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Resumen
El control de densificación en tecnoloǵıas, como es 3D Gaussian Splatting (3DGS), es

fundamental para lograr representaciones visuales precisas y eficientes de escenas que pueden
llegar a ser muy complejas. Este proceso es bastante relevante, sobre todo en entornos de tra-
bajo donde la calidad visual y la eficiencia computacional son cŕıticas, como en simulaciones
cient́ıficas, efectos visuales y videojuegos. Sin embargo, uno de los retos más significativos en
3DGS es la gestión eficiente de la densidad de los puntos en el espacio, lo cual puede afectar
considerablemente la calidad del renderizado y el rendimiento del sistema.

Este proyecto de TFG aborda este problema mediante la propuesta de un nuevo enfoque
para controlar la densificación de puntos en un modelo basado en parches utilizando Python.
Este enfoque no solo busca reducir el costo computacional asociado con el procesamiento de
grandes volúmenes de datos sino también mantener una calidad suficiente para su correcta
manejabilidad.

A través de este trabajo, se propone modificar el entrenamiento de 3DGS para que sea
basado en parches, además de la adición de técnicas que modifican la densidad de los puntos
en función de criterios como la cantidad de gaussianas de la escena u otras propiedades de
estas, como pueden ser su posición o su opacidad.

Una vez implementado el modelo, se diseñará una serie de experimentos para evaluar y
comparar el rendimiento de la modificación propuesta frente al 3D Gaussian Splatting con-
vencional. La comparativa se centrará en medidas cuantitativas como LPIPS, SSIM, PSNR,
el número de gaussianas utilizadas y el tiempo de ejecución.

Este TFG juega un papel muy importante en diversos campos en donde la capacidad para
generar imágenes de alta calidad de manera rápida y eficiente no solo optimiza los flujos de
trabajo, sino que también eleva el nivel de la experiencia visual ofrecida a los usuarios finales.



Abstract
The control of densification in technologies such as 3D Gaussian Splatting (3DGS) is

fundamental for achieving precise and efficient visual representations of scenes that can be
highly complex. This process is especially relevant in work environments where visual quality
and computational efficiency are critical, such as in scientific simulations, visual effects, and
video games. However, one of the most significant challenges in 3DGS is the efficient mana-
gement of point density in space, which can considerably affect rendering quality and system
performance.

This final year project addresses this problem by proposing a new approach to control
point densification in a patch-based model using Python. This approach not only aims to
reduce the computational cost associated with processing large volumes of data but also to
maintain sufficient quality for proper manageability.

Through this work, it is proposed to modify the training of 3DGS to be patch-based, in
addition to incorporating techniques that adjust the density of the points based on criteria
such as the number of gaussians in the scene or other properties of these, such as their position
or opacity.

Once the model is implemented, a series of experiments will be designed to evaluate and
compare the performance of the proposed modification against conventional 3D Gaussian
Splatting. The comparison will focus on quantitative measures such as LPIPS, SSIM, PSNR,
the number of gaussians used, and execution time.

This final year project plays a very important role in various fields where the ability to
generate high-quality images quickly and efficiently not only optimizes workflows but also
enhances the visual experience offered to end users.
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5.3.4. Implementación técnica . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.5. Resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4. Hipotesis 2: Diferentes mecanismos de densificación . . . . . . . . . . . . . . 50
5.4.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4.2. Ecuación para limitar el crecimiento de las gaussianas . . . . . . . . . 50
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crecimiento, sin mecanismos adicionales de poda. . . . . . . . . . . . . . . . 57

6.1. Resultados con poda por escala al 100 % del presupuesto. . . . . . . . . . . . 63
6.2. Resultados con poda por escala al 75 % del presupuesto. . . . . . . . . . . . 63
6.3. Resultados con poda por escala al 50 % del presupuesto. . . . . . . . . . . . 64
6.4. Resultados tras aplicar la poda con un presupuesto del 100 %. . . . . . . . . 65
6.5. Resultados tras aplicar la poda con un presupuesto del 75 %. . . . . . . . . . 66
6.6. Resultados tras aplicar la poda con un presupuesto del 50 %. . . . . . . . . . 66
6.7. Resultados con optimizador acelerado y poda por opacidad al 100 %. . . . . 67
6.8. Resultados con optimizador acelerado y poda por opacidad al 75 %. . . . . . 68
6.9. Resultados con optimizador acelerado y poda por opacidad al 50 %. . . . . . 69
6.10. Resultados con poda basada en escala para diferentes presupuestos de gaussianas. 69
6.11. Resultados con poda basada en opacidad para diferentes presupuestos de gaus-

sianas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.12. Resultados con optimizador acelerado y poda basada en opacidad para dife-

rentes presupuestos de gaussianas. . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1. Resumen de resultados con distintas configuraciones del pipeline 3DGS. . . . 72

7



Caṕıtulo 1

Introducción

1.1. Contexto y Relevancia

Actualmente, la generación de escenas 3D ha experimentado un crecimiento significativo,
respaldado por la alta demanda de industrias como el cine, el marketing y los videojuegos.
Según un informe de The Brainy Insights, el mercado global de 3D Rendering fue valorado
en 3.11 mil millones de USD en 2022 y se espera que alcance los 34.57 mil millones de USD
para 2032, con una tasa de crecimiento anual compuesta del 27.67 % entre 2023 y 2032,
demostrando el auge de las escenas 3D en los distintos ámbitos del desarrollo de escenas a
nivel mundial [4].

1.2. 3D Gaussian Splatting (3DGS)

Dentro de este panorama, el modelo 3D Gaussian Splatting (3DGS)[5] destaca por su
capacidad para reconstruir escenas 3D a partir de un conjunto de imágenes [5] . Mediante el
uso de gaussianas para representar la información espacial, este método utiliza representa-
ciones tridimensionales que se componen de tres distribuciones gaussianas en los ejes X, Y y
Z. Estas gaussianas son controladas mediante parámetros como la varianza y la covarianza,
que determinan su forma, y las medias, que definen sus posiciones en el espacio. Este control
parametrizado permite generar nuevas imágenes desde ángulos no capturados origpinalmente.

1.3. Limitaciones de 3DGS

A pesar de las innovaciones que ofrece 3DGS[5], este modelo presenta importantes lagunas.
La etapa de densificación, encargada de detallar las representaciones, implica un alto consumo
de almacenamiento, memoria de la tarjeta gráfica y tiempo de entrenamiento, en parte debido
a que se fundamenta en dos operaciones principales: la clonación de gaussianas, que se utiliza
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para rellenar espacios vaćıos y afinar el detalle de la escena, y la división de gaussianas de
gran tamaño, que permite un refinamiento adicional. Este hecho supone una limitación en
equipos convencionales, restringiendo aśı su accesibilidad de manera masiva.

1.4. Objetivos

Ante este panorama, se hace necesario implementar una metodoloǵıa que optimice o
controle el proceso de densificación. El objetivo principal es reducir el consumo de recursos
(almacenamiento, memoria y tiempo de entrenamiento) sin comprometer la calidad de las
escenas generadas. Esto no solo facilitará el acceso a la tecnoloǵıa 3DGS[5] a un público más
amplio, sino que también permitirá mejorar la eficiencia de sistemas en ámbitos tan exigentes
como el cine, el marketing y el desarrollo de videojuegos.

1.5. Organización del documento

El resto del documento se estructura de la siguiente manera: en el Caṕıtulo 2 se detalla
la planificación del proyecto, incluyendo las fases de desarrollo y los recursos necesarios.
El Caṕıtulo 3 analiza el estado actual del tema y establece los objetivos iniciales de la
investigación. En el Caṕıtulo 4 se exponen las aportaciones y novedades que se derivan del
trabajo, aśı como las competencias superadas a lo largo del proyecto. El Caṕıtulo 5 se dedica
al desarrollo, describiendo la metodoloǵıa, las técnicas y el proceso de implementación de la
propuesta. Posteriormente, en el Caṕıtulo 6 se presentan los resultados parciales obtenidos
durante el desarrollo. El Caṕıtulo 7 recoge los resultados finales alcanzados. Finalmente, en
el Caṕıtulo 8 se ofrecen las conclusiones finales y se plantean las ĺıneas de trabajo futuro.
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Caṕıtulo 2

Planificación del trabajo

2.1. Metodoloǵıa seguida

Para el desarrollo de este TFG se ha adoptado una metodoloǵıa iterativa incremental,
elegida por su enfoque modular y su capacidad para realizar mejoras continuas. Esta meto-
doloǵıa permite desarrollar y refinar el proyecto en fases consecutivas, donde cada etapa se
basa en los resultados de la anterior, facilitando la incorporación progresiva de mejoras en el
modelo de 3DGS[5].

En cada iteracións se lleva a cabo una serie de tareas que abarcan desde el estudio de
posibles funcionalidades hasta el análisis de resultados obtenidos a partir de la implementa-
ción de estas. En primera instancia, se experimentará con 3DGS[5] para un dataset con el
objetivo de establecer un caso base que servirá para posteriores comparaciones y validaciones.
A partir de esta fase se implementarán mejoras incrementales, probando distintos métodos y
ajustando parámetros.

Además, cada iteración incluirá la evaluación de los resultados obtenidos, lo que permitirá
identificar puntos de mejora y ajustar los parámetros necesarios para optimizar tanto el
rendimiento como la calidad visual del modelo. De esta forma, el proyecto evoluciona de
manera progresiva y segura.
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2.2. Planificación Temporal

Cuadro 2.1: Planificación temporal del proyecto

Fases
Duración
Estimada
(horas)

Tareas

Estudio Preliminar
/ Análisis

40 horas • Tarea 1.1: Revisión bibliográfica de
métodos existentes en 3D Gaussian
Splatting y técnicas de control de
densificación.

• Tarea 1.2: Análisis de herramientas y
bibliotecas disponibles en Python[6] y
PyTorch[7] que podŕıan utilizarse en
el proyecto.

Diseño /
Desarrollo /
Implementación

180 horas • Tarea 2.1: Implementación de lógica
basada en parches para la fase de
entrenamiento de 3DGS[5].

• Tarea 2.2: Medición de la calidad de
los resultados con distintos números
de parches usando la lógica
implementada en la tarea 2.1.

• Tarea 2.3: Implementación de un
nuevo control de densificación basado
en caracteŕısticas clave de las
gaussianas.

• Tarea 2.4: Renderizado de las escenas
con las modificaciones realizadas.

Evaluación /
Validación /
Prueba

40 horas • Tarea 3.1: Evaluación de resultados.

Documentación /
Presentación

40 horas • Tarea 4.1: Redacción de la memoria
del Trabajo de Fin de Grado.

• Tarea 4.2: Preparación de la
presentación del TFG.

• Tarea 4.3: Realización de ensayos
para la presentación final.
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2.3. Tecnoloǵıas usadas

Para el desarrollo de este TFG se han empleado diversas herramientas y tecnoloǵıas que
facilitan la implementación y evaluación. Entre las principales se destacan:

• Lenguaje de programación Python: Python [6] es un lenguaje de programación
de alto nivel, interpretado y de código abierto, el cual destaca por su sintaxis clara y
su facilidad de aprendizaje. La elección de Python[6] para este proyecto se basa en la
disponibilidad de un abanico de bibliotecas especializadas en procesamiento numérico,
redes neuronales y visualización 3D, lo que facilita la implementación y experimentación
de métodos, aśı como el desarrollo de pruebas para la interpretación de resultados.

• Bibliotecas numéricas y de procesamiento: Se utiliza PyTorch [7] para gestionar
las operaciones matemáticas y el procesamiento de datos necesarios en la manipula-
ción de gaussianas, aprovechando su estructura de tensores y su capacidad de realizar
cálculos de forma optimizada en GPUs.

• Herramientas de visualización y análisis de resultados: Se utiliza matplotlib [8]
para la generación de gráficos y la realización de pruebas en el análisis de resultados,
TensorBoard [9] para la observación en tiempo real de la evolución del entrenamiento,
y GeoGebra [10] para plantear y visualizar implementaciones matemáticas.

• Gestión de entornos: Docker [11] se emplea para la gestión de repositorios, evitando
aśı las incompatibilidades de versiones e incorrecta organización de direcotorios.

• Herramienta de gestión de proyectos: Jira [12] se ha empleado para gestionar y
hacer seguimiento del progreso del proyecto. Esta herramienta de gestión de tareas per-
mite organizar el trabajo, asignar tareas espećıficas, y monitorizar el avance mediante
un tablero visual.
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Caṕıtulo 3

Estado actual y objetivos iniciales

3.1. Introducción

Durante los últimos años, el renderizado y representación de las escenas 3D han sufrido un
gran avance, gracias al desarrollo constante de modelos basados en aprendizaje automático.
Entre estos avances destaca Neural Radiance Fields (NeRF) [13], un método que permite
generar representaciones fotorrealistas a partir de un conjunto de imágenes 2D. Sin embargo,
NeRF[13] presenta un alto coste computacional, ya que requiere evaluar una red neuronal en
cada punto del espacio, lo que lo hace poco eficiente para aplicaciones en tiempo real.

