate superior performance, computed using the Eq. 3.

F1 Score = 2× Precision×Recall
Precision + Recall (3)

The mean average precision (mAP) at 0.5 is an important metric used to assess
the model’s overall accuracy, combining both localization and classification perfor-
mance to measure accuracy across different classes. It is determined by computing
the average of the average precision (AP) values for all classes. Initially, the AP
for each class is calculated as the area under the precision-recall curve. Afterward,
the mAP is obtained by averaging the AP values across the different classes. The
formula is Eq. 4:

mAP = 1
N

N∑
c=1

APc (4)

where N represents the total number of classes, while APc refers to the AP for
class c. The intersection over union (IoU) formula, given in Eq. 5, is used to
calculate the overlap between predicted and actual bounding boxes [117].
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IoU = Area of Overlap
Area of Union (5)

The confusion matrix is a valuable tool in machine learning, offering a compre-
hensive visualization of a classifier’s performance beyond conventional accuracy
metrics. It enables the user to visualize the model’s strengths and weaknesses,
particularly in identifying specific error patterns and biases towards certain classes.
By analyzing the different types of errors in the matrix, developers can make
informed adjustments to enhance model accuracy and robustness by optimizing ei-
ther recall or precision based on application needs. The structure of the confusion
matrix is shown in Fig. 3.2.

Real classes

D
et

ec
te

d 
cl

as
se

s
Positive     Negative

Po
si

tiv
e 

   
N

eg
at

iv
e

TP FP

TNFN

Figure 3.2: Confusion matrix.

• Testing and deployment. Finally, in the testing and deployment phase, the trained
model for the purpose of object detection on the specified test set to prove
its validity. The model would be deployed only after validation for the object
detection purpose on novel images/video streams, enabling real-time predictions
for practical applications.

3.2 Technologies

This subsection explores the key technologies behind OCC, focusing on the critical com-
ponents of the system: the transmitters and receivers. It examines various transmitter
technologies and different types of cameras based on their internal shutter mechanism.

3.2.1 Transmitters

Among the various light sources in the existing lighting infrastructure, such as fluorescent
lamps, incandescent bulbs, halogen lamps, and LEDs, only the latter can provide data
communication. In contrast to other lighting sources, LEDs, due to their ability to
switch on and off at high rates imperceptible to the human eye, their higher energy
efficiency, compact size, durability, and their ability to operate at visible spectrum, can
serve as transmitters in VLC and OCC systems [2].

LED is a semiconductor device that generates light through electroluminescence,
a phenomenon in which electrons combine with electron holes in the semiconductor
material to release energy in the form of photons. The emitted light’s wavelength,
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and thus its color, depends on the semiconductor material’s energy band-gap, with
compounds such as Gallium Arsenide (GaAs) and Gallium Phosphide (GaP) commonly
used. LEDs come in various forms—such as phosphor-converted LEDs (pc-LEDs),
multi-chip LEDs, organic LEDs (OLEDs), and micro-LEDs (µ-LEDs)—each offering
unique properties that make them suitable for diverse applications [118].

White light LEDs are the most widely used in illuminating infrastructure, which is the
basis of VLC and OCC concepts. Unlike other LED colors, which are determined by the
semiconductor materials, white light is generated through three main techniques [119].
The first method uses a blue LED light bulb coated with a phosphor layer. The blue
LED emits photons that pass through the phosphor, which partially converts the light
into yellow. The yellow and blue photons together produce white light. The second
method uses ultraviolet (UV) LEDs and RGB phosphors for the perception of white
light. The third method uses RGB LEDs, which, with varying hues of red, green, and
blue light output, have the capability of not only producing white light but also other
colors.

According to the type of driving source, the white LED driver circuit can be divided
either into voltage-driven or current-driven sources [96]. The LED circuit typically
consists of a digital converter, a complementary metal oxide semiconductor (CMOS)
transistor driver, which is a type of metal oxide semiconductor field effect transistor
(MOSFET), implemented as a switching element, and the LED itself, as shown in
Figure 3.3.

LEDDriverDigital
Output

Modulated 
Data

Light
symbols

Figure 3.3: Configuration of a typical LED.

3.2.2 Receivers

In OCC, the receiver converts LED light signals into digital data. Receivers typically
are the camera sensors found in smartphones, laptops, tablets, or CCTV cameras.

Cameras’ shutter mechanism regulates the exposure of the pixels internally in the
image sensor (IS). Image sensors are classified into two types based on their architecture:
CCD and CMOS [120]. CCD sensors are physically larger in size since they have a
proportionately larger analog-to-digital converter (ADC) than CMOS sensors. Due to
this reason, CCD sensors are rarely used in smartphones. On the other hand, CMOS
cameras can offer advantages such as low power consumption, a more compact IS,
faster data readout, low cost, and high programmability.

A typical CMOS-based camera consists of an imaging lens, a color filter array (CFA),
an image sensor, and an image processing unit (IPU) [121], [122], as shown in Figure
3.4.

The imaging lens is a precision optical component that projects the light from a
source or a reflected object onto IS. The field of view (FOV) of the camera is determined
by the lens’ focal length and the sensor size, while the working distance indicates the
optimum distance for focused image acquisition.

The IS, is typically a CMOS-based active pixel sensor in smartphones, which consists
of a two-dimensional array of photodetectors that detect and incident light and convert
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Figure 3.4: Configuration of a typical complementary metal-oxide semiconductor (CMOS)-based
camera.

it into electrical signals. These image sensors use a CFA of a distinct pattern, most
commonly the Bayer filter. The Bayer filter arranges pixels in a repeating 2×2 block of
one red, one blue, and two green filters, as the human eye is more sensitive to green
light. Thus green pixels are prioritized in order to enhance image quality by capturing
fine details with reduced noise.

Each pixel of the IS captures only red, green, or blue color and forms raw analog
signals which are then read and digitized by an analog-to-digital converter (ADC). The
IPU, a digital signal processor, then builds a colored image by a demosaicing process
(or deBayering), applies white balancing and color correction, and corrects optical
imperfections. The final processed image can be stored and compressed, with additional
processing for autofocus, auto-exposure, and camera control. In the OCC’s context,
the ability to demultiplex RGB signals enables wavelength-division multiplexing (WDM)
with enhanced data throughput, without additional receivers.

There are two image acquisition methods for capturing a still image or video frames,
global shutter (GS) and rolling shutter (RS) [3] [123]. Figure 3.5 shows the frame
capturing process of an OOK transmitted signal (on-off states of an LED) captured by
GS and RS camera’s acquisition mechanism.

In GS cameras, all pixels of the IS begin and end exposure simultaneously, capturing
the entire image at once. While this ensures high-quality image capture for multimedia
applications, it limits OCC to detecting only a single state of the light source per
frame. Since GS cameras sample the optical signal at a rate equal to their frame rate
(typically 30–120 fps) the achievable receiver bandwidth remains low. As a result, OCC
throughput is inherently constrained by the camera’s frame rate, with the maximum
achievable data rate limited by the Nyquist-Shannon theorem [124], meaning that the
sampling rate of the image sensor, which is the frequency at which a row of pixels is
sampled, must be at least twice the rate of the highest signal frequency.

In RS cameras [100] [124] [125], images are captured row by row, meaning different
lines of pixels are exposed at different times to detect light intensity. This row-by-row
scanning process is because modern camera sensors are not capable of reading all
photodetectors in parallel but use electronic signals to activate and reset each row
sequentially. The duration for which each row is exposed to light is known as the
exposure time texp. This sequential exposure causes fast-moving or big objects to
become distorted, creating a motion blur. However, this property is advantageous for
OCC, as it can record multiple light-source changes in a single frame. When the LED
transmitter is modulated at a rate higher than the row sampling time but lower than
the frame rate, distinct bands of intensity appear in the captured image. These bands
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Figure 3.5: Frame capturing process by global shutter (GS) and rolling shutter (RS) camera of
an on-off keying (OOK) transmitted signal.

are a representation of binary data and allow higher data rates than the camera’s frame
rate alone. By using this effect, OCC can achieve multi-kbps throughput.

CCD sensors inherently capture images via the GS, while most CMOS ISs’ exposure
method is based on RS. Nevertheless, RS sensors in hardware can perform as GS when
used with low transmission data rate transmitters. This is because, at low rates, the
signal changes slowly enough that the row-by-row capture of the RS sensor aligns with
the transmitted signal and effectively captures the entire frame as if all pixels were
exposed simultaneously.

The next chapter describes the methodology followed to address the mentioned
objectives of the thesis.

25





4 Methodology

This chapter outlines the methodology employed to achieve the objectives of this thesis,
including the experimental setups, hardware implementations, and data processing
techniques. First, it describes the experimental setups conducted, along with the
transmitter and receiver hardware implemented. Then, it details the steps of the image
processing techniques applied across all experimental setups, the implementation steps
of the YOLO object detection algorithm, and the analysis of exercise data.

4.1 Experimental setups

To align with the objectives stated in this thesis, different experiments were conducted,
to demonstrate the feasibility and performance of OCC-based communication and
tracking in real-world scenarios.

First, the general objective (O1) is to implement OCC links using image sensors
for optical communication in indoor and outdoor environments. To achieve this,
experiments were conducted in both indoor and outdoor environments, as shown in
Fig. 4.1, to test the feasibility of using commercial off-the-shelf cameras embedded
in many devices such as smartphones, or commercial cameras (Raspberry Pi cameras)
for the reception of signals emitted by wearable sensors using optical spectrum image
sensors that implement image processing algorithms and wireless optical communication.
The transmitter and receiver nodes in all experimental setups, utilize LED-based light
sources and CMOS cameras, each incorporating different optical front-ends built from
commercially available components.

Video frame sample

Tx location

LED Tx

Camera Rx

(a) (b)

Figure 4.1: Examples of experimental setups implemented, with the wearable LED transmitter
device and the smartphone camera receiver. (a) In an indoor environment, where the user
engages in physical exercise on a stationary bicycle. (b) In an outdoor environment, where the
user is standing and walking.
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To address the second objective (O2), which is to examine the impact of sensor
positioning and channel conditions on data rate performance, the experimental setups
examined various sensor-node configurations, including different transmitter placements
(static, wearable), orientation (horizontally, vertically), and receiver positions (near-far
distances, different viewing angles), as shown in Fig. 4.2. Measurements were taken
at various distances, ranging from short-range (e.g., indoor room, 20 cm to 4 m)
to long-range (e.g., outdoor 90–120 m), allowing for a comprehensive assessment of
communication performance across different spatial conditions. In addition, it was
analyzed how controlled lighting conditions (ambient light, dark room) and camera
exposure settings influence data reception. The feasibility of multi-user OCC networks
was also tested by assessing the ability of multiple wearable transmitters to transmit
concurrently in the same environment, thus evaluating their interference on network
performance and signal integrity.
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Figure 4.2: Examples of experimental setups implemented. The 2D coordinates of the room (in
meters) represent the camera’s capturing positions, always facing the center of the transmitter
at (0.0, 0.0). (a) Laboratory experimental setup with a yellow line representing the transmitter.
(b) Wearable experimental setup with a person wearing the transmitter on their T-shirt.

Finally, for the last objective (O3), deploying networks with multiple receivers and
AI-based tracking, a multi-camera setup was implemented, where two Raspberry Pi
cameras were positioned in a room to monitor and track multiple users, as shown in
Fig. 4.3. This setup allowed for node recognition and movement tracking by evaluating
different walking patterns (e.g., parallel, lemniscate, and random trajectories). The use
of different RGB color channels for ID transmission further enabled AI-based recognition
of users in a multi-sensor environment.

By analyzing different types of transmitters, camera configurations, and environments,
these experimental setups provided a comprehensive evaluation of the capability of
the OCC system, particularly in wearable communications, tracking, and multi-user
identification applications.

All experiments were performed assuming LoS optical communication between LED-
based transmitters and CMOS camera receivers Fig. 4.4. The optical channel was
described using a simplified power model:PRx = a ·PT x, where a = R(θout,ϕout) ·ARx

with R(θout,ϕout) representing the angular radiation response of the LED and ARx the
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Figure 4.3: Example of experimental setups implemented with the yellow safety jacket with the
LED strip worn by people walking in the room, captured by the cameras placed on the front
and back walls of the room.

effective area of the camera receiver [119]. Instead of developing a detailed analytical or
probabilistic channel model, the OCC link was experimentally evaluated under various
conditions. The impact of external light sources was also considered through indoor
and outdoor experiments, under varying ambient lighting environments.
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Figure 4.4: Line-of-sight (LoS) optical communication model between the LED transmitter
and CMOS camera receiver.

4.1.1 Transmitter equipment

The experimental setups aimed to evaluate different configurations of an OCC system
using wearable LED-based transmitters under various conditions. Across all setups,
the system implemented consisted of digital signal processing hardware and optical
front-ends.

The transmitters consisted of LED-based light sources, including a standard LED
array, white and RGB LED strips, and LED-coupled side-emitting optical fiber, as
depicted in Fig. 4.5. The LEDs were modulated using the non-return-to-zero on-off
keying (NRZ-OOK) technique to encode data. This modulation exploits the switching
digital outputs available in most MCUs, where the packet data is converted into a
voltage signal that drives the LED directly. If the LED’s current exceeds the MCU’s
maximum, a transistor connected to the power source must be implemented to drive
the LED. The transmitters were powered by dedicated power sources and controlled
via microcontrollers (Arduino Nano [126] or Seeeduino Xiao [127]), ensuring consistent
signal transmission. The MCU generates a 6-bit data packet, repetitively, indicating
the user’s identification (ID). The light symbols produced by the LEDs were then
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transmitted through the free-space channel. The block diagram of the transmitting
node is shown in Fig. 4.6.

(a) (b) (c)

LED array
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Fiber
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Figure 4.5: Wearable LED transmitter devices. (a) LED array. (b) LED strip. (c) LED-coupled
side-emitting fiber.
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Figure 4.6: Block diagram of the transmitting node.

As detailed in Table 4.1, three kinds of transmitters were implemented. The LED
array device [128] with dimensions 11×6.5×3.5 cm is compromised of 30 white LEDs,
rechargeable batteries of 5 V, and a diffuser. Two types of LED strips were used, white
and RGB, both with 10 mm width consisting of an array of surface-mounted device white
LEDs, 5.0 mm by 5.0 mm size (commercially known as SMD 5050). The white LED
strip was covered with a diffuser, and operating at two different voltage states, 9 and 12
V (i.e., 432 mW and 720 mW electrical power, 50 mA and 60 mA current, respectively).
The side-emitting fiber (”Super Bright” by ZDEA) is made of polymethyl-methacrylate
(PMMA) with a 3 mm outer diameter and with 1 m diffusion length. A white LED
(LA CW20WP6 [129]) couples light to one end of the side-emitting fiber, and once the
light is coupled, the side-emitting fiber becomes the data transmitter. The coupling
LED operates at 3 V (i.e., 525 mW, 175 mA).

Table 4.1: Key parameters of the transmitter nodes.

Tx LED array LED strip Side-emitting fiber

Light source 30 white LEDs SMD 5050 (white, RGB) LA CW20WP6 (white)
Size 11×6.5×3.5 cm 10 mm width 4 mm diameter
Power supply 5V 9V, 12V 3V

White LEDs were mainly used for transmission. White color is a combination of the
red, green, and blue channels. However, with the RGB LED strip, we also evaluated
individual RGB colors (Red: 620–625nm, Green: 520–525nm, Blue: 465–470nm).
Compared to white LEDs, RGB channels offer narrowband emission, which facilitates
color-based modulation. The performance of each transmitter was evaluated in terms
of achievable data rate. The white LED strip and the optical fiber give a data rate of
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approximately 0.5 kbps. For the RGB LED strip, each channel reached 3.8 bps, and by
transmitting distinct patterns simultaneously on all three channels, an overall achievable
data rate of 11.4 bps. The RGB colors are easily detected by the image sensors and
recognized by the image processing algorithm, as well as, they serve as visual indicators
for people monitoring a surveillance system in high-risk environments providing insight
into the situation of its users. For instance, red could indicate danger, green could
represent safety, and blue could communicate additional information.

All transmitters used in the experimental setups were chosen based on their ability
to emit diffuse light with wide radiation patterns without requiring strict alignment
between the transmitter and the camera receiver.

4.1.2 Receiver equipment

The receiver equipment used across all experimental setups consisted of CMOS-based
cameras, including smartphone cameras (Samsung A51 with image sensor Sony IMX582,
Samsung S23 with image sensor S5KGN3) and Raspberry Pi HQ cameras with CCTV
lenses (Sony IMX477 image sensors [130]). These cameras captured optical signals
emitted by the LED-based transmitters under various conditions, using either the RS or
the GS acquisition mechanisms, as explained in the previous Chapter.

The smartphone cameras recorded high-resolution images and videos (1920×1080 px,
7680×4320 px, 4000×1800 px) at frame rates of 60 fps and 30 fps in both indoor and
outdoor environments, ensuring signal detection at varying distances (from short-range
indoor setups to long-range outdoor scenarios up to 120 m). The Raspberry Pi cameras,
set to a resolution of 640×480 px, were placed in indoor environments to capture videos
at 30 fps. Other parameters, such as exposure time and ISO varied depending on the
specific experimental conditions. The exposure time refers to the time the camera is
exposed to light and the ISO number refers to the amount of light the camera lets on
the sensor. All the key parameters of the receiver nodes are detailed in Table 4.2.

Table 4.2: Key parameters of the receiver nodes.

Rx Samsung A51 Samsung S23 Raspberry Pi

Image sensor (IS) Sony IMX582 S5KGN3 Sony IMX477
Frame rate (fps) 30 fps 30 fps, 60 fps 30 fps

Resolution 1920×1080 px
4000×1800 px

1920×1080 px
7680×4320 px 640×480 px

4.2 Image Processing
The image processing techniques applied across all experimental setups involved multiple
stages to ensure accurate decoding of the transmitted optical signals. Different steps
were followed depending on the image sensor’s acquisition mechanism, GS or RS, as
represented in Fig. 4.7.

The image processing techniques implemented in GS camera-based reception of data
focused on the extraction and decoding of transmitted optical signals by analyzing pixel
intensity and color information. GS cameras capture several states of the transmitter
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in a sequence of frames. Initially, video recordings were segmented into frames and
a region of interest (ROI) was selected depending on the position of the transmitter
in the frame. Then, the selected ROI was converted on grayscale, where the highest
intensity pixel was selected to reconstruct the received signal. On the other hand, on
color-based detection, the pixel values of the selected ROI were analyzed to indicate
the dominant color in transmission. A binarization and normalization threshold of the
mean intensity value was applied for analysis. Subsequently, for determining the correct
decoded number of patterns, a cross-correlation method was applied to correlate the
received signal with the predefined template of the transmitted ID pattern to ensure
accuracy in the signal detection. Correlation peaks exceeding a 90% threshold were
considered valid transmissions, ensuring reliable data extraction across multiple frames.

The image processing techniques implemented in RS camera-based data reception
depended on template matching to accurately detect and decode the transmitted optical
signals. Since RS cameras capture images row by row, the transmitted optical signal
appears as horizontal intensity bands in an image frame. The recorded video was first
segmented into frames, which then were converted to grayscale for intensity-based
analysis. Simultaneously, a predefined template of the known transmission pattern
was generated to perform a correlation-based search within each frame, similar to a
2D convolution process. This enabled the localization of the transmitted signal in the
captured frame. Thresholding and binarization were then performed when the ROI with
the highest correlation was found, to extract the transmitted data. The extracted signal
was then normalized and analyzed to ensure accurate decoding.
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Figure 4.7: Block diagram of image processing based on the image sensor’s acquisition
mechanism.

4.3 Object detection

The ROI detection within the frames can be further facilitated by integrating AI-based
techniques. For that reason, a YOLO object detection algorithm was implemented, as
it represents the state-of-the-art in real-time object detection, particularly in scenarios
requiring high speed and accuracy. Its open-source availability and widespread adoption
also make it a practical and accessible solution. It was used for the processing of data
captured in a multi-camera setup, where multiple users wearing yellow safety jackets
with LED strip transmitters were walking in an indoor room, as shown in Fig. 4.3. The
model followed a structured workflow as shown in the flow diagram in Fig. 4.8, which
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included dataset preparation, model training, validation, testing, and deployment. The
selection of YOLOv8 over its later versions, such as YOLOv9, YOLOv10, and YOLOv11,
was due to its optimal balance between performance and resource efficiency. Although
newer versions are improved, they have higher computational requirements and longer
processing times. YOLOv8 was proved to be efficient and feasible in identifying and
tracking LEDs.

Model
Validation

New 
dataset

Model
deployment

Dataset
preparation

Model
Training

Model
Testing

Figure 4.8: Flow diagram of the object detection algorithm.

Initially, the captured videos were converted into image frames, generating a dataset
of 1,000 images that were deployed on the Roboflow platform [131] for training purposes.
Each image was annotated manually, drawing bounding boxes around the target object,
which in this case was a yellow safety jacket with an LED strip attached to it. 600
labeled images were used for the training of the model through 1,000 epochs, in which
the YOLOv8 adjusted its parameters to minimize the difference between its predictions
and ground-truth labels.

The validated model was tested on a separate set of 300 images that were not
seen on training ensuring its ability to generalize on previously unseen data. Following
that, a performance evaluation was carried out with a test set of 100 images for the
precision, recall, and mean Average Precision calculation. The model performed a 99.8%
precision, a 99.3% recall, and a 99.5% mAP, demonstrating high detection accuracy.
The confusion matrix for the test set showed 100 true positives, 1 false positive, and 2
false negatives while no observation was made for the true negatives. The false positive
detection could be due to duplicate detection.

From the testing results, the dataset was also enhanced to support more variable
images and to correct any inconsistencies in the labeling to further strengthen the
robustness of the model. The trained YOLOv8 model was then exported and used in
the system to detect ROI and demonstrate effective tracking of the transmitter, as
shown in Fig. 4.9.

4.4 Exercise analysis

The tracking process within the image frames could be confined to a reduced area in
the image frame, refined by the Tx’s position in the frame. The user’s position in the
frame could be related to factors such as exercise intensity, age, or gender. The analysis
of the characteristics of controlled exercise-induced movement, could offer valuable
insights into their exercise intensity, age, and gender, uncover individual differences,
and potentially identify chronic conditions or detect early signs of injuries.

