Attractors associated to iterated function systems of enriched φ -contractions in Banach spaces

VASILE BERINDE^{1,2}, JACKIE HARJANI³, AND KISHIN SADARANGANI³

ABSTRACT. In this paper, we consider iterated function systems built using a finite family of condensing enriched φ -contractions w.r.t. a measure of noncompactness in Banach spaces. We prove the existence of a fractal associated to the above mentioned iterated function system.

1. Introduction

Nowadays, fractal sets and fractal interpolation functions play a very important role in mathematics and in other areas of science, namely biology, quantum physics, wavelet analysis, computer graphics, metallurgy, earth sciences, surface physics, chemistry, economics and medical sciences, see [18] and references therein.

In this paper, we discuss the existence of fractal sets which are obtained as attractors of an iterated function system (I.F.S., in short). More precisely, suppose that X is a nonempty set, then every nonempty family of self-maps $\mathcal F$ on X is called an iterated function system. Associated to I.F.S. given by $\mathcal F$, we define the invariance operator $T\colon \mathcal P(X)\to \mathcal P(X)$ given by

$$T(H) = \bigcup_{f \in \mathcal{F}} f(H),$$

for any $H \in \mathcal{P}(X)$.

When T(H) = H, that is, H is a fixed point by T, we say that H is \mathcal{F} -invariant. In the case that $H \subset T(H)$, H is said to be a subinvariant set.

Now, we suppose that (X, d) is a metric space, by a \mathcal{F} -fractal we mean a nonempty compact \mathcal{F} -invariant subset H of X.

The aim of this paper is to study iterated function systems built using a finite family of condensing enriched φ -contractions for a measure of noncompactness in Banach spaces and to prove the existence of a fractal associated to this iterated function system.

2. Preliminaries

In the sequel, we present some definitions which we will use later.

Suppose that $(E, \|\cdot\|)$ is a real Banach space. By \mathfrak{M}_E we denote the class of nonempty bounded subsets of E and by \mathfrak{N}_E the subfamily of the relatively compact subsets of E. For $X,Y\in \mathfrak{M}_E$, by X+Y and λX with $\lambda\in \mathbb{R}$, we denote the usual algebraic operations on sets; by \overline{X} , $conv\ X$ and $Conv\ X$ are denoted the closure, the convex ball and the convex closed ball of X, respectively.

Received: 01.02.2025. In revised form: 30.06.2025. Accepted: 01.07.2025

²⁰²⁰ Mathematics Subject Classification. 47J25, 47H05, 47H09, 47H10, 28A80.

Key words and phrases. Banach space, iterated function system, comparison function, enriched φ -contraction, measure of noncompactness, fractal.

Corresponding author: Vasile Berinde; vasile.berinde@mi.utcluj.ro

Definition 2.1. A mapping $\mu \colon \mathfrak{M}_E \to \mathbb{R}_+$ is said to be a measure of noncompactness (m.n.c., for short) in E if it satisfies the following conditions:

- (1) The family $Ker \mu = \{X \in \mathfrak{M}_E : \mu(X) = 0\}$ is nonempty and $Ker \mu \subset \mathfrak{N}_E$.
- (2) $X \subset Y \implies \mu(X) \le \mu(Y)$.
- (3) $\mu(\overline{X}) = \mu(X)$.
- (4) $\mu(Conv X) = \mu(X)$.
- (5) $\mu(\lambda X + (1 \lambda)Y) \le \lambda \mu(X) + (1 \lambda)\mu(Y)$, for $\lambda \in [0, 1]$.
- (6) If (X_n) is a sequence of closed sets from \mathfrak{M}_E satisfying that $X_{n+1} \subset X_n$ for $n=1,2,\ldots$ and $\lim_{n\to\infty} \mu(X_n)=0$ then the intersection $X_\infty=\bigcap_{n=1}^\infty X_n$ is nonempty.

Moreover, if $\mu(X+Y) \leq \mu(X) + \mu(Y)$ and $\mu(\lambda X) = |\lambda|\mu(X)$ for $\lambda \in \mathbb{R}$, then we say that μ is subadditive and homogeneous, respectively.