Por ello, ha surgido 3D Gaussian Splatting (3DGS)[5], un enfoque alternativo que ofrece
una representación más eficiente al modelar la escena mediante nubes de puntos gaussianos
en vez de depender de redes neuronales profundas. Este método ha demostrado una mayor
velocidad y adaptabilidad que NeRF[13], Sin embargo, su proceso de densificación introduce
un crecimiento incontrolado en el número de gaussianas, lo que incrementa significativamente
el consumo de memoria y almacenamiento

A lo largo del desarrollo de este trabajo se han estudiado en profundidad múltiples méto-
dos que se encuentran relacionados con la representación de escenas 3D, los cuales han sido
clave para entender un poco más en profundidad las limitaciones de los enfoques actuales
y orientar las soluciones propuestas. Entre ellos destacan Instant-NGP [14], que introdu-
ce técnicas de compresión y codificación para acelerar NeRF; Mip-NeRF [15], que emplea
mip-mapping para mejorar el anti-aliasing; y Mip-NeRF 360 [16], una extensión que permite
representar escenas panorámicas completas.
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3.2. Representación de Modelos 3D: De NeRF a 3DGS

La representación de escenas en 3D ha evolucionado a lo largo del tiempo, adoptando
diferentes enfoques para almacenar y procesar la información geométrica y visual. Estos en-
foques pueden clasificarse en dos grandes categoŕıas: representaciones expĺıcitas e impĺıcitas,
dependiendo de cómo se organizan y manipulan los datos de la escena.

3.2.1. Modelos Expĺıcitos e Impĺıcitos

Existen dos enfoques principales para la representación de modelos 3D:

1. Representaciones Expĺıcitas: Las representaciones expĺıcitas almacenan directamen-
te la geometŕıa y apariencia de la escena en estructuras discretas, lo que permite un
acceso inmediato a la información sin necesidad de evaluar funciones matemáticas o
redes neuronales durante el proceso de renderizado.

Algunos ejemplos son:

• Mallas poligonales: utilizadas en gráficos 3D tradicionales.

• Vóxeles: empleados principalmente en simulaciones volumétricas y motores de
f́ısica.

• Nubes de puntos: formadas por un conjunto de puntos con información sobre
su posición y, en algunos casos, su color u otras propiedades.

Estos métodos presentan ventajas significativas, como un renderizado más rápido, ya
que no dependen de redes neuronales complejas, y un menor consumo de almacena-
miento en comparación con enfoques impĺıcitos volumétricos. Sin embargo, también
tienen desventajas, como la aparición de artefactos visuales en caso de baja resolución.

2. Representaciones Impĺıcitas: A diferencia de las representaciones expĺıcitas, los mo-
delos impĺıcitos no almacenan directamente la geometŕıa de una escena, sino que definen
una función matemática o neuronal encargada de describirla. Es decir, en lugar de con-
tar con una nube de puntos predefinida, por ejemplo, la escena se genera evaluando
una función en cada consulta para determinar su apariencia.

Un ejemplo de este enfoque es NeRF[13], que utiliza una red neuronal para definir la
densidad y el color de cada punto de la escena a partir de un conjunto de coordenadas
espaciales.

Entre sus ventajas destaca la capacidad de representar detalles finos sin necesidad de
utilizar estructuras discretas complejas. Sin embargo, este método conlleva un alto costo
computacional, debido a la frecuencia de llamadas para evaluaciones.
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3.3. Fundamentos de Aprendizaje Automático y Redes
Neuronales

3.3.1. Redes Neuronales

Una red neuronal escencialmente es un conjunto de modelos matemáticos inspirado en la
estructura y funcionamiento del cerebro humano. Esta nueva estructura está compuesta por
las conocidas neuronas artificiales, las cuales se encuentran organizadas en capas, encargadas
de procesar la información mediante funciones de activación y la propagación de errores.

En el aprendizaje automático, las redes neuronales se usan para modelar tipos de rela-
ciones complejas, permitiendo aprender patrones y haciendo tareas laboriosas, tales como la
clasificación o generación.

En el caso de NeRF[13], se hace uso de una red nauronal multicapa (MLP)[17], capaz de
aprender a representar una escena 3D a partir de imágenes 2D, codificando la densidad y el
color en un escpacio de 3 coordenadas.

La Ilustración 3.1 muestra la arquitectura t́ıpica de una red neuronal MLP, donde se
distinguen las capas de entrada (en verde), las capas ocultas (en amarillo) y la capa de
salida (en rojo). Este tipo de estructura es la base para muchos de los modelos empleados en
reconstrucción 3D mediante aprendizaje automático.

Ilustración 3.1: Esquema general de una red neuronal multicapa (MLP), donde se observa la
estructura de capas de entrada, ocultas y de salida

3.3.2. Perceptrón

Una neurona(perceptrón) es conocida como la unidad básica o elemental de la red neu-
ronal y, cuya función principal es recibir un conjunto de entradas (x1, x2, x3...), que pueden
representar caracteŕısticas, pixeles o incluseo coordenadas. A las esntradas se las asigna un
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peso (w1, w2, w2...) que indican que tan relevante o importante es cada una de las entra-
das en el cálculo final. La neurona combina estas entradas ponderadas mediante operaciones
matemáticas para posteriormente aplicar una función de activación que permite generar una
salida. La salida se expande a otras neuronas de capas posteriores permitiendo aśı el apren-
dizaje y la toma inteligente de decisiones.

La Ilustración 3.2 muestra el esquema interno de una neurona artificial, destacando el
proceso de combinación de entradas y la aplicación de la función de activación para producir
una salida.

Ilustración 3.2: Representación de una neurona artificial, destacando la combinación de en-
tradas ponderadas y la aplicación de la función de activación para generar la salida.

3.3.3. Aprendizaje Automático

El aprendizaje automático, conocido como Machine Learning en inglés, es una rama de
la inteligencia artificial que permite a los sistemas aprender patrones y tomar decisiones a
partir de datos de entrada, sin necesidad de estar programados expĺıcitamente para una tarea
espećıfica.

Este proceso se compone de dos etapas fundamentales: el entrenamiento y la inferencia.
Durante el entrenamiento, el modelo analiza un conjunto de datos etiquetado para aprender
la relación entre entradas y salidas esperadas. Posteriormente, en la fase de inferencia, el
modelo ya entrenado es capaz de recibir nuevos datos y realizar predicciones o clasificaciones
basadas en lo aprendido.

La Ilustración 3.3 muestra de manera esquemática este proceso. Se parte de un conjunto
de datos de entrenamiento, sobre el cual se entrena el modelo de Machine Learning. Una
vez entrenado, este modelo puede recibir nuevas entradas y producir salidas o predicciones
correspondientes.
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Ilustración 3.3: Proceso de aprendizaje automático, donde un modelo aprende a partir de
datos de entrada y es capaz de realizar predicciones o clasificaciones.

3.3.4. Aplicación del Aprendizaje Automático en la Representa-
ción de Modelos 3D

Dentro de los modelos 3D, el aprendizaje automático ha cambiado la forma en que se ge-
neran, procesan y optimizan estos, permitiendo aśı avances contundentes en la reconstrucción
de escenas 3D.

Uno de los avances más destacados ha sido la reconstrucción y renderizado de escenas 3D
a partir de imágenes en dos dimensiones. Dentro de eso se encuentran modelos tales como
NeRF[13] que utiliza redes neuronales profundas para aprender una representación impĺıcita
del volumen de la escena. Por otro lado, existe 3DGS[5], modelo capaz de representar escenas
mediante una nube de gaussianas, siendo aśı más eficiente al no necesitar una red neuronal.

La Ilustración 3.4 compara de forma visual ambos enfoques. Mientras NeRF transforma
las imágenes 2D en una escena 3D mediante una red neuronal, 3DGS lo hace directamente a
través de gaussianas distribuidas en el espacio, simplificando el proceso de reconstrucción.

Ilustración 3.4: Aplicación del aprendizaje automático en la representación de modelos 3D,
destacando las diferencias entre los enfoques basados en redes neuronales (NeRF) y repre-
sentaciones expĺıcitas (3DGS).
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3.3.5. Neural Radiance Fields y sus limitaciones

A lo largo de los años, NeRF[13] se ha consolidado como una de las técnicas más des-
tacadas para la construcción y renderizado de escenas 3D. Este modelo fue introducido en
”NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”, logrando re-
construcciones detalladas y fotorrealistas a partir de imágenes 2D.

El funcionamiento de NeRF[13] se basa en una red neuronal multicapa (MLP)[17] que
aprende una función capaz de mapear coordenadas espaciales y direcciones de visión de las
cámaras a valores de color y densidad volumétrica. Este proceso se desarrolla en los siguientes
pasos:

1. Se toma una coordenada en el espacio tridimensional (x, y, z) junto con una dirección
de visión de la cámara (θ, ϕ).

2. Las coordenadas espaciales se transforman mediante positional encoding para mejorar
la capacidad de representación de la red.

3. Se evalúa una MLP[17] que predice dos valores clave: la densidad del punto en el espacio
y su color RGB.

4. Finalmente, se aplica un proceso de integración volumétrica en el que se lanzan rayos
desde la cámara a través de la escena. A lo largo de su trayectoria, estos rayos acumulan
los valores de color y densidad de los puntos que intersectan, lo que permite reconstruir
la imagen final.

La Ilustración 3.5 representa visualmente este flujo de datos. A partir de una entrada
5D que combina posición y dirección, el modelo neuronal predice color y densidad para
cada punto consultado. Estas predicciones se utilizan para sintetizar imágenes a través de la
simulación de rayos proyectados en la escena.

Ilustración 3.5: Funcionamiento interno de NeRF, donde se proyectan rayos a través de la
escena y se evalúa una red neuronal en cada punto para obtener color y densidad.

A pesar de sus ventajas, NeRF[13] presenta varias limitaciones importantes:
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• Altos tiempos de entrenamiento: El modelo requiere un entrenamiento prolongado
para lograr reconstrucciones de calidad.

• Renderizado lento: La inferencia en NeRF[13] es computacionalmente costosa, lo que
dificulta su uso en aplicaciones en tiempo real.

• Dependencia de poses de cámara precisas: La calidad de la reconstrucción de-
pende en gran medida de la exactitud en la calibración de las vistas de entrada.

3.4. 3D Gaussian Splatting (3DGS)

3.4.1. Principios de Funcionamiento

3D Gaussian Splatting (3DGS)[5] fue presentado como una opción más innovadora para
representar y renderizar escenas 3D, siendo esta una alternativa más eficiente que los enfoques
basados en redes neuronales, como NeRF[13]. En vez de usar una función impĺıcita, 3DGS[5]
usa una nube de puntos gaussianos, permitiendo aśı una representación expĺıcita y bastante
eficiente para el renderizado en tiempo real.

Cada gaussiana en la representación 3D en 3DGS[5] está definida por varios parámetros:

• Un vector tridimensional (x, y, z) que determina la ubicación del punto en el espación.
Estos valores vienen dado por las las medias de las tres distribuciones gaussianas.

• Un color (r, g, b) y una opacidad α que controlan la apariencia visual del punto gaus-
siano.

• Una covarianza y una orientación que controlan la forma y la disperción de la gaussiana
en el espacio, permitiendo aśı que la gaussiana se pueda ajustar a la geometŕıa de la
propia escena.

Al contrario de los modelos que se basan en mallas o vóxeles, cada punto gaussiano se
proyecta sobre la imagen de salida, evitando aśı las reconstrucciones intermedias. Permitiendo
de esta manera un renderizado más eficiente en GPUs, sin necesidad de evaluar funciones
neuronales para cada ṕıxel.

El Cuadro 3.1 se muestra una comparación visual de gaussianas 2D modificadas, reflejando
cómo vaŕıan sus formas en función de los parámetros de escala, varianza y covarianza.

19



Cuadro 3.1: Comparación visual de Gaussianas con distintas modificaciones.

3.4.2. COLMAP y la Inicialización de Gaussianas

COLMAP[1] es una herramienta usada en 3DGS[5], ya que permite generar una nube de
puntos mediante Structure from Motion. Esta nube de puntos facilitarán las posiciones para
las gaussianas iniciales del modelo.

La Ilustración 3.6 se muestra un ejemplo t́ıpico de nube de puntos generada con COLMAP.
En ella se pueden observar los puntos reconstruidos (aquellso que se muestran en tonos grises)
y las posiciones de las cámaras estimadas (en rojo)

Ilustración 3.6: Nube de puntos generada con COLMAP a partir de un conjunto de imágenes.
Imagen adaptada de [1].
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3.4.3. Structure-from-Motion (SfM) en la Reconstrucción 3D

Sfm[18] es una técnica de visión por computador que permite la reconstrucción de escenas
3D a partir de múltiples imágenes que hayan sido tomadas desde distintos ángulos. Estima
la posición de la cámara y la estructura tridimensional de la escena a partir de la detección
y emparejamiento de puntos en las imágnees.

3.4.4. Problema de la Densificación en 3DGS

Uno de los principales problemas que presenta 3DGS[5] es el crecimiento incontrolado
del número de gaussianas durante la etapa de densificación. Este hecho impacta negativa-
mente a la eficiencia computacional y de almacenamiento del modelo, dificultando aśı su
implementación en dispositivos que tengan recursos limitados.