For that reason, a person wearing an LED Tx device as shown in Fig. 4.1a. took part in
a controlled exercise session on a stationary bicycle, with the camera Rx mounted on the
bicycle. For the analysis of exercise data, the LED Tx was replaced with a smartphone,
utilizing an accelerometer application to capture acceleration data throughout the
session. Two types of measurements were conducted, corresponding to mild and intense
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ROI

ROI

Figure 4.9: The two detected region of interest (ROI) corresponding to the location of the
yellow safety jacket with the LED strip worn by two users, in one video frame sample, highlighted
in yellow.

exercise routines. The 3D reference system used for these measurements is illustrated
in Fig. 4.10.

x

y

z

Figure 4.10: 3D reference dimensions of the system, with the user engaging in physical exercise
on a stationary bicycle.

To gain insight into exercise dynamics and to capture the exercise routine, two
assumptions are required. First, it is assumed that the average position of the user
⟨r⃗(t)⟩ during the workout corresponds to the initial position r⃗0 as expressed in 4.1.
With this assumption, the analysis can be simplified by considering the average position
as the starting point.

⟨r⃗(t)⟩ = r⃗0 (4.1)

Second, the analysis also accounts for errors due to the inertial measurement unit
(IMU), and cumulative errors as described in 4.2, which may cause positional drift over
time. Sensor inaccuracies, despite the controlled movement, can lead to cumulative
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errors, which are accounted for in the analysis. In the equation, µ⃗N and σ⃗N are the
vectors of IMU drift and noise uncertainties, respectively.

⟨r⃗(t)⟩ ∼ N (r⃗0 + µ⃗N · t, σ⃗N · t) (4.2)

By analyzing acceleration data, a⃗(t), the user’s position is determined in 4.3 through
double integration, where the initial velocity, v⃗0, is assumed to be 0⃗ at the start of the
routine.

r⃗(t) =
∫ t

0

∫ t

0
a⃗(t)dtdT =

∫ t

0
(v⃗(t)− v⃗0)dt (4.3)

The velocity v⃗(t) at discrete time intervals j∆t in 4.4 is obtained by summing the
acceleration components ax(i) and ay(i) over the time interval ∆t along the x and
y axes, respectively. The analysis is restricted to the XY plane, as it aligns with the
camera’s plane, making it sufficient for extracting relevant information in the sensing
pathway of the integrated sensing and communication (ISAC)-enabled reception routines
without requiring prior additional data.

v⃗(j∆t) = ∆t
j∑

i=0
ax(i∆t) · n⃗x +ay(i∆t) · n⃗y (4.4)

Likewise, the position r⃗ in discrete time intervals k∆t in 4.5 is determined by summing
the velocity components vx(j) and vy(j) over the time interval ∆t along the x and y
axes, respectively.

r⃗(k∆t) = ∆t
k∑

j=0
vx(j∆t) · n⃗x +vy(j∆t) · n⃗y (4.5)

Applying Equation 4.5, the drift characteristics of the IMU were examined using
25 seconds of calibrated acceleration data (with gravity removed). The drift pattern
indicates that analyses should be conducted within a sliding window, and its duration
should be limited to a few seconds to minimize disruptions caused by cumulative errors.

The expected position value can be determined using Equation 4.6, by substituting
Equation 4.5 into Equation 4.4.

E[r⃗(k∆t)] = ∆t2
k∑

j=0

j∑
i=0

E[ax(i∆t)] · n⃗x +E[ay(i∆t)] · n⃗y (4.6)

Applying a moving average with a window size of M results in Equation 4.7.

EM [r⃗(k∆t)] = ∆t2

M

k∑
l=k−(M−1)

l∑
j=0

j∑
i=0

a⃗(i) (4.7)

For analysis simplicity, several assumptions were made. The first assumption was
that the reversion to the mean occurs within a given window, ensuring that the average
position within the sliding window was fixed during the process. This assumption
is statistically valid due to the controlled experiment (static cycling). The second
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assumption was that the sliding window size was determined by a frequency-domain
analysis of deviations from the average. This analysis, mathematically represented in
Equation 4.8, indicated that the majority of energy is concentrated in the first 47 Hz of
the spectrum, which led to selecting a sliding window length M of 47.

Rz(τ) = F−1(F((ax(t)) · conj(F(ax(t)))) (4.8)

The integration of the data obtained from the accelerometer sensor with the image
processing algorithm is presented in the flow diagram in Fig.4.11.

Accelerometer
sensor

Percentage of 
position data

Scanning
Improvement DataUser's

position

LED Tx's
position

Figure 4.11: Flow diagram of the exercise analysis data.

First, the distribution of the user’s position in pixels within one frame can be
represented as a circle’s radius corresponding to the frequency of the user’s position.
Then, these data, combined with the data obtained from the LED Tx, provide information
about the percentage of the position data that can be considered. Thus, the tracking
process can be confined to a smaller area on the image frame.

All the obtained results from the experimental setups are presented in the next
chapter, in a compendium of publications.
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5 Experimental Results

This chapter presents all the articles published in high-impact journals, following the
progression of the research, as a compendium. Each paper is outlined with its main
topic, key contributions, objectives addressed, and the results obtained. At the end of
the chapter, a summary of the key contributions of the methodology and findings of
each article is presented.

5.1 Publication 1 (P1)

The article entitled “Optical Camera Communications in Healthcare: A Wearable LED
Transmitter Evaluation during Indoor Physical Exercise” [132] evaluates an OCC system
featuring a wearable LED-based transmitter for data transmission, user detection, and
tracking during indoor physical exercise. The evaluation assumes a controlled user
exercise session on a stationary bicycle. The wearable LEDs are modulated in intensity
to transmit binary data, imperceptible to the human eye but detectable by a smartphone
camera operating at a specific frequency. The camera tracks the user’s movements and
captures the transmitted data. The main innovation is that widely available commercial
devices are employed for communication purposes, which paves the way for practical
implementations of OCC in healthcare and beyond.

A key contribution of this research is the development of an image processing
algorithm for accurate detection of the transmitted bits in video frames, even under
user movement, through a correlation process. This enables higher reliability for data
transmission and more robust performance over a range of intensities of exercises, mild
and intense.

Beyond communication performance, this study also explores the integration of
OCC in health and fitness applications. The analysis of the user’s position within
the frame could provide insights into exercise intensity, age, gender, and individual
differences. This could contribute to monitoring physical activity and detecting early
signs of chronic conditions or injuries. The proposed system has the potential for
applications in environments, such as rehabilitation centers, gyms, and elderly care
facilities, to monitor the activities of individuals with good health conditions or those
who face health problems.

This study addresses O1 by demonstrating the feasibility of using off-the-shelf cameras
for optical communication, without the need for additional specialized hardware. With
the integration of image processing algorithms and OCC, the system decodes the trans-
mitted bits from the wearable LED-based transmitter. In addition, this study supports
O2 by evaluating the effects of sensor positioning and movement dynamics on OCC
performance. The system examines data transmission in a controlled indoor environ-
ment, analyzing the effects of movement intensity, mild or intense, on communication
reliability.

Finally, by analyzing the characteristics of controlled exercise-induced movement, the
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Chapter 5 Experimental Results

Tx’s detection process is simplified, as the tracking process is confined to a smaller area
within the image frame, achieving a reduction of 87.3% for mild exercise and 79.0% for
intense exercise. Note, that this work is an extended version of a previous study [133]
(see Chapter A), where the SNR had been calculated at 22 dB.
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Abstract: This paper presents an experimental evaluation of a wearable light-emitting diode (LED)
transmitter in an optical camera communications (OCC) system. The evaluation is conducted under
conditions of controlled user movement during indoor physical exercise, encompassing both mild
and intense exercise scenarios. We introduce an image processing algorithm designed to identify a
template signal transmitted by the LED and detected within the image. To enhance this process, we
utilize the dynamics of controlled exercise-induced motion to limit the tracking process to a smaller
region within the image. We demonstrate the feasibility of detecting the transmitting source within
the frames, and thus limit the tracking process to a smaller region within the image, achieving an
reduction of 87.3% for mild exercise and 79.0% for intense exercise.

Keywords: optical camera communications (OCC); wearable devices; image processing; exercise
analysis

1. Introduction

Optical wireless communications (OWC) stand as a significant area of exploration in
mobile communication, offering advantages such as cost effectiveness, high-speed capa-
bilities, and reliable data transmission [1]. Already acknowledged as a complementary or
sometimes viable alternative to radio-frequency (RF) technology, OWC includes promising
technologies such as optical camera communications (OCC). OCC employs a light-emitting
diode (LED) as the transmitter (Tx), an image sensor (IS) (i.e., camera) as the receiver (Rx),
and light as as the signal communication carrier. This approach boasts several valuable
attributes, including low cost, high security, low power consumption, and enhanced relia-
bility. Importantly, it is devoid of electromagnetic interference, ensuring complete safety
for human health [2]. The extensive deployment of smart devices, not only smartphones
that have built-in complementary metal oxide semiconductor (CMOS) cameras and are
all interconnected within the Internet, has paved the way for innovative applications of
OCC and serves as a cornerstone for the development of OWC-based Internet of Things,
termed optical IoT (OIoT) [3]. These applications include indoor positioning systems [4],
underwater [5], localization [6], and healthcare applications [2].

Smart devices, encompassing smartphones, smartwatches, and smart clothing, are
recognized as products that seamlessly incorporate wearable technologies to distinguish
human activities [7]. Wearable devices, designed to be lightweight and compact, offer
user convenience and integrate seamlessly into clothing or accessories or directly attached
to the body (like glucose sensor patches) without disrupting daily activities. Equipped
with sensors, processors, and communication capabilities, these devices aim to provide
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specific functionalities, such as monitoring health and fitness metrics [8]. Wearable health-
monitoring sensors have become ubiquitous in our daily lives [9,10], playing a crucial role
in healthcare systems for real-time and continuous patient health monitoring [10]. They
also serve as a cornerstone for the IoT [11]. Sensors measure parameters before the OCC
system collects the data, forwarding them to the camera through integrated light-emitting
diodes. With the emergence of 6G, the integration of wearables in healthcare is poised to
expand, signaling an era of intelligent healthcare [12] characterized by enhanced sensing,
processing, and communication capabilities.

To date, only a limited body of research has explored the integration of wearable
sensors with LEDs as transmitters. For instance, in [13], medical sensors and infrared
LEDs collaborate to transmit medical data for patient monitoring. Similarly, ref. [14]
employs this combination for indoor health monitoring, taking into account patient mobil-
ity. Additionally, ref. [15] introduces an all-optical bidirectional wireless communication
system that evaluates sensor mobility, variations in orientation, and placement on the
body. Furthermore, ref. [16] investigates the performance of optical code-division multiple
access in asynchronous mode, considering the impact of mobility and random transmit-
ter orientations. Moreover, [17] explores optoelectric sensors monitoring cardiovascular
vital signs.

The use of OWC technologies in healthcare tourism has been extensively studied
in [18], including the use of this technology for monitoring elder or impaired people with
special needs. The use of wearable devices, jointly with location techniques [19], allows
detecting whether the user is immobile for long periods, has suffered a fall or a sudden
change in vital signs, or is simply leaving a predefined safety zone, in which they can
remain without requiring constant attention from their caregiver. For this cases IR emitters
can be considered instead of the visible ones, to preserve user privacy in general-purpose
environments such as hotels, without loss of generality in this proposal as near-IR can be
detected by regular CMOS-Silicon based cameras [20].

In the field of OCC, few works have been done considering wearables as transmitters.
In our previous research, we showcased a wearable LED array [21] and a fiber attached on
T-shirt [22] as distributed transmitters. Recently, there has been notable development in
various medical applications that focus on using wearable sensors to measure individuals’
health conditions. For instance, in [2], a system has been implemented for real-time remote
monitoring of a patient’s heart rate and oxygen saturation data. Similarly, in [23], a system
facilitates the transmission of multiple clinical data types, including electrocardiogram,
photoplethysmogram, and respiration signals in a home-based rehabilitation system. In
addition, OCC has demonstrated its adaptability by being combined with other technolo-
gies, giving rise to hybrid systems that leverage the strengths of each technology, thereby
enhancing their robustness [24]. Specifically, in [25], OCC is integrated with Bluetooth Low
Energy (BLE) to enable efficient, remote, and real-time transmission of a patient’s electro-
cardiogram signal to a monitor. A similar combination is explored in [26] for real-time
health monitoring, where data from body sensors is transmitted to a central gateway. In
cases where node movement in OCC can disrupt the connection, BLE steps in to ensure
continuous communication.

Analysis of human exercise routine data can provide valuable insights. For instance,
in [27], a smart exercise bike was developed specifically for rehabilitation from Parkinson’s
disease. Another example is found in [28], where a camera-based monitoring system offers
indications for cardiovascular health and optimizes training protocols. Additionally, ref. [29]
introduces a video-based heart rate detection system to monitor people’s heart rates during
exercise. Moreover, ref. [30] introduces a monitoring system for elderly people is intro-
duced, capable of autonomously identifying significant deviations in their presence pattern.
Furthermore, in [31] the proposed system determines body posture and identifies the phys-
ical condition and health of the body. Moreover, ref. [32] presents a machine learning-based
analysis of the typing pattern analysis detects depressive disorder. Similarly, ref. [33]
explores the analysis of keyboard interactions recorded on an individual’s smartphone
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can offer valuable insights into the clinical status of multiple sclerosis. Lastly, ref. [34]
investigates keystroke dynamics for the early detection of loneliness and the development
of targeted interventions.

In this study, we conduct an experimental evaluation of an OCC system utilizing
a wearable LED transmitter. The evaluation assumes controlled user movement during
physical exercise in an indoor setting. The wearable LEDs are modulated in intensity to
transmit binary data, imperceptible to the human eye but detectable by a smartphone
camera operating at a specific frequency. The camera tracks the user’s movements and
captures the transmitted data.

Our focus is on addressing challenges related to transmitter detection and
tracking [35]. To achieve this, we propose employing a template signal transmitted by the
LED, denoted as Tx, and detected in the image through a correlation process. This informa-
tion will serve a dual purpose aligned with the Integrated Sensing And Communication
(ISAC) paradigm. The main hypothesis is that the user’s position (i.e., Tx’s detection) within
the frame correlates with factors such as exercise intensity, age, gender, etc. This correlation
may be even more profound, suggesting individual differences and the potential to detect
chronic conditions or even early signs of injuries. Further exploration of this hypothesis
will be conducted in subsequent phases of the research, utilizing the acquired data. To
simplify the Tx’s detection process within the frame, we leverage the characteristics of
controlled exercise-induced movement, confining the tracking process to a smaller area
within the image.

Our envisioned system is designed to monitor the activities of individuals who are
either in good health or those who face health problems. This monitoring can take place
in various environments such as homes, gyms, ambulances, hospitals, and intensive care
units [12,36]. Consequently, it has the potential to aid in rehabilitation, sports training,
elderly care [37], early detection of musculoskeletal or cognitive diseases, and evaluations
of falls and balance. The main innovation of this study revolves around employing widely
accessible and commercially available wearable devices, including LEDs, and integrating
them with smartphones for communication purposes.

The structure of the paper is outlined as follows. Section 2 describes the system de-
signed, with the equipment employed in both the transmitting and receiving nodes and the
experimental setup. Section 3 examines the methodology, including the image processing
and the analysis of the user’s exercise. Section 4 discusses the experimental results obtained.
Ultimately, Section 5 presents the conclusions drawn from this work.

2. System Design

In this section, we provide an overview of the equipment utilized in both transmitting
and receiving nodes of the proposed system. Additionally, we provide a detailed descrip-
tion of the experimental setup. The block diagram of the proposed OCC link is shown in
Figure 1.

The system utilized for the envisioned experiment included digital signal processing
hardware and optical front-ends. The Tx consisted of a standard LED device linked to
the digital output of a micro-controller unit (MCU) (Seeeduino Xiao [38]). The devise
is comprised of 30 white LEDs, rechargeable batteries of 5 V, and a diffuser. The LED’s
transmitted illuminance at 0 cm measured with testo 545 lux meter, is 17,443 lux, while the
received illuminance at 25 cm is 105 lux.

The proposed OCC system utilizes the non-return-to-zero on-off keying (NRZ-OOK)
modulation technique for transmitting data wirelessly across a free-space channel. Employ-
ing the digital switching outputs of the micro-controller unit (MCU), the system facilitates
NRZ-OOK modulation [39]. The Tx device is modified accordingly in order to drive the
LEDs with a transistor powered directly from the battery terminals. The MCU generates
a 6-bit data packet [110100] at a rate of 0.4 ms per bit, corresponding to a modulation
frequency of 2.5 kHz per bit. This data packet is transformed into a voltage signal, directly
driving the LEDs. To overcome the MCU’s maximum current limit, a transistor is connected
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to the power source for LED driving. To enhance link performance, a repeat-packet strategy
is implemented.

Packetization Diffuser
NRZ-OOK
modulation

LED

Thresholding,
binarization Image

sensor

Video
frames
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coef.

ROI detection
Channel

Data

Data

Data

Tx
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User's
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Process 2
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Rx
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of position data

Figure 1. Block diagram of the transmitting and receiving node.

On the other hand, the Rx was a smartphone [40] camera which captures video in
rolling shutter (RS) mode. The RS-based cameras can capture the image row-by-row of
pixels, which means that different lines of the image array are exposed at various times
to read the light intensity through the sensor enabling multiple states of LEDs (ON and
OFF) can be obtained in a single frame [41]. The smartphone camera captures video from
a distance of 20–30 cm. The smartphone camera captures a 30 fps frame-rate video, with
exposure time of 83 µs, and ISO 125 [42], using resolution (7680 × 4320 px). The exposure
time is the time the camera is exposed to light and the ISO number refers to to the amount
of light the camera lets on the sensor. The most relevant parameters of the proposed system
are summarized in Table 1. It is important to note that all measurements were performed
under indoor ambient lighting conditions.

Table 1. Parameters of the system and their values.

Module Parameter Value

Tx

Light source LED array
Device dimensions 11 × 6.5 × 3.5 cm

Power supply 5 V

Microcontroller Seeeduino XIAO
(Shenzhen, China)

Illuminance 105 lux

Modulation Modulation time 0.4 ms
Data packet size 6b/packet [110100]

Rx

Smartphone camera Samsung Galaxy S23
(Suwon, Republic of Korea)

Image sensor S5KGN3
Exposure time 83 µs

Frame rate 30 fps
ISO 125

Resolution 7680 × 4320 px

Channel Link distance d 20–30 cm
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For the evaluation of the OCC system, the person wearing the Tx participated in a
controlled exercise session on a stationary bicycle. The experimental setup featuring the
wearable Tx and the Rx attached on the bicycle, is illustrated in Figure 2.

The recorded video undergoes offline processing, with the main objective being the
detection and tracking of the Tx. To achieve this, we use a template signal emitted by the
LED, which is then identified within the image through a correlation procedure, as shown
in Process 1 in Figure 1. To simplify Process 1, we leverage the characteristics of controlled
exercise-induced movement in Process 2, thereby limiting the tracking process to a smaller
area within the image. Both processes will explained in the next section.

For the exercise scenario we replaced the LED Tx, with a smartphone, and employed
an accelerometer application to measure acceleration data during the exercise. Two types
of measurements were conducted, involving the user performing mild and intense exercise
routines. Our reference system is depicted in Figure 2b.

LED Tx

Camera Rx

(a)

x

y

z

(b)
Figure 2. Experimental setup with the wearable transmitter device and the smartphone camera
receiver. (a) The user engages in physical exercise on a stationary bicycle. (b) 3D reference dimensions
of the system.

3. Methodology

In this section, we elaborate on the methodology employed for this experimental setup.
Firstly, we analyze the image processing, along with demodulation and data acquisition.
Following that, we provide a detailed analysis of exercise-related data within the context of
our experimental setup.

3.1. Image Processing

In the image processing procedure in Figure 1 (Process 1), the video is first segmented
into frames, and a single frame is chosen while a template is generated. This template
comprises three consecutive packets, each containing a sequence of [110100] bits. Due to the
RS effect, the data rate of the OCC using a CMOS camera can be significantly increased [43].

Afterward, the image frames are converted to grayscale, facilitating the extraction of
the pixel intensity profile. The correlation process involves sliding the template image over
the frame, akin to a 2D convolution, to pinpoint the 2D position of the signal captured
from the transmitting source. The blue lines within the inset of the Rx section of the block
diagram represent the average row value, while the orange line depicts the template signal,
and the red line illustrates the binarization threshold. In Figure 3, the region of interest
(ROI) in the frame, where the correlation attains the maximum value, is highlighted. This
process is carried out iteratively for all frames. The identified ROI is then used for data
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decoding. Through the application of thresholding and binarization to the acquired data,
the received signal is effectively decoded, as shown in Figure 4.
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Figure 3. Frame showing values obtained from the correlation coefficient between a random frame
and the template. The region of interest (ROI) is highlighted in red.
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Figure 4. Received grayscale signal, decoded signal, and threshold.

3.2. Exercise Analysis

For the exercise scenario mentioned above, our aim is to gain insight into the dynamics
of the exercise and capture the exercise routine. To achieve this, we make two assumptions.
Firstly, it is assumed that the individual’s average position ⟨⃗r(t)⟩ during the workout
corresponds to the initial position r⃗0 as shown in Equation (1), simplifying the analysis by
considering the average position as the starting point.

⟨⃗r(t)⟩ = r⃗0 (1)

Secondly, the analysis acknowledges the presence of inertial measurement unit (IMU)
error and accounts for cumulative errors in Equation (2) that may cause a drift in position
data over time. Despite controlled movement, factors such as sensor inaccuracies can
introduce cumulative errors, which are considered in the analysis.