When $\mu(X \cup Y) = \max \{\mu(X), \mu(Y)\}$, then we say that the m.n.c. μ satisfies the maximum property and when $Ker \mu = \mathfrak{N}_E \mu$ is said to be full.

A m.n.c. μ is said to be regular when it is sublinear, full and satisfies the maximum property.

In the theory of measures of noncompactness there are two regular measures that have a very important relevance, they are the Kuratowski $\alpha(X)$ and the Hausdorff $\chi(X)$, which are defined by

$$\alpha(X)=\inf\Big\{\epsilon>0\colon \text{there exists }A_i\subset E\ i=1,2,\dots,n$$
 such that $X\subset\bigcup A_i$ with diam $A_i<\epsilon\Big\}$

and

$$\chi(X) = \inf \left\{ \epsilon > 0 \colon \text{there exists } F \subset E \text{ finite satisfying } X \subset \bigcup_{x \in F} B(x, \epsilon) \right\}.$$

In what follows, we recall some concepts and results about enriched φ -contractions taken from [4], see also [8].

Definition 2.2. A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is called comparison function if it satisfies the following conditions:

- (i) φ is nondecreasing, i.e., $t_1 \leq t_2$ implies $\varphi(t_1) \leq \varphi(t_2)$.
- (ii) $\{\varphi^n(t)\}\$ converges to 0 for all $t\geq 0$, where φ^n denotes the n-iteration of φ .

Examples of comparison functions are:

$$\varphi(t) = \frac{t}{t+1}, \qquad \varphi(t) = \arctan t, \qquad \varphi(t) = \ln(1+t),$$

$$\varphi(t) = \begin{cases} \frac{t}{2}, & t \in [0,1], \\ t - \frac{1}{3}, & t \in (1,\infty), \end{cases}$$

It is easily seen that any comparison function satisfies the following property.

$$\varphi(t) < t$$
 for any $t > 0$.

For a systematic account on iterated function systems of various φ -contractions (Browder, Rakotch, Edelstein, Matkowski etc.), called there weak contractions, we refer to [15]. We note that (b, φ) - μ -enriched contractions considered in the present paper are independent of the classes of mappings treated in [15].

Definition 2.3. Let $(E, \|\cdot\|)$ be a Banach space ante $T: E \to E$ be a self mapping. We say that T is an enriched φ -contraction if there exist a constant $b \in [0, \infty)$ and a comparison function φ such that, for any $x, y \in E$,

$$||b(x-y) + Tx - Ty|| \le (b+1)\varphi(||x-y||).$$

In short, we say that T *is a* (b, φ) *-enriched contraction.*

One of the results proved in [4] is the next theorem.

Theorem 2.1. Let $(E, \|\cdot\|)$ be a Banach space and $T: E \to E$ an enriched (b, φ) -contraction. Then

- (i) $Fix(T) = \{p\};$
- (ii) There exists $\lambda \in (0,1]$ such that the iterative method $\{x_n\}$, given by

$$x_{n+1} = (1 - \lambda)x_n + \lambda Tx_n$$
, for $n \ge 0$,

and $x_0 \in E$ arbitrary, converges strongly to p.

For other related results on other types of enriched contractive mappings we refer to [3]-[9].

3. MAIN RESULT

Before presenting our main result, we need the following definition.

Definition 3.4. Let Ω be a nonempty, bounded, closed convex subset of a real Banach space $(E, \| \cdot \|)$ and $T \colon \Omega \to \Omega$.

We say that T is a (b, φ) - μ -enriched contraction, where μ is a m.n.c., if there exist $b \in [0, \infty)$ and φ a comparison function such that

$$\mu\left(\left\{bx + Tx \colon x \in B\right\}\right) \le \varphi(\mu(B)),\,$$

for any nonempty, closed and convex subset B of Ω .