Durante el entrenamiento de 3DGS[5], se realiza el proceso de densificación, en el cual el
modelo ajusta de forma dinámica la cantidad de gaussianas que tiene la escena. Este proceso
tiene dos operaciones claves:

1. Clonación de gaussianas: Se generan gaussianas adicionales en zonas donde la recon-
trucción es escasa, rellenando espacios vaćıos para mejorar la cobertura en aquellas
regiones de las escenas que se encuentran poco detalladas. Sin embargo, esto puede
provocar una sobrepoblación innecesaria, pues los criterios seguidos en la densificación
se basan en umbrales.

2. División de gaussianas grandes: Las gaussianas que presentan un gran tamaño se subdi-
viden para mejorar el nivel de detalle de la escena, permitiendo aśı una representación
más precisas en aquellas regiones de la escena que presenten cambios geométricos brus-
cos. Por otro lado, esto puede generar un número excesivo de gaussianas, aumentando
aśı el consumo de la memoria.

El crecimiento incontrolado de guassianas presenta varios problemas cŕıticos:

1. Aumento del consumo de memoria VRAM: A medida que el númeor de gaussianas
generadas es mayor, la cantidad de datos que se almacenan en los tensores y por ende
en la GPU, es inviable.

2. Mayor costro computacionale durante el entrenamiento. Cuando se procesa y optimiza
cada gaussiana se requiere actualizar los parámetros de estas, haciendo que el entrena-
miento sea mas lento y supongo un mayor coste en el hardware

En la Ilustración 3.7 se muestra la relación entre el número de gaussianas y el consumo
de memoria VRAM en distintas escenas. Se observa una correlación clara, donde escenas
con mayor número de gaussianas presentan un mayor uso de memoria, lo que evidencia la
necesidad de controlar esta densificación.
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Ilustración 3.7: Relación entre el número de gaussianas generadas y el consumo de memoria
VRAM durante el entrenamiento de 3DGS.

3.5. Métodos para Controlar la Densificación en 3DGS

3.5.1. Taming 3DGS: Control del Crecimiento de Gaussianas

Taming 3DGS[19] introduce un nuevo sistema de limitación del crecimiento de gaussia-
nas, basado en una ecuación cuadrática que regula el proceso de densificación de manera
controlada y predecible.

Para evitar el crecimiento incontrolado de gaussianas durante el entrenamiento, Taming
3DGS[19] establece un ĺımite máximo de gaussianas en cada etapa del proceso, determinado
mediante una ecuación cuadrática. Este ĺımite se ajusta en función de un presupuesto de
gaussianas previamente estipulado por el usuario, lo que permite distribuir de manera eficiente
la cantidad de gaussianas a lo largo de todo el entrenamiento.

Además, se implementa un mecanismo de selección y poda basado en un sistema de
puntuación (score-based ranking). Este sistema evalúa distintos parámetros clave de cada
gaussiana para determinar cuáles deben eliminarse y cuáles deben conservarse.

La ecuación es la siguiente:
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g(x) =
(

B − S − kN

N2

)
x2 + kx + S (3.1)

Donde:

k = 2(B−S)
N

S es el número de puntos iniciales.

B es el número de puntos finales.

x representa el paso actual.

N es el paso final.

3.5.2. Compact 3DGS: Reducción del Tamaño del Modelo

Compact 3DGS[20] surge como solución al problema del alto consumo de memoria y
almacenamiento de 3DGS, proponiendo un efoque más optimo para reducir el número de
gaussianas y compactar los atributos de estos puntos.

Durante el entrenamiento de 3DGS[5] se incrementa el número de gaussianas mediante
clonación y subdivisión. Esto supone la introducción de gaussianas redundantes que no apor-
tan cambios significativos al resultado final, lo que incrementa el uso de memoria GPU y el
almacenamiento.

Para abordar esto, Compact 3DGS[20] propone una estraegia de máscara volumétrica
basada en:

• Se eliminan las gaussianas que tienen baja opacidad .

• Se eliminan las gaussianas que son pequeñas y se pueden elimnar sin afectar de forma
significativa al resultado final.

Además, Compact 3DGS[20] propone la reduccion del tamaño d elos atributos de cada
gaussiana. En el modelo original, cada gaussiana almacena la posicion 3d, opacidad, color,
covarianza y orientación.

Sin embargo, Compact 3DGS[20] optimiza esta representación utilizando dos estrategias:

• Se reduce el almacenamiento del color. En vez de almacenar los valores de color de cada
gaussiana, se usa una red neuronal basada en grids lo que permite interpolar los colores
y reducir el número de prámetros necesarios.

• Se comprimen los adributos geométricos. Para representar los atributos como escala y
rotación, hace uso de una cuantización vectorial con diccionarios de código, agrupando
gaussianas con caracteŕısticas parecidas y guardando solo un ı́ndice de referencia en vez
de los valores completos.
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La Ilustración 3.8 resume visualmente el proceso propuesto por Compact 3DGS, desde la
enmascaración hasta la compresión de atributos y el renderizado final.

Ilustración 3.8: Esquema del proceso de reducción de gaussianas y compresión de atributos
propuesto en Compact 3DGS.

3.5.3. 3D Gaussian Splatting as Markov Chain Monte Carlo (MCMC)

Por otro lado, se encuentra 3DGS MCMC[21] que reformular el proceso de densificación
de 3DGS[5], basando el proceso en un muestreo probabiĺıstico. El objetivo de este modelo
es mejorar la distribución de las gaussianas en la escena y evitar la generación excesiva de
gaussianas que pueden ser innecesarias, reduciendo aśı el consumo de memoria y mejorando
la eficiencia.

En 3DGS[5] tradicional, la colocación de gaussianas se basa en la minimización de una
función de pérdida mediante gradientes, lo que ayuda a proporcionar soluciones locales para la
división y eliminación de gaussianas. Sin embargo, 3DGS MCMC[21] interpreta esto como un
problema de muestreo probabiĺıstico, modelando la distirbución de las gaussianas mediante
cadenas de Markov Monte Carlo (MCMC)

En la Ilustración 3.9 se puede observar cómo el optimizador puede quedar atrapado en
un mı́nimo local (región inferior izquierda) y no alcanzar el mı́nimo global (cima más baja a
la derecha). Este problema es especialmente cŕıtico en entornos complejos como la represen-
tación 3D.

Ilustración 3.9: Representación de un paisaje de función de pérdida en un problema de opti-
mización. Imagen adaptada de [2].
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Este proceso de optimización se realiza mediante descenso por el gradiente, una técnica
usada en aprendizaje automático. El objetivo es reducir al mı́nimo una función de pérdida que
mide la diferencia entre la imagen generada (render) por las gaussianas actuales y la imagen
objetivo (ground trouth). Para ello, se calcula el gradiente de dicha pérdida con respecto a
los parámetros de cada gaussiana (posición, escala, orientación, color, ...etc), y se actualizan
estos parámetros en la dirección que reduce la pérdida. Esto se realiza durante un proceso
iterativo, donde la escala de actualización, también conocido por longitud de pasos, viene
dado por la tasa de aprendizaje..

Sin embargo, el descenso por gradiente clásico puede conducir a mı́nimos locales 3.9, lo
cual limita la capacidad del modelo para explorar configuraciones más óptimas de gaussianas.

El modelo define una distribución de probabilidad G que asigna alta probabilidad a con-
figuaciones de gaussianas que reconstruyen de forma fiel y estable la escena

Para esto, 3DGS MCMC[21] emplea Stochastic Gradient Langevin Dynamics (SGLD)[22],
que es un método que nace del descenso del gradiente estocástico[23], añadiendo un término
de ruido controlado. La adición de este ruido añade aleatoriedad en la actualización de las
gaussianas, ayudando a evitar mı́nimos locales no óptimos.

A continuación, se muestra un esquema simplificado del proceso de actualización de una
gaussiana con SGLD[22]:

Algoritmo 1 Actualización de una gaussiana con SGLD
Require: Gaussiana g, tasa de aprendizaje λlr, coeficiente de ruido λnoise

1: Calcular gradiente ∇L(g)
2: Muestrear ruido ϵ ∼ N (0, Σ)
3: g ← g − λlr · ∇L(g) + λnoise · ϵ

El término de ruido ϵ es definido como:

ϵ = λlr · σ−k(o−t) · Ση, η ∼ N (0, I) (3.2)

donde o es la opacidad de la gaussiana, Σ su covarianza, y k y t son hiperparámetros que
controlan la transición suave del ruido.

A continuación, se detallan los procedimientos espećıficos para actualizar los distintos
parámetros que definen una gaussiana. El ruido estocástico solo se añade a la posición (me-
dia), mientras que la opacidad y la escala se actualizan de forma determinista, ya que el
ruido, según los autores, afecta negativamente a su estabilidad durante el entrenamiento.
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Algoritmo 2 Actualización de la posición (media) con SGLD
Require: Media actual µ, gradiente ∇L(µ), tasa de aprendizaje λlr, opacidad o, covarianza

Σ
1: Calcular factor de ruido con la función sigmoide: σ = sigmoid(−k(o− t))
2: Muestrear ruido: η ∼ N (0, I)
3: Calcular ruido: ϵ = λlr · σ · Ση
4: Actualizar posición: µ← µ− λlr · ∇L(µ) + ϵ

Algoritmo 3 Actualización de opacidad y escala sin ruido
Require: Opacidad o, escala s, gradientes ∇L(o) y ∇L(s), tasa de aprendizaje λlr

1: o← o− λlr · ∇L(o)
2: s← s− λlr · ∇L(s)

El proceso de densificación de 3DGS[5] emplea una heuŕıstica basada en la clonación de
gaussianas en áreas poco definidas, la división de gaussianas grandes para mejorar la precisión
y la poda de gaussianas con poca opacidad.

Sin embargo, estas no consideran de forma expĺıcita la probabilidad de contibución de
cada gaussiana a la calidad del renderizado. Por ello, 3DGS MCMC[21] define de nuevo estas
operaciones dentro de la distribución de probabilidad, para mantener aśı una coherencia
estad́ıstica del modelo.

3.5.4. Group Training: Acelerando y Mejorando 3DGS

Recientemente, se ha propuesto el método Group Training[24] como una estrategia para
mejorar tanto la velocidad como la calidad del entrenamiento en 3DGS[5]. Esta técnica, que
fue introducida por Wang et al, consiste en dividir el conjunto total de gaussianas en dos
grupos: el Grupo Activo (o Under-training) y el Grupo en Caché (Cached Group). Durante
el entrenamiento, solo las gaussianas del primer grupo juegan un papel en los procesos de
densificación y optimización, mientras que las gaussianas almacenadas en caché se excluyen
de forma temporal para aśı reducir el coste computacional. Tras ciertas iteraciones, ambos
grupos se combinan y se vuelve a realizar la segementación para organizar de nuevo las
gaussianas, asegurando aśı que todas las gaussianas contribuyan en el entrenamiento.

La Ilustración 3.10 muestra un esquema general del funcionamiento de esta técnica. El
grupo activo se actualiza mediante muestreo, entrenamiento y densificación, mientras que el
grupo en caché queda temporalmente bloqueado (representado con candados). Posteriormen-
te, ambos grupos se fusionan para iniciar un nuevo ciclo de entrenamiento.
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Ilustración 3.10: Esquema del método Group Training aplicado a 3DGS. Las gaussianas se
dividen en un grupo activo, que participa en la densificación y optimización, y un grupo en
caché, que se excluye temporalmente para reducir el coste computacional.

3.6. Objetivos del Trabajo

El objetivo principal de este trabajo es analizar y desarrollar técnicas para controlar la
densificación de gaussianas en 3DGS[5], con el fin de eliminar el crecimiento inctrolado del
número de gaussianas. Esto provoca un alto consumo de memoria, ralentiza el entrenamiento
y afecta de forma negativa a recursos como el almacenamiento.

Para ello, se plantean los siguientes objetivos:

• Estudio y análisis del problema de densificación en 3DGS[5]: Revisar la documentación
actual sobre modelos basados en Gaussian Splatting e identificar factores claves que
influyan en el crecimiento de gaussianas durante el entrenamiento del modelo.

• Implementación de técnicas para el control de la densificación: Implementar y evaluar
técnicas para eliminar la sobreproblación de gaussianas sin perder calidad del resultado
y probar a implementar técnicas anteriormente léıdas.

• Optimización de los recursos: Reducir el tiempo de ejecución del entrenamiento y mi-
nimizar el consumo de memoria VRAM, aśı como el almacenamiento.

• Evaluación y validación: Comparar los resultados de las nuevas técnicas frente a la
implementación base de 3DGS[5].
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Caṕıtulo 4

Aportaciones del trabajo

4.1. Principales aportaciones

Este Trabajo de Fin de Grado contibuye de forma significativa al campo de la repre-
sentación de escenas 3D mediante 3DGS[5], aportando mejora a una de sus limitaciones, el
crecimiento incontrolado de gaussianas durante el proceso de densificación. Las principales
aportaciones han sido:

• Optimización del proceso de densificación en 3DGS: Se propone un nuevo enfo-
que para controlar el número de gaussianas generadas en cada etapa de entrenamiento.
De esta manera, se regula la densificación para evitar el crecimiento incotrnolado, me-
jorando aśı el rendimiento del sistema sin afectar a la calidad del resultado.