⟨⃗r(t)⟩ ∼ N (⃗r0 + µ⃗N · t, σ⃗N · t) (2)

where µ⃗N and σ⃗N are the vectors derived from the IMU’s uncertainties with respect to drift
and noise, respectively. Analyzing the acceleration data a⃗(t), we obtain the position of the
user in Equation (3) by double integrating the acceleration, where v⃗0 is the initial velocity
(assumed in 0⃗ at the beginning of the routine).
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r⃗(t) =
∫ t

0

∫ t

0
a⃗(t)dtdT =

∫ t

0
(⃗v(t)− v⃗0)dt (3)

The velocity v⃗(t) at discrete time intervals j∆t in Equation (4) is a sum of acceleration
ax(i) and ay(i) with the time interval ∆t along the x and y directions, respectively. We
focus on the XY plane since it is the camera’s plane and no additional information is
needed a paior for extracting information in the sensing pathway of the ISAC-enabled
reception routines.

v⃗(j∆t) = ∆t
j

∑
i=0

ax(i∆t) · n⃗x + ay(i∆t) · n⃗y (4)

Similarly, the position r⃗ at discrete time intervals k∆t in Equation (5) is a sum of
velocity vx(j) and vy(j) with the time interval ∆t along the x and y directions, respectively.

r⃗(k∆t) = ∆t
k

∑
j=0

vx(j∆t) · n⃗x + vy(j∆t) · n⃗y (5)

Using Equation (5), the drift behavior of the IMU was analyzed after capturing 25 s of
calibrated acceleration data (removing gravity). This behavior can be observed in Figure 5,
suggesting that any analysis should be carried out within a sliding window. In addition,
the duration of that window should be lower than a few seconds to avoid any disruption
due to cumulative errors.
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Figure 5. Drift in position data in 3D direction in axis x, y and z.

The expected value of the position can be calculated as shown in Equation (6), intro-
ducing Equation (5) into Equation (4)

E[⃗r(k∆t)] = ∆t2
k

∑
j=0

j

∑
i=0

E[ax(i∆t)] · n⃗x + E[ay(i∆t)] · n⃗y (6)

Using a moving average of the window size M, it yields Equation (7).

EM [⃗r(k∆t)] =
∆t2

M

k

∑
l=k−(M−1)

l

∑
j=0

j

∑
i=0

a⃗(i) (7)

Some additional assumptions have been made in order to simplify the process. Firstly,
reverse to the mean is considered to happen within a given window. Thereby, the averaged
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position inside that sliding window will be conserved during all the process. This statement
holds statistically given the nature of the experimental situation (static cycling). In addition,
it has been assumed that it is possible to define the size of the sliding window based on
a frequency-domain analysis of the deviation with respect to the average. This analysis,
depicted in Figure 6 and mathematically described in Equation (8), suggested that most of
the energy is concentrated in the first 47 Hz of the spectrum. This leads to a sliding window
length M of 47.
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Figure 6. Frequency-domain analysis of the deviation in the XY plane. Data obtained from the IMU.

Rz(τ) = F−1(F ((ax(t)) · conj(F (ax(t)))) (8)

Following the above calculations and the Process 2 in Figure 1, we determined the
frequency of the user’s position in pixels within one frame for both mild and intense
exercise scenarios. The results are presented in the following section.

4. Results

In this section, we provide a summary of the outcomes derived from applying the
image processing algorithm to the video frames obtained, as well as from the analysis of
the user’s exercise, during the previously described experiment.

The frequency of the user’s position in pixels within one frame for both mild and
intense exercise scenarios is illustrated in Figure 7a and Figure 7b, respectively. Conse-
quently, the user’s position in pixels within one frame can be depicted as the circle’s radius
in Figure 8a for mild exercise and in Figure 8b for intense exercise.
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Figure 7. Histograms representing the frequency of a user’s position in pixels within a single frame.
Each bin corresponding to the frequency of one position. (a) Mild exercise. (b) Intense exercise.
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Figure 8. Rings representing the distribution of user’s position within a single frame. Each circle’s
radius corresponding to the frequency of the user’s position. (a) Mild exercise. (b) Intense exercise.

Then, these data, combined with the data obtained from the LED Tx, provide informa-
tion about the percentage of the position data we can consider. Considering only the center
of the LED Tx from previous measurements, we determined the frequency of the center of
the LED Tx within one frame, represented by the dots in Figure 9a for mild exercise and in
Figure 9b for intense exercise. In the same figures, the circles represent the percentage of
position data (obtained from the accelerometer), spanning from 100% down to 95%.
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Figure 9. Dots representing the distribution of the LED transmitter’s center within a single frame.
Each dot corresponding to the frequency of the LED transmitter’s center. The circles representing the
percentage of the position data. (a) Mild exercise. (b) Intense exercise.

From the image processing on the video frames captured with the LED Tx, we suc-
cessfully identify the ROI and decode the received signal in all frames, despite the user’s
movement within the frame.

By combining these data with the data obtained from the accelerometer, we aim to
improve the process of ROI identification by reducing the scanning area in the frame. All the
relevant results are presented in Table 2 for mild exercise and in Table 3 for intense exercise.

Table 2. Mild exercise. Percentage of position data considered, their corresponding radius in pixels,
data included and lost from the LED transmitter and the percentage of reduction of the scanning area
in the frame.

Position Data Radius [px] Data Included Data Lost Reduction

100% 1609 100% 0% 52.9%
99% 832 97% 3% 82.6%
98% 706 92% 8% 86.1%
97% 656 85% 15% 87.3%
96% 606 82% 18% 88.6%
95% 556 65% 35% 89.7%
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Table 3. Intense exercise. Percentage of position data considered, their corresponding radius in pixels,
data included and lost from the LED transmitter and the percentage of reduction of the scanning area
in the frame.

Position Data Radius [px] Data Included Data Lost Reduction

100% 1841 100% 0% 41.2%
99% 1036 98% 2% 76.2%
98% 950 86% 14% 79.0%
97% 864 74% 26% 81.7%
96% 807 64% 36% 83.4%
95% 778 62% 38% 84.2%

The first columns of the tables display the percentage of position data considered
along with their corresponding radius in pixels in one frame, as illustrated in Figure 9.
Subsequently, the third and fourth columns present the percentage of data included within
the radius of the LED Tx, as well as the percentage of data lost. Finally, the last column
summarizes the percentage of reduction of the scanning area in the frame, depicted in
Figure 10. In general, during intense exercise, the Tx’s wider range within the frame leads
to an expansion of the scanning area.

It is evident that when all position-related data are considered, we do not lose any
LED position in the frame, resulting in a reduction in the scanning area by 52.9% for
mild exercise and 41.2% for intense exercise. On the contrary, when only 95% of the
position data are considered, 35% and 38% of the data are lost for mild and intense exercise,
respectively, despite the significant reduction in the scanning area, reaching 89.7% and
84.2%, respectively. By imposing a limitation on including 85% of the LED data to achieve a
good accuracy in our system, we observe a reduction of 87.3% for mild exercise and 79.0%
for intense exercise.
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Figure 10. Random frame with the LED transmitter. The rectangles represent the percentage reduction
of the scanning area in the frame. (a) Mild exercise. (b) Intense exercise.

5. Conclusions

In this paper, we experimentally evaluate an OCC system utilizing a wearable LED
transmitter. Evaluation is carried out under controlled user movement during physical
exercise in an indoor setting. We demonstrate the feasibility of detecting the transmitting
source within the frames. Finally, by analyzing the characteristics of controlled exercise-
induced movement, we confine the tracking process to a smaller area within the image.

Our system is intended to oversee the activities of individuals, whether they are
healthy or facing health issues, at sports training, elderly care, or rehabilitation. The
obtained results highlight the significance of our system, as detecting the user’s position
within the frame could offer valuable insights into their exercise intensity, age, gender,
and uncover individual differences. Additionally, it has the potential to identify chronic
conditions or detect early signs of injuries.

Although the proposed system has numerous advantages, there are various challenges
that need further research to improve the effectiveness of the monitoring system. Primarily,
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there is a need to improve the hardware design of the wearable device to be light in
weight, compact, user-friendly, waterproof and effortlessly incorporated into clothing
or accessories, all without causing disruptions to user’s regular activities. Online video
monitoring of individuals or multiple users in care units, gyms, or homes presents an
additional challenge. However, it could offer people a sense of safety while engaging in
their daily activities, knowing that they are being supervised in real time. Considerations
for eye sensitivity with regard to light intensity must also be taken into account, especially
in healthcare environments.

Future research will explore the relationship of the user’s position within the frame
with factors such as exercise intensity, age, or gender. This exploration will involve compre-
hensive data analysis to uncover potential correlations and implications for personalized
health monitoring. Additionally, we will investigate the efficacy of different transmitter
technologies, including LED strips and fiber optics, to determine their suitability and per-
formance in various scenarios. Moreover, understanding the influence of user movement
on data transmission and reception will be a central point, as it can significantly impact the
system’s reliability and accuracy. Furthermore, we plan to extend our experimental setup
to encompass longer distances, enabling the evaluation of the system’s performance and
robustness across larger spatial domains. This expansion will open up new possibilities for
remote monitoring applications, promoting advancements in healthcare and beyond.
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5.2 Publication 2 (P2)
The work in the article entitled “Experimental evaluation of wearable LED strip and
side-emitting fiber for optical camera communications systems” [134], presents an
experimental evaluation of two types of LED-based distributed transmitters, namely
an LED strip and an LED-coupled side-emitting optical fiber, in both laboratory and
wearable OCC systems. The system performance of both wearable transmitters was
evaluated and compared in terms of success of reception (SoR), SNR, power consumption,
and heat emission.

A key contribution is that widely accessible and commercially available components,
including LEDs, side-emitting fiber, and smartphones were employed for communication
purposes, showing the practical feasibility of the proposed system. In addition, two
different offline image processing techniques were developed, each dedicated to the
different nature of each transmitter (shape and illumination decay along the fiber
length).

This study addresses O1 through the utilization of commercially available components
for optical communication and through the design of different image processes. It also
supports O2 through the evaluation of the effect of node positioning and channel condi-
tions, that is, transmitter-camera placement and light conditions, on data transmission
performance.

All the results are discussed in detail in the article. The best value of SoR with regard
to the transmitter placement relative to the camera receiver position occurs when the
camera faces directly the Tx from a close distance of 1 m. In the laboratory setup, the
LED strips maintained a consistently high SoR of almost 100%, while the side-emitting
fiber showed higher variation. In the wearable setup, the values of SoR were lower due
to the shorter Tx length. However, with the processing method developed for fibers,
fibers had improved results, in both setups, emphasizing its necessity.

In both laboratory and wearable experiments, the LED strip showed consistent
SNR values around 21–22 dB under ambient light and improved performance in dark
conditions (up to 27.4 dB). The side-emitting fiber exhibited a wider SNR range, from
28.6 down to 13.3 dB in the laboratory and from 42.7 to 19.3 dB in wearable setups,
with higher values in dark conditions. Also, the theoretical BER versus SNR was
calculated 10−11 considering the minimum measured SNR at 16 dB and proven to be
below 3.8×10−3, the forward error correction (FEC) limit.

Power consumption was measured at 432 mW and 720 mW, for the two operating
voltage stages of the LED strips, and 525 mW for the side-emitting optical fiber.
Regarding the heat emission, it can be concluded that neither transmitter had significant
overheating, as their temperatures remain close to room temperature (except for the
LED holder).

The evaluation of two distinct wearable OCC technologies demonstrates their effec-
tiveness in accurately detecting transmitted bits while considering transmitter placement
relative to the camera receiver.

Further evaluation of side-emitting fibers as distributed wearable transmitters in OCC
is presented in [135] (see Chapter B).
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Abstract: This paper presents an experimental evaluation of two types of light-emitting diode
(LED)-based distributed transmitters, namely an LED strip and an LED-coupled side-emitting
optical fiber, in both laboratory and wearable optical camera communication (OCC) systems.
We study the system performance in terms of success of reception (SoR) with regard to the
transmission distance. The best value of SoR is achieved when the camera is facing directly to the
transmitter (Tx) from a close distance of 1 m. Additionally, we compare the power consumption,
the signal-to-noise ratio performance (SNR) and all the obtained values under optimal conditions
are better than the forward error correction (FEC) limit in OCC systems.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The widespread presence of smartphones equipped with cutting-edge cameras has prompted wider
possibilities within optical wireless communications (OWC), particularly within the framework
IEEE 802.15.7a [1]. This approach is known as optical camera communications (OCC) and
employs a light-emitting diode (LED) as the transmitter (Tx), an image sensor (i.e., camera) as
the receiver (Rx), and light as signal carrier.

OCC overcomes some of the limitations of Bluetooth and other existing radio frequency
(RF)-based technologies [2], such as security and interference. A notable advantage lies in the
fact that OCC does not incur additional hardware costs for the receiver as smartphones have been
integrated with an embedded complementary metal oxide semiconductor (CMOS) camera in
rolling shutter (RS) mode [3]. New generation smartphones can capture high-resolution photos
and videos, with an average viewpoint resolution of 360×800 px [4], which means an actual
resolution of 1080×2400 px and a recording speed of 30 frames per second (fps) or more, which
is more than adequate for low-speed applications [5]. Moreover, the transmitter side can be
implemented with a simple LED circuit, which has comparably lower complexity than the full
Bluetooth circuitry.

Smart devices, including smartphones, smartwatches, and smart clothes, are viewed as products
that integrate wearable technologies for recognizing human activities [6]. Wearable devices
can be worn on the body, often designed to be lightweight and compact, offering convenience
for users and seamless integration into clothing or accessories without disrupting their daily
activities. These devices typically come equipped with sensors, processors, and communication
capabilities, aiming to provide specific functionalities, such as tracking health and fitness metrics
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[7]. Wearable health-monitoring sensors have become a part of our daily life [8,9] and represent
a headstone for the Internet of Things (IoT) [10]. Sensors can measure parameters before the
OCC system collects those data and forwards them to the camera from integrated light-emitting
diodes. With the advent of 6G, the integration of wearables in healthcare is set to expand, paving
the way for smart healthcare [11] in terms of sensing, processing, and communication.

To date, only a limited number of studies have explored the integration of wearable sensors
in conjunction with LEDs as transmitters. For instance, in [12], medical sensors and infrared
LEDs transmit medical data for patient monitoring. Similarly, in [13], this combination is used
for indoor health monitoring, accounting for patient mobility. Additionally, in [14], an all-optical
bidirectional wireless communication system assesses sensor mobility, variations in orientation,
and placement on the body. Furthermore, in [15], the authors delve into the performance of optical
code-division multiple access in asynchronous mode, considering the impact of mobility and
random transmitter orientations. Moreover, in [16], optoelectric sensors monitor cardiovascular
vital signs.

Recently, side-emitting optical fibers have been introduced as distributed transmitters for OCC
[17,18]. Side-emitting fibers differ from conventional optical fibers by gradually emitting light
along the side-emitting fiber length [19]. To achieve this glow-stick-like effect, the side-emitting
fibers are modified by implementing scattering particles or voids into the side-emitting fiber
core or cladding [20,21]. Side-emitting fibers are characterized by the so-called diffusion length,
which is a side-emitting fiber length over which 90 % of the coupled power is emitted [22].
When using side-emitting fibers in OCC, a single LED is used to couple data into one end of the
side-emitting fiber. The side-emitting fiber then acts as a distributed transmitter. Data is then
captured by the RS camera, as in conventional OCC.

In the field of wearables, LED strips and LED-coupled side-emitting fibers represent two
approaches to distributed transmitters. Both approaches have their advantages and drawbacks.
Side-emitting optical fibers offer advantages such as 360◦ radiation pattern in contrast to 120◦ of
LED strips. On the other hand, LED strips provide constant brightness in contrast to side-emitting
fibers. LED strips are composed of multiple LEDs, offering flexibility in LED control, i.e.,
different spatial transmitting properties. Conversely, LED-coupled side-emitting fibers require
only a single LED for their operation, allowing small and compact wearable solutions. Both
types of distributed transmitters allow mechanical flexibility, while fiber-based transmitters in
the future can be involved within textiles, multiple LEDs then could allow different shapes, etc.
Apart from wearables, LED strips, and side-emitting fibers find applications in IoT, interior
design [23], shopping centers, aircraft, fashion, health, safety, geolocation [24], promoting active
lifestyles [25], and playing a role in industrial robotics [26]. In [27], the authors show the impact
of a user moving with a camera receiver within cells at 20 cm/s speed.

In this work, we experimentally evaluate the above-mentioned types of LED-based distributed
transmitters in laboratory and wearable OCC systems. We employ both solutions based on widely
accessible and commercially available components, including LEDs, side-emitting fibers, and
smartphones. The system performance of both wearable transmitters is evaluated and compared
in terms of the success of reception, signal-to-noise ratio, and power consumption.

The structure of the paper is organized as follows. Section 2 provides details of the OCC
system design and the experimental setup. Section 3 specifically focuses on the image processing
techniques applied in the study. Section 4 is then dedicated to the discussion of the results
obtained from the experiments with both transmitters. Lastly, Section 5 presents the main
conclusions.

2. OCC system design and experimental setup

We consider two types of transmitters. The first transmitter is a 10 mm wide LED strip with
a diffuser, consisting of an array of surface-mounted device white LEDs, 5.0 mm by 5.0 mm
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size (commercially known as SMD 5050), operating at two different voltage states, 9 and
12 V (i.e., 432 mW and 720 mW electrical power, 50 mA and 60 mA current, respectively).
This power supplies both the LED strip and the control circuit. The second transmitter is
a side-emitting optical fiber. The side-emitting fiber ("Super Bright" by ZDEA) is made of
polymethyl-methacrylate (PMMA) with a 3 mm outer diameter and with 1 m diffusion length,
meaning that 90 % of the coupled power will be emitted from the fiber over the first 1 m
side-emitting fiber length. An LED couples light to one end of the side-emitting fiber, and
once the light is coupled, the side-emitting fiber becomes the data transmitter. The coupling
LED operates at 3 V (i.e., 525 mW, 175 mA). Both Txs are connected to the digital output of a
micro-controller unit (MCU).

The proposed OCC system uses the non-return-to-zero on-off keying (NRZ-OOK) modulation
technique [28] for data transmission over a free-space wireless channel of up to 2.5 m distance,
which resembles a typical indoor scenario. However, the system can be extended even for longer
distances (tens or hundreds of meters) [29]. We carry out experimental analysis both in ambient
light and dark conditions. The system uses the digital switching outputs of the MCU to facilitate
the NRZ-OOK modulation. The micro-controller generates a 6-bit data packet [001011] at 0.4 ms
per bit, which corresponds to a modulation frequency of 2.5 kHz per bit. The data packet is
converted into a voltage signal that directly drives the LED. Since the current of the LEDs in the
LED strip, exceeds the maximum limit of the MCU, a transistor is connected to the power source
to drive the LEDs. To enhance the link performance, a repeat-packet strategy is employed. For
the LED strip experiments, the MCU is a Seeeduino Xiao [30], powered by the power supply
unit, and for the LED-coupled side-emitting fiber experiments, the MCU is an Arduino Nano
[31], powered by a laptop.

The receiver is a smartphone camera of Samsung A51 [32], which offers frame capture in
pro mode, using 4000×1800 px resolution in rolling shutter mode. The OCC link scenario is
depicted in Fig. 1. In OCC, the image is captured row-by-row using an RS camera. The RS
camera exposes different lines of the image array at various times to read the light intensity
through the sensor, enabling capturing multiple states of LEDs (ON and OFF) within a single
frame [33]. The exposure time values of the camera (i.e., the duration of time over which a
camera sensor line is exposed to light) are summarized in Table 1.

OCC Transmitters

LED 
strip

Side-emitting 
fiber

Light Symbols

Rolling Shutter 
Receiver

Image frames

Fig. 1. Optical camera communications link scenario.

Table 1. Exposure times of the camera.

Experiment Transmitter Environment texp (µs)

Laboratory
Strip (9 V) ambient light 250

Strip (12 V) ambient light 250

Side-emitting fiber dark room 500

Wearable

Strip (9 V) ambient light 170

Strip (9 V) dark room 170

Strip (12 V) ambient light 170

Strip (12 V) dark room 170

Side-emitting fiber ambient light 500

Side-emitting fiber dark room 500
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The systems implemented for the proposed laboratory experiments are shown in Fig. 2, where
both transmitters (1 m length) are placed horizontally. In the wearable experiments, a 50 cm
length transmitter is vertically attached to the front side of a T-shirt, with direction from waist to
shoulder, as shown in Fig. 3.

Laptop

MCU

LED strip

Power supply

(a)

Fiber

LaptopMCU

LED

(b)

Fig. 2. Laboratory experimental setup. (a) LED strip. (b) LED-coupled side-emitting fiber.

LED strip

MCU

(a)

Fiber

MCU

LED

(b)

Fig. 3. Wearable experimental setup. (a) LED strip. (b) LED-coupled side-emitting fiber.
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The measurements are illustrated in Fig. 4, with x and y representing the 2D coordinates of the
room (in meters). The smartphone camera captures multiple frames of Tx from various distances,
always focusing on the center of Tx at (0.0, 0.0). As the orientation of the Txs is different in
laboratory and wearable setups, each measurement tests different constraints by placing the
camera accordingly. In the laboratory setup, we move the camera in the same plane where the Tx
is placed, meaning we capture alongside the Tx. In wearable setup we move the camera in the
plane that is perpendicular to the person wearing the Tx, meaning we capture images around the
person. The most relevant parameters of the system are summarized in Table 2.

0.00

0.50

1.00

1.50

2.00

2.50

0.00 0.50 1.00 1.50 2.00

(1.20,2.10)

y[m]

x[m]

(a)

0.00

0.50

1.00

1.50

2.00

2.50

0.00 0.50 1.00 1.50 2.00

(1.00,1.50)

y[m]

x[m]

(b)

Fig. 4. The 2D coordinates of the room (in meters) represent the camera’s capturing positions,
always facing the center of the transmitter at (0.0, 0.0). (a) Laboratory experimental setup
with a yellow line representing the Tx. (b) Wearable experimental setup with a person
wearing the Tx on their T-shirt.

Table 2. Parameters of the system and their values.

