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Attractors associated to iterated function systems of
enriched φ-contractions in Banach spaces

VASILE BERINDE1,2, JACKIE HARJANI3, AND KISHIN SADARANGANI3

ABSTRACT. In this paper, we consider iterated function systems built using a finite family of condensing
enriched φ-contractions w.r.t. a measure of noncompactness in Banach spaces. We prove the existence of a
fractal associated to the above mentioned iterated function system.

1. INTRODUCTION

Nowadays, fractal sets and fractal interpolation functions play a very important role
in mathematics and in other areas of science, namely biology, quantum physics, wavelet
analysis, computer graphics, metallurgy, earth sciences, surface physics, chemistry, eco-
nomics and medical sciences, see [18] and references therein.

In this paper, we discuss the existence of fractal sets which are obtained as attractors of
an iterated function system (I.F.S., in short). More precisely, suppose that X is a nonempty
set, then every nonempty family of self-maps F on X is called an iterated function system.
Associated to I.F.S. given by F , we define the invariance operator T : P(X) → P(X) given
by

T (H) =
⋃
f∈F

f(H),

for any H ∈ P(X).
When T (H) = H , that is, H is a fixed point by T , we say that H is F-invariant. In the

case that H ⊂ T (H), H is said to be a subinvariant set.
Now, we suppose that (X, d) is a metric space, by a F-fractal we mean a nonempty

compact F-invariant subset H of X .
The aim of this paper is to study iterated function systems built using a finite family of

condensing enriched φ-contractions for a measure of noncompactness in Banach spaces
and to prove the existence of a fractal associated to this iterated function system.

2. PRELIMINARIES

In the sequel, we present some definitions which we will use later.
Suppose that (E, ∥ · ∥) is a real Banach space. By ME we denote the class of nonempty

bounded subsets of E and by NE the subfamily of the relatively compact subsets of E.
For X,Y ∈ ME , by X + Y and λX with λ ∈ R, we denote the usual algebraic operations
on sets; by X , conv X and ConvX are denoted the closure, the convex ball and the convex
closed ball of X , respectively.
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Definition 2.1. A mapping µ : ME → R+ is said to be a measure of noncompactness (m.n.c., for
short) in E if it satisfies the following conditions:

(1) The family Ker µ = {X ∈ ME : µ(X) = 0} is nonempty and Ker µ ⊂ NE .
(2) X ⊂ Y =⇒ µ(X) ≤ µ(Y ).
(3) µ(X) = µ(X).
(4) µ(ConvX) = µ(X).
(5) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ), for λ ∈ [0, 1].
(6) If (Xn) is a sequence of closed sets from ME satisfying that Xn+1 ⊂ Xn for n = 1, 2, . . .

and lim
n→∞

µ(Xn) = 0 then the intersection X∞ =
⋂∞

n=1 Xn is nonempty.

Moreover, if µ(X + Y ) ≤ µ(X) + µ(Y ) and µ(λX) = |λ|µ(X) for λ ∈ R, then we say that µ
is subadditive and homogeneous, respectively.

When µ(X ∪ Y ) = max {µ(X), µ(Y )}, then we say that the m.n.c. µ satisfies the maximum
property and when Ker µ = NE µ is said to be full.

A m.n.c. µ is said to be regular when it is sublinear, full and satisfies the maximum property.

In the theory of measures of noncompactness there are two regular measures that have
a very important relevance, they are the Kuratowski α(X) and the Hausdorff χ(X), which
are defined by

α(X) = inf
{
ϵ > 0: there exists Ai ⊂ E i = 1, 2, . . . , n

such that X ⊂
⋃

Ai with diam Ai < ϵ
}

and

χ(X) = inf

{
ϵ > 0: there exists F ⊂ E finite satisfying X ⊂

⋃
x∈F

B(x, ϵ)

}
.

In what follows, we recall some concepts and results about enriched φ-contractions
taken from [4], see also [8].

Definition 2.2. A function φ : R+ → R+ is called comparison function if it satisfies the following
conditions:

(i) φ is nondecreasing, i.e., t1 ≤ t2 implies φ(t1) ≤ φ(t2).
(ii) {φn(t)} converges to 0 for all t ≥ 0, where φn denotes the n-iteration of φ.

Examples of comparison functions are:

φ(t) =
t

t+ 1
, φ(t) = arctan t, φ(t) = ln(1 + t),

φ(t) =


t

2
, t ∈ [0, 1],

t− 1

3
, t ∈ (1,∞),

It is easily seen that any comparison function satisfies the following property.

φ(t) < t for any t > 0.

For a systematic account on iterated function systems of various φ-contractions (Brow-
der, Rakotch, Edelstein, Matkowski etc.), called there weak contractions, we refer to [15].
We note that (b, φ)-µ-enriched contractions considered in the present paper are indepen-
dent of the classes of mappings treated in [15].
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Definition 2.3. Let (E, ∥ · ∥) be a Banach space ante T : E → E be a self mapping. We say that
T is an enriched φ-contraction if there exist a constant b ∈ [0,∞) and a comparison function φ
such that, for any x, y ∈ E,

∥b(x− y) + Tx− Ty∥ ≤ (b+ 1)φ(∥x− y∥).
In short, we say that T is a (b, φ)-enriched contraction.