• Reducción del consumo de memoria y almacenamiento: Uno de los principales
problemas de 3DGS[5] es el alto uso de memoria VRAM y almacenamiento debido a
la generación masiva de gaussianas. La solución presentada en este TFG busca mini-
mizar estos requisitos, permitiendo la implementación del modelo en dispositivos con
capacidades gráficas más limitadas.

• Disminución del tiempo de entrenamiento: Al limitar la cantidad de gaussianas,
se logra reducir el tiempo de entrenamiento para generar una escena sin perder calidad
en el resultado.

• Facilitación del uso de 3DGS[5] en distintas industrias: Con estas mejoras,
adoptar 3DGS[5] como herramienta para secotres como el cine y el desarrollo de los
videojuegos se vuelve más accesible, no solo para las propias empresas sino para los
usuarios aficionados con hardware menos sofisticado.

28



4.2. Alineamiento con los objetivos de desarrollo sos-
tenible

Cuadro 4.1: Grado de relación del TFG con los Objetivos de Desarrollo Sostenible.

Grado de relación
ODS 0 1 2 3

No procede Bajo Medio Alto
1 Fin de la Pobreza X
2 Hambre cero X
3 Salud y Bienestar X
4 Educación de calidad X
5 Igualdad de género X
6 Agua limpia y saneamiento X
7 Enerǵıa asequible y no contaminante X
8 Trabajo decente y crecimiento económico X
9 Industria, innovación e infraestructuras X
10 Reducción de las desigualdades X
11 Ciudades y comunidades sostenibles X
12 Producción y consumo sostenibles X
13 Acción por el clima X
14 Vida submarina X
15 Vida de ecosistemas terrestres X
16 Paz, justicia e instituciones sólidas X
17 Alianzas para lograr objetivos X

A continuación, se justifica la relación del TFG con los Objetivos de Desarrollo Sostenible
marcados en la tabla 4.1:

• ODS 1, 2, 5, 6, 14, 15, 16 (Grado 0 - No proceden): Estos objetivos se centran
en problemas sociales, medioambientales o poĺıticas (como pobreza, hambre, igualdad
de género, ecosistemas, paz ... etc), que no están directamente relacionados con la parte
técnica del TFG.

• ODS 3 - Salud y bienestar (Grado 1 - Bajo): Aunque no es el objetivo principal
del trabajo, la optimización de la generación de escenas 3D puede tener aplicaciones in-
directas en campos como la medicina (por ejemplo, simulaciones médicas o tratamientos
innnovadores).

• ODS 4 - Educación de calidad (Grado 2 - Medio): El uso de menos recursos
computacionales permite que instituciones educativas con recursos más limitados acce-
dan a tecnoloǵıas de representación 3D, facilitando aśı la formación de sus alumnos en
áreas como visión artificial o IA.

• ODS 7 - Enerǵıa asequible y no contaminante (Grado 1 - Bajo): El trabajo
puede influir de forma indirecta al ahorro energético, al reducir la cantidad de recursos
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necesarios para entrenar y ejecutar modelos 3DGS[5], lo que se puede traducir como
un menor consumo energético.

• ODS 8 - Trabajo decente y crecimiento económico (Grado 2 - Medio): Este
trabajo puede favorecer a la aparición de nuevos perfiles laborales especializados en
ello, para ssectores como los videojuegos, la animación o la realidad virtual.

• ODS 9 - Industria, innovación e infraestructuras (Grado 3 - Alto): Esta es
la opción más relacionado con el TFG. Se fomenta la innovación tecnológica al propo-
ner una mejora en un método relativamente reciente como es 3D Gaussian Splatting,
facilitando su integración en infraestructuras industriales o tecnológicas.

• ODS 10 - Reducción de las desigualdades (Grado 1 - Bajo): Al facilitar el uso
de herramientas gráficas avanzadas en hardware con menores caracteŕısticas (menos
potentes), se contribuye a reducir las desigualdades tecnológicas entre distintas regiones
con menor acceso a recursos.

• ODS 11 - Ciudades y comunidades sostenibles (Grado 2 - Medio): La gene-
racioñon de escenas 3D podŕıa aplicarse a la mapeo urbano, simulaciones de movilidad
o representación de espacios públicos, haciendo de estos, proyectos más sostenibles.

• ODS 12 - Producción y consumo sostenibles (Grado 3 - Alto): Se reduce el
uso innecesario de memoria y almacenamiento, por lo que impacta de forma positiva
en la eficiencia del consumo de recursos.

• ODS 13 - Acción por el clima (Grado 1 - Bajo): De forma indirecta, la op-
timización de proceso relacionados con la generación de escenas puede suponer una
menor huella de carbono asociada al entrenamiento de modelos, al reducir el consumo
de enerǵıa.

• ODS 17 - Alianzas para lograr objetivos (Grado 1 - Bajo): Puesto que el TFG
se basa en art́ıculos cient́ıficos, se promuebe la colaboración dentro de esta comunicad,
en busca del avance colectivo a una mejor solución..

4.3. Competencias espećıficas

Según lo establecido en la Memoria del Plan de Estudios del plan 41 del Grado de Inge-
nieŕıa Informática, durante el desarollo de este Trabajo de Fin de Grado se han cubierto las
diversas competencias, entre las que destacan:

• CI6: Conocimiento y aplicación de los procedimientos algoŕıtmicos básicos de las tec-
noloǵıas informáticas para diseñar soluciones a problemas, analizando la idoneidad y
complejidad de los algoritmos propuestos.

• Se aplica al diseño de estrategias para controlar la densificación en 3D Gaussian
Splatting (3DGS)[5], analizando el impacto computacional de diferentes enfoques
y si es idóneo en términos de eficiencia y consumo de recursos.
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• CI15: Conocimiento y aplicación de los principios fundamentales y técnicas básicas de
los sistemas inteligentes y su aplicación práctica.

• Este TFG profundiza en la optimización de 3DGS[5] mediante técnicas avanzadas
de aprendizaje automático, asegurando un mejor control del proceso de densifica-
ción.

• CI16: Conocimiento y aplicación de los principios, metodoloǵıas y ciclos de vida de la
ingenieŕıa del software.

• A lo largo del proyecto, se han seguido metodoloǵıas de experimentación y de-
sarrollo para implementar y validar soluciones optimizadas en los resultados del
modelofd.

• TFG: Ejercicio original a realizar individualmente y presentar y defender ante un tri-
bunal universitario, consistente en un proyecto en el ámbito de las tecnoloǵıas espećıfi-
cas de la Ingenieŕıa en Informática de naturaleza profesional en el que se sinteticen e
integren las competencias adquiridas en las enseñanzas.
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Caṕıtulo 5

Desarrollo

La etapa de desarrollo de este TFG se centrará principalmente en analizar en profundidad
el comportamiento del método de densificación empleado en 3DGS. Este análisis permitirá
determinar la importancia y el impacto que tiene dicha etapa en la calidad final de las escenas
renderizadas, aśı como estudiar los efectos emergentes al modificar diferentes parámetros del
modelo.

Posteriormente, se abordará el estudio, implementación y validación de resultados del
método de densificación basado en parches. Finalmente, se propondrán nuevas hipótesis me-
todológicas, cuya implementación se llevará a cabo con el propósito de evaluar su eficacia
mediante un análisis de los resultados obtenidos.

5.1. Entrenamiento 3DGS

En primer lugar, se llevará a cabo el entrenamiento de múltiples escenas del dataset
Mip-NeRF 360 [25], comparando los resultados obtenidos con la densificación activada y
desactivada, con el objetivo de analizar la relevancia e impacto que tiene este proceso en los
resultados generales del modelo.

Es importante destacar que la calidad de los resultados dependerá principalmente de
cuatro aspectos clave: la calidad de imagen, el número de gaussianas de la escena, el consumo
de memoria gráfica y el tiempo requerido para el entrenamiento.

Todos los experimentos se entrenaron durante 30 000 iteraciones, utilizando los mismos
parámetros base para garantizar una comparación justa entre las distintas configuraciones.

Dado que gran parte de los experimentos fueron realizados en una GPU NVIDIA RTX
3090 con 24 GB de memoria VRAM, se aplicó un downscaling por un factor de 4 a todas
las imágenes de entrada. Esta reducción fue necesaria para asegurarse de que los procesos
pudieran ejecutarse dentro de la memoria disponibles.
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En ciertos experimentos más exigentes, donde las escenas superaban las capacidades de
la 3090, se trasladaron los experimentos a una GPU NVIDIA A100 con 80 GB de VRAM.

La calidad de imagen se evaluará mediante distintas métricas:

• SSIM (Structural Similarity Index Measure)[26]: Esta métrica mide la similitud
estructural entre dos imágenes, considerando factores como la luminancia, el contraste y
la estructura. Su valor se correlaciona estrechamente con la percepción visual humana.

• PSNR (Peak Signal-to-Noise Ratio) [27]: Esta métrica mide la relación entre la
potencia máxima de una señal (la imagen original o ground truth) y la potencia del ruido
generado por las diferencias con la imagen reconstruida, ofreciendo aśı una valoración
objetiva de la calidad general de la imagen.

• LPIPS (Learned Perceptual Image Patch Similarity) [28]: Esta métrica utiliza
redes neuronales previamente entrenadas para evaluar la distancia perceptual entre
imágenes, proporcionando una medida precisa de la similitud visual percibida desde la
perspectiva humana.

El proceso de entrenamiento en 3DGS[5] sigue un proceso iterativo de optimización, en
el que se ajustan los parámetros de cada gaussiana con el objetivo de minimizar la dife-
rencia entre las imágenes generadas por el modelo y las imágenes reales del conjunto de
entrenamiento.

Tal y como se representa en la Imagen 5.1, en cada iteración del entrenamiento se realiza
lo siguiente:

1. Se selecciona aleatoriamente una cámara del conjunto de vistas disponibles.

2. Se genera una imagen renderizada de la escena desde esa vista, utilizando el estado
actual del modelo.

3. Se compara la imagen generada con la imagen real (Ground Truth), obteniendo aśı una
medida de error o pérdida.

4. Se calcula el gradiente de esa pérdida respecto a los parámetros de las gaussianas, y se
actualizan en la dirección que reduce dicho error.

5. Si la densificación está habilitada y se cumplen las condiciones necesarias, se realiza
una fase de densificación: se añaden, dividen o eliminan gaussianas en función de su
escala, opacidad o cobertura.
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Ilustración 5.1: Esquema general del proceso de entrenamiento en 3D Gaussian Splatting

Este bucle se repite durante un número determinado de iteracionesa. El proceso de den-
sificación, permite afinar la representación de la escena adaptando el número, en base a una
serie de umbrales aplicados a las propiedades de las gaussianas.

5.1.1. Resultados sin densificación

En primer lugar, se abordará el método sin densificación. Para desactivar la densificación
basta con modificar un parámetro del modelo llamado densify until iter, estableciendo su
valor en cero, o comentar directamente la llamada a la función densify and prune() durante
el proceso de entrenamiento. De esta manera, es posible evaluar fácilmente el impacto de este
proceso sobre los resultados.

La Tabla 5.1 muestra los resultados obtenidos al entrenar las escenas sin aplicar el proceso
de densificación. Se incluyen métricas como SSIM, PSNR y LPIPS, aśı como el número de
gaussianas utilizadas, la memoria máxima consumida y el tiempo de entrenamiento.

Además, en la Figura 5.2 se presentan visualmente las reconstrucciones obtenidas sin den-
sificación, lo que permite una comparación directa con las reconstrucciones que se mostrarán
posteriormente cuando la densificación está habilitada.

Escena SSIM PSNR LPIPS Nº Gaussianas Max Mem (GB) Tiempo
Bicycle 0,57 22,75 0,46 54.275 3,68 14m 9s
Bonsai 0,94 31,28 0,13 206.613 2,29 8m 57s
Counter 0,91 28,61 0,14 155.767 1,89 8m 29s
Garden 0,74 25,22 0,31 138.766 3,74 15m 16s
Kitchen 0,94 30,65 0,09 241.367 2,25 9m 35s
Stump 0,56 23,04 0,50 32.049 2,48 13m 33s

Cuadro 5.1: Resultados sin densificación
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(a) Bicycle (b) Bonsai

(c) Counter (d) Garden

(e) Kitchen (f) Stump

Ilustración 5.2: Reconstrucciones sin densificación.
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5.1.2. Resultados con densificación habilitada

Una vez obtenidos los resultados en el escenario sin densificación, se procede a evaluar el
comportamiento del modelo con la densificación activada.

En la Tabla 5.2 se presentan los resultados cuantitativos obtenidos con la densificación
activada. Se muestran las métricas SSIM, PSNR y LPIPS, junto con el número total de
gaussianas generadas, la memoria máxima utilizada y el tiempo de entrenamiento requerido
para cada escena.