Module Sub-module Parameter Value

Tx

LED strip
LED SMD 5050, white

Width 10 mm

Microcontroller Seeeduino XIAO

Side-emitting fiber

Diameter 4 mm

LED LA CW20WP6, white

Material PMMA

Microcontroller Arduino Nano

Modulation
Modulation frequency 2.5 kHz

Data packet size 6b/packet [001011]

Rx Camera
Smartphone model Samsung Galaxy A51

Image sensor Sony IMX582

Resolution 4000×1800 px
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3. Image processing

We used two different offline image processing techniques (see Fig. 5). Method 1 was developed
especially for strip LED arrays. It uses for data recovery a template signal transmitted by the LED
transmitter and detected within the image through a correlation process to find region of interest

Fig. 5. Block diagram of the transmitting and receiving node.
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Fig. 6. Frame showing values obtained from the correlation coefficient between a random
frame and the template. The region of interest (ROI) is highlighted. (a) LED strip. (b)
LED-coupled side-emitting fiber. In both of the displayed images in this figure the contrast
was increased to better show the transmitting data to the reader.

Chapter 5 Experimental Results

58



Research Article Vol. 32, No. 14 / 1 Jul 2024 / Optics Express 25097

0 100 200 300 400 500 600 700 800
0

20

40

60

80

Row number [px]

Pi
xe

lv
al

ue
[-]

Received signal Decoded signal Threshold

0

1 D
ec

od
ed

sig
na

l[
-]

(a)

0 100 200 300 400 500 600 700 800
0

20

40

60

80

Row number [px]

Pi
xe

lv
al

ue
[-]

Received signal Decoded signal
Threshold (Method 1) Threshold (Method 2)

0

1 D
ec

od
ed

sig
na

l[
-]

(b)

Fig. 7. Received grayscale signal, Decoded signal, and Thresholds for (a) LED strip and (b)
side-emitting fiber (Method 1 and Method 2).

(ROI), while within Method 2, the ROI mask is determined by using the intensity information of
the image.

In Method 1, one frame is selected while a template is generated, consisting of three consecutive
packets, each with a sequence of [001011] bits. Image frames are then converted to grayscale,
enabling retrieval of the pixels’ intensity profile. The correlation process involves sliding the
template image over the frame (similar to 2D convolution) to identify the 2D position of the
signal captured from the transmitting source [34]. Figure 5 depicts a block diagram with Tx and
Rx parts. The blue lines in inset within the Rx part of Fig. 5 represent the average row value,
while the yellow line depicts the template signal, and the red line show binarization threshold.
The ROI in the frame, where the correlation has the maximum value, is highlighted in Fig. 6.
This process is repeated for all frames. The identified ROI is then utilized for data decoding.
By applying thresholding and binarization to the acquired data, the received signal is efficiently
decoded, as depicted in Fig. 7(a).

In Method 2, the mask is thereofore applied to the captured image using multiplication. From
this image, a 1D data array with an intensity profile is generated. In this intensity profile, data
synchronization is performed using the generated template. The synchronized data is binarized
after thresholding. In Fig. 7(b), the binarization threshold is marked. Since the amount of light
emitted from a side-emitting fiber decreases with increasing distance from the coupled light
source (i.e., the LED) along the fiber, it is more suitable to use a moving average of intensity
profile as the threshold instead of a constant threshold, which was used in Method 1. The
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method for adapting the threshold value employed moving average based on the illumination level
alongside the captured fiber. The same process is replicated for every frame. Efficient decoding
of the received signal is achieved by employing the adaptive thresholding and binarization on the
acquired data.

4. Results

In this section, we show the performance of both transmitters in terms of signal-to-noise ratio
(SNR) and success of reception (SoR). Additionally, we measured the thermal radiation emanating
from the transmitters using an infrared camera (by Teledyne FLIR).

The captured thermal images are depicted in Fig. 8 for the LED strip and in Fig. 9 for the
side-emitting fiber. On both transmitters, the maximum thermal radiation is emitted at the starting
point of the LED strip and at the LED holder for the side-emitting fiber, measuring 25.7◦ C and
31.3◦ C, respectively.

(a) (b) (c)

Fig. 8. Heat emanating from the entire length of the LED strip. (a) At the starting point. (b)
In the middle section. (c) At the end.

Fig. 9. Heat emanating from the entire length of the side-emitting fiber. (a) At the LED
holder. (b) At the starting point. (c) In the middle section. (d) At the end.

Based on measurements from the infrared camera, it can be inferred that there is no excessive
overheating in any parts of both transmitters. The temperature of the transmitters was approxi-
mately at room temperature. However, the LED holder for side-emitting fiber could benefit from
better heat-dissipation material.

To estimate the SNR, we captured frames using a direct connection of Tx to the power supply
(i.e., the LEDs are driven only by a DC signal) at 2 m distance. Afterward, the frames were
processed to align the Tx among the frames. Then, the image processing code calculated the
average intensity of pixels for each row, representing the signal’s mean value. The SNR was
calculated as

SNRdB = 10 log10

(︃
µ2

σ2

)︃
, (1)
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the ratio of the mean value of the signal µ, to the standard deviation σ, assuming that the
aggregated noise distribution can be modeled as additive white Gaussian noise (AWGN). The
SNR values for each experimental setup are summarized in Table 3.

Table 3. Signal to noise ratio (SNR) values.

Experiment Transmitter Environment SNR [dB]

Laboratory
Strip (9 V) ambient light 21.1

Strip (12 V) ambient light 22.0

Fiber ambient light 28.6 down to 13.3

Wearable

Strip (9 V) ambient light 21.9

Strip (9 V) dark room 23.8

Strip (12 V) ambient light 21.9

Strip (12 V) dark room 27.4

Fiber ambient light 42.7 down to 19.3

Fiber dark room 42.9 down to 20.2

In the laboratory experiment, the SNR is almost the same for the LED strip at 9 and 12 V (21.1
and 22.0 dB, respectively), while the side-emitting fiber exhibited a range from 28.6 down to 13.3
dB under ambient light conditions. Similarly, in the wearable experiment, the SNR is equally
good for the LED strip at 9 and 12 V under ambient light conditions (21.9 dB) and higher in dark
conditions (23.8 and 27.4 dB, respectively). The side-emitting fiber exhibited a broader range
from 42.7 down to 19.3 dB under ambient light and 42.9 down to 20.2 dB in dark conditions.

Figure 10 illustrates the SNR plots for the LED strip (12 V) and the LED-coupled side-emitting
fiber in ambient light conditions for the wearable experiment. The peaks in the plot of the
LED strip correlate with the positions of the individual LEDs on the strip, whereas the gradual
decrease in the LED-coupled side-emitting fiber plot of the same figure occurs mainly due to a
fundamental property of side-emitting fiber: the power decrease along its length as a proportional
amount of power has already been emitted from the fiber.
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Fig. 10. Average signal-to-noise ratio (SNR) of the LED strip (12 V) and side-emitting
fiber in ambient light conditions for the wearable experiment.

A general assumption about the communication link performance in OCC systems is that the
bit error rate (BER) should be below 3.8 × 10−3, the forward error correction (FEC) limit [35].
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In the case of an OOK codification, assuming a Gaussian noise distribution environment, the
relation of the BER and the SNR is expressed as BER = Q(

√
SNR) [36]. From this equation, the

minimum SNR needed to ensure the required BER can be calculated; in this case, the SNR value
is 12.2 dB. As can be seen from the experimental SNR results for all the measurement cases, the
predicted system performance under optimal conditions is better than the FEC limit. Figure 11
shows the theoretical BER plot versus SNR, calculated from BER = Q(

√
SNR), considering the

minimum measured SNR at 16 dB (from Fig. 10). The resulting BER for all cases is below 10−11,
which ensures high system performance in both LED strip and side-emitting fiber schemes.
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Fig. 11. Theoretical BER = Q(
√

SNR) with highlighted the minimum measured SNR
16dB.

Next, we analyzed the quality of the captured data in terms of the SoR, which is defined as the
ratio of correctly decoded bits to the total number of transmitted bits [17]. Note, that the SoR is
calculated from the correlation results in a dataset of 10 frames, equating to a total of 180 bits
that we compare to the transmitted template. It is worth noting that the number of frames, in this
case, was taken according to the experimental procedure, while in a real system, it would be a
video recording of 30 frames per second, giving approximately 0.5 kbps. We considered that
the detection of the template failed when we received less than 2 complete packets per frame.
Consequently, the value of any dataset below 66.6 % is considered as ’no detection’.

The calculated SoR is depicted in Table 4 and Table 5 for the laboratory and wearable
experimental setup, respectively. Note that the LED strip was measured under ambient light
conditions in both experimental setups, while the LED-coupled side-emitting fiber measurements
were conducted in darkness.

From the obtained values, we can conclude that the LED strip (12 V) generally results in higher
SoR than the LED strip (9 V) and comparable SoR with the LED-coupled side-emitting fiber
considering Method 2.

Regarding the laboratory experimental setup, the SoR of the LED strips is consistently
high, close to 100 %. The LED-coupled side-emitting fiber using Method 1 exhibits variable
and relatively lower SoR, spanning from approximately 72.2 % to 98.8 %. Once using the
alternative image processing method (Method 2) produces improved results for the LED-coupled
side-emitting fiber, rendering it comparable to the LED strip (12 V) outcomes.

Regarding the SoR values of the wearable experimental setup, we observe a decrease compared
to the laboratory setup due to the reduced Tx length, which is caused by the limited amount of
space on a T-shirt (100 cm transmitter length in laboratory setup vs. 50 cm in wearable setup).
The LED strip (12 V) achieves SoR exceeding 88.8 %, while the LED strip (9 V) SoR exceeding
81.1 %. Based on Method 1, the LED-coupled side-emitting fiber demonstrates more SoR
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Table 4. Success of reception (SoR) in the laboratory experimental setup.

x [m] y [m] Strip (9 V) Strip (12 V) Fiber (Method 1) Fiber (Method 2)

0.0 2.5 <66.6 % - <66.6 % 78.3 %

0.4 2.4 89.8 % - 86.6 % 96.7 %

0.8 2.3 96.2 % - 75.8 % 97.5 %

1.2 2.1 98.3 % - 90.0 % 99.1 %

1.0

0.0 100 % 100 % 98.8 % 100 %

0.5 100 % 100 % 72.7 % 100 %

1.0 100 % 100 % 79.4 % 100 %

1.5 99.4 % 99.4 % 72.2 % 100 %

2.0 93.8 % 93.3 % 72.8 % 96.9 %

2.0

0.0 100 % 100 % 95.5 % 100 %

0.5 100 % 100 % 87.5 % 99.3 %

1.0 100 % 100 % 80.5 % 99.4 %

1.5 100 % 100 % 86.6 % 98.8 %

2.0 90.5 % 94.4 % 90.0 % 97.7 %

Table 5. Success of reception (SoR) in the wearable experimental setup.

x [m] y [m] Strip (9 V) Strip (12 V) Fiber (Method 1) Fiber (Method 2)

0.0 2.0 86.1 % 91.6 % 82.2 % <66.6 %

0.3 1.9 90.0 % 97.7 % 90.0 % 90.0 %

0.6 1.8 81.6 % 96.6 % 92.2 % 98.3 %

1.2 1.5 91.6 % 98.8 % 88.2 % 87.7 %

1.0

0.0 100 % 100 % 85.0 % 100 %

0.5 99.4 % 100 % 91.1 % 100 %

1.0 100 % 100 % 80.5 % 100 %

1.5 99.4 % 100 % 93.3 % 98.3 %

1.7 99.0 % 98.3 % 92.2 % 98.8 %

2.0 89.4 % 92.7 % 94.1 % 98.3 %

2.0

0.0 95.5 % 95.0 % 78.8 % 100 %

0.5 87.7 % 91.6 % 91.6 % 100 %

1.0 81.1 % 88.8 % 90.0 % 100 %

1.5 99.1 % 99.1 % 87.5 % 100 %

2.0 94.1 % 93.3 % 89.8 % 93.5 %

fluctuations than the LED strip (12 V), ranging from approximately 78.8 % to 94.1 %. Conversely,
with Method 2, the side-emitting fiber exhibits even superior performance compared to the LED
strips. This result underscores the requirement of using Method 2 for side-emitting fibers in
wearable OCC scenarios as they fundamentally differ in transmitter shape (not being a perfect
line source and having illumination decay along the fiber length).

We noticed that the detection of the template failed at (0.0, 2.5) capturing position in the
laboratory experimental setup (with Method 1), but not in the wearable, and this can be attributed
to the visibility of the Tx’s side. As mentioned earlier, in each setup (laboratory vs. wearable) a
different position between the Tx and camera was tested. In general, in both experimental setups,
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the best SoR is achieved at (1.0, 0.0) capturing position, when the camera and the Tx are aligned
and in close distance.

5. Conclusion

In this paper, we experimentally evaluate two types of LED-based distributed transmitters, the
LED strip and the LED-coupled side-emitting optical fiber, in both laboratory and wearable
OCC systems. Evaluation encompasses power consumption (432 mW and 720 mW for the
LED strip, and 525 mW for the side-emitting optical fiber), the success of reception, and the
signal-to-noise ratio. The primary contribution of this research lies in the demonstration of two
different technologies for wearable OCC both allowing for accurately detecting transmitted bits
and showing critical aspects for the LED strip and side-emitting fiber placement and camera
receiver position.

In conclusion, we identify some practical considerations that impact the performance of our
system. Initially, the reduced power of illumination stems from the side-emitting fiber operating at
a lower voltage. Furthermore, the side-emitting fiber’s diameter of 4 mm is significantly smaller
than the 1 cm diameter of the LED strip, resulting in a reduced illuminating area. On the other
hand, the smaller diameter of the side-emitting fiber is more flexible, tolerating more movement
in wearable applications. An additional aspect impacting practicality is the fact that the LED
strip is more distributed electrically, whereas the side-emitting fiber only requires circuitry at one
end, allowing for a more compact design.

The proposed setup was tested using standard devices, which makes it applicable for widespread
use. Our future research will encompass the implementation of a wearable device seamlessly
integrated into clothing and combined with sensors to transmit real health data. Additionally, we
plan to integrate wavelength division multiplexing techniques, where the template can act as a
beacon for transmitting data across multiple light wavelengths. Furthermore, we will experiment
a wearable setting with user in motion. Lastly, employing the latest smartphone versions capable
of capturing video with reduced exposure time and higher frame rates. The global shutter
capturing mechanism of smartphones enables simultaneous video streaming and data acquisition,
which could enable lower power consumption transmitters to operate over longer distances.
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Chapter 5 Experimental Results

5.3 Publication 3 (P3)
The last publication entitled “CNN-Based Human Detection and Identification in Indoor
Optical Camera Communication Systems Using a Wearable LED Strip” [136] is a proof
of concept for an indoor OCC system that utilizes a deep learning network to detect,
track, and identify humans wearing a yellow safety jacket with RGB LED strips. The
RGB LED strips utilize various colors (red, green, blue), each color serves as an indicator
of the user’s status. The same wearable transmitter has also been evaluated in an
outdoor setting with a link distance of 90 to 120 m, in the conference version of this
publication [26] (see Chapter A).

Apart from repurposing commercial devices such as RGB LED strips and cameras,
commonly installed in many buildings, for communication and monitoring functionalities,
which address O1, this work makes several key contributions to the field of OCC. The
most important contribution is that it introduces a deep learning-based detection and
identification system using the YOLO version 8 object detection algorithm, which
is a CNN-based model, to track wearable LED transmitters in challenging scenarios,
including low visibility, user mobility, and multiple users, addressing O3 by enabling
AI-based tracking and identification of multiple users. Finally, it evaluates the system in
an indoor room, testing both static and dynamic conditions to evaluate the efficiency
of the system in detecting, tracking, and identifying users. This addresses O2 by
assessing the impact of sensor positioning and movement dynamics on communication
performance.

In this context, mobility refers to the two experimental setups: static and walking.
In the static setup, the yellow safety jacket with the LED strip was placed on a chair
in the center of the room. For the walking setup, one person walked in a lemniscate
pattern, whereas two users followed parallel, lemniscate, or random patterns to evaluate
detection accuracy during movement. Environmental conditions included ambient light
and dark room scenarios to evaluate the system’s performance under different lighting
conditions. A fully empirical approach was used, and no probabilistic models were
employed in this study.

The experimental evaluation demonstrates the system’s potential for practical im-
plementation in high-risk environments, such as mining, factories, construction, and
healthcare facilities. The results indicate that the system achieved up to 100% SoR for
static experimental setups, whereas for a walking experimental setup with a single user,
the system maintained a high SoR of 96.2%. On the contrary, when tested with two
users, the system failed to effectively detect and track them, revealing the limitations
that must be improved to support multiple users.

In conclusion, the results demonstrate the feasibility of using OCC with deep learning
in human detection and identification, particularly in hazardous environments where
real-time monitoring is essential.
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ABSTRACT
In this paper, we present a proof of concept for an indoor optical camera communication (OCC) system utilising a deep learning
network to detect and identify humans wearing light‐emitting diode (LED) strips. Specifically, we propose using the You Only
Look Once (YOLO) version 8 object detection algorithm, which is built on convolutional neural networks (CNNs), to identify
wearable LED transmitters in challenging scenarios such as low visibility, mobility and multiple users, followed by image
processing to effectively decode the transmitted data. The red‐green‐blue (RGB) LED strip's colours (red, green, blue and white)
serve as indicators of the user's status. By combining communication and monitoring functionalities, the LEDs facilitate not
only the transmission of user data but also accurate detection, tracking and identification within the environment. This
demonstrates the feasibility of utilising widely available devices like LED strips and cameras, commonly found in many
buildings, with potential applications in high‐risk environments where monitoring individuals' physical conditions is crucial.
The obtained results indicate our system's effectiveness, as it achieved up to 100% success of reception (SoR) in a static
experimental setup, 96.2% in a walking experimental setup with one user and showed no effectiveness with two users.

1 | Introduction

Cameras are now an integral part of our daily lives, embedded
in smartphones and utilised as surveillance tools in public
infrastructure. They offer various functionalities within optical

camera communications (OCC), which have been extensively
explored in the field of optical wireless communications (OWC),
particularly under the IEEE 802.15.7a standard [1]. Specifically,
OCC employs a light‐emitting diode (LED) as the transmitter
(Tx), an image sensor (IS) (i.e., camera) as the receiver (Rx) and

This paper is an extended version of our paper published in the 14th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) Rome, Italy, 17–19 July
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light as the communication medium. The functionalities of
cameras stem from their ability to capture details beyond the
capabilities of the human eye [2], making them valuable for
communication, localisation and motion detection within in-
door and outdoor Internet of Things (IoT) environments [3].
However, they lack the human ability to detect, recognise and
track objects within images or videos.

Identifying objects in an image and tracking them throughout
a video sequence has been a key challenge in computer
vision, driving extensive research over the past several de-
cades [4]. Consequently, human activity recognition in sur-
veillance systems has emerged as a significant area of
research, with a wide range of practical applications such as
monitoring elderly care, tracking rehabilitation activity, sports
analysis and detection of security intrusions [5, 6]. To over-
come these limitations, computer vision serves as a comple-
mentary technology in image processing, and convolutional
neural networks (CNNs) have proven highly effective for deep
learning‐based computer vision tasks [7]. Among these, the
You Only Look Once (YOLO) algorithm, which is built on
CNNs, is recognised as a state‐of‐the‐art architecture for real‐
time tracking.

Currently, the YOLO architecture consists of 11 versions,
ranging from YOLOv1 to YOLOv11. Each version brings ad-
vancements to meet different challenges in object detection. For
instance, in ref. [8], YOLO version 2 has been proposed for real‐
time human detection, whereas YOLO version 5 has been
considered in ref. [4] for LED detection and data decoding
within a MIMO C‐OOK (Multiple‐Input Multiple‐Output
Camera On–Off Keying) scheme. This implementation aimed
to enhance data transmission rates and reduce bit error rates
(BER) in challenging environments characterised by long‐range
communication and mobility impacts. YOLOv8 has been pro-
posed in ref. [9] for use in a real‐time OCC system under high
mobility conditions and in ref. [10] for real‐time health moni-
toring and indoor location tracking within the Internet of
Medical Things (IoMT). YOLOv9 has been used for vehicle
detection within aerial urban transportation images in ref. [11].
YOLOv10 has been evaluated in ref. [12] for real‐time pedes-
trian detection in autonomous vehicles. The latest version
YOLOv11 has been used for miner detection in underground
coal mines in ref. [13].

Wearable devices have become ubiquitous in modern life,
appearing as smartphones, smartwatches or integrated into
clothing. In our previous research, we demonstrated the feasi-
bility of using wearable LEDs as transmitters in both indoor and
outdoor OCC systems. In ref. [14], a wearable LED array was
tested in an indoor environment, whereas in ref. [15], the
evaluation was carried out under controlled user movement
during physical exercise. Additionally, in ref. [16], two types of
LED‐based distributed transmitters, an LED strip and an LED‐
coupled side‐emitting optical fibre attached on T‐shirt, were
evaluated in terms of success of reception and the signal‐to‐
noise ratio performance (SNR). Moreover, in ref. [17], we
demonstrated an outdoor OCC system using a strip of red‐
green‐blue (RGB) LEDs on a yellow safety jacket to transmit
user identification data.

In this work, we propose an OCC system utilising a deep
learning network. Specifically, we demonstrate the feasibility of
employing widely available devices, such as LED strips and
cameras, commonly installed in many buildings, for commu-
nication and monitoring in indoor environments. Furthermore,
we propose using the YOLOv8 object detection model, devel-
oped by Ultralytics, to identify the yellow safety jacket with the
wearable LED strip in challenging scenarios involving low vis-
ibility, mobility and more than one user. The LED strip displays
different colours (red, green, blue and white) each representing
the user's status. Red indicates danger, green represents safety,
whereas blue and white communicate additional information.
The colour transmission of the LEDs also encodes data related
to user identification (ID).

Our system has potential applications in high‐risk environments
where it is essential to monitor the physical condition of in-
dividuals in professions such as mining, factory and construc-
tion. Moreover, this technology is also relevant in settings such
as rehabilitation centres and elderly care facilities, where health
and fitness data collected by wearable sensors can be trans-
mitted via LEDs to existing surveillance cameras in the room,
enabling real‐time alerts to those monitoring an individual's
condition.