One of the results proved in [4] is the next theorem.

Theorem 2.1. Let (E, ∥ · ∥) be a Banach space and T : E → E an enriched (b, φ)-contraction.
Then

(i) Fix (T ) = {p};
(ii) There exists λ ∈ (0, 1] such that the iterative method {xn}, given by

xn+1 = (1− λ)xn + λTxn, for n ≥ 0,

and x0 ∈ E arbitrary, converges strongly to p.

For other related results on other types of enriched contractive mappings we refer to
[3]-[9].

3. MAIN RESULT

Before presenting our main result, we need the following definition.

Definition 3.4. Let Ω be a nonempty, bounded, closed convex subset of a real Banach space (E, ∥ ·
∥) and T : Ω → Ω.

We say that T is a (b, φ)-µ-enriched contraction, where µ is a m.n.c., if there exist b ∈ [0,∞)
and φ a comparison function such that

µ ({bx+ Tx : x ∈ B}) ≤ φ(µ(B)) ,

for any nonempty, closed and convex subset B of Ω.

Remark 3.1. Suppose that T : Ω → Ω is a (b, φ)-µ-enriched contraction and A ⊂ Ω. By T b(A)
we denote the following set

T b(A) =

{(
1− 1

b+ 1

)
x+

1

b+ 1
Tx : x ∈ A

}
.

In what follows, we suppose that the m.n.c. µ satisfies the maximum property. The
main result of the paper is the following.

Theorem 3.2. Let F = {T1, T2, . . . , Tn} be a finite family of (bi, φi)-µ-enriched contractions of a
nonempty bounded, closed and convex subset Ω of a Banach space (E, ∥ · ∥) into itself. Then there
exists a convex compact subset P of Ω such that

T b(P ) =

n⋃
i=1

T bi
i (P ) ⊂ P.

Proof. As Ω ̸= ∅, we take x0 ∈ Ω.
Next, we consider the following family

M =

{
A ⊂ Ω: A nonempty, closed, convex, x0 ∈ A and

T b(A) =

n⋃
i=1

T bi
i (A) ⊂ A

}
.
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It is clear that M ≠ ∅ because Ω ∈ M, since Ω ̸= ∅ , closed, convex and x0 ∈ Ω.
Moreover, the convexity of Ω gives us that, for any i ∈ {1, 2, . . . , n},

T bi
i (Ω) =

{(
1− 1

bi + 1

)
x+

1

bi + 1
Tix : x ∈ Ω

}
⊂ Ω,

and, therefore, T b(Ω) ⊂ Ω.
Now, we consider the following sets,

P =
⋂

A∈M
A and Q = Conv

(
T b(P ) ∪ {x0}

)
.

We claim that P = Q.
In fact, firstly, we note that P ̸= ∅ since for any A ∈ M, x0 ∈ A and, consequently,

x0 ∈ P .
Moreover, for any A ∈ M,

T b(P ) = T b

( ⋂
A∈M

A

)
=

n⋃
i=1

T bi
i

( ⋂
A∈M

A

)
⊂

n⋃
i=1

T bi
i (A) = T b(A) ⊂ A.

From this, we infer that T b(P ) ⊂ P .
On the other hand, since x0 ∈ P , P is convex and closed (because P is intersection of

convex and closed sets) and T b(P ) ⊂ P , it follows

Q = Conv
(
T b(P ) ∪ {x0}

)
⊂ Conv(P ∪ {x0}) = Conv(P ) = P,

this is Q ⊂ P .
For the reverse inclusion, taking into account that Q ⊂ P , we have

T b(Q) ⊂ T b(P ) ⊂ Conv
(
T b(P ) ∪ {x0}

)
= Q,

and, since Q is closed, convex and x0 ∈ Q, we infer that Q ∈ M.
As P =

⋂
A∈M A and Q ∈ M, we have that P ⊂ Q.

This proves our claim.
Next, we will prove that P is compact.
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To do this, we argue by contradiction. Suppose that P is not compact. Then we deduce
that

0 < µ(P ) = µ(Q)

= µ
(
Conv

(
T b(P ) ∪ {x0}

))
= µ

(
T b(P ) ∪ {x0}

)
= µ

(
T b(P )

)
= µ

(
n⋃

i=1

T bi
i (P )

)
= max

1≤i≤n
µ
(
T bi
i (P )

)
= max

1≤i≤n
µ

{(
1− 1

bi + 1

)
x+

1

bi + 1
Tix : x ∈ P

}
= max

1≤i≤n

{
1

bi + 1
µ

{
(bi + 1)

(
1− 1

bi + 1

)
x+ Tix : x ∈ P

}}
= max

1≤i≤n

{
1

bi + 1
µ {bix+ Tix : x ∈ P}

}
≤ max

1≤i≤n

{
1

bi+1
φi(µ(P ))

}
,

where we have used that µ is a m.n.c. satisfying the maximum property, that µ({x0}) = 0
and that Ti are (bi, φi)-µ-enriched contractions.