Asimismo, en la Figura 5.3 se muestran las reconstrucciones visuales obtenidas tras en-
trenar cada escena con la densificación habilitada. Estas imágenes permiten comparar vi-
sualmente el impacto de la densificación con respecto a las reconstrucciones previas sin este
proceso.

Escena SSIM PSNR LPIPS Nº Gaussianas Max Mem (GB) Tiempo
Bicycle 0,78 25,69 0,20 4.652.308 11,11 37m 8s
Bonsai 0,96 33,01 0,08 1.040.856 3,74 12m 50s
Counter 0,93 29,59 0,10 919.028 3,25 13m 53s
Garden 0,87 27,83 0,10 3.638.595 9,43 35m 35s
Kitchen 0,95 32,53 0,06 1.385.668 4,21 16m 39s
Stump 0,78 26,88 0,20 4.103.252 8,89 30m 59s

Cuadro 5.2: Resultados con la densificación activada
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(a) Bicycle (b) Bonsai

(c) Counter (d) Garden

(e) Kitchen (f) Stump

Ilustración 5.3: Reconstrucciones con densificación activada.

La Figura 5.3 presenta las reconstrucciones obtenidas tras entrenar las escenas con la
densificación activada. A simple vista, se puede observar una mejora visuall significativa
respecto a los resultados obtenidos sin densificación (Figura 5.2), especialmente en escenas
con mayor complejidad geométrica.
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La densificación consiste en añadir nuevas Gaussianas durante el entrenamiento, en regio-
nes donde se detecta poca cobertura espacial o fotométrica; dividir gaussianas cuando estas
son extremadamente grandes para aśı rellenar más espacios sin información y eliminarlas
cuando la opacidad es tan baja como para no contibuir en la reconstrucción. Este proceso
permite que la representación gane en precisión y en capacidad de reconstrucción, al incre-
mentar la cantidad de gaussianas disponibles para aproximarse a la forma y el color de la
escena.

Como se observa en la Tabla 5.2, esta mejora visual se refleja también en métricas objetivas
como SSIM[29], PSNR y LPIPS[3], que experimentan una mejora notable respecto a sus
valores sin densificación (Tabla 5.1). Además, el número de Gaussianas se incrementa de
forma drástica, lo que supone un mayor uso de memoria y un incremento considerable en el
tiempo de entrenamiento.

Este pequeño experimento evidencia que el proceso de densificación es clave dentro de
3DGS[5], siendo determinante para obtener una reconstrucciones más realistas al igual que
detalladas. Tener la densificación activada permite al modelo adaptarse mejor a la escenas y
capturar detalles más finos, lo cual es beneficioso en escenarios con estructuras más complejas.

5.2. Estudio paramétrico del método de densificación
en 3DGS

La etapa de densificación incluye varios parámetros internos que afectan de forma directa
al comportamiento del proceso. En concreto, existen tres hiperparámetros clave que inicial-
mente no están expuestos para su ajuste, pero que al ser modificados de forma interna en
el propio código permiten estudiar el resultado de nuevas configuraciones del modelo. Estos
parámetros son:

• Número de Gaussianas Clonadas (N): Este valor determina en cuántas gaussia-
nas va a ser dividida una gaussiana cuando tenga las condiciones necesarias para ser
dividida. A mayor valor de N, más agresiva es la división, lo que a priori puede hacer
más precisa la representación de la escena pero, también generar más puntos y por lo
que, puede consumir un mayor almacenamiento y un valor de memoria VRAM mayor.

• Umbral de Escala (Scale Threshold): Este umbral define a partir de qué valor de
escala una gaussiana se considera lo suficientemente grande como para ser dividida.
Una reducción supone una mayor sensibilidad al tamaño de la gaussiana, pues a menor
valor mayor frecuencia de subdivisiones, por lo que afecta de forma directa al número
de gaussianas generadas durante la densificación.

• Opacidad Mı́nima (Min Opacity): Durante el entrenamiento, aquellas gaussianas
cuya opacidad está por debajo de este umbral son candidatas para ser eliminadas. Un
valor alto provoca un filtrado más estricto, reduciendo el número de gaussianas en la
escena, y arriesgando de este modo el detalle de la escena, pues se va a eliminar un
mayor número de gaussianas.
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Estos tres parámetros tienen un gran peso en la precisión de los resultado en la recons-
trucción de la escenala. Sin embargo, el impacto real no ha sido estudiado en profundidad,
por lo que se propondrá a continuación.

5.2.1. Diseño experimental

Con el objetivo de analizar en profundidad el impacto de los parámetros clave en el proceso
de densificación, y su relación tanto con la calidad final del modelo como con la eficiencia
computacional, se ha diseñado un conjunto de experimentos.

Para ello, se han seleccionado las seis escenas pertenecientes al conjunto de datos utilizado
(Bicycle, Bonsai, Counter, Garden, Kitchen y Stump). Sobre cada una de estas escenas se han
realizado múltiples entrenamientos, variando de forma combinada los siguientes parámetros:

Cuadro 5.3: Parámetros evaluados durante los experimentos y valores considerados.

Parámetro Descripción
N Número de gaussianas generadas durante el proceso de

clonación. Valores evaluados: {2, 3}.
scale threshold Umbral mı́nimo de escala necesario para permitir la clo-

nación de una gaussiana. Valores evaluados: {15, 20, 25}.
opacity threshold Umbral mı́nimo de opacidad requerido para consi-

derar una gaussiana como activa. Valores evaluados:
{0,001, 0,005, 0,01}.

El número total de combinaciones posibles asciende a 18, como resultado de combinar los
valores considerados para cada parámetro:

2 (N) x 3 (scale threshold) x 3 (opacity threshold) = 18 combinaciones

Cada una de estas configuraciones ha sido aplicada a las seis escenas seleccionadas, resul-
tando en un total de 108 experimentos independientes.

La tabla 5.4 recoge todas las combinaciones de parámetros evaluadas:
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N scale threshold opacity threshold
2 15 0.001
2 15 0.005
2 15 0.01
2 20 0.001
2 20 0.005
2 20 0.01
2 25 0.001
2 25 0.005
2 25 0.01
3 15 0.001
3 15 0.005
3 15 0.01
3 20 0.001
3 20 0.005
3 20 0.01
3 25 0.001
3 25 0.005
3 25 0.01

Cuadro 5.4: Combinaciones de parámetros evaluadas

Para cada combinación de parámetros y escena, se han registrado métricas de calidad
visual (SSIM[29], PSNR y LPIPS). Además, en aquellos casos que han presentado mejores
resultados en términos de calidad, se ha analizado también el consumo de memoria y el tiempo
total de entrenamiento, con el objetivo de evaluar la eficiencia global de cada configuración
y su impacto sobre los recursos computacionales disponibles.

5.2.2. Análisis exploratorio de métricas y parámetros

Con el objetivo de entender de forma visual y estad́ıstica el comportamiento de las métri-
cas de calidad (SSIM, PSNR, LPIPS) y la relación que existe con los parámetros seleccionados
del modelo, se llevó a cabo un análisis de los datos recogidos tras los entrenamientos.

En primer lugar, se analizaron las distribuciones globales de las tres métricas de calidad
mediante histogramas con suavizado por densidad. Tal y como se muestra en la Figura 5.4,
se observa una gran dispersión en los valores de SSIM, PSNR y LPIPS entre las diferentes
combinaciones de parámetros evaluadas.
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Ilustración 5.4: Distribución de las métricas SSIM, PSNR y LPIPS[3] para todas las combi-
naciones evaluadas.

En particular, se puede observar que las métricas SSIM y PSNR no siguen una única
tendencia, sino que se agrupan en dos zonas principales. Esto puede sugerir que hay combi-
naciones de parámetros que generan resultados muy distintos entre śı, en cuanto a calidad.
En el caso de LPIPS, los valores se concentran sobre todo en los extremos, lo que puede indica
que algunas configuraciones generan reconstrucciones muy parecidas a la original, mientras
que otros resultados presentan un claro empeoramientto

Como segundo paso, se representaron las métricas de calidad mediante diagramas de
caja (boxplots) por escena, con el objetivo de analizar cómo vaŕıa el resultado del modelo
en función del dataset utilizado. Como se observa en la Figura 5.5, escenas como Bonsai y
Kitchen presentan valores de SSIM y PSNR consistentemente altos, junto con valores bajos
de LPIPS, lo que puede indicar que estas escenas son más fáciles de reconstruir con buenos
resultados y estar relacionado con la geometŕıa o la cantidad de puntos presentes en la
inicialización.

Ilustración 5.5: Distribución de las métricas SSIM, PSNR y LPIPS para cada escena.
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5.2.3. Selección de mejores combinaciones por escena

Con el objetivo de identificar la mejor combinación de parámetros para cada escena, se
prestará atención a las métricas de calidad obtenidas (PSNR, SSIM y LPIPS), teniendo en
cuenta que un menor valor de LPIPS indica una cuan similar es la percepción entre la imagen
reconstruida y la original.

Finalmente, se seleccionó la mejor configuración para cada escena, identificando aquella
que obtuvo con la mejor combinación de valores.

Se observa que en la Tabla 5.5 las mejores configuraciones obtenidas corresponden al caso
en que el valor de N es igual a 3. Esto tiene sentido, ya que un mayor número de gaussianas
generadas tras cada división permite al modelo capturar con mayor precisión los detalles de
la escena, afinando aśı los pequeños detalles, y con ello, la propia escena.

Escena Opacity N Scale SSIM PSNR LPIPS Max Mem (GB) Tiempo
Bicycle 0.001 3 15 0.78 25.75 0.2 11.7 52m 13s
Bonsai 0.001 3 20 0.96 33.08 0.07 4.02 22m 10s
Counter 0.001 3 20 0.93 29.66 0.1 3.42 20m 02s
Garden 0.005 3 20 0.88 27.85 0.1 9.8 47m 12s
Kitchen 0.001 3 20 0.95 32.67 0.06 4.78 27m 13s
Stump 0.005 3 20 0.78 26.99 0.20 9.12 50m 51s

Cuadro 5.5: Mejores combinaciones por escena según promedio de calidad visual.

Sin embargo, al comparar estos resultados con los obtenidos en la configuración base de
3DGS[5] (sin variación de parámetros), se aprecia un incremento notable en el consumo de
memoria VRAM y en el tiempo total de entrenamiento. Esto también es esperable, dado que
al generar más gaussianas se incrementa la cantidad de datos que deben ser almacenados y
procesados durante cada iteración.

Por este motivo, se decide llevar a cabo un análisis más equilibrado, por lo que se procederá
a filtrar nuevamente los resultados considerando únicamente aquellas combinaciones en las
que el valor de N es igual a 2.

En la Tabla 5.6 se muestran las mejores configuraciones obtenidas para cada escena bajo
esta restricción. Si bien los valores de las métricas de calidad son, en general, ligeramente
inferiores a los alcanzados con N = 3, representan configuraciones mucho más eficientes, tanto
desde el punto de vista de recursos, como el almacenamiento y la memoria VRAM, debido
al descenso en el número de gausianas, como en el propio tiempo de entrenamiento.
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Escena Opacity N Scale SSIM PSNR LPIPS Max Mem (GB) Tiempo
Bicycle 0.001 2 15 0.77 25.71 0.20 11.2 38m 12s
Bonsai 0.005 2 25 0.96 33.07 0.07 3.62 12m 02s
Counter 0.001 2 20 0.92 29.69 0.09 3.18 13m 35s
Garden 0.001 2 20 0.87 27.86 0.10 9.38 35m 27s
Kitchen 0.005 2 25 0.95 32.56 0.05 4.18 16m 18
Stump 0.010 2 25 0.78 26.92 0.20 8.78 30m 38s

Cuadro 5.6: Mejores combinaciones por escena considerando únicamente N = 2.

5.2.4. Conclusiones del análisis paramétrico

Los resultados que se han obtenido, refleja el gran impacto que tienen estos parámetros
menos accesibles a nivel usuario para la densificaicón en 3DGS[5]. En particular, se confirma
que un mayor número de gaussianas por división (N = 3) permite afinar los detalles y obtener
métricas superiores, aunque a costa de un aumento considerable en el uso de memoria VRAM
y el tiempo de entrenamiento.

Por otro lado, filtrar el análisis por N = 2, se observan combinaciones de parámetros más
eficientes en términos de recursos, con una pérdida asumible de calidad visual en muchos
casos.

Un punto interesante que se puede concluir a partir de las Tablas 5.5 y 5.6 es que se presen-
tan todos los valores posibles para los parámetros opacity threshold y scale threshold.
No existe una única combinación para todas las escenas; por el contrario, cada dataset parece
obtener mejores resultados a partir de valores distintos para estos umbrales. Este hecho puede
sugerir que el uso de umbrales estáticos y deterministas podŕıa no ser lo más adecuada para
un buen resultado general en todos los casos.