The paper is structured as follows. Section 2 outlines the design
of the OCC system along with the object detection algorithm
and image processing. Section 3 describes the experimental
methodology. Section 4 presents the results, and Section V
concludes the study.

2 | Proposed System

In this section, we describe the proposed system with the
equipment used in the experimental setup, focusing on both the
transmitting and receiving nodes. Specifically, we utilise a
wearable LED Tx and camera Rx in an indoor environment to
transmit the user's ID and status through colour transmission.
In addition, our system incorporates an object detection algo-
rithm to identify the wearable LED transmitters and then em-
ploys image processing to effectively decode transmitted data.
A block diagram of the OCC link, showing the transmitter and
receiver, is presented in Figure 1, whereas key parameters are
detailed in Table 1. The components used for the experimental
setup were selected based on their commercial availability, cost‐
effectiveness and energy efficiency.

2.1 | System Description

The transmitting node consisted of a 10 mm‐wide strip of RGB
LEDs (commercially known as SMD 5050), attached to the
front and back of a yellow safety jacket worn by the user, as
shown in Figure 2. A yellow safety jacket was chosen because
high‐visibility safety garments are typically bright (yellow or
orange) in real‐world applications. Although the dominant
yellow colour of the vest may influence light reflection, image‐
forming optics ensure that different angles of departure from
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the LED strip arrive at different pixels, minimising its impact
of line‐of‐sight (LOS) interference between rays. The LEDs
were connected to the digital outputs of a microcontroller
(Arduino Nano [18]) via a transistor‐based switching circuit
(mosfet bank). Both the LED strip and the circuit were pow-
ered by a 12‐V battery. The transmitted illuminance of the
RGB LEDs at 0 cm measured with testo 545 lux metre is
7603 lux.

The circuitry modulated the RGB channels to emit a repetitive
beacon signal, utilising nonreturn‐to‐zero on‐off keying (NRZ‐
OOK) modulation—which is the simplest modulation for

OCC—with pulse sequences [110100] or [101110] at a fre-
quency of 3.8 Hz and a data rate of 3.8 bps for each RGB
channel and an overall achievable data rate of 11.4 bps if all
channels transmitted different patterns simultaneously. We
primarily used the white colour for transmission, which is a
combination of the red, green and blue channels, and evalu-
ated each colour separately. RGB colours are easily detected by
the image sensors and recognised by the image processing al-
gorithm, and they serve as visual indicators for the people
monitoring the surveillance system in high‐risk environments
for the situation of its users.

In the receiving node, two Raspberry Pi cameras [19] with
Sony IMX477 image sensors capture 30 s videos at a frame
rate of 30 fps with a resolution of 640 × 480 px, an exposure

FIGURE 1 | Block diagram of the transmitting and receiving node.

TABLE 1 | Experiment key parameters.

Module Parameter Value
Tx Light source RGB LED strip (SMD

5050)

Power supply 12 V

Microcontroller Arduino Nano

Illuminance 7603 lux

Modulation Modulation
frequency

3.8 Hz

Data pattern [110100], [101110]

Rx Camera Raspberry Pi

Image sensor Sony IMX477

White balance 0

Analogue gain 8 dB

Frame rate 30 fps

Exposure time 133 μs

Resolution 640 × 480 px

FIGURE 2 | The wearable transmitter device.
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time of 133 μs, white balance set to 0 and an analogue gain of
8 dB. Although many OCC systems use the rolling shutter
(RS) image acquisition method, where images are captured
row by row [20], this experimental setup leverages the global
shutter (GS) capability of the camera. The GS allows simul-
taneous communication during video capture, as all pixels in
the image sensor are exposed to light simultaneously and
changes are detected per frame, enabling efficient data
acquisition for low transmission data rates. The GS image
acquisition method was preferred over the RS because of
the dual purpose of our system—communication and surveil
lance—and considerations such as link range and trans-
mitter motion.

2.2 | Object Detection

In the context of OCC systems, detecting LEDs in challenging
scenarios such as mobility, low visibility and multiple users
remains a significant challenge. To address this, we propose the
use of the YOLOv8 model, which has demonstrated feasibility
and effectiveness in identifying and tracking LEDs or its optimal
balance of performance and resource efficiency. Although
newer versions such as YOLOv9, YOLOv10 and YOLOv11 offer
advancements, they also demand increased computational re-
sources and longer processing times compared to YOLOv8 of
equivalent size. The proposed methodology efficiently identifies
the region of interest (ROI) within videos, thereby enhancing
overall system performance.

Object detection using YOLOv8 involved several key steps,
from dataset preparation to model deployment. First, the
captured videos were converted to image frames and uploa-
ded as a dataset of 1000 images in the Roboflow platform
training environment [21]. The images were labelled by
marking the objects of interest (the jacket with the LED strip)
with bounding boxes. The model was then trained using 600
labelled images with the number of training epochs set to
1000. During training, YOLOv8 learnt to detect objects by
optimising its parameters to minimise the difference between
its predictions and ground‐truth labels. After training, the
model was validated on a separate dataset of 300 images,
which were not used during training, to evaluate its ability to
generalise to unseen data, ensuring accuracy and reliability.
Following validation, the model was tested on a test dataset
of 100 images to assess its performance in real‐world sce-
narios, using metrics such as precision, recall and mean
Average Precision (mAP). The model achieved 99.8% preci-
sion, 99.3% recall and 99.5% mAP. The confusion matrix,

calculated on the test set, is represented as [
100 1
2 0 ], where

100 represents true positives, 1 represents false positives, 2
represents false negatives and 0 represents true negatives.
Ideally, all results should be true positives, indicating that
there should be no true negatives. The occurrence of false
positives is attributed to double detection events. Based on
the test results, a new dataset was created to include more
diverse images or correct labelling issues, further improving
the model's robustness. Finally, the trained model was
exported for deployment.

2.3 | Image Processing

Once the YOLOv8 model is trained, it is applied locally to all
captured videos, automatically detecting the ROI in every
frame, which in this case is the jacket with the LED strip worn
by the users, as presented in Figure 3. For each frame, the
model identifies and tracks the jacket with the LED strip with
high precision. Following detection, the image processing al-
gorithm is employed to analyse the content within the ROI
detected.

The detected ROI is converted to greyscale and the pixel with
the highest intensity (max value) is identified. The pixel values
with the highest intensity extracted from all frame samples
represent the received signal and are displayed in Figure 4a
with the threshold applied on the mean value of the received
signal for binarisation. After binarisation, the signal is nor-
malised to create a buffer for further analysis, which is then
used for cross‐correlation with a template signal of the trans-
mitted pattern. This correlation process identifies the align-
ment between the received and template signals. The
algorithm computes correlation coefficients at various offsets,
and the peaks in these results indicate strong similarities,
suggesting successful pattern detection. Regions with correla-
tion values exceeding 90% are considered detected patterns.
Frame samples in which this pattern is successfully identified
are highlighted in Figure 4b. The 900 frame samples corre-
spond to a transmission period of 30 s, during which a total of
18 patterns were transmitted.

Variations in the received signal can be attributed to different
types of noise in image sensors, including thermal, shot and
flicker noise, which affect signal accuracy and consistency [22].
However, in scenarios where the Tx is mobile, such as in
Figure 4a, the variations in the received signal are primarily due
to the user's movement relative to the camera, which constantly
changes the transmission angle of the LEDs relative to the
camera, despite their fixed emission pattern of 120°.

FIGURE 3 | The two detected region of interest (ROI) corresponding
to the location of the yellow safety jacket with the LED strip worn by
two users, in one video frame sample, are highlighted in yellow.
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3 | Methodology

In this section, we elaborate on the methodology employed for
the experimental setup. The system was evaluated under
different mobility and environmental conditions, with several
users, to assess its performance.

Our measurements were taken in an indoor environment with
floor dimensions 4 × 2.5 m. Two Raspberry Pi cameras were
placed on the front and back walls of the room to capture the
interior with the wearable LED Tx from different angles.

Regarding mobility, two experimental setups, static and walking,
were tested. In the static setup, the yellow safety jacket with the
LED strip was placed on a chair in the centre of the room, as
seen in Figure 5. In addition, to increase the complexity of the
system, two users participated in walking scenarios, transmitting
different identification patterns [110100] and [101110]. For the
walking experimental setup, one person walked in a lemniscate
pattern Figure 6a, whereas two people walked in parallel
Figure 6b, lemniscate Figure 6c or random patterns Figure 6d to
evaluate detection accuracy during movement.

Finally, two environmental conditions, ambient light and dark
room, were tested to evaluate the system's performance under
different lighting conditions. For ID transmission, we used
different colours (white, red, green and blue), with each repre-
senting the user's status. White colour was primarily used for
transmission in both experimental setups, combining all the
RGB channels. However, in the static experimental setup, each
colour channel was also evaluated separately.

4 | Results

In this section, we show the performance of the system under
various environmental conditions, mobility scenarios and with

different users. The results from the two experimental setups
demonstrate the efficiency of our system, measured as the
success of reception (SoR) [16] of pattern identifications. SoR is
defined as the ratio of correctly decoded patterns to the total
number of transmitted patterns, which in this case is 18, in a
transmission period of 30 s.

Figure 7 shows the SoR of pattern identifications under different
lighting conditions for each Tx ID (101110 and 110100) in the
static setup, captured by the front wall camera. Similarly,
Figure 8 presents the data from the back wall camera. Figure 9
displays the SoR of pattern identifications for each Tx ID in the

FIGURE 4 | Received signal plots. (a) The pixel values of the detected
regions of interest (ROIs) with the highest intensity in greyscale,
representing the white colour, extracted from all frame samples with
the threshold at the mean value. (b) Binary values of white colour,
extracted from all frame samples, with highlighted frames where the
pattern is detected.

FIGURE 5 | Static experimental setup with the yellow safety jacket
with the LED strip was placed on a chair in the centre of the room with
dimensions 4 × 2.5 m, and the cameras were placed on the front
and back walls of the room.

FIGURE 6 | Walking experimental setup with the yellow safety jacket
with the LED strip worn by people walking in the room, in different
walking patterns. (a) One user walking in a lemniscate pattern. (b) Two
users walking in a parallel pattern. (c) Two users walking in a
lemniscate pattern. (d) Two users walking in a random pattern.
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walking setup under various lighting conditions, again captured
by the front wall camera. Likewise, Figure 10 provides the
corresponding data from the back wall camera.

In terms of mobility, it is evident that the static experimental
setup performed better than the walking setup, achieving even
100% SoR of pattern identifications, which corresponds to the
total number of transmitted patterns.

In the walking measurements, our system accurately detects
and tracks a single user walking in a lemniscate pattern within
the room, achieving a high number of pattern identifications
(96.2%). The one‐user case can serve as a reference point for our
system. However, in the case of two users, the system failed to
detect, track or identify the users.

Regarding the environmental conditions, the system performed
better under ambient light, as the object detection algorithm
was able to detect and track the transmitting source more
accurately in the video frames. The dark room conditions
proved to be the worst‐case scenario in almost all cases.

In terms of the different colour transmissions (blue, red and
green), the system achieved a lower SoR compared to white.
Although the object detection algorithm was trained using
frames from all experimental setups, as the walking experi-
mental setups (e.g., one user lemniscate and two users in par-
allel, lemniscate, random patterns) were conducted using white
colour transmission, the dataset contains a higher proportion of
white‐coloured frames compared to other colours. This imbal-
ance in the dataset causes lower SoR values for colour trans-
missions compared to white.

Overall, the system performed effectively, showing promise for
use in real‐world applications. Although the current model
effectively detects and tracks the wearable object using YOLOv8,
it only extracts the pixel with the maximum intensity, corre-
sponding to the LED signal. This approach limits the amount of
information captured from the LED pattern, as many additional
pixels containing relevant data are not utilised. Although the
front and back cameras share identical hardware (i.e., the same
image sensors), variations in SoR are observed due to certain
physical parameters (e.g., lens focus) that could have been
installed with different configurations. These differences can
also be attributed to the model's basic object detection method,
which lacks advanced image processing techniques for detecting
and tracking the LED within the detected object. By focusing

FIGURE 7 | Success of reception (SoR) of pattern identificationsunder
different light conditions for each transmitted ID (101110, 110100) in
white, blue, red and green colour transmission, captured by the front
camera in the static experimental setup.

FIGURE 8 | Success of reception (SoR) of pattern identifications
under different light conditions for each transmitted ID (101110,
110100) in white, blue, red and green colour transmission, captured
by the back camera in the static experimental setup.

FIGURE 9 | Success of reception (SoR) of pattern identificationsunder
different light conditions for each transmitted ID (101110, 110100),
captured by the front camera in the walking experimental setup.

FIGURE 10 | Success of reception (SoR) of pattern identifications
under different light conditions for each transmitted ID (101110,
110100), captured by the back camera in the walking experimental setup.

6 of 8 IET Optoelectronics, 2025

 17518776, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ote2.70005 by E

leni N
iarchou - U

niversidad D
e L

as Palm
as D

e G
ran C

anaria , W
iley O

nline L
ibrary on [16/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Chapter 5 Experimental Results

72



only on the maximum value of the ROI, we are unable to
effectively minimise noise, which could be addressed by
tracking multiple pixels containing LED information.

5 | Conclusion

This work presents an OCC system that uses deep learning. It
uses commercial devices such as LED strips and cameras for
indoor communication and monitoring. The YOLOv8 object
detection model is employed to identify the yellow safety jacket
with the wearable LED strip even in difficult conditions, such as
low visibility and user movement. The LED strips use different
colours (red, green, blue and white), with each colour encoding
user identification data. The results obtained indicate that our
system has potential applications in environments with high
risks, where monitoring individuals' physical conditions is of
vital importance. Our system achieved up to 100% SoR in the
static experimental setup, 96.2% in the walking experimental
setup with one user, but proved ineffective with two users.

However, for the system's implementation in a real‐world sce-
nario, there are still some challenges to be addressed. As noted in
the results in the previous section, the system failed to detect and
track multiple users in the video frames. This can be improved
with the acquisition and training of a bigger dataset that ensures
the system's performance in complex environments. Regarding
the lower system's performance in dark room conditions
compared to ambient light, this can be improved during the
signal modulation stage using an NRZ‐OOK modulation scheme
with two nonzero power levels to avoid completely dark trans-
mission, which is not highly relevant since people typically do
not walk in complete darkness. Although our study evaluated the
system's performance under ambient light and dark room con-
ditions, the impact of external light sources or reflections on
detection accuracy was not specifically analysed because we have
LOS communication, ensuring seamless reception. Future work
could investigate how factors, such as glare, shadows and varying
illumination levels affect the performance to enhance robustness
in real‐world environments. Regarding the low SoR in different
colour transmissions, future work could include more experi-
mental setups with colour transmissions. This would allow the
system to be trained on more frames with colour transmissions,
enabling a fairer comparison with white. Regarding the differ-
ence in SoR between the front and back wall cameras, combining
their captured data could enhance the overall performance of the
system. Additionally, enhancing detection capabilities by inte-
grating advanced image processing techniques and tracking all
pixels containing LED information would also improve the SoR.
Moreover, integrating the simultaneous localisation and map-
ping (SLAM) method with YOLO could improve real‐time per-
formance and localisation accuracy, particularly in dynamic and
complex environments, which would further enhance the sys-
tem's overall reliability and performance in real‐world applica-
tions. Future work could also explore the integration of other
CNN models while continuously using the updated YOLO ver-
sions to assess their impact on system performance.

Furthermore, to ensure reliable functionality across various
environments, both indoors and outdoors, transmitting nodes

must be waterproof and equipped with extended battery life. On
the receiving side, the primary challenge involves managing
real‐time data decoding and user monitoring. This includes
identifying multiple users from live video streams, filtering out
ambient lighting interference and continuously tracking users'
movements. Overcoming these challenges will require the
development of advanced computer vision models as well as
cloud‐based architectures to handle the complexity of process-
ing and analysing the incoming data simultaneously.
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Summary Section 5.4

5.4 Summary
This chapter presents a comprehensive evaluation of the three publications that con-
tribute to the applications of OCC to wearable sensor networks. A summary of system
design, data processing methods, and evaluation metrics considered in each work, as
well as the most important findings, is presented in Table 5.1.

The first publication (P1) explores an OCC system consisting of a stationary bike, a
portable LED array Tx, and a smartphone camera Rx, to track user movement during
indoor physical exercise. A correlation-based ROI detection is evaluated using the
correlation coefficient, and exercise analysis is evaluated using the position frequency
distribution data obtained from the IMU, achieving a significant reduction in the tracking
process.

The second study (P2) compares two types of wearable LED-based transmitters: an
LED strip and an LED-coupled side-emitting optical fiber. This study evaluates their
performance in laboratory and wearable settings in terms of SoR, SNR, theoretical
BER, power consumption, and heat emission. Two processing methods are employed:
correlation-based ROI detection, evaluated using the correlation coefficient, and mask-
based ROI detection, evaluated using an ROI mask. The findings show that the LED
strip achieves high SoR, while the SoR for side-emitting fiber is high with the use of
the mask-based image processing method.

The last paper (P3) utilizes deep learning techniques in the OCC system with the
YOLOv8 object detection model to detect, track, and identify humans wearing yellow
safety jackets with the wearable LED strip. This work proves the feasibility of tracking
humans under difficult conditions, including low visibility and mobility. The system
is tested according to SoR in terms of communication performance and according
to validation metrics for YOLOv8, including precision, recall, and mAP. The system
achieves high SoR in static and single-user walking experiments but fails to detect
multiple users simultaneously.

Table 5.1: Summary of the key contributions on methodology and findings of compendium
articles.

System Design Processing Evaluation Metrics Findings

P1
Stationary bike ROI detection

(corr.-based)
Corr. coef Tracking process reduction:

87.3% (mild),
79.0% (intense)

LED array Tx Exercise intensity
Smartphone Rx Exercise analysis Position freq. distribution

P2

Laboratory, Wearable setups ROI detection (corr.-based) Corr. coef., ROI mask Best SoR: 100% Tx-Rx at 1m
White LED strip Tx SoR (corr.-based) LED strip: SoR 100%, Fiber (corr.-based): SoR 72.2%-98.8% (lab), 78.8%-94.1% (wearable)
Side-emitting Fiber Tx SNR LED strip: SNR up to 42.7dB, Fiber: 21.0-27.4dB
Smartphone Rx ROI detection (mask-based) SoR (mask-based) Fiber (mask-based): Improved SoR

Theor. BER BER: 10−11

Power consumption Power: 432-720mW (LED strip), 525mW (Fiber)
Achievable data rate 0.5kbps
Heat emission User-friendly

P3
Static, Walking Object detection SoR SoR: 100% (static), 96.2% (1 user walking), fail(2 users walking)
RGB LED strip Tx ROI detection

(YOLO-based)
Validation metrics YOLO metrics: Precision 99.8%, Recall 99.3%, mAP 99.5%

Raspberry pi Rx Data rate 3.8 bps/channel, achievable: 11.4 bps
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6 Conclusions and Future Works

This chapter outlines the key contributions of this thesis in the application of OCC
systems to wearable sensor networks. The first section presents an overview of the
achievements in line with the thesis objectives, supported by the experimental results.
The second section discusses the potential new research works that emerge from the
findings of this research.

Conclusions

This doctoral thesis, titled “Contribution to the application of Optical Camera Commu-
nication to Wearable Sensor Networks”, is focused on the development and experimental
evaluation of wearable LED-based transmitters in indoor and outdoor OCC links. The
research was structured around three main objectives that aimed to demonstrate the
feasibility of implementing optical communication links based on cameras using image
sensors in the optical spectrum, by combining image processing algorithms and wireless
optical communication, to examine the impact of channel conditions related to the
position and configuration of the sensor nodes on data rate performance, and to deploy
networks with multiple receivers and apply node recognition and tracking algorithms
based on artificial intelligence techniques.

The three publications [132], [134], [136] in the compendium of this thesis presented
in the previous chapter, addressed the above-mentioned objectives through the im-
plementation of several OCC systems with wearable LED transmitters. Across the
three works, various OCC implementations were explored, including a wearable LED
transmitter for exercise monitoring, LED-based distributed transmitters for wearable
OCC, and deep learning-based detection of LED-equipped safety wearables.

The first article demonstrates the feasibility of detecting a user’s position within the
frame during indoor physical exercise, using a wearable LED transmitter. In this work,
commercial devices were employed as transmitters showing the system’s potential for
widespread use, and an image processing algorithm was designed to identify a template
signal transmitted by the LED and detected within the image. By evaluating controlled
exercise-induced movement, the tracking process is confined to a smaller region in the
image frame, improving efficiency and achieving a reduction of 87.3% for mild exercise
and 79.0% for intense exercise. The system has potential applications in sports training,
elderly care, and rehabilitation, and provides feedback on exercise intensity, individual
differences, and early detection of chronic disease or injury.

The second study compares two types of LED-based distributed transmitters, the
LED strip and the LED-coupled side-emitting optical fiber, under laboratory and
wearable OCC systems, in their power consumption, SoR, SNR, and heat emission.
The findings show some key differences between the two technologies. The LED strip
has a larger illuminated area, while the side-emitting fiber has greater flexibility for
wearable applications. Practical considerations are also related to the reduced power
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of illumination resulting from the side-emitting fiber operating at lower voltage, and
the electrical distribution which impacts performance and practicality. The LED strip
showed consistent SoR ( 100%) and SNR ranging from 21.0 to 27.4 dB, indicating
stable performance. The side-emitting optical fiber reached higher peak SNR values (up
to 42.7 dB) but exhibited greater variation in SoR (from 72.2% to 98.8 %), especially
under wearable configurations (from 78.8% to 94.1 %). Power consumption ranged
from 432–720 mW for the LED strip and 525 mW for the fiber. Furthermore, BER was
estimated at 10−11, which is well below the FEC limit of 3.8×10−3, confirming the
reliability of data transmission.

The last work integrates deep learning and OCC, using YOLOv8 object detection in
monitoring people with safety jackets with RGB LED strips in challenging conditions,
such as in low visibility and mobility. The system achieves 100% reception efficiency
for static measurements and 96.2% for single-user walking scenarios, although it is
challenged in multi-user detection, revealing the need for further optimization. The
utilization of color-coded LED strips for user identification suggests promising applica-
tions in risk-prone environments (e.g., mines, factories, construction sites, health care
facilities) in which real-time monitoring is essential. The YOLOv8 model also achieved
99.8% precision, 99.3% recall, and 99.5% mAP in detecting wearable LED transmitters,
demonstrating high accuracy in object identification.