Now, by using that φi are comparison functions and that µ(P ) > 0, we have that
φi (µ(P )) < µ(P ) and from the last inequality, we deduce

0 < µ(P ) ≤ max
1≤i≤n

{
1

bi+1
φi(µ(P ))

}
≤ max

1≤i≤n

{
1

bi+1
µ(P )

}
< µ(P ).

This gives us a contradiction. Therefore, P is compact.
The convexity of P is clear since P is a intersection of convex subsets.

□

Before giving our result about the existence of a fractal, we need some definitions and
results which appear in [14].

Suppose that F is a family of maps of a nonempty set X into itself and let T : P −→ P
be the invariance operator, that is, for any H ∈ P(X),

T (H) =
⋃
f∈F

f(H) .

Now, let H1 ⊂ X . By the Kantorovich iteration and its limit we mean

Hn+1 = T (Hn)

and

H =
⋃
n∈N

Hn ,

respectively.
The following two lemmas, which appear in the above mentioned paper, play a very

important role in proving our next result.
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Lemma 3.1. Suppose that F is a nonempty family of self-maps on a nonempty set X and let
H ⊂ X be a F-subinvariant set (that is, H ⊂ T (H) =

⋃
f∈F f(H)).

Then, the limit of H under Kantorovich iteration is an F-invariant set (which means that
T (H) = H for H =

⋃
n∈N Hn).

Lemma 3.2. Let (X, d) be a metric space and F a finite family of continuous maps of X into itself
and H ⊂ X is a relatively compact F-invariant set.

Then H is also F-invariant (here H denotes the topological closure of X).

Next, we prove the existence of a fractal.
In our case the family F is given by

F =
{
T bi
i : Ω → Ω , i = 1, 2, . . . , n

}
where T bi

i (x) =
{(

1− 1
bi+1

)
x+ 1

bi+1Tix
}
.

Theorem 3.3. Let F = {T1, T2, . . . , Tn} be a family of (bi, φi)-µ-enriched contractions continu-
ous on Ω. Under assumptions of Theorem 3.2, there exists a relatively compact F-invariant subset
of Ω.

Proof. Let P be the convex compact subset of Ω such that

T b(P ) =

n⋃
i=1

T bi
i (P ) ⊂ P,

whose existence is guaranteed by Theorem 3.2. Since T b(P ) ⊂ P , particularly, T b1
1 : P →

P . As P is convex and compact and T b1
1 is continuous, by Schauder’s fixed point theorem,

it follows that there exists a fixed point x1 ∈ P , that is, T b1
1 (x1) = x1.

Put H = {x1} ⊂ P . It is clear that

H ⊂ T b(H) =

n⋃
i=1

T bi
i (H) ⊂

n⋃
i=1

T bi
i (P ) ⊂ P ,

and, therefore, H is a F-subinvariant set.
Now, we consider the Kantorovich iteration of H , that is, H1 = H = {x1} and Hn+1 =

T b (Hn). Taking into account Lemma 3.1, the limit of H , that is, G =
⋃

n∈N Hn, is a F-
invariant set.

Moreover, as H1 = {x1} ⊂ P . we have

H2 = T b (H1) ⊂ T b(P ) ⊂ P ,

and, using induction, we infer that

Hn ⊂ P for any n ∈ N .

Therefore, since P is compact and G =
⋃
n∈N

Hn is a closed contained in a compact, we

deduce that G is compact.
This gives us the desired result. □

4. CONCLUSIONS AND FURTHER DEVELOPMENTS

1. In this paper we studied iterated function systems which are built by using a finite
family of condensing (b, φ)-µ-enriched contractions with respect to a measure of noncom-
pactness in Banach spaces and proved the existence of a fractal associated to such an
iterated function system.
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2. To our best knowledge, this is the first approach to obtaining attractors of iterated
function systems consisting of enriched φ-contractive mappings in the presence of a mea-
sure of noncompactness.

3. Related results based on the use of measures of noncompactness were established
in [15], Section 7.4, but in the case of multivalued case and for φ-contractions of Browder
type.

4. We note that, in view of Example 3 in [4], (b, φ)-µ-enriched contractions involved
in the iterated function systems considered in the present paper are independent of the
classes of mappings treated in [15].

5. Existence of a fractal of iterated function systems containing condensing functions
w.r.t. the degree of nondensifiability, which is different of the concept of measure of non-
compactness, was established very recently in [16].

6. Further developments on the study of attractors of iterated function systems could
be done by considering other classes of enriched contractions, namely enriched Banach
contractions [6], enriched Kannan mappings [7], enriched Chatterjea mappings [9], , [1],
[2], [10], [11], [13], [17], [19], [20], and many others that could be found in the recent
survey [12]. Similar attempts were already done in [18] for Ćirić-Reich-Rus contractions,
but without using the measure of noncompactness.
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