Por tanto, una posible mejora futura podŕıa consistir en explorar mecanismos más dinámi-
cos para determinar estos valores, basados en caracteŕısticas espećıficas de cada escena. Esto
podŕıa permitir mantener la calidad de las reconstrucciones reduciendo el sobrecoste compu-
tacional.
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5.3. Hipótesis 1: Entrenamiento en 3DGS basado en
parches

5.3.1. Introducción

A lo largo de la historia de la informática, y más concretamente de la inteligencia artificial,
se ha demostrado que el uso de fragmentos de datos de conjutnos mayores es una estrategia
que ha arrojado buenos resultados en cuanto a la eficiencia y la capacidad de generalización.
Esta idea ha sido aplicado en campos tan convencionales como el procesamiento de imágenes,
el análisis de audio y texto.

Si se profundiza en la visión por computador, por ejemplo, es muy común deividr una
imagen en parches más pequeños para poder ser procesados de manera independientes. De
este modo, los modelos aprenden patrones locales con una mayor precisión y pueden entre-
narse en dispositivos cuyos recursos son mñas limitados. Esta técnica también es usada en
campos como videojuegos, donde se cargan chunks de información dependiendo de la posición
del jugador o, incluso en la medicina, donde se analizan fragmentos de una radiograf́ıas para
poder detectar anomaĺıas.

5.3.2. Uso de los parches en campos más espećıficos

En del aprendizaje profundo, el uso de subconjuntos de datos durante el entrenamiento ha
jugado un papel fundamental dando lugar a avances significativos, como se recoge art́ıculos
como An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [Doso-
vitskiy et al., 2020] [30], donde se introduce el modelo Vision Transformer (ViT), que divide
las imágenes en parches fijos de 16×16 ṕıxeles para procesarlas como secuencias de tokens,
logrando resultaods prometedores sin necesidad de convoluciones.

Otro caso destacado es el de los métodos de aprendizaje auto-supervisado, como SimCLR
[Chen et al., 2020] [31], que utilizan crops aleatorios (subimágenes) como vistas alternativas
de una misma imagen para aprender representaciones robustas sin etiquetas.

Asimismo y un ejemplo más resonado en los últimos años, en la reconstrucción de escenas
3D, modelos como NeRF [13] [Mildenhall et al., 2020] no procesan las imágenes completas,
sino que seleccionan rayos individuales (ṕıxeles muestreados) en cada iteración.

5.3.3. Aplicación en 3D Gaussian Splatting

Basandose en los enfoques descritos, se propone como primera hipótesis plantear un entre-
namiento alternativo basado en parches para 3DGS[5], mediante el uso de parches aleatorios
de las imagenes usadas para el proceso de entrenamiento. En vez de renderizar la imagen
completa en cada iteración se selecciona una región de la imagen, y se calcula la pérdida
únicamente sobre esa región.
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Con esto, se intentará reducir el coste de los recursos, evitar que se generen tantas gaus-
sianas durante el proceso de densificación y forzar al modelo a aprender a partir de menos
información.

5.3.4. Implementación técnica

A partir de la hipótesis planteada, se implementa un entrenamiento basado en parches
aleatorios dentro del pipeline original de 3DGS[5]. El objetivo es que el modelo aprenda
a representar la escena a partir de fragmentos más pequeños de las imágenes, en lugar de
procesar cada imagen completa en cada iteración.

División en parches Cada imagen utilizada para el entrenamiento, de dimensiones H×W ,
se divide en n parches. Esta división tiene lugar al comienzo de cada iteración, haciendo uso
de la función divide and select patch(width, height, num patches), y posteriomente selec-
cionándose un parche de forma aleatoria para cada iteración con el fin de calcular la pérdida
correspondiente.

La Figura 5.6 muestra un ejemplo visual del proceso de división para distintas configu-
raciones: cuando n = 1 la imagen se procesa completa, mientras que para n = 2 y n = 4 se
subdivide en partes más pequeñas, cada una identificada numéricamente.

Ilustración 5.6: Ejemplo de división de una imagen en diferentes configuraciones de parches.

Por ejemplo, si n = 4, la imagen se divide en cuatro parches, y únicamente se utiliza uno
de ellos por iteración.

Implementación del sistema de parches La lógica de división de las imágenes en par-
ches está implementada en la función divide and select patch(width, height, num patches),
incluida en el módulo patches utils.py del proyecto. Esta función toma como entrada el ancho
y alto de la imagen, junto con el número de parches deseado (n ∈ {1, 2, 4}), y devuelve una
lista de coordenadas que definen los distintos parches.
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Ilustración 5.7: Codigo del utils

Internamente, la función divide la imagen en regiones de igual tamaño. Por ejemplo:

• Para n = 1: se devuelve un único parche que abarca toda la imagen.

• Para n = 2: se divide la imagen verticalmente en dos mitades iguales.

• Para n = 4: se genera una cuadŕıcula de 2×2, dividiendo la imagen en cuatro regiones.

Este proceso se ilustra en la Figura 5.8, donde se compara una imagen completa con el
parche seleccionado para el cálculo de la pérdida. Como se puede observar, solo se utiliza una
parte de la imagen renderizada en cada iteración.

Ilustración 5.8: Comparativa entre una imagen renderizada completa (izquierda) y el parche
seleccionado para calcular la pérdida (derecha).

Proceso de renderizado y cálculo de pérdida Durante cada iteración del entrenamien-
to, se sigue un flujo bien, el cual se muestra en la Figura 5.9. Este flujo muestra el proceso
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que permite calcular la pérdida sobre un parche de la imagen.

• Se selecciona aleatoriamente una cámara del conjunto de entrenamiento.

• Se renderiza la imagen desde esa vista, obteniendo la imagen renderizada image rendered.

• Se selecciona aleatoriamente un parche P = (x1, y1, x2, y2) dentro de la imagen.

• Se recorta el parche renderizado: image rendered[:, y 1:y 2, x 1:x 2].

• Se extrae el parche correspondiente de la imagen real (ground truth): gt image[:, y 1:y 2,
x 1:x 2].

• Se calcula la pérdida entre ambos parches, por ejemplo con una combinación de L1 y
SSIM:

patch_rendered = image_rendered[:, y1:y2, x1:x2]
patch_gt = gt_image[:, y1:y2, x1:x2]
loss = L1(patch_rendered, patch_gt)

Ilustración 5.9: Flujo de trabajo del sistema de entrenamiento por parches en 3D Gaussian
Splatting.

Parámetro patch number El número de parches utilizado durante el entrenamiento se
controla mediante un nuevo parámetro –patch number, que se pasa como argumento desde
la ĺınea de comandos al lanzar el script de entrenamiento. Este valor se recoge en el archivo
principal, se almacena en los argumentos globales del programa y se utiliza posteriormente
para invocar a la función divide and select patch. De esta forma, el usuario puede determinar
en cuantos parches se dividen las imágenes de entrenamiento sin modificar el código fuente.

Ilustración 5.10: Parámetro que indicar el número de parches

5.3.5. Resultados

Los resultados obtenidos reflejan un aumento significativo en el número de Gaussianas,
respecto al entrenamiento base. En lugar de limitarse, el modelo produjo una explosión del
número de estos puntos, incluso más que en 3D Gaussian Base.
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En la Tabla 5.7 se muestran los valores promedios obtenidos en función del número de
parches utilizados durante el entrenamiento. Se comparan las métricas de calidad visual
(SSIM, PSNR y LPIPS), junto con el número total de gaussianas generadas, la memoria
VRAM utilizada y el tiempo de entrenamiento.

Patch Number SSIM PSNR LPIPS Nº Gaussianas Max Mem (GB) Tiempo
3DGS 0.88 29.26 0.12 2.623.200 6.77 24m 24s
1 0.88 29.25 0.12 2.623.500 6.8 24m 55s
2 0.88 28.90 0.13 3.272.000 7.75 26m 30s
4 0.87 28.19 0.15 3.855.000 8.68 28m 52s

Cuadro 5.7: Promedios globales obtenidos en función del número de parches usados durante
el entrenamiento.

A partir de los resultados obtenidos, se observa un incremento generalizado en el número
de gaussianas generadas, aśı como un mayor consumo de memoria VRAM y un aumento
en el tiempo de entrenamiento. Por otro lado, aunque las métricas de calidad visual como
SSIM[29], PSNR y LPIPS[3] muestran un descenso, esta no es especialmente drástico. Esto
puede sugerir que, a pesar de trabajar con fragmentos cada vez más pequeños de la imagen
en lugar de la imagen completa, el modelo mantiene, dentro de lo que cabe, una capacidad
razonable de generalización.

Hipótesis Sin embargo, volviendo al aumento que se observa en el número de gaussianas,
aśı como en el uso de memoria VRAM y el tiempo de entrenamiento, se plantean tres posibles
hipótesis que podŕıan explicar este comportamiento:

1. Priorización del detalle local: al trabajar con secciones más pequeñas de la imagen
(parches), el modelo podŕıa estar forzando una representación más precisa de los detalles
locales, lo que provoca una generación mayor de gaussianas para cubrir con precisión
esas zonas limitadas.

2. Densificación innecesaria: es posible que se estén densificando gaussianas que no
contribuyen significativamente a la pérdida, es decir, gaussianas que no han recibido
gradiente en la vista actual, pero que aún aśı participan en el proceso de densificación.
Este fenómeno se representa en la Figura 5.11, donde se observa cómo ciertas gaussianas
ajenas al parche activo acumulan estad́ısticas sin haber sido optimizadas directamente.

3. Superposición entre parches: dado que una misma gaussiana puede ocupar un área
grande, podŕıa estar jugando un papel en múltiples parches a lo largo del entrenamiento.
Esto puede provocar acumulación de gradiente redundante y, por tanto, un aumento
innecesario del número de gaussianas. Un ejemplo visual se presenta en la Figura 5.12,
donde se ilustra cómo una gaussiana puede abarcar varias regiones de la imagen.
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Ilustración 5.11: Hipótesis 2 — Densificación innecesaria: gaussianas fuera del parche visible
acumulan estad́ısticas de densificación a pesar de no haber recibido gradiente significativo.

Ilustración 5.12: Hipótesis 3 — Superposición entre parches: las gaussianas grandes pueden
abarcar varios parches, contribuyendo a la redundancia en el entrenamiento.
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5.4. Hipotesis 2: Diferentes mecanismos de densifica-
ción

5.4.1. Introducción

Como segunda hipótesis, se plantea el estudio de métodos alternativos ya existentes que
abordan problemas similares, con el objetivo de conseguir mecanismos que permitan imple-
mentar una solución al problema del crecimiento excesivo del número de gaussianas durante
la generación de escenas. Esto conlleva un aumento significativo en el consumo de memoria
gráfica, almacenamiento y tiempo de entrenamiento, lo que dificulta su adopción en entornos
con recursos mas casuales.

5.4.2. Ecuación para limitar el crecimiento de las gaussianas

En el art́ıculo de Taming 3DGS [19] se introduce un mecanismo determinista para con-
trolar el crecimiento del número de gaussianas a lo largo del proceso de entrenamiento. Este
enfoque no se basa únicamente en establecer un ĺımite, sino en distribuir de forma progresiva
y predecible la cantidad máxima de gaussianas permitidas en cada paso del entrenamiento,
asegurando aśı que no supere presupuesto total de gaussianas para todo el entrenamiento.

Para ello, se define una función cuadrática que actúa como gúıa para la densificación,
asignando en cada iteración un número máximo de gaussianas que el sistema puede generar
o densificar. Esta fórmula determinaŕıa el número máximo de gaussianas que debe haber
presente en cada uno de los pasos para llegar de forma progresiva al objetivo final.

La ecuación propuesta es la siguiente:

g(x) =
(

B − S − kN

N2

)
x2 + kx + S (5.1)

donde:

• g(x): número máximo de gaussianas permitidas en la iteración x.

• S: número de gaussianas iniciales.

• B: número total de gaussianas permitidas al final del entrenamiento (presupuesto glo-
bal).

• N : número total de pasos (iteraciones) de entrenamiento.

• x: paso actual del entrenamiento.

• k: pendiente inicial del crecimiento, que se define como:
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k = 2(B − S)
N

(5.2)

Deducción de la ecuación

La función de crecimiento se obtiene a partir de un polinomio cuadrático general:

g(x) = ax2 + bx + c (5.3)

Se aplican las siguientes condiciones:

1. En el paso inicial x = 0, debe cumplirse que g(0) = S, pues en el primer paso solo
pueden existir las gaussianas primitivas designadas como puntos inicializados:

g(0) = a · 02 + b · 0 + c = S ⇒ c = S (5.4)

2. En el paso final x = N , debe cumplirse que g(N) = B, pues el valor de las gaussianas
debe ser igual al presupeusto de gaussianas designado para el entrenamiento:

g(N) = aN2 + bN + S = B ⇒ a = B − S − bN

N2 (5.5)

3. Se define b = k para obtener una expresión en función de un parámetro de crecimiento
ajustable:

a = B − S − kN

N2 (5.6)

4. El valor de k se elige como:
k = 2(B − S)

N
(5.7)

El valor de k asegura que la curva de crecimiento comience con una pendiente inicial
elevada, permitiendo al modelo densificar rápidamente durante las primeras fases del
entrenamiento, donde la capacidad de representación aún es limitada. A medida que el
entrenamiento avanza, esta pendiente decrece de forma natural gracias al componente
cuadrático, lo que ofrece un comportamiento suave y progresivo.