In summary, during the exercise of this thesis, contributions have been achieved in
the following areas:

• making the system available for widespread use, as in all experimental OCC
setups in this research, commercial devices employed as transmitters (i.e., LED
array, LED strip, LED-coupled side-emitting optical fiber) and receivers (i.e.,
smartphones, Raspberry Pi cameras),

• developing an image processing algorithm for accurately detecting transmitted
bits within frames, despite the user’s movement,

• detecting the user’s position within the frame, offering valuable insights into the
user’s exercise intensity, and could potentially identify chronic conditions or detect
early signs of injuries,

• analyzing critical aspects for the transmitter placement in relationship with the
camera receiver position,

• making the system applicable in high-risk environments, where real-time monitor-
ing of users’ physical conditions is critical, with the integration of deep learning
into OCC systems, enabling indoor communication and monitoring, even under
challenging conditions such as low visibility, user movement, and multiple users.

The scalability of OCC systems in terms of the number of users that can be detected
within a single image frame depends on the camera’s capture method, the experimental
setup, and the camera-transmitter distance. In RS capture during a physical exercise
scenario, where the camera is positioned at 20–30 cm, the estimated number of users
that fit within the image frame is limited to one due to the close-up nature of the setup.
In contrast, in indoor experiments using the wearable LED strip and fiber, where the
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maximum camera distance reaches 2.8 m, the system could detect approximately three
users in the image frame.

With GS capture in a room setup, where the maximum distance is 4 m, the image
frame could fit four to five walking users, although it failed in detecting two, with
appropriate modifications (as mentioned in the following subsection). Finally, in an
outdoor experiment conducted at 90–120 m, user scalability is theoretically calculated
based on the walking area in pixels of the user within the image frame, and the size of
the user’s ROI, the system could theoretically detect up to 255 users, assuming perfectly
distributed spacing across the area.

Existing wearable health monitoring devices, such as smartwatches, fitness bands, and
ECG sensors, use RF-based communication technologies such as Bluetooth and Wi-Fi,
which are power-consuming and susceptible to electromagnetic interference, which can
be a major issue in medical settings where signal integrity is essential. Similarly, modern
IoT devices and wearable sensors depend on short-range wireless protocols such as BLE,
Zigbee, and NFC, but they struggle to scale in crowded environments. A major industry
gap exists in providing a low-power, interference-free, and scalable communication
alternative for wearable health monitoring and real-time tracking applications. In high-
risk workplaces such as mines, construction sites, and industrial facilities, tracking
workers in real time requires energy-efficient and interference-free communication
solutions to ensure safety and reliability. By focusing on real-time user tracking, multi-
user scalability, motion-resilient communication, and safety applications, this research
has the potential to close critical gaps in healthcare, IoT, smart spaces, road safety,
and industrial environments, making these technologies more effective and accessible.

Future research
The aforementioned contributions open up several future research lines on the application
of OCC in wearable sensor networks. Based on the scope of the results of this thesis,
the author envisions the following new research works.

• Wearable and Hardware Design.
– Improvements in the design of the wearable device and power efficiency.

Future research will focus on the hardware design of the wearable device
to enhance its integration within clothing or accessories. The devices have
to be compact in size, lightweight, waterproof, user-friendly, and equipped
with extended battery life, allowing them to be worn long-term, under any
environmental condition. Eye safety should also be taken into consideration,
especially for medical-related applications, where issues like flickering in the
light source have to be eliminated to prevent migraines and headaches. Data
security will also be a concern to safeguard sensitive user information using
user authentication processes.

– Exploring flexible hardware electronics as LED transmitters for OCC. Using
printed electronics or 3D printing onto textiles as transmitters for OCC can
offer a compact, cost-effective, and scalable solution. These custom-designed
transmitters could improve the extent of practical applications in wearable
and embedded OCC systems.
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– Integration of different health sensors (glucose monitors, fingertip pulse
oximeter, temperature sensors) that operate simultaneously into wearable
OCC-based communication systems. Future experiments would explore the
feasibility of health monitoring in real-world scenarios to assess the practicality
and effectiveness of OCC-integrated health wearables. Additionally, different
transmitters utilizing SDMA modulation will be incorporated to enable
efficient multi-sensor data transmission.

• Modulation and Signal Processing.
– Exploration of different signal modulation techniques. Wavelength Division

Multiplexing (WDM) will be explored to transmit data over multiple light
wavelengths and receive them with multispectral cameras [137], increasing
the system’s data rate and efficiency. For instance, if each one of the RGB
channels of the LED transmitter transmits different patterns at the same
time, the achievable data rate can be increased by three times. Additionally,
improved signal modulation techniques, such as PAM modulation with two
power levels, will ensure consistent performance even in low-light conditions.

– Digital signal processing (DSP) improvements. The application of AI al-
gorithms for decoding will optimize signal detection and eliminate noise,
ensuring more robust communication. Additionally, digitally generated data
will be utilized to train the AI models.

– Hybrid schemes of OCC integrated with RF networks (5G or 6G) could
guarantee the system’s performance by supporting high data rates over a
few kilometers and operating under non-line-of-sight (NLoS) conditions.

• Camera and Sensor Technology.
– Engaging the latest camera technology. The use of the newest cameras,

capable of capturing high-resolution videos with reduced exposure time and
higher frame rates, will support the operation of low-power transmitters over
longer distances, providing enhanced efficiency.

– Combination of cameras operating in different capture modes. GS mode
surveillance cameras can be combined with RS mode cameras in the same
setup for ROI detection, for both surveillance and communication at the
same time.

– Engaging event cameras as receiving and sensing devices. Event (or neu-
romorphic) cameras are biologically inspired sensors that have transformed
visual data acquisition by replicating the neural structure of the human
eye. Unlike traditional cameras, they operate asynchronously, detecting
changes in scene illumination at the pixel level. This enables them to cap-
ture high-precision temporal information with minimal latency, usually in the
microsecond range, allowing for higher modulation speeds and improving
the system’s data transmission rate. Since event cameras only capture
pixel-level changes, they are motion-resilient, making them ideal for wearable
OCC systems. Unlike conventional cameras that process entire frames,
event cameras transmit only pixel-level events, reducing data bandwidth
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and computational load, thus making real-time processing more efficient.
Furthermore, their unique sensing mechanism not only enhances data com-
munication but also enables advanced sensing capabilities, such as motion
tracking and environmental awareness, further expanding their potential
applications. These cameras have already been tested in OCC in [138].

• AI and Image Processing.
– Real-time user monitoring and tracking with data decoding. Since in all

the experimental setups conducted for this thesis, the data decoding stages
were performed over offline video or image captures, implementing online
processing of video streams, will make OCC in wearable sensor networks
more practical, offering a sense of security in high-risk environments or
multi-user environments such as mines, factories or care units.
Cloud-based architectures with advanced computer vision models will be
implemented for processing live video streams, identifying and separating
signals from multiple users, filtering out ambient light interference, and for
continuous tracking of user movements. Moreover, combining data from
multiple cameras will further improve the system’s performance, as the
different perspectives can increase the reliability of the system and address
challenges related to occlusions or overlapping signals in multi-user settings.
All these capabilities can be integrated into a smartphone app, enabling
real-time monitoring, data processing, and visualization on a user-friendly
platform.

– Development of advanced image processing techniques. During the exercise
of this thesis, we developed image processing techniques, dedicated to
different LED transmitter shapes. However, advanced image processing
techniques could enable accurate extraction of transmitted data from video
streams by isolating pixels that contain LED information, and subtracting
the background, even in challenging environments such as low visibility or
user movement.

– Training algorithms enhancements. Expanding the training of the integrated
AI algorithms (i.e., YOLO) with a broader range of data, including more
frames in low-visibility conditions, with multiple users, and with different
color transmissions, will improve the robustness and versatility of the system.
Moreover, refining the ROI to focus only on the LED transmitter region
in the frame, will reduce the processing time and will improve the overall
performance of the system. Also, exploring other CNN models, or using
always the updated YOLO versions, will help assess their impact on system
performance and identify ways of improvement in detection accuracy and
efficiency.

• Personalization and Insights.
– Further analysis in user dynamics and personalized insights. Since only the

relationship between the user’s position in the image frame and the user’s
exercise intensity was analyzed, future research will further explore factors
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such as age, gender, or fitness profile with experimentation with different
users. This analysis could uncover valuable information on early detection of
chronic conditions, early injury prevention, or personalized health monitoring.

Figure 6.1 illustrates some wearable design ideas for OCC systems, showing how LED
transmitters can be seamlessly embedded into everyday clothing and accessories for
enhanced usability and functionality.

Figure 6.1: Images generated by AI to visualize possible wearable designs.
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Abstract—In this paper, we experimentally demonstrate an
optical camera communications (OCC) system for wearable
light-emitting diode (LED) as the transmitter. Wearable devices
are powerful tools for supporting Internet of Things (IoT)
systems because of their sensing, processing, and communication
capability. The term “wearable devices” refers to a wide range of
products that can be integrated into clothing and accessories, thus
allowing real-time data detection, storage, and exchange without
human intervention. This paper presents the practical evaluation
of an LED-based wearable transmitter for an OCC system to
demonstrate its feasibility. In particular, an LED array attached
to the body is modulated using on-off keying to transmit data
via visible light, and a smartphone camera captures video of the
user wearing the device while slightly moving in a static position
in the room. Finally, the data is decoded from the video frames
using an image processing algorithm that tracks the source and
demodulates the signal.

Index Terms—Optical camera communications (OCC), visible
light communications (VLC), Internet of Things (IoT), wearable
devices, image processing.

I. INTRODUCTION

Optical wireless communications (OWC) are an important
field of research in mobile communication due to their low
cost, high-speed, and reliable data transmission capability [1],
and are already recognized as a complementary, and some-
times a viable alternative technology to radio-frequency (RF).
Optical camera communications (OCC) is a promising OWC
technology that uses a light-emitting diode as a transmitter
(Tx), an image sensor (IS) (i.e., camera) as receiver (Rx),
and light as the communication medium. OCC has several
valuable features, including low cost, high security, low power
consumption, and enhanced reliability. Furthermore, it is free
from electromagnetic interference and thus entirely safe for
human health [2]. The exponential growth in camera-mounted
smart devices has enabled OCC to be utilized in innovative
applications in both indoor and outdoor scenarios, such as in
indoor positioning systems [3], and healthcare [2], [4]. The
extensive deployment of smart devices (e.g., sensors, actua-
tors, smartwatches, smartphones) connected to the Internet,
represents a headstone for Internet of Things (IoT) systems
[5].

Currently, smart clothes, smartwatches, and smartphones
are considered conventional products that incorporate wear-
able technologies in human activity recognition [6]. Wearable
devices can be integrated into clothes and accessories or
directly attached to the human body, ensuring continuous,
non-invasive, non-intrusive, and seamless surveillance of one’s
physiological condition and motion activities [7]. Wearable
sensors can be defined as devices providing real-time data and
biochemical monitoring, and biophysical tracking [6]. LEDs
can be embedded in wearable devices and transmit data sensed
from wearable sensors via visible or infrared light.

Up to now, only a few works have been done considering
wearable sensors combined with LED as Tx. For instance,
a medical sensor and an infrared LED are used for uplink
transmission of medical data for patient monitoring in [8]
and for indoor health monitoring assuming patient mobility
in [9]. In addition, in [10], an all-optical bidirectional wireless
communication system is used to evaluate the mobility and the
position of the sensor on the body. Furthermore, in [11], the
authors investigate the performance of optical code-division
multiple access in asynchronous mode considering the effect
of random transmitters’ orientation.

Specifically, in OCC, a number of medical applications
focused on wearable sensors for measuring health conditions
have been developed. For instance, in [2] a system is im-
plemented for real-time remote monitoring of patient’s heart
rate and oxygen saturation data, for monitoring the health
conditions of the patient using a pulse oximeter sensor [4],
and for transmission of multiple clinical data such as electro-
cardiogram, photoplethysmogram, and respiration signal [12].
In addition, OCC can be combined with other technologies,
thus creating hybrid systems that complement the capabilities
of each technology, making the systems more resilient [13]. In
particular, in [14], it is combined with Bluetooth Low Energy
(BLE) to ensure efficient, remote, and real-time transmission
of a patient’s electrocardiogram signal to a monitor, and in
[15] for real-time health monitoring from the body sensors to
the gateway. The authors consider that the motion of nodes
in OCC can cause outage in the link and, therefore, BLE
substitutes the communication in those cases.
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Despite the several advances of the proposed systems,
some challenges require further research and development to
improve the performance of the monitoring system. First and
foremost, the hardware design of the wearable device. The
device must be adjustable to the human body, allowing data
transmission without interfering user’s activity. In addition, the
characteristics of the commercially available LED device may
limit the system’s performance. For instance, the LED’s power
and size determine the maximum link distance. Therefore,
the more power it has (e.g., high-intensity illumination) and
the larger the illuminating area it is, the more easily it is
detected by the camera. Furthermore, the smartphone’s camera
exposure time levels are limited compared with those provided
by professional cameras. Hence, high-intensity LEDs can be
captured by standard smartphone’s camera.

In this work, we experimentally evaluate an LED-based
wearable transmitter for OCC system assuming user’s con-
trolled movement, doing physical exercise in an indoor envi-
ronment. Wearable LEDs have been modulated in intensity to
transmit binary data to a smartphone camera at a frequency
that is not detected by the human eye but is captured by the
camera. The camera performs the tracking process produced
by the user’s movement and detects the data. The obtained
results are focused on the transmitter detection and tracking
challenge. For this purpose, we propose the use of a template
signal that is transmitted by the LED Tx and detected in the
image by a correlation process. The complexity of this process
can be reduced by taking into account the characteristics of
the movement generated by the controlled exercise activity,
bounding the tracking process to a smaller area of the image.

The possible applications of the proposed activity monitor-
ing system are home-based seated exercise, stationary bike,
or treadmill, among others. The primary contribution of this
work is the use of conventional and commercially available
wearable devices (e.g., LEDs) and a smartphone for communi-
cation purposes. The proposed system could potentially allow
people to lead independent and active lives in their familiar
home environment in rehabilitation, sports, early detection of
musculoskeletal or cognitive diseases, and fall and balance
assessment.

The structure of the paper is organized as follows. In Section
II, the methodology, materials, and methods that are used are
analyzed. The experimental results obtained are discussed in
Section III. Finally, Section IV draws the conclusions of this
work.

II. PROPOSED SYSTEM

In this section, the equipment of both transmitting and
receiving nodes implemented for the experimental setup is
summarized. The methods (i.e., modulation, demodulation,
and image processing) applied for the experimental setup are
also explained.

The system implemented for the proposed experiment con-
sisted of digital signal processing hardware and optical front-
ends. The Tx comprised of a regular LED device [16] with a
diffuser connected to the digital output of a micro-controller

unit (MCU) (Seeeduino Xiao [17]), while the Rx by a smart-
phone [18] which is capturing video in a distance of 10-
15 cm approximately. The Tx is worn by a person as shown
in Fig. 1a, standing in a fixed position inside a room while
slightly moving. Note all the measurements are performed
under the indoor ambient light condition. The block diagram
of the proposed OCC link is illustrated in Fig. 2. The most

XIAO

+5 V
Seeeduino

Fig. 1. (a) Wearable transmitter device. (b) Transmitter circuit.

relevant parameters of the experimental setup are summarized
in Table I.

TABLE I
PARAMETERS OF THE SYSTEM AND THEIR VALUES

Module Parameter Value
Tx Light source LED array

Device dimensions 11 × 6.5 × 3.5 cm
Power supply 5 V

Transistor NPN
Microcontroller Seeeduino XIAO

Modulation frequency fTx 2.5 kHz
Data packet size 6b/packet [110100]

Rx Smartphone camera Samsung Galaxy A51
Image sensor Sony IMX582

Exposure time texp Manually set to min.
Frame rate 30 fps
Resolution 1080 × 1920 px

Channel Link distance d 10-15 cm

The proposed system uses data transmission with non-
return-to-zero on-off keying (NRZ-OOK) modulation tech-
nique to send data over a short-range line-of-sight (LoS)
free-space wireless channel. OOK is the simplest modulation
scheme and is specialized for OCC [19]. Low ‘0’ binary data
will be represented by no carrier signal, which means the
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Fig. 2. Block diagram of the transmitting and receiving node.

LED is OFF, while high ‘1’ binary data will be represented
by a carrier signal, which means the LED is ON [8]. This
modulation exploits the switching digital outputs available in
most MCUs, where the packet data is converted into a voltage
signal that drives the LED directly. If the LED’s current
exceeds the MCU’s maximum, a transistor connected to the
power source must be implemented for driving the LED [20].

On the transmitting node, a regular LED device (comprised
of 30 white LEDs) with rechargeable batteries is modified
accordingly in order to drive the LED with a transistor pow-
ered directly from the battery terminals. Fig. 1b illustrates the
transmitter’s circuit implemented with an amplifier transistor
circuit. The micro-controller generates a 6-bit data packet
[110100] at a frequency fTx of 2.5 kHz (per bit) using a
repeat-packet strategy to improve the link performance.

The smartphone camera captures a 30 fps frame-rate video,
with exposure time texp manually set to minimum, using full
resolution (1080 × 1920 px) in rolling shutter (RS) mode.
The RS-based cameras can capture the image row-by-row of
pixels, which means that different lines of the image array are
exposed at various times to read the light intensity through
the sensor. This can cause motion blur when capturing fast-
moving objects, but multiple states of LEDs (ON and OFF)
can be obtained in a single frame [21]. The captured video
is processed offline with Python, as presented in the Rx’s
diagram in Fig. 2. First, the video is divided into frames. Then,
one frame is selected and plotted, as shown in Fig. 3, and one
template of 3 consecutive packets is generated.

Each packet on the template is a sequence of [110100] bits.
Both template and frame images are converted into grayscale
to retrieve the pixels’ intensity profile. The correlation process
slides the generated template image over the frame (as in 2D
convolution) to detect the 2D position in the frame of the signal
captured from the transmitting source. The blue line plot is the
average row value and the red line is the plot of the template
signal. The region of interest (ROI) in the frame where the
template matches is drawn in Fig. 4. The same process is
followed in all the frames. Afterward, the ROI is used for
data decoding, as shown in Fig. 5. Following thresholding and
binarization of the data acquired, we efficiently decode the
received signal, Fig. 6. Finally, we calculate the signal to noise
ratio (SNR) (1) as the ratio of the power of the obtained signal
to the power of background noise, where µ is the signal mean
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Fig. 3. Representation of the received signal in one image frame.
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Fig. 4. Frame showing values obtained from the correlation coefficient
between a random frame and the template. The region of interest (ROI) is
highlighted in red.

value and σ the standard deviation of the noise. Note, the
obtained power is the amplitude of the received signal over
a certain threshold since the low received signal level values
are zero. Therefore, the mean value and the standard deviation
of high received signal level values are the average received
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signal power and the noise power, respectively.

SNRdB = 10 log10(
µ2

σ2
) (1)
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III. RESULTS

In this section, we summarize the results obtained from
the image processing algorithm applied to the video frames
captured in the experiment described before.

From the obtained results, we can efficiently detect the
transmitting source within all the frames and hence decode
the received signal. The average calculated SNR is 22 dB.
Moreover, the ROI can be bounded to a smaller region of
the image frame as the source is detected in an area limited
by the user’s movement. For segregating the ROI, we used
the detected coordinates of each template obtained by the
correlation process in all the frames. The minimum and
maximum values on the x and y-axis, as well as the width and
height of the template, define the dimensions of the segregated
ROI, which, for this case, it is 734 × 992 px. Consequently, the
correlation process can be focused on the vertical direction, as
in the horizontal direction, the movement in the frames covers
2.6 times less area.

Note, the template transmission does not represent a real
data transmission, but could become a header of a packet of
real data collected by a sensor.

IV. CONCLUSION

In this paper, we experimentally evaluated a LED-based
wearable Tx for an OCC link. The proposed system was
tested using conventional devices, thus making it available for
general use. This device could be a potential transmitter of
health data of people in a medical, gym or home environment.
Moreover, we proved that, despite the Tx’s movement, it is
feasible to detect the transmitting source and thus reduce the
ROI in the frames by achieving a significantly high average
SNR.

Future research will include the implementation of wave-
length division multiplexing technique where the template
could serve as a beacon to send data with multiple light
wavelengths. The Tx’s design could also be improved in terms
of weight and seamless integration with the clothing piece,
thus making it more convenient for the user. Last but not least,
using the latest version of the smartphone, which captures
video in less exposure time and with higher frame rates, could
allow lower power consumption Tx in longer distances.
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Abstract—In this paper, we experimentally demonstrate an
outdoor optical camera communications (OCC) system utilizing
a wearable light-emitting diode (LED) as the transmitter. We
explore the practicality of employing commercial devices, such as
an LED strip and a smartphone, in OCC links for simultaneous
monitoring and communication purposes. In particular, a strip
of red-green-blue (RGB) LEDs is modulated to transmit data for
user identification via visible light. Each color (red, green, blue
and yellow) serves as an indicator of the user’s status. Our system
exhibits potential applications in high-risk environments where
monitoring the physical well-being of individuals is crucial.

Index Terms—Optical camera communications (OCC), outdoor
optical communications, wearable devices, image processing.

I. INTRODUCTION

Digital cameras are widespread consumer devices that not
only perform tasks related to images, but also receive data
from optical sources. The technology that uses a light-emitting
diode (LED) as the transmitter (Tx), an image sensor (IS) (i.e.,
camera) as the receiver (Rx), and light as the communication
medium, is known as optical camera communications (OCC)
and has been studied within optical wireless communications
(OWC), particularly within the IEEE 802.15.7a framework
[1]. The plethora of cameras in end-user devices, such as
smartphones and public infrastructure surveillance cameras,
offers diverse functionalities, including data communications,
localization, and motion identification within indoor and out-
door Internet of Things (IoT) [2].