Remark 3.1. Suppose that $T: \Omega \to \Omega$ is a (b, φ) - μ -enriched contraction and $A \subset \Omega$. By $T^b(A)$ we denote the following set

$$T^b(A) = \left\{ \left(1 - \frac{1}{b+1}\right)x + \frac{1}{b+1}Tx \colon x \in A \right\}.$$

In what follows, we suppose that the m.n.c. μ satisfies the maximum property. The main result of the paper is the following.

Theorem 3.2. Let $\mathcal{F} = \{T_1, T_2, \dots, T_n\}$ be a finite family of (b_i, φ_i) - μ -enriched contractions of a nonempty bounded, closed and convex subset Ω of a Banach space $(E, \|\cdot\|)$ into itself. Then there exists a convex compact subset P of Ω such that

$$T^b(P) = \bigcup_{i=1}^n T_i^{b_i}(P) \subset P.$$

Proof. As $\Omega \neq \emptyset$, we take $x_0 \in \Omega$.

Next, we consider the following family

$$\mathcal{M}=\left\{A\subset\Omega\colon A \text{ nonempty, closed, convex, } x_0\in A \text{ and}
ight.$$

$$T^b(A)=\bigcup_{i=1}^n T_i^{b_i}(A)\subset A \right\}.$$

It is clear that $\mathcal{M} \neq \emptyset$ because $\Omega \in \mathcal{M}$, since $\Omega \neq \emptyset$, closed, convex and $x_0 \in \Omega$. Moreover, the convexity of Ω gives us that, for any $i \in \{1, 2, \dots, n\}$,

$$T_i^{b_i}(\Omega) = \left\{ \left(1 - \frac{1}{b_i + 1} \right) x + \frac{1}{b_i + 1} T_i x \colon x \in \Omega \right\} \subset \Omega,$$

and, therefore, $T^b(\Omega) \subset \Omega$.

Now, we consider the following sets,

$$P = \bigcap_{A \in \mathcal{M}} A$$
 and $Q = Conv(T^b(P) \cup \{x_0\})$.

We claim that P = Q.

In fact, firstly, we note that $P \neq \emptyset$ since for any $A \in \mathcal{M}$, $x_0 \in A$ and, consequently, $x_0 \in P$.

Moreover, for any $A \in \mathcal{M}$,

$$T^{b}(P) = T^{b}\left(\bigcap_{A \in \mathcal{M}} A\right) = \bigcup_{i=1}^{n} T_{i}^{b_{i}}\left(\bigcap_{A \in \mathcal{M}} A\right) \subset \bigcup_{i=1}^{n} T_{i}^{b_{i}}\left(A\right) = T^{b}(A) \subset A.$$

From this, we infer that $T^b(P) \subset P$.

On the other hand, since $x_0 \in P$, P is convex and closed (because P is intersection of convex and closed sets) and $T^b(P) \subset P$, it follows

$$Q = Conv\left(T^b(P) \cup \{x_0\}\right) \subset Conv(P \cup \{x_0\}) = Conv(P) = P,$$

this is $Q \subset P$.

For the reverse inclusion, taking into account that $Q \subset P$, we have

$$T^b(Q) \subset T^b(P) \subset Conv\left(T^b(P) \cup \{x_0\}\right) = Q,$$

and, since Q is closed, convex and $x_0 \in Q$, we infer that $Q \in \mathcal{M}$.

As $P = \bigcap_{A \in \mathcal{M}} A$ and $Q \in \mathcal{M}$, we have that $P \subset Q$.

This proves our claim.

Next, we will prove that *P* is compact.