Sustituyendo a, b = k y c = S en la ecuación original se obtiene la expresión final de la
función de crecimiento (Ec. 5.1).

Esto proporciona un control más fino y predecible sobre el número de gaussianas, ase-
gurando que se mantenga dentro del ĺımite designado por el usuario y distribuyéndolas con
lógica creciente a lo largo del entrenamiento.
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5.4.3. Influencia del parámetro k sobre la curva de crecimiento

La ecuación cuadrática planteada en la Sección 5.1 permite controlar de forma progresiva
el número máximo de gaussianas que el modelo puede generar en cada paso del entrenamiento.
Esta función depende de un parámetro de crecimiento k, que condiciona la pendiente inicial
de la curva y, por tanto, determina cuán rápido se permite densificar la escena.

Para comprender cómo influye este parámetro en la evolución del número de gaussianas,
se ha realizado un graficado experimental para distintos valores de k, manteniendo fijos el
número de pasos (N), las gaussianas iniciales (S) y el presupuesto total (B). La Figura 5.13
muestra la evolución del número máximo de gaussianas permitidas en función del paso de
entrenamiento, comparando distintos valores de k.

Ilustración 5.13: Evolución del número máximo de gaussianas permitidas en función del paso
de entrenamiento para distintos valores de k.

A partir de la Figura 5.13 se pueden extraerse las siguientes conclusiones:

• k = 0: genera una curva puramente cuadrática con crecimiento lento al inicio. Esto
puede dificultar que el modelo capture la estructura inicial de la escena, ya que dis-
pone de pocas gaussianas en las primeras etapas. Solo aquellas escenas con un mayor
porcentaje de puntos iniciales, saldrán beneficiadas.

• k = B−S
N

: ofrece un crecimiento más moderado y lineal. Es útil para entornos donde se
desea evitar una explosión temprana de gaussianas, aunque puede no ser suficiente en
escenas complejas.
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• k = 2(B−S)
N

(base): se muestra como una opción equilibrada. Refleja un crecimien-
to progresivo que alcanza el presupuesto de gaussianas al final del entrenamiento sin
saturar el sistema en etapas iniciales.

• k = 4(B−S)
N

: provoca un crecimiento muy agresivo, alcanzando el máximo de gaussianas
demasiado pronto. Esto puede hacer explotar el consumo memoria y producir gaussianas
antes de que el modelo haya convergido lo suficiente como para optimizarlas eficazmente.

Por tanto, se concluye que el valor k = 2(B−S)
N

representa una elección razonable para la
mayoŕıa de casos.

5.4.4. Simulación del comportamiento de la función

Con el objetivo de analizar cómo se comporta la función propuesta en diferentes escena-
rios, se ha desarrollado un pequeño script en Python[6] que permite simular la evolución del
número máximo de gaussianas permitidas a lo largo del entrenamiento. Este programa im-
plementa la ecuación 5.1 y grafica su evolución para diferentes combinaciones de parámetros
S, B y N

La Figura 5.14 muestra una comparativa entre distintas curvas generadas al modificar
el presupuesto total de gaussianas B, el número de puntos iniciales S y la duración del
entrenamiento N .

Ilustración 5.14: Comparativa entre diferentes curvas de crecimiento del número máximo de
gaussianas para distintos presupuestos y duraciones de entrenamiento.
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• Caso 1: con S = 50 000, B = 1 000 000, y N = 1000, se observa un crecimiento
progresivo y equilibrado.

• Caso 2: con S = 50 000, B = 500 000 y N = 1000, el crecimiento es más limitado, lo
que reduce significativamente el número de gaussianas finales. Este caso representa un
escenario en el que se busca reducir el uso de recursos manteniendo la misma duración
de entrenamiento.

• Caso 3: con un valor inicial reducido de S = 20 000, B = 500 000 y N = 500, se simula
un entrenamiento más corto con presupuesto bajo. El crecimiento es rápido desde el
inicio, útil para dispositivos con limitaciones más estrictas.

• Caso 4: con S = 100 000, B = 2 000 000 y N = 2000, se permite mayor grado de
crecimiento. Esta configuración es ideal para entornos de alto rendimiento, donde se
prioriza la calidad final por encima del tiempo o el consumo de memoria.

• Caso 5: con S = 50 000, B = 1 000 000 y N = 500, se mantiene el mismo presu-
puesto que en el Caso 1, pero en la mitad de iteraciones, lo que da como resultado un
crecimiento mucho más agresivo del número de gaussianas.

5.4.5. Integración de la ecuación en el código de 3DGS

La ecuación comentada anteriomente ha sido implementada dentro del proceso de densi-
ficación. Para ello, se ha añadido una función espećıfica llamada calculate gaussian budget(),
encargada de calcular el número máximo de gaussianas permitidas en cada paso del entre-
namiento según la ecuación 5.1.

Esta función tiene como parámetros el paso actual (current step), el número total de pasos
de entrenamiento (total steps), el número de puntos iniciales (initial points) y el presupuesto
global de gaussianas (budget). A partir de estos valores, calcula el ĺımite de cada paso de
gaussianas que deben estar presentesf.

Ilustración 5.15: Función calculate gaussian budget() implementando la ecuación de creci-
miento progresivo de gaussianas.

El valor que devuleve esta función se usa durante la ejecución de la función densify and prune(),
que se invoca en cada paso de entrenamiento dentro de la densificación. Primero se calcula
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el paso actual y el número total de pasos válidos para la densificación, y luego se llama a la
función junto con el presupuesto introducido.

Ilustración 5.16: Fragmento de código donde se calcula el paso actual e invoca la función
densify and prune() con el valor de presupuesto.

Finalmente, dentro de la función densify and prune() se obtiene el número de puntos
iniciales y se calcula el número objetivo de gaussianas mediante calculate gaussian budget().

Ilustración 5.17: Implementación del presupuesto de gaussianas dentro de la función den-
sify and prune()

5.5. Parametrización del valor máximo de gaussianas

Para asegurar que el sistema tenga un mayor controls sobre el número total de gaussianas
que dbee contener la escena generada tras el entrenameinto, se añade un nuevo parámetro
denominado –budget. Este parámetro representa el número máximo de gaussianas que el
modelo puede llegar a tener al finalizar el proceso de entrenamiento y densificación. De esta
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manera, el usuario podrá determinar de forma expĺıcita el número de gaussianas máximo,
determinando este la prioridad entre uso de recursos y calidad del resultado.

La adición de este nuevo parámetro dse hizo de la siguiente forma:

parser.add_argument("--budget", type=int, default=1000000)

El valor definido por este parámetro se utiliza como presupuesto global de gaussianas
(B) en la ecuación cuadrática presentada anteriormente en la Sección 5.1, que regula el
crecimiento progresivo de gaussianas durante el entrenamiento.

5.6. Control del crecimiento: experimentación con pre-
supuesto fijo

Con el objetivo de comprobar cuál es el comportamiento del modelo al incorporar la ecua-
ción de crecimiento de gaussianas, se ha llevado a cabo una serie de experimentos, utilizando
como presupuesto B los valores máximos de gaussianas generadas en las ejecuciones originales
de 3DGS[5] con densificación activada Estos valores, que servirán como ĺımite superior para
el número de gaussianas permitidas durante el entrenamiento, se detallan en la Tabla 5.8.

Escena Budget
Bicycle 4.652.308
Bonsai 1.040.856
Counter 919.028
Garden 3.638.595
Kitchen 1.385.668
Stump 4.103.252

Cuadro 5.8: Presupuesto máximo de gaussianas por escena, basado en los valores generados
por 3DGS base.

A pesar de establecer un número máximo de gaussianas, los resultados reflejan que el
número real de gaussianas generadas sobrepasa el valor objetivo. Esto indica que, si bien el
modelo es capaz de calcular el ĺımite teórico, como se observó en los experimentos básicos,
no existe aún un mecanismo efectivo que limite la creación de nuevas gaussianas una vez
alcanzado dicho presupuesto.

La Tabla 5.9 resume los resultados obtenidos al aplicar únicamente la ecuación cuadrática
para controlar el crecimiento, sin incorporar técnicas de poda adicionales. Como se puede
observar, en todas las escenas el número final de gaussianas excede el presupuesto previamente
definido, acompañado de un mayor consumo de memoria y tiempo de entrenamiento.
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Escena SSIM PSNR LPIPS Nº Gaussianas Memoria Máxima (GB) Tiempo
Bicycle 0.78 25.72 0.20 5.648.547 12.81 44m 24s
Bonsai 0.96 33.08 0.08 1.330.141 4.19 15m 34s
Counter 0.93 29.67 0.10 1.167.766 3.63 15m 50s
Garden 0.88 27.97 0.10 4.057.787 10.14 40m 12s
Kitchen 0.96 33.06 0.06 1.493.873 4.40 18m 9s
Stump 0.79 26.99 0.21 4.516.967 9.64 34m 35s

Cuadro 5.9: Resultados tras aplicar únicamente la ecuación cuadrática para controlar el
crecimiento, sin mecanismos adicionales de poda.

Este fenómeno se debe a que la ecuación cuadrática únicamente indica el número máximo
deseado de gaussianas en cada iteración, pero no impide expĺıcitamente que el sistema siga
creando más. La densificación continúa añadiendo nuevas gaussianas en cada paso sin un
control estricto que verifique si se ha excedido el objetivo actual.

En otras palabras, el modelo conoce el valor de referencia g(x), pero no actúa en conse-
cuencia cuando lo sobrepasa, lo cual provoca un crecimiento descontrolado en las etapas del
entrenamiento.

Para ilustrar mejor esta hipótesis, se ha generado una figura que muestra el comporta-
miento teórico del modelo cuando no existe un mecanismo de poda. En ella se representa
el crecimiento deseado (presupuesto), el crecimiento real del sistema, y el exceso acumulado
que se produce cuando se ignora el ĺımite establecido.

Ilustración 5.18: Representación teórica del crecimiento del número de gaussianas sin control
de presupuesto. El área sombreada en rojo representa el exceso de gaussianas acumuladas
que debeŕıan ser podadas.
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Por ello, es conveniente desarrollar un mecanismo adicional de control, que elimine de
forma activa el exceso de gaussianas generadas para ajustarse al ĺımite. Esta idea se abordará
en el siguiente apartado.

5.7. Planteamiento de la poda

En el aprendizaje automático, la poda es una técnica utilizada para reducir la complejidad
de los modelos, eliminar redundancia y mejorar la eficiencia computacional.

Si se aplica esta idea a 3DGS[5], la poda hace referencia a eliminar gaussianas que se con-
sideran innecesarias o excedentes, ya sea porque se tiene que lograr un objetivo de gaussianas
o porque no son suficientemente significativas para la reconstrucción de la escena.

En el apartado anterior se observó que, tras implementar un mecanismo de crecimiento
controlado mediante una función cuadrática, el número real de gaussianas generadas puede
superar el objetivo establecido en cada iteración. Esto ocurre porque, aunque se calcula
correctamente el presupuesto g(x) en cada paso, el sistema no elimina el exceso de gaussianas
ya existentes, provocando que el número total siga creciendo.

Por ello, se debe introducir un mecanismo adicional de poda que actúe cuando se detecte
un exceso de gaussianas respecto al valor objetivo. Este mecanismo podŕıa consistir en:

1. Calcular cuántas gaussianas hay actualmente en el modelo.

2. Obtener el número máximo deseado según el paso actual del entrenamiento (target).

3. Determinar el exceso:

exceso gaussianas = número actual− target gaussians

4. Si hay exceso, eliminar ese número de gaussianas del sistema.

Este proceso se puede llevar a cabo utilizando distintos criterios de selección para decidir
qué gaussianas eliminar.

Dado que el modelo no dispone de un mecanismo para eliminar gaussianas excedentes,
en el siguiente apartado se propone una primer estrategia de poda basada en la opacidad de
las gaussianas.

Esta decisión surge a ráız de los análisis realizados en secciones anteriores, donde se
observó que el parámetro min scale tiene una gran influencia en los resultados, pero su valor
óptimo vaŕıa entre escenas. Por tanto, en lugar de utilizar este parámetro como un umbral
fijo durante la densificación, se plantea emplearlo como criterio dinámico para seleccionar
las gaussianas menos relevantes (aquellas con menor escala) cuando sea necesario reducir su
número.
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5.8. Implementación de un mecanismo de poda basado
en escala

El primer intento para limitar el número de gaussianas durante el entrenamiento es un
mecanismo de poda basado en la escala de cada gaussiana. El planteamiento es que las
gaussianas de menor escala (es decir, que ocupan un espacio 3D más pequeño) podŕıan tener
una menor contribución visual, y por tanto, podŕıan ser candidatas para eliminarlas.

Ilustración 5.19: Codigo Poda basada en escala

La Figura 5.20 ilustra visualmente este procedimiento, donde se muestra cómo, tras la
densificación, se seleccionan las gaussianas con menor escala y se eliminan para respetar el
presupuesto.