OCC has been extensively studied in indoor scenarios with
medical applications of great interest due to concerns about
interference of radiofrequency (RF) signals with proper instru-
mentation performance. For instance, in [3], a home-based re-
habilitation OCC system facilitates the transmission of various
clinical data types, including electrocardiogram, photoplethys-
mogram, and respiration signals. In addition, in [4], a real-time
remote monitoring OCC system has been developed to monitor
a patient’s heart rate and oxygen saturation data. Moreover, in
[5] standard closed-circuit television (CCTV) setups incorpo-
rate deep learning-based OCC for the simultaneous monitoring
of multiple patients. Other applications include smart homes
[6] and industrial facilities [7].

In outdoor environments, OCC holds promise for supporting
data reception in sensor networks, a use case often requiring
low data rates, a large number of nodes, and a restricted energy
budget. However, it can be affected by environmental phenom-
ena. The feasibility of OCC in emulated outdoor conditions,
such as fog and heat-induced turbulence, using commercially

available LEDs and cameras, has been demonstrated in [8].
Furthermore, in [9], subpixel OCC exhibits particularly suitable
capabilities for wireless sensor network (WSN) applications,
overcoming attenuation caused by various atmospheric condi-
tions such as rain, turbulence, and the presence of aerosols.
Moreover, [10] presents a practical implementation of a surveil-
lance system capable of simultaneous video and data acquisi-
tion.

In the field of wearables, devices such as smartwatches,
smartphones, or those seamlessly integrated into clothing or
directly attached to the body (like glucose sensor patches) have
become integral to our daily lives. These devices incorporate
sensors for monitoring health and fitness data. When combined
with LEDs, they have the potential to serve as transmitters
in both indoor and outdoor OCC systems. In our earlier
studies, we have evaluated the performance of a wearable LED
array [11] and a fiber attached on T-shirt [12] as distributed
transmitters.

This work exploits the feasibility of using commercial de-
vices like LED strip and a smartphone in outdoor OCC links,
for communication and monitoring purposes. The LED strips
utilize various colors (red, green, blue, and yellow), with each
color indicating the status of the user. Specifically, red signifies
risk, green denotes safety, blue conveys other information, and
yellow serves as a warning indicator. Each color encompasses
details for user identification.

Our system has potential applications in high-risk environ-
ments where monitoring the physical well-being of individuals
is crucial. This includes professions such as mining workers,
factory workers, construction workers, ground crew in airports,
and public safety personnel. Additionally, our technology is of
relevance in rehabilitation centers and elderly care facilities.
Integration of LEDs within uniforms not only enhances vis-
ibility and provides user comfort, but also enables seamless
transmission of vital health metrics.

The structure of the paper is organized as follows. Section II
provides details of the OCC system design and the experimental
setup. Section III analyzes the experimental methodology and
the results obtained. Lastly, Section IV presents the conclusions
drawn from this work.

II. PROPOSED SYSTEM

In this section, we introduce the equipment utilized in the
experimental setup for both transmitting and receiving nodes,
as well as the modulation employed on the transmitting node.

2024 14th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)

979-8-3503-4874-3/24/$31.00 ©2024 IEEE 621

20
24

 1
4t

h 
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n 

Co
m

m
un

ic
at

io
n 

Sy
st

em
s,

 N
et

w
or

ks
 a

nd
 D

ig
ita

l S
ig

na
l P

ro
ce

ss
in

g 
(C

SN
DS

P)
 |

 9
79

-8
-3

50
3-

48
74

-3
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
CS

N
DS

P6
06

83
.2

02
4.

10
63

65
49

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on November 28,2024 at 13:57:50 UTC from IEEE Xplore.  Restrictions apply. 

Conference proceedings Chapter A

99



Image
sensor

ROI

Packetization
NRZ-OOK
modulation

Channel

Data

Data

Rx

Video
frames

Identify 
Dominant color

RGB
 LED

Thresholding,
binarization

Pattern 
identification

Mosfet
Bank

Digital 
Outputs

Tx

12V
 Battery

Fig. 1. Block diagram of the transmitting and receiving node.

The transmitting and receiving nodes that comprise the OCC
link are illustrated in the block diagram in Fig. 1 and their key
parameters are listed in Table I.

TABLE I
EXPERIMENT KEY PARAMETERS.

Module Parameter Value

Tx

Light source RGB LED strip (SMD 5050)
Power supply 12 V

Microcontroller Arduino Nano

Modulation Modulation frequency 3.8 Hz
Data pattern [11010]

Rx

Smartphone camera Samsung Galaxy S23
Image sensor S5KGN3

Frame rate 60 fps
Resolution 1920 × 1080 px

Channel Link distance (static) 90 m
Link distance (walking) 90 m to 120 m

The Tx unit was built using a 10 mm wide strip of red-
green-blue (RGB) LEDs connected to the digital outputs of
a microcontroller (Arduino Nano [13]) through a switching
circuit based on transistors (mosfet bank). A 12 V rechargeable
battery supplied power to both the LED strip and the circuit.
The RGB LED strip was affixed to the front and back sides of
a yellow safety jacket worn by an individual, as seen in Fig. 2.
The circuitry induces the RGB channels to emit a repetitive
beacon, characterized by a sequence of on-off pulses in the
pattern [11010] at a frequency of 3.8 Hz for each of the RGB
channels, including yellow.

MCU

RGB LED strip

Fig. 2. The wearable transmitter device.

On the receiving node, a smartphone camera of Samsung S23
[14], captures a 60 fps frame-rate video in 1920 × 1080 px res-
olution. Typically, OCC systems take advantage of the rolling
shutter (RS) acquisition mechanism of the camera, capturing
images row-by-row [15]. However, in this experimental setup,
we took advantage of the global shutter (GS) acquisition
capability of the camera. This allowed for simultaneous com-
munication during the actual video capture process.

III. EXPERIMENTAL METHODOLOGY AND RESULTS

In this section, we detail the types of measurements con-
ducted and the image processing algorithm applied to the video
frames captured. Finally, we present a summary of the results
obtained from the image processing algorithm.

In this work, we conducted two types of measurements in
an outdoor environment. Initially, static measurements involved
the user with the wearable Tx standing at a distance of 90 m.
Following that, walking measurements were performed with
the user walking a distance of 500 m, maintaining a distance
of 90 m to 120 m from the camera.
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The output videos from the smartphone were processed of-
fline using Python and segmented into 3000 frames. Each frame
was cropped based on the type of measurement, specifically
focusing on the transmitter’s location within the frame. In static
measurements, a region of interest (ROI) of 18 × 18 px within
the video frame sample was selected, as illustrated in Fig. 3 (a).
For walking measurements, an ROI of 690 × 120 px was
chosen, covering the walking area within the frame, Fig. 3 (b).
The map footprint is also included.

The RGB pixel values extracted from all ROIs in the frame
samples to identify the dominant color of the transmission. For
instance, the RGB pixel values corresponding to yellow color
transmission are depicted in Fig. 4 (a) and in Fig. 5 (a) for static
and walking measurements, respectively. Note that the yellow
color in RGB is a combination of the red and green channels.
Once the dominant color, in this case yellow, is identified, the
pixel values corresponding to that color are utilized for data
decoding. The pixel values for the yellow color in the static and
walking measurements are respectively displayed in Fig. 4 (b)
and Fig. 5 (b). Following color identification from all frame
samples, a threshold and binarization of the received signal are
applied to recognize the transmitted pattern. The frame samples
where this pattern is successfully identified, are highlighted in
Fig. 4 (c) for static measurement and in Fig. 5 (c) for walking
measurement.

Repeating that process for each color transmission (red,
green, blue, yellow), the results demonstrate efficient identi-
fication of the transmitted pattern for both static and walking
measurements, as depicted in Table II. The 3000 frame samples,
correspond to 50 s of transmission and a total of 38 patterns.

TABLE II
NUMBER OF PATTERN IDENTIFICATIONS IN EVERY COLOR TRANSMISSION,

FOR STATIC AND WALKING MEASUREMENTS.

Color Static Walking
Red 20 19

Green 19 20
Blue 20 20

Yellow 19 22

Regarding color transmission, based on the obtained values,
we conclude that all colors exhibit a high level of effectiveness
in pattern identification, in both static and walking measure-
ments. Despite the fact that cameras have heightened sensitivity
to red light, the yellow color, formed by a combination of
red and green channels, shows the highest efficiency, with 22
instances of pattern identification.

Specifically, in static measurements, we observe that the effi-
ciency of red and blue colors surpasses that of green and yellow.
In contrast, during walking measurements, the yellow color
slightly outperforms all other colors, while green, blue and red
follow closely with 20 and 19 instances of pattern identification,
respectively. Overall, the numbers of pattern identifications
correspond to one pattern detection approximately every 2.5 s.
The numbers of received patterns out of the total 38 transmitted
patterns result in a success of reception (SoR) of 50 % [16].

Video frame sample

Transmitter location
ROI

Video frame sample

ROI

(a)

(b)

Map 
footprint

Fig. 3. The region of interest (ROI) corresponding to the transmitter’s location
in one video frame sample, is highlighted in red for (a) static measurements
and (b) walking measurements.

(a)

Frame sample[-]
0 1000 2000 3000

R
G

B
 P

ix
el

 V
al

ue
s

100

180

255

Red Green Blue

(b)

(c)

Frame sample[-]

0

1

 B
in

ar
y 

va
lu

e

0 1000 2000 3000

Frame sample[-]

160

255

 P
ix

el
 V

al
ue

s

0 1000 2000 3000

Yellow Threshold

Pattern 
detectionYellow

Fig. 4. Static measurement plots. (a) The red-green-blue (RGB) pixel values
corresponding to the transmission of the yellow color, extracted from all frame
samples. (b) Pixel values representing the yellow color, extracted from all frame
samples with the threshold. (c) Binary values of yellow color, extracted from
all frame samples, with highlighted the frames where the pattern is detected.
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Fig. 5. Walking measurement plots. Static measurement plots. (a) The red-
green-blue (RGB) pixel values corresponding to the transmission of the yellow
color, extracted from all frame samples. (b) Pixel values representing the yellow
color, extracted from all frame samples with the threshold. (c) Binary values
of yellow color, extracted from all frame samples, with highlighted the frames
where the pattern is detected.

IV. CONCLUSION

In this paper, we explore the practicality of employing com-
mercially available devices, such as LED strip and smartphone,
in outdoor OCC for communication and monitoring applica-
tions. The LED strip incorporates different colors (red, green,
blue, and yellow), each signifying the user’s status. Within each
color, the data includes information for user identification. The
obtained results indicate that all colors exhibit a high level of
effectiveness in pattern identification in both static and walking
measurements. However, the SoR of 50%, is insufficient for bit
error rate (BER) calculation. This can be improved by applying
a matched filter in the signal processing.

For the implementation of an outdoor or indoor OCC system
for simultaneous video streaming and data acquisition, there are
several challenges that should be addressed. The transmitting
nodes require long-term battery life and a waterproof design
to ensure functionality in different environmental conditions.
Additionally, on the receiving node the main challenge is
the real-time monitoring of multiple users and simultaneous
data decoding. This includes the real-time processing of the
streamed video, the identification of multiple users, the isolation
of their signals from other ambient lighting sources, and the
continuous tracking of their movements over time. Addressing
these challenges requires the implementation of cloud-based
architectures and complex computer vision models. Although

such systems offer great potential in environments where the
continuous monitoring of individuals’ physical well-being is of
vital importance.
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Near-Infrared based Optical Camera 

Communications  

 
Abstract— We report, for the first time in the literature, an optical 

camera communications (OCC) link leveraging a near-infrared band at a 

wavelength of 850 nm that is visible to a standard camera and undetectable 

by the human eye. An experimental test-bed is developed and evaluated for 

the proposed system. The quality of the proposed communication link is 

measured in terms of the eye diagram and the bit error rate (BER) for 

different signal bandwidths. We demonstrated that, an acceptable BER 

(below the forward error correction limit) can be achieved with a data rate 

of ~2 kbps using a single near-infrared light-emitting diode, a commercially 

available camera with a 30-frame rate. This work paves the way to enable the 

use of the OCC links to many internet of things applications with low cost 

and no additional complexity. 

Keywords— Near-Infrared, optical camera communications 

(OCC), LED, optical wireless communications  

I. INTRODUCTION  

Optical wireless communications (OWC) as a subset of 

optical communication, which involves infrared (IR), 

ultraviolet, and visible light signals[1]. The wavelength of 

infrared light is longer than that of visible light, since it may 

be harmless for humans when used at low levels, yet 

undetectable to the naked eye [2]. This feature distinguishes it 

from visible light in terms of prospective applications.  

The vast majority of works reported on light positioning 

systems use the visible light band, even though very high (sub-

centimetre or even submillimeter) accuracies are also possible 

by adopting the IR band [3]. Remarkably, even though the IR 

technology is rather a niche, its implementations vary widely. 

In general, IR signals are used mainly to provide positioning 

services [4]. For instance, active beacon systems have fixed 

infrared receivers (Rxs) or transmitters (Txs) placed at known 

locations in indoor environments, and mobile Txs or Rxs 

whose positions are unknown. The IR pulse streams sent from 

the Txs are used to determine the location of the mobile nodes. 

An example of this technology is the HTC VIVE [5], wherein, 

a virtual reality system uses two IR base stations (i.e., access 

points) to determine the 6o  of freedom position of the headset 

and the controller. Another example is Microsoft Kinect, 

which uses a continuously projected IR structured light to 

detect the environment using an IR camera [6].  

The use of these wavelength ranges has some additional 

advantages compared to the visible light communications 

(VLC) links. For instance, light dimming is not an issue in IR-

based systems, and the uplink implementation using IR is 

much more convenient as it avoids the use of a bright visible 

light next to the user’s equipment.  In addition, IR-based links 

can (i) provide much higher transmission data rates compared 

to the VLC systems [7]; (ii) offer a longer transmission range 

via both non-directed diffused and line-of-sight paths [8], [9]. 

Therefore, IR or near-IR wavelength ranges could be the 

potential candidates for data communications, in which, the IR 

light emitting diodes (LEDs) are employed as the Tx. As for 

the detection, an image sensor (IS)-based Rx can be utilised to 

spatially receive the transmitted information using a single or 

multiple Tx (i.e., LEDs). This technology is best known as 

VLC and optical camera communications (OCC).  

The OCC technology leverages the use of off-the-shelf ISs, 

which were addressed and standardized under the IEEE 

802.15.7m [10]. The ISs represent the fastest-growing 

semiconductor product category in the last decade with a 

revenue quadrupling between 2010 and 2019 to reach over $18 

billion [11]. Hence, the ISs may be considered the main key 

sensor for the Internet of things (or the Internet of everything) 

applications as part of the fifth- and sixth-generation wireless 

networks [12], [13]. The application includes data 

communication [14], intelligent transport systems [15], indoor 

positioning, digital signage, drone-to-drone communication, 

augmented/virtual reality, motion capture [16], mobile 

payments, health, and security application [17] 

communication.  

Consequently, OCC combined with IR may find potential 

applications as a part of IoTs advancement. For instance, the 

use of the off-the-shelf camera to detect information from an 

IR-LED on the ground, which is already available in most 

indoor and outdoor environments [18]. Hence, integrating 

available cameras for a dual-use of communication and vision 

purposes can lead to higher energy efficiency, and lower costs. 

In [19], the IR optical communication exploited the 

advantages of OCC and proposed both practical indoor 

wireless communication and positioning. In [4], by using 

steered narrow IR beams, high capacity and accurate 

localization were offered to individual user devices. Upstream 

signaling can be applied for identifying a large number of 

active user devices, thus keeping track of their movements, 

and monitoring the channel behaviour. 

Alike the previous works, we have implemented an OCC 

link to capture the transmitted invisible light with a 

wavelength of 850 nm for the first time, to the best of authors’ 

knowledge. The Tx was characterised to investigate its 

suitability and functionality for data communications. An 
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experimental test-bed is developed for the proposed system, 

and the quality of the communication link is measured in terms 

of eye-opening and therefore the bit error rate (BER) for range 

of bandwidth of the transmitted signal. 

The remainder of the paper is organised as follows: Section 

II introduces the system model. The numerical results and 

discussion are presented in Section III. Finally, Section IV 

draws the final conclusion.  

II. SYSTEM MODEL 

 Figure 1 illustrates the block diagram of the proposed OCC 

link, in which, a pseudorandom binary sequence (PRBS) with 

a length of 2 13–1 is generated using Matlab® at the Tx side. 

The data is then up-sampled with 𝑛samp of 50 prior to being 

encoded in the non-return to zero (NRZ)-Manchester line code 

(MLC) format. The MLC signal is utilised to ensure a uniform 

distribution of 1 and 0 symbols and facilitates both decoding 

and synchronisation processes of the signal. The PRBS signal 

s(t) is split into sub-sequences with effective symbols per 

packet with the length of Pbit-symbol. The effective symbols 

are packetized to ensure accurate detection at the Rx. The 

formed packet Qth contains a Pbit- symbol size of 20 symbols 

and 5-bit for each pre-amble Pre and post-amble Post with the 

sequences of [11100] and [00111], respectively.  

The patterns of the header and footer are designed such that 

they never occur in the MLC pattern in the payload. To 

investigate the link performance, the Tx bandwidth 𝑓Tx is set 

to vary between 300 and 700 Hz. The data is then loaded into 

a signal generator (Teledyne LeCroy T3AWG3252) to 

generate the electrical signal for intensity modulation of the 

LED via a LED driver.  Note, at the Tx, an optical lens is used 

to focus the transmitted beams before transmission over a 50 

cm free space channel.  

At the Rx side, the intensity-modulated optical signal is 

captured using a CMOS IS-based Rx (Thorlabs DCC1645C) 

via an optical diffuser. The rolling shutter (RS)-based camera 

is modelled using a single convex lens with a focal length 𝑓. 

The transmission speed in the RS-based OCC system is 

defined by the amount of the information that can be captured 

by an image at the distance transmission range 𝑑, which 

depends on the acquired number of samples (i.e., pixel rows) 

and is given by [20]: 

𝑁𝑟𝑜𝑤 = 2 𝑓 × 𝑡𝑎𝑛 (
𝐹𝑜𝑉

2
) =  2 𝑓 ×  

𝐿

2𝑑
 , (1) 

where FoV is the angular field of view, and 𝐿 is the Tx 

normalized length (i.e., the diameter). Note that, the acquired 

𝑁row is incorporated with the sampling frequency of the IS, 

known as the rolling rate of IS, 𝐹𝑠 (i.e., the frequency at which 

the row pixels are sampled at the image plane).  

Therefore, the maximum frequency of the transmitted signal 

is limited to 
𝐹𝑠

2
 according to Nyquist’s theorem. 𝐹𝑠 value 

depends on the pixel clock and Texp (i.e., the time that every 

sample (pixel) of the IS is exposed to the light). Note, Texp acts 

as a moving-average filter with the frequency resolution given 

by [21]: 

∆𝑓 =  
1 

𝑇𝑒𝑥𝑝   
=  

 𝐹𝑠

𝑁𝑟𝑜𝑤(𝑑)
 , (2) 

where 𝐹𝑠 is defined in terms of the bandwidth of the 

transmitted signal 𝑓Tx and the number of received pixels per 

symbol 𝑁pps, which is given by: 

𝐹𝑠 =  𝑁𝑝𝑝𝑠 ∙   𝑓𝑇𝑥 . (3) 

Note, (i) 𝑁pps varies with the payload Pbit; and (ii) the 

maximum transmission distance is proportional to both ∆𝑓 and 

the size (diameter) of the light source. Higher Texp results in 

increased signal intensity levels, and, therefore, higher signal-

to-noise-ratio (SNR) at the cost of reduced Rx bandwidth.  

The RGB captured frame 𝐏𝑈 × 𝑉 × 3
𝑄

 of Qth Tx packets are 

processed off-line in Matlab®, in which, the adopted flow chart 

shown in Fig. 2 is applied to detect the received information 

via the IR and VLC channels. 𝐏𝑈 × 𝑉 × 3
𝑄

 is initially converted 

to the grayscale to eliminate the hue and saturation 

information while retaining the luminance of the image plane. 

It is noted that, the channel within the invisible range for the 

human eye (i.e., only observed by the IS), higher absorption of 

longer wavelengths will help to reduce the risk of causing any 

damage to the human eye as compared with other 

technologies. The intensities for all pixels are aggregated 

together at each row since they are exposed to the incident 

light at the same time. This increases the SNR of the signal by 

the number of row pixels. 

Furthermore, the DC gain of the optical signal is measured 

to overcome the non-uniformity of the IS captured signal using 

a calibration matrix. The calibration matrix is constructed by 

acquiring 20 × 𝐆𝑈 × 𝑉 × 3 , which represents the DC signal 

(i.e., captured frame without applying the baseband signal).  

 

Fig. 1. Block diagram for OCC system.  

 
Fig. 2.  Signal extraction flow chart. 

OCC starts

Step 1: Capture (Qth× 10 RS) 

frames at different 

where Q = 1, 2, …, and 20 

frames of illumination gain (DC signal 

only)  

Step 2: Grayscale frame conversion 

Step 3: Accumulate intensities for all 

pixels at each row

Step 4: Calibrate the accumulated 

signal with respect to the averaged DC 

value 

PRBS signal 

generator 

s(t)

LED

driver

LED
Manchester 

encoder

Pbit
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Note, none of the pixels of the region of interest in the 

calibration matrix should be over/under exposed. The received 

signal was normalized using the measured 𝐆𝑈 × 𝑉 × 3 and the 

calibrated signals 𝐳𝑐𝑎𝑙
𝑄

 is then estimated for the optical channel. 

 In order to ensure the full packet inclusion in the captured 

frame (i.e., contains both pre- and post-ambles), a 10 ×

𝐏𝑈 × 𝑉 × 3
𝑄

 is captured at each Qth transmitted packet. A 

resampling process is then applied to resize the signal length 

based on the packet size observed in pixels. Next, a correlation 

algorithm is used to maintain the synchronization between the 

transmitted Qth transmitted packet and the received 

𝐳cal 
𝑄

signals, where a filtered version of 𝒛cal 
𝑄

 is simulated based 

on the encoded Qth packet using a moving average filter. Note, 

the window size of the filter is set to 𝑛samp since it provides 

an optimal match compared with the observed signal. All the 

key system parameters are listed in Table 1. 