To do this, we argue by contradiction. Suppose that P is not compact. Then we deduce that

$$0 < \mu(P) = \mu(Q)$$

$$= \mu \left(Conv \left(T^b(P) \cup \{x_0\} \right) \right)$$

$$= \mu \left(T^b(P) \cup \{x_0\} \right)$$

$$= \mu \left(\bigcup_{i=1}^n T_i^{b_i}(P) \right)$$

$$= \max_{1 \le i \le n} \mu \left(T_i^{b_i}(P) \right)$$

$$= \max_{1 \le i \le n} \mu \left\{ \left(1 - \frac{1}{b_i + 1} \right) x + \frac{1}{b_i + 1} T_i x \colon x \in P \right\}$$

$$= \max_{1 \le i \le n} \left\{ \frac{1}{b_i + 1} \mu \left\{ (b_i + 1) \left(1 - \frac{1}{b_i + 1} \right) x + T_i x \colon x \in P \right\} \right\}$$

$$= \max_{1 \le i \le n} \left\{ \frac{1}{b_i + 1} \mu \left\{ b_i x + T_i x \colon x \in P \right\} \right\}$$

$$\leq \max_{1 \le i \le n} \left\{ \frac{1}{b_{i+1}} \varphi_i(\mu(P)) \right\},$$

where we have used that μ is a m.n.c. satisfying the maximum property, that $\mu(\{x_0\}) = 0$ and that T_i are (b_i, φ_i) - μ -enriched contractions.

Now, by using that φ_i are comparison functions and that $\mu(P) > 0$, we have that $\varphi_i(\mu(P)) < \mu(P)$ and from the last inequality, we deduce

$$0<\mu(P)\leq \max_{1\leq i\leq n}\left\{\frac{1}{b_{i+1}}\varphi_i(\mu(P))\right\}\leq \max_{1\leq i\leq n}\left\{\frac{1}{b_{i+1}}\mu(P)\right\}<\mu(P).$$

This gives us a contradiction. Therefore, P is compact.

The convexity of *P* is clear since *P* is a intersection of convex subsets.

Before giving our result about the existence of a fractal, we need some definitions and results which appear in [14].

Suppose that \mathcal{F} is a family of maps of a nonempty set X into itself and let $T: \mathcal{P} \longrightarrow \mathcal{P}$ be the invariance operator, that is, for any $H \in \mathcal{P}(X)$,

$$T(H) = \bigcup_{f \in \mathcal{F}} f(H).$$

Now, let $H_1 \subset X$. By the Kantorovich iteration and its limit we mean

$$H_{n+1} = T(H_n)$$

and

$$H = \bigcup_{n \in \mathbb{N}} H_n \,,$$

respectively.

The following two lemmas, which appear in the above mentioned paper, play a very important role in proving our next result.

Lemma 3.1. Suppose that \mathcal{F} is a nonempty family of self-maps on a nonempty set X and let $H \subset X$ be a \mathcal{F} -subinvariant set (that is, $H \subset T(H) = \bigcup_{f \in \mathcal{F}} f(H)$).

Then, the limit of H under Kantorovich iteration is an \mathcal{F} -invariant set (which means that T(H) = H for $H = \bigcup_{n \in \mathbb{N}} H_n$).

Lemma 3.2. Let (X, d) be a metric space and \mathcal{F} a finite family of continuous maps of X into itself and $H \subset X$ is a relatively compact \mathcal{F} -invariant set.

Then \overline{H} is also \mathcal{F} -invariant (here \overline{H} denotes the topological closure of X).

Next, we prove the existence of a fractal.

In our case the family \mathcal{F} is given by

$$\mathcal{F} = \left\{ T_i^{b_i} \colon \Omega \to \Omega, i = 1, 2, \dots, n \right\}$$

where
$$T_i^{b_i}(x) = \left\{ \left(1 - \frac{1}{b_i + 1}\right) x + \frac{1}{b_i + 1} T_i x \right\}$$
.

Theorem 3.3. Let $\mathcal{F} = \{T_1, T_2, \dots, T_n\}$ be a family of (b_i, φ_i) - μ -enriched contractions continuous on Ω . Under assumptions of Theorem 3.2, there exists a relatively compact \mathcal{F} -invariant subset of Ω .

Proof. Let P be the convex compact subset of Ω such that

$$T^b(P) = \bigcup_{i=1}^n T_i^{b_i}(P) \subset P,$$

whose existence is guaranteed by Theorem 3.2. Since $T^b(P) \subset P$, particularly, $T_1^{b_1}: P \to P$. As P is convex and compact and $T_1^{b_1}$ is continuous, by Schauder's fixed point theorem, it follows that there exists a fixed point $x_1 \in P$, that is, $T_1^{b_1}(x_1) = x_1$.

Put $H = \{x_1\} \subset P$. It is clear that

$$H \subset T^{b}(H) = \bigcup_{i=1}^{n} T_{i}^{b_{i}}(H) \subset \bigcup_{i=1}^{n} T_{i}^{b_{i}}(P) \subset P,$$

and, therefore, H is a \mathcal{F} -subinvariant set.

Now, we consider the Kantorovich iteration of H, that is, $H_1 = H = \{x_1\}$ and $H_{n+1} = T^b(H_n)$. Taking into account Lemma 3.1, the limit of H, that is, $G = \bigcup_{n \in \mathbb{N}} H_n$, is a \mathcal{F} -invariant set.

Moreover, as $H_1 = \{x_1\} \subset P$. we have

$$H_2 = T^b(H_1) \subset T^b(P) \subset P$$
,

and, using induction, we infer that

$$H_n \subset P$$
 for any $n \in \mathbb{N}$.

Therefore, since P is compact and $\overline{G} = \overline{\bigcup_{n \in \mathbb{N}} H_n}$ is a closed contained in a compact, we

deduce that \overline{G} is compact.

This gives us the desired result.

4. CONCLUSIONS AND FURTHER DEVELOPMENTS

1. In this paper we studied iterated function systems which are built by using a finite family of condensing (b,φ) - μ -enriched contractions with respect to a measure of noncompactness in Banach spaces and proved the existence of a fractal associated to such an iterated function system.

- 2. To our best knowledge, this is the first approach to obtaining attractors of iterated function systems consisting of enriched φ -contractive mappings in the presence of a measure of noncompactness.
- 3. Related results based on the use of measures of noncompactness were established in [15], Section 7.4, but in the case of multivalued case and for φ -contractions of Browder type.
- 4. We note that, in view of Example 3 in [4], (b,φ) - μ -enriched contractions involved in the iterated function systems considered in the present paper are independent of the classes of mappings treated in [15].
- 5. Existence of a fractal of iterated function systems containing condensing functions w.r.t. the degree of nondensifiability, which is different of the concept of measure of noncompactness, was established very recently in [16].
- 6. Further developments on the study of attractors of iterated function systems could be done by considering other classes of enriched contractions, namely enriched Banach contractions [6], enriched Kannan mappings [7], enriched Chatterjea mappings [9], , [1], [2], [10], [11], [13], [17], [19], [20], and many others that could be found in the recent survey [12]. Similar attempts were already done in [18] for Ćirić-Reich-Rus contractions, but without using the measure of noncompactness.

ACKNOWLEDGEMENTS

Part of the research in this paper was done by the first author while he was visiting Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.

REFERENCES

- [1] Abbas, M.; Anjum, R.; Berinde, V. Enriched multivalued contractions with applications to differential inclusions and dynamic programming. *Symmetry-Basel* 13 (2021), No. 8, Art. No. 1350.
- [2] Berinde, V. Common fixed points of noncommuting discontinuous weakly contractive mappings in cone metric spaces. *Taiwanese J. Math.* **14** (2010), no. 5, 1763–1776.
- [3] Berinde, V. Maia type fixed point theorems for some classes of enriched contractive mappings in Banach spaces. *Carpathian J. Math.* **38** (2022), no. 1, 35–46.
- [4] Berinde, V.; Harjani, J.; Sadarangani, K. Existence and Approximation of Fixed Points of Enriched φ -Contractions in Banach Spaces. *Mathematics* **2022**, 10, 4138.
- [5] Berinde, V. and Păcurar, M. Coupled fixed point theorems for generalized symmetric Meir-Keeler contractions in ordered metric spaces. *Fixed Point Theory Appl.* **2012**, 2012:115, 11 pp.
- [6] Berinde, V. and Păcurar, M. Approximating fixed points of enriched contractions in Banach spaces. *J. Fixed Point Theory Appl.* **22** (2020), no. 2, Paper No. 38, 10 pp.
- [7] Berinde, V. and Păcurar, M. Kannan's fixed point approximation for solving split feasibility and variational inequality problems. *J. Comput. Appl. Math.* **386** (2021), Paper No. 113217, 9 pp.
- [8] Berinde, V. and Păcurar, M. Existence and approximation of fixed points of enriched contractions and enriched φ -contractions. *Symmetry* **2021**, no. 3, 498.
- [9] Berinde, V. and Păcurar, M. Approximating fixed points of enriched Chatterjea contractions by Krasnoselskij iterative algorithm in Banach spaces. *J. Fixed Point Theory Appl.* **23** (2021), no. 4, Paper No. 66, 16 pp.
- [10] Berinde, V. and Păcurar, M. A new class of unsaturated mappings: Ćirić-Reich-Rus contractions. *An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat.* **30** (2022), no. 3, 37–50.
- [11] Berinde, V. and Păcurar, M. Krasnoselskij-type algorithms for fixed point problems and variational inequality problems in Banach spaces. *Topology Appl.* **340** (2023), Paper No. 108708, 15 pp.
- [12] Berinde, V. and Păcurar, M. Recent developments in the fixed point theory of enriched contractive mappings. A survey. *Creat. Math. Inform.* **33** (2024), no. 2, 137–159.
- [13] Berinde, V.; Petruşel, A.; Rus, I. A.; Şerban, M. A. The retraction-displacement condition in the theory of fixed point equation with a convergent iterative algorithm. *Mathematical analysis, approximation theory and their applications*, 75–106, Springer Optim. Appl., 111, Springer, [Cham], 2016.
- [14] Bessenyei, M.; Pénzes, E. Hutchinson without Blaschke: an alternative way to fractals. Expo. Math. 39 (2021), no. 1, 25–32.

- [15] Leśniak, K.; Snigireva, N.; Strobin, F. Weakly contractive iterated function systems and beyond: a manual. *J. Difference Equ. Appl.* **26** (2020), no. 8, 1114–1173.
- [16] Caballero Mena, J.; Rocha Martín, J.; Sadarangani, K. Existence of a fractal of iterated function systems containing condensing functions for the degree of nondensifiability. *J. Fixed Point Theory Appl.* **25** (2023), no. 1, Paper No. 1, 9 pp.
- [17] Phairatchatniyom, P.; Kumam, P.; Berinde, V. A modified Ishikawa iteration scheme for b-enriched nonex-pansive mapping to solve split variational inclusion problem and fixed point problem in Hilbert spaces. Math. Methods Appl. Sci. 46 (2023), no. 12, 13243–13261.
- [18] Prithvi, B. V.; Katiyar, S. K. Revisiting fractal through nonconventional iterated function systems. *Chaos Solitons Fractals* 170 (2023), Paper No. 113337, 12 pp.
- [19] Salisu, S.; Sriwongsa, S.; Kumam, P.; Berinde, V. Variational inequality and proximal scheme for enriched nonexpansive mappings in CAT(0) spaces. *J. Nonlinear Convex Anal.* **25** (2024), no. 7, 1759–1776.
- [20] Salisu, S.; Sriwongsa, S.; Kumam, P.; Berinde, V. Viscosity scheme with enriched mappings for hierarchical variational inequalities in certain geodesic spaces. Fixed Point Theory 26 (2025), no. 1, 293–308.
- 1 Department of Mathematics and Computer Science, Technical University of Cluj-Napoca, North University Center at Baia Mare, Baia Mare, Romania

Email address: vasile.berinde@mi.utcluj.ro

- 2 ACADEMY OF ROMANIAN SCIENTISTS, BUCHAREST, ROMANIA \it{Email} $\it{address}$: vasile.berinde@gmail.com
- 3 Department of Mathematics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain

Email address: jackie.harjani@ulpgc.es; kishin.sadarangani@ulpgc.es