El procedimiento es el siguiente:

1. Se calcula el número de gaussianas excedentes como:

exceso gaussianas = número actual− target gaussians

2. Si hay exceso, se calcula la escala máxima de cada gaussiana (valor máximo entre sus
tres componentes de escala).

3. Se ordenan las gaussianas por este valor maximo de escala, de menor a mayor.

4. Se eligen tantas gaussuanas con menor escalar como exceso exista.

5. Se genera una máscara booleana en la que estas gaussianas quedan marcadas como
False.

6. Finalmente, se aplica esta máscara al método prune points(), eliminando aśı las gaus-
sianas seleccionadas.
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Ilustración 5.20: Ejemplo ilustrativo del mecanismo de poda basado en escala. Las gaussianas
con menor escala (en azul) son eliminadas para cumplir el presupuesto.

5.9. Implementación de un mecanismo de poda basado
en opacidad

La estrategia de poda consiste en eliminar el número exacto de gaussianas necesarias
para volver al ĺımite deseado en cada uno de los pasos del entrenamiento. Para seleccionar
cuáles eliminar, se utiliza como criterio la opacidad: se asume que las gaussianas con menor
opacidad tienen una menor relevancia en la reconstrucción de la escena y, por tanto, pueden
ser descartadas con menor impacto.

Ilustración 5.21: Codigo Poda basada en opacidad
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El procedimiento completo puede verse ilustrado en la Figura 5.22, donde se muestra cómo
se eliminan las gaussianas menos opacas para respetar el ĺımite de presupuesto definido.

1. Se calcula el exceso de gaussianas como:

excess gaussians = número actual− target gaussians

2. Si el exceso es positivo, se ordenan todas las gaussianas según su opacidad en orden
ascendente.

3. Se seleccionan los ı́ndices de las gaussianas con menor opacidad, correspondientes al
número en exceso.

4. Se construye una máscara booleana en la que estas gaussianas quedan marcadas como
False y el resto como True.

5. Finalmente, se aplica esta máscara inversa al método prune points(), que elimina las
gaussianas seleccionadas del modelo.

Ilustración 5.22: Ejemplo ilustrativo del mecanismo de poda basado en opacidad. Las gaus-
sianas con menor opacidad son eliminadas para mantener el presupuesto.
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Caṕıtulo 6

Resultados Parciales

Este caṕıtulo presenta los resultados parciales obtenidos tras implementar y evaluar dis-
tintos mecanismos de control del crecimiento de gaussianas en 3DGS[5]. En concreto, se
analizan los efectos de la poda basada en la escala, la poda basada en la opacidad y el uso de
un optimizador acelerado. Para cada estrategia, se explora el impacto de aplicar diferentes
presupuestos máximos de gaussianas (100 %, 75 % y 50 %) sobre métricas de calidad visual,
consumo de memoria y tiempo de entrenamiento.

6.1. Resultados con distintos presupuestos de gaussia-
nas para poda basada en escala

Una vez implementado el mecanismo de poda basado en escala descrito en el apartado
anterior, se ha procedido a evaluar su eficacia en la limitación del crecimiento del número
de gaussianas. Para ello, se realizaron varios experimentos utilizando distintos presupuestos
máximos (budgets) de gaussianas para cada escena. Estos presupuestos se definieron como
un porcentaje del número total de gaussianas generadas en la versión base de 3DGS[5] con
la densificación activada.

En concreto, se probaron tres configuraciones:

• 100 %: presupuesto igual al número de gaussianas de la versión base.

• 75 %: reducción del presupuesto al 75 % del total original.

• 50 %: reducción del presupuesto al 50 % del total original.

6.1.1. Presupuesto del 100 %

Para evaluar la efectividad del mecanismo de poda basado en la escala, se ha fijado un
presupuesto equivalente al 100 % del número de gaussianas generadas por 3DGS[5] en su
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versión base. Los resultados de esta evaluación se presentan en la Tabla 6.1.

Cuadro 6.1: Resultados con poda por escala al 100 % del presupuesto.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo
Bicycle 0.77 25.60 0.23 4.650.215 7.98 40m 40s
Bonsai 0.95 31.53 0.10 1.036.104 2.96 13m 41s
Counter 0.92 29.51 0.12 915.634 2.50 14m 37s
Garden 0.87 27.88 0.11 3.637.795 6.93 37m 36s
Kitchen 0.96 32.88 0.06 1.378.580 3.22 17m 26s
Stump 0.78 26.98 0.22 4.101.465 6.27 33m 10s

A pesar de mantener el mismo presupuesto de gaussianas que 3DGS[5] base, se observa
una ligera cáıda en métricas como PSNR y SSIM en varias escenas. En particular, Bonsai,
Bicycle y Counter presentan descensos notables en la métrica PSNR con respecto a los valores
originales. Esto puede sugerir que la eliminación basada en la escala puede afectar a gaussianas
relevantes para la reconstrucción, sobre todo en aquellas que tienen geometŕıa muy compleja
y necesita de las gaussianas pequeñas para afinar el detalle.

6.1.2. Presupuesto del 75 %

Para analizar el impacto de una reducción más agresiva del presupuesto de gaussianas, se
evaluó el rendimiento del modelo aplicando un recorte al 75 % del presupuesto original. Los
resultados obtenidos se resumen en la Tabla 6.2.

Cuadro 6.2: Resultados con poda por escala al 75 % del presupuesto.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo
Bicycle 0.74 25.07 0.27 3.483.177 9.48 35m 53s
Bonsai 0.94 30.89 0.11 774.691 3.33 12m 32s
Counter 0.91 29.20 0.14 682.355 2.87 13m 00s
Garden 0.86 27.67 0.13 2.725.224 8.10 33m 15s
Kitchen 0.95 32.40 0.06 1.034.968 3.68 15m 27s
Stump 0.71 25.70 0.32 3.071.245 7.41 28m 58s

Al reducir el presupuesto al 75 %, se evidencia aún más la pérdida de caldidad, especial-
mente en Bicycle y Stump, donde el PSNR y LPIPS empeoran significativamente. Si bien es
cierto que el tiempo y la memoria muestran un claro ahorro con respecto a 3DGS[5] Base, la
calidad visual se comienza a ver comprometida.
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6.1.3. Presupuesto del 50 %

Para evaluar el ĺımite inferior del presupuesto sin comprometer excesivamente la calidad,
se exploró un escenario de poda al 50 % del presupuesto original. Los resultados obtenidos
se muestran en la Tabla 6.3.

Cuadro 6.3: Resultados con poda por escala al 50 % del presupuesto.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo
Bicycle 0.70 24.42 0.31 2.320.719 7.55 29m 45s
Bonsai 0.91 28.88 0.15 515.413 2.93 11m 18s
Counter 0.89 28.66 0.16 452.867 2.51 11m 29s
Garden 0.84 27.18 0.17 1.812.736 6.64 28m 18s
Kitchen 0.93 30.90 0.10 686.367 3.16 13m 44s
Stump 0.52 22.53 0.47 2.046.523 5.78 24m 18s

Cuando se recorta al 50 % de las gaussianas, decae de forma drástica la calidad visual,
especialmente escenas como Stump, que pierde más de 4 puntos en PSNR y alcanza un valor
de LPIPS cercano al 0.5. El resto de escenas también presentan descensos en SSIM y PSNR,
lo puede resultar excesiva para aquellos casos en lo que sea necesario la calidad visual.

6.1.4. Conclusiones

Las métricas como PSNR y LPIPS se ven afectadas negativamente en la mayoŕıa de esce-
nas, reflejando aśı que el criterio de escala no siempre prioriza correctamente las gaussianas
más relevantes.

Si bien es cierto que mejora la parte de eficiencia, reflejado en el tiempo, la memoria usada
y el numero de gaussianas generadas, esta mejora va acompañada de una pérdida objetiva
de calidad, especialmente en configuraciones más restrictivas (75 % y 50 %). Esto limita lo
útil que puede llegar a ser la poda por escala donde se requiere precisión visual.
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6.2. Resultados con distintos presupuestos de gaussia-
nas para poda basada en opacidad

Al igual que la poda basada en escalaa desarrollada anteriormente, se probaron tres
presupuestos distintos para la poda basada en opacidad: 100 %, 75 % y 50 % del número de
gaussianas.

6.2.1. Presupuesto del 100 %

En primer lugar, se utiliza como ĺımite el mismo número de gaussianas generadas en el
entrenamiento original con densificación activada, es decir, un presupuesto del 100 %. La
Tabla 6.4 muestra los resultados obtenidos al aplicar la poda basada en opacidad bajo esta
condición.

Cuadro 6.4: Resultados tras aplicar la poda con un presupuesto del 100 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo
Bicycle 0.78 25.75 0.20 4.645.749 11.29 40m 51s
Bonsai 0.96 33.04 0.08 1.033.780 3.73 14m 3s
Counter 0.93 29.75 0.10 916.420 3.23 14m 59s
Garden 0.88 27.95 0.10 3.635.310 9.50 38m 21s
Kitchen 0.95 32.48 0.06 1.379.504 4.23 17m 49s
Stump 0.79 26.95 0.21 4.099.971 9.03 33m 39s

Como puede observarse, la aplicación de la poda permite mantener un número de gaus-
sianas muy cercano al presupuesto deseado, con una ligera mejora en el uso de memoria y el
tiempo respecto al 3DGS[5] base. Las métricas de calidad visual se mantienen prácticamente
intactas.

6.2.2. Presupuesto del 75 %

En el segundo experimento, se reduce el número máximo de gaussianas permitidas al
75 % del presupuesto original. El objetivo es analizar hasta qué punto se puede compactar el
modelo sin comprometer la calidad visual de las reconstrucciones. Los resultados obtenidos
tras aplicar la poda basada en opacidad con esta restricción se resumen en la Tabla 6.5.
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Cuadro 6.5: Resultados tras aplicar la poda con un presupuesto del 75 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo
Bicycle 0.78 25.79 0.20 3.484.847 9.30 34m 50s
Bonsai 0.96 33.04 0.08 773.723 3.30 12m 30s
Counter 0.93 29.70 0.10 684.763 2.84 13m 33s
Garden 0.88 27.96 0.10 2.724.573 7.98 33m 19s
Kitchen 0.96 32.74 0.06 1.032.618 3.66 15m 51s
Stump 0.79 27.02 0.21 3.074.099 7.37 29m 50s

Los resultados muestran que, con un recorte del 25 %, el modelo logra mantener una cali-
dad casi idéntica, mientras que se reducen los recursos necesarios. Es especialmente destacable
la estabilidad de las métricas en escenas como Bonsai y Kitchen.

6.2.3. Presupuesto del 50 %

Finalmente, se evalúa un escenario más agresivo, reduciendo el presupuesto al 50 % del
valor original. El objetivo es comprobar si esta simplificación impacta de forma significativa
en la reconstrucción de las escenas, tanto en calidad visual como en recursos computacionales.
Los resultados de este experimento se recogen en la Tabla 6.6.

Cuadro 6.6: Resultados tras aplicar la poda con un presupuesto del 50 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo
Bicycle 0.78 25.76 0.22 2.321.167 7.37 27m 18s
Bonsai 0.96 32.81 0.09 515.413 2.88 10m 22s
Counter 0.93 29.56 0.11 452.867 2.46 10m 53s
Garden 0.87 27.87 0.12 1.814.211 6.50 26m 3s
Kitchen 0.95 32.79 0.06 686.163 3.09 13m 10s
Stump 0.79 27.00 0.22 2.048.184 5.71 24m 4s

Es cierto que se observa una leve cáıda en métricas como LPIPS, la calidad visual global
sigue siendo sorprendentemente buena. A cambio, se consigue una mejora significativa en
rendimiento, memoria y tiempo.

6.2.4. Conclusiones

Los resultados de los experimentos reflehan que la poda basada en opacidad es apa-
rentemente eficaz para controlar el crecimiento de gaussianas durante el entrenamiento de
3DGS[5].
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Además, el mecanismos logra una reducción seignificativa en el uso de memoria y en el
tiempo de entrenameinto, sin comprometer en exceso las métricas de calidad de imagen.

Se concluye que la combinación de una función de crecimiento controlado con una po-
da basada en opacidad representa una solución acertada que permite equilibrar calidad y
eficiencia en la reconstrucción de escenas 3D.

6.3. Resultados con optimizador acelerado y poda ba-
sada en opacidad

Con el objetivo de acelerar el proceso de entrenamiento sin comprometer la calidad, se ha
decidido utilizar el optimizador acelerado incluido en el repositorio de 3DGS. Esta versión
agrega un rasterizador optimizado y un nuevo tipo de optimizador llamado sparse adam, el
cual ofrece una mejora significativa en el rendimiento.

Según los autores del repositorio, este optimizador puede alcanzar hasta una aceleración
de entrenamiento de 2.7x en comparación con la versión estándar.

Este ha sido utilizado para realizar los experimentos con poda basada en opacidad. A con-
tinuación se muestran los resultados para tres presupuestos diferentes de gaussianas: 100 %,
75 % y 50 %.

6.3.1. Resultados con presupuesto del 100 % y optimizador acele-
rado

Con el objetivo de evaluar el impacto del optimizador acelerado en combinación con un
presupuesto limitado, se ha ejecutado un experimento manteniendo el 100 % del presupuesto
original de gaussianas, junto con el mecanismo de poda por opacidad. La Tabla 6