III. RESULTS AND DISCUSSION 

The experimental work is focused on establishing an OCC 

link to capture near-infrared signals using a regular IS. The 

optoelectronic characteristics of the Tx in terms of the voltage, 

current, and output power are firstly presented in Fig. 3. 

 
Fig. 3.  Optoelectronic characteristics of the infrared LED in 

terms of Current-voltage (I-V) and the Output optical power; 

characteristics.  

 Next, the captured 𝐏𝑈 × 𝑉 × 3
𝑄

 of Qth transmitted packets as 

well as 𝐆𝑈 × 𝑉 × 3 frames are processed as described in section 

II. Figure 4 (a and b) depicts samples of captured 

frames 𝐏𝑈 × 𝑉 × 3
𝑄

 and  𝐆𝑈 × 𝑉 × 3 in a respective way. The 

signals are then detected based on the summation of pixel 

intensities at each row for both 𝐏𝑈 × 𝑉 × 3
𝑄

 and  𝐆𝑈 × 𝑉 × 3, see 

Fig. 4 (c and d). Subsequently, the calibrated signal 𝒛cal 
𝑄

 is 

estimated as shown in Fig. 4 (e). 

The communication channel is investigated for a range of 

bandwidth 𝑓Tx between 300 and 700 Hz for a fixed exposure 

time as well as the payload size. Fig. 5 depicts examples of the 

acquired frames for the transmitted packets for 𝑓Tx of 300, 350, 

400, 500, 600, and 700 Hz. Increasing 𝑓Tx decreases the 

number of received pixels for each MLC symbol, thus, 

reducing the quality of the communications link. The IS 

sampling frequency of 13.31 kHz is recorded based on the 

demodulated signal, see Fig. 4. 

The recorded number of pixels used for each MLC symbol 

is shown in Table 2. The regenerated signal quality is 

measured by means of eye-diagrams, see Fig. 6, where the eye 

Table 1. System parameters. 

Description Value 

Tx 

LED type 

• Wavelength 

• Bandwidth 

Vishay (VSMY1850X01) 
850 nm 

9.4 MHz 

Tx signal 

bandwidth  𝑓Tx (Hz) 
300–700 Hz 

Tx bias current 100 mA 

Optical lens Condenser (ACK25416U 

Camera Rx 

Camera model Thorlabs DCC1645C-HQ 

Exposure time Texp 2 ms 

Maximum SNR of IS 44 dB 

Lens type 
Navitar 12 mm F/1.8 2/3” 10 

MP 

Pixel clock 10 MHz 

Camera raw image 

resolution 
1280 × 1024 pixels 

Diffuser type 
Glass with diameter of 2.0", 
220 GRIT 

Packet 

Generator 

Data format MLC 

Symbol per packet Pbit 20 symbols 

Packet generator sample 

rate 
11.125 kHz 

Number of samples 𝑛samp 50 

Channel Channel length 50 cm 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 4. Examples of  received Qth Tx packet signal at a Texp of 2 ms: 

(a) Received frame 𝐏𝑈 × 𝑉 × 3
𝑄

, (b)  Received  DC gain frame 

𝐆𝑈 × 𝑉 × 3,  (c) calibrated signal 𝐳  without the DC gain 
normalization, (d) the average DC gain 𝐳DC , and (e) 𝐳cal signals  
with the DC gain 𝐳DC  normalization.  
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opening indicates the decision threshold and the impact of the 

intersymbol interference (ISI) on the received signal. The 

threshold can be easily differentiated for 𝑓Tx of 300, 400, and 

500 Hz, see Figs. 6(a) and (b), while it is difficult to retrieve 

the signal beyond 500 Hz, see Fig. 6(c).  

Table 2. Results with Rf  of 30 fps, Pbit of 20 symbols, and IS width 
of 1024 px  

Total 

number 
of 

symbols/ 

packet 

Number of  
pixels/symbol 

(𝑁pps) 

𝑓Tx  
(Hz) 

Symbols 
per 

frame 

Rb 
obtained 

(kbps) 

Normalized 
eye height 

(a.u.) 

30 44.39 300 23.07 1.38 0.36 

30 33.30 400 30.76 1.85 0.21 

30 26.64 500 38.44 2.31 0.15 

30 22.20 600 46.13 2.77 ~0 

Figure 7 shows an example of transmitted and received 

signals for Pbit of 70 bits. Consequently, the eye’s heights and 

the data rate Rb obtained is shown in Table 2. Note that, the 

recorded BER shows that the system is capable of achieving 

an error free transmission (i.e., a BER <  10-4) for 𝑓Tx of 300, 

and 400 Hz, whereas the quality of the communication link is 

reduced at 𝑓Tx of 600 Hz and the BER observed is 17 ×10-3. 

The experimental work shows that Rb of ~2 kbps can be 

obtained using a single LED and a regular IS. 

IV. CONCLUSION 

 We proposed, for the first time in literature, an OCC link-
based infrared signal with a wavelength of 850 nm. The Tx 
was characterised to investigate it is suitability and 
functionality for data communications. An experimental test-
bed is developed for the proposed system, and the quality of 
the communication link was measured in terms of eye-opening 
and the bit error rates via different Tx signal bandwidths. The 
quality of received signals was measured based on the eye-
diagram opening. We demonstrated that, an acceptable BER 
(below the forward error correction limit) can be achieved 
with a data rate of ~2 kbps using a single LED, CIS with a 30 
frame rate and a commercially available camera.  This work 
paves the way to enable the use of the OCC links to many IoT 
applications with low cost and no additional complexity. 

 

   

(a) (b) (c) 

Fig. 6. Examples of the normalized eye diagrams of the received signal for 𝑓Tx of :  (a) 300 Hz, (b) 400 Hz, and (c) 600 Hz. 

 

Fig. 7. An example of the transmitted and received signal 

for MLC signal with 𝑃bit of 20 symbols/packet and 𝑓Tx of 

300 Hz  

 

   
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 5. Examples of the frame acquisition based on CIS for 

MLC packets and 𝑓Tx of: (a) 300 Hz, (b) 350 Hz, (c) 400 Hz, (d) 

500 Hz, (e) 600 Hz, and (f) 700 Hz. 
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Vojtěch Neuman
Department of Electromagnetic Field

Faculty of Electrical Engineering
Czech Technical University in Prague

Prague, Czech Republic
vojtech.neuman@fel.cvut.cz

Eleni Niarchou
Technological Centre for

Innovation in Communications
University of Las Palmas de Gran Canaria

Las Palmas, Spain
eleni.niarchou101@alu.ulpgc.es

Oscar Gomez-Cardenes
Department of Industrial Engineering

University of La Laguna
Santa Cruz de Tenerife, Spain

ogomezca@ull.edu.es

Stanislav Zvánovec
Department of Electromagnetic Field

Faculty of Electrical Engineering
Czech Technical University in Prague

Prague, Czech Republic
xzvanove@fel.cvut.cz

Rafael Perez-Jimenez
Institute for Technological Development

and Innovation in Communications
Universidad de Las Palmas

de Gran Canaria
Las Palmas de Gran Canaria, Spain

rperez@idetic.eu
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Abstract—We demonstrate for the first time the application
of LED-based optical camera communication using a side-
emitting fiber in wearable applications. A 1.2-m long plastic side-
emitting fiber with a 4-mm outer diameter acts as a distributed
transmitter. The side-emitting fiber is attached to a T-shirt over
the shoulder with a 50-cm section of the fiber both on the front
and back side of the T-shirt. This expands the possibilities of
data detection by the rolling shutter camera. The light from a
white LED is coupled into the side-emitting fiber with LED on-
off keying (OOK) modulation frequencies of 2.64 kHz, 3.54 kHz,
and 5.31 kHz. The results show bit error rate bellow 3.8 · 10−3

for up to 200 cm fiber to camera distance.
Index Terms—light emitting diode, optical camera communi-

cation, rolling shutter camera, side-emitting fiber, visible light
communication, wearable applications

I. INTRODUCTION

Optical camera communication (OCC) systems have been
growing rapidly as a part of visible light communication
(VLC). The OCC technology uses a visible light source as
a transmitter (Tx), e.g., a light-emitting diode (LED), and

The research has been supported by the CTU in Prague
SGS23/168/OHK3/3T/13 and CELSA-22-205 project POWER. Oscar
Gomez-Cardenes has been supported by the ’Catalina Ruiz training aid
program for research personnel’ of the Regional Ministry of Economy,
Knowledge, and Employment, as well as the European Social Fund.

a rolling-shutter camera as a receiver (Rx), which captures
a set of image frames with dark and bright stripes representing
logical zeros and ones [1]–[3]. We recently demonstrated, how
the traditional OCC systems can be expanded by using a side-
emitting fiber acting as a distributed transmitter [4], [5]. We
explored the possibilities of side-emitting fibers as a part of
OCC systems in general, and on top of these foundations, we
would like to extend the technology toward wearable systems
in this paper.

The idea of wearable systems has been well studied e.g.
in [6] and the OCC wearable systems can be built on these
foundations. In [7], a microwave radiation-free system for
wireless transmission of electroencephalogram (EEG) sig-
nals was proposed using a wearable EEG and transmitter
with an OCC detector – a mobile phone camera. A hybrid
OCC/Bluetooth Low Energy (BLE) system of a wearable
sensor for an electrocardiogram (ECG) was described in [8].
The system uses a patch circuit with an integrated LED array
and a BLE chip and ensures remote and real-time transmission
of data. An OCC-based system for real-time monitoring of
heart rate and pulse-oxygen saturation was described in [9],
where a wearable LED array is used as a transmitter and a
closed-circuit television (CCTV) camera as a receiver. The
LEDs were modulated using color intensity modulation and
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security in the form of data encoding using a unique key is
implemented.

In this paper, we present the first application study of side-
emitting fiber-based optical camera communication (OCC) in
wearable applications. For this experiment, we attached a 1.2-
m-long polymethyl methacrylate (PMMA) side-emitting fiber
of a 4 mm diameter on a T-shirt and experimentally analyzed
the OCC performance. First, the experiment is introduced,
describing the used approach, materials, and measurement
setup. Next, the results are shown and explained. And last,
the impact and importance in the OCC field are discussed and
concluded.

II. SIDE-EMITTING FIBERS FOR OCC

The side-emitting optical fiber, as opposed to a conventional
optical fiber, is specially designed to emit light gradually along
the fiber length. The emission of visible light alongside the
fiber’s length may be described as a side- or glowstick-like
emission. The side-emitting fibers can be made of polymer
(e.g., PMMA) or silica material or by combining a silica core
and a polymer cladding. To achieve side-emission, modifica-
tions in the fiber cladding or the fiber core are carried out.
The cladding changes include the already mentioned use of
polymer cladding over silica core [10] or particles working as
scattering centers may be distributed within the cladding [11].
These cladding-embedded particles cause the evanescent wave
to scatter, which leads to a transfer of energy away from the
core and out from the fiber surface. Alternatively, a variety
of particles may be added directly into the core of the fiber
causing the passing-through light to scatter and, finally, emit
from the fiber [12].

An important parameter describing a side-emitting fiber,
besides the fiber diameter and material, is the diffusion length
DL, which is defined as the fiber length over which 90 % of
the coupled optical power is lost. For example, for DL = 1m,
there will be 10 % of the coupled light at the output of a 1-m-
long section of the side-emitting fiber [13] while the rest of the
power is mainly radiated along the fiber length and partially
attenuated in the fiber structure. The illuminating power P (l)
of the side-emitting fiber, the power illuminated from the fiber
surface, is then defined in [14] as

P (l) = P0 · 10−αl/10, (1)

where P0 = P (0) is the illuminating power coupled from
the light source into the fiber, α is the attenuation coefficient,
which illustrates the attenuation over the length of the side-
emitting fiber, and l is the distance on the side-emitting fiber
from the point of the light coupling.

With changes in the fiber diameter, the properties of the
side-emitting fiber vary as well [12], [15], [16]– the thinner
the fiber, the more flexible it is. On the other hand, with the
increasing thickness of the fiber, the light is easier and thus
more efficiently coupled from an LED into the fiber.

The side-emitting fibers open up new application possibil-
ities as it is effectively a distributed light source. Thanks to
the flexible nature of the side-emitting fibers, they can be used

in places where LEDs and LED strips would not be practical
[11]. The outer diameter of side-emitting fibers varies from
hundreds of micrometers up to 30 mm, which gives us a wide
variety of diameters [15] for particular applications. Another
advantage of side-emitting fiber over an LED or an LED strip
is its radiation pattern. Usually, the radiation pattern of an LED
is about 120◦, whereas the radiation pattern of a side-emitting
fiber is 360◦ [17].

We have selected a 4-mm diameter PMMA side-emitting
fiber for a proof-of-concept validation of the OCC wearable
application. The 4-mm fiber diameter offers us a good trade-
off between flexibility and pixel width of the side-emitting
fiber in the captured image frames.

III. SYSTEM OVERVIEW AND MEASUREMENT SETUP

The block diagram of the proposed experiment is illustrated
in Fig. 1a). A data packet of non-return to zero (NRZ) on-
off keying (OOK) modulation scheme is generated using
an Arduino Nano. The 6-bit packet of [011001] pattern is used.
The LED has an embedded lens providing a narrow 20◦ beam
pattern which allows low-loss coupling into the side-emitting
fiber. A 3D-printed holder is used to fix the LED to one end
of the side-emitting fiber.

We use a 1.2-m long PMMA side-emitting fiber with
an outer diameter of 4 mm (ZDEA, Super-Bright Side Glow)
stitched to a white T-shirt using a white thread, see Fig. 1b)
with the white thread in a zig-zag pattern attaching the side-
emitting fiber.

Figure 1c) shows how the side-emitting fiber is attached to
the T-shirt. The side-emitting fiber is bent over the shoulder
with 50 cm sections of the fiber on each side (front and back)
of the T-shirt. The segment of the fiber that is lying on the
shoulder is about 20 cm long. This offers us more options
for how the fiber can be captured in real situations. Since
the side-emitting fiber is radiating in a 360◦ radiation pattern
and is attached on top of the T-shirt, it can be captured from
multiple angles, from the front, the back, and also from the
side. Furthermore, the side view on the side-emitting fiber
allows us to capture both the front and back part of the fiber in
one image increasing the amount of data pixel width captured
in a single image. This would be nearly impossible to achieve
while using an LED strip since most LED strips have only
120◦ radiation pattern. The LED was coupled to the front
section of the side-emitting fiber, meaning the illumination
level of the fiber gradually decreases as the fiber goes up
towards the shoulder, over the shoulder, and down away from
the shoulder on the backside.

As a receiver, we use a Raspberry Pi Camera Module 2 to
capture the data signal. In Fig. 1d), the camera mounted on
a tripod can be seen in the foreground capturing the fiber on
the T-shirt. The camera is facing the fiber perpendicularly. The
orientation of the camera RS is also perpendicular to the fiber.
A summary of used equipment and its fundamental parameters
is listed in Table I.

For the experimental part, we calculated the proper param-
eters to achieve a captured bit size of 20, 15, and 10 pixel

2023 South American Conference On Visible Light Communications (SACVLC)

66
Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on March 17,2025 at 10:11:43 UTC from IEEE Xplore.  Restrictions apply. 

Chapter B Collaborations

112



Arduino

Nano

LED

Side-emitting
optical fiber

C
a
m
era

S
id
e-em

ittin
g
fi
b
er

LED +

holder

Arduino Nano

Camera

Raspberry Pi

5
0
cm

20 cm

4mm

Data

[100110]
100110

Coupling

Free space,
[25; 200] cm

OCC

data

a)

b) c) d)

Fig. 1: a) Block diagram of the proposed optical camera communication system in wearable applications using a side-emitting
fiber. b) Detail of the side-emitting fiber stitched to a T-shirt. c) The side-emitting fiber is bent over the shoulder. d) Optical
camera capturing data (in the front) and the transmitting fiber on the T-shirt (in the back).

TABLE I: Equipment list with key parameters.

Parameter Value
LED LA CW20WP6, white
Surface area 500× 500µm
Signal generator Arduino Nano
fTx 2.64, 3.54, 5.31 kHz
Data packet size 6 b/packet [011001]
Side-emitting fiber ZDEA, Super bright
Diameter 4 mm
Material PMMA
Diffusion length 1 m
Tx-Rx distance d from 25 to 200 cm
Camera Raspberry Pi Camera 2
Lens HX-27227 4 mm f/1.4
Sensor Sony IMX219
Resolution 1920× 1080 pixels
texp 190, 140, 90µs
Npps 20, 15, 10 px/symbol

rows per symbol (pps), which corresponds to the values used
in our previous paper [5]. First, we calculated the modulation
frequencies fTx as

fTx =
1

Npps · Ts
=

1

tsymbol
, (2)

where Npps is the theoretically expected number of pixel rows
per symbol (pps), Ts is the sampling period of the camera,
defined as the time between the activation of two consecutive
rows [18], and tsymbol is the symbol duration, i.e., the time
in which the rolling shutter (RS) camera captures one logical
bit. Based on the parameters of our camera and selected Npps,
we determined three transmitter modulation frequencies fTx

of 2.64 kHz, 3.54 kHz, and 5.31 kHz. Camera exposure time
texp can be calculated using tsymbol as

texp ≤ tsymbol

2
. (3)

By setting a specific texp according to used tsymbol inter-
symbol interference (ISI) is minimized [18].

Each of the three modulation frequencies fTx is tested with
corresponding exposure time texp (190µs, 140µs, and 90µs)
in a set of side-emitting fiber-camera distances d ranging from
25 cm up to 200 cm. A set of 30 to 50 image frames was
captured for each setting (measurement).

The camera was facing directly to the side-emitting fiber
attached to the T-shirt. The person wearing the T-shirt was
standing with their front, or their back towards the camera
for the measurements of the front and the back section of the
fiber, respectively.

First, captured images are turned into gray-scale images.
See Fig. 2 for examples of captured images. Second, a region
of interest (ROI) is found. In our experiment, the ROI is
represented by a mask that covers the data-transmitting side-
emitting fiber in the image frames.

An individual image mask is found for each individual
image frame. The mask needs to be found separately, be-
cause the wearer of the T-shirt moved slightly during the
measurements to mimic standard human motion, e.g., in an
office. Due to this slight motion, there was a difference in the
position of the ROI in each image and a simple time difference
algorithm would not be sufficient. When the ROI is determined
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(a) (b) (c)

Fig. 2: Examples of captured images of the front of the T-shirt with visible data (fTx =2.64 kHz) on the fiber at different
distances: a) 0.5 m, b) 1.0 m, and c) 1.5 m. Note, how the bit size Npps remains constant with increasing distance. The contrast
in these images was increased for presentation purposes to better show the ROI.

Gray
scale

Find
mask

Apply
mask

Preprocessing
Data
crop

Binarization

Image

frame

Intensity

profile

Intensity

profile

Data

Fig. 3: Block diagram of data processing.

the found mask is applied to each image. Next, the images
are preprocessed, they are cropped to eliminate only partially
captured bits, and finally, they are binarized. The binarized
data are then evaluated. This image processing procedure is
outlined in Fig. 3.
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Fig. 4: Measured BER values of the front section of the side-
emitting fiber.

IV. EVALUATION OF OCC LINK PERFORMANCE AND
MEASUREMENTS RESULTS

First of all, we experimentally confirmed that the white
thread partially covering the side-emitting fiber does not
negatively affect the data transmission performance. Though
the thread does partially cover the fiber which is visible in the
captured image frames, due to the direction of the thread (it
overlaps the fiber on a slant) there is enough pixel width of
the fiber uncovered to ensure undisturbed data transmission.
The performance of the side-emitting fiber-based OCC link
was evaluated in terms of bit-error-rate (BER) and reviewed
in context to the forward-error-correction (FEC) limit [19],
which is 3.8 · 10−3.

Figures 4 and 5 show the resulting BER of the front and
the back view on the side-emitting fiber, respectively, with the
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Fig. 5: Measured BER values of the back section of the side-
emitting fiber.

2023 South American Conference On Visible Light Communications (SACVLC)

68
Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on March 17,2025 at 10:11:43 UTC from IEEE Xplore.  Restrictions apply. 

Chapter B Collaborations

114



T-shirt wearer front-facing (Fig. 4) and rear-facing (Fig. 5) the
camera. From the figures, it is evident that the FEC limit of
3.8 ·10−3 is met for all fTx, for the Tx-Rx distances of 25 cm
up to 200 cm, and for both front and back view on the fiber.

When we take a closer look at Fig. 4 and 5, the BER is
better the closer to the camera the Tx is. The highest fTx of
5.31 kHz gives us the best BER results. And when comparing
the two variations of the T-shirt wearer, the front view on the
side-emitting fiber gives us better results compared to the back
view which is due to the side-emitting fiber power loss, since
the LED is coupled to the far end of the fiber.

V. CONCLUSIONS

We have experimentally evaluated the performance of a
side-emitting fiber acting as a distributed transmitter in OCC
for wearable applications. We used a 4 mm diameter, 1.2 m
long PMMA side-emitting fiber stitched to a white T-shirt as
a proof of concept. The resulting OCC link provided BER
below the FEC limit for LED modulation frequencies 2.6 to
5.3 kHz for up to 200 cm fiber-camera distance.

Since side-emitting fibers are flexible and lightweight they
can be easily attached to clothing (or even integrated fully).
Such a wearable side-emitting fiber-based OCC holds signif-
icant potential across diverse applications. For example, in
the context of first responders, such as firefighters and police,
where integration of side-emitting fibers within their uniforms
not only augments visibility but also facilitates the real-time
transmission of vital health metrics. Moreover, side-emitting
fibers can find practical deployment in various headgear.

In the future, we aim to broaden the scope by testing various
side-emitting fiber shapes and diameters. Additionally, the
wearable side-emitting fiber-based OCC could be measured
in different contexts such as with different colors of the T-
shirt or using different methods of attaching the side-emitting
fiber to the garment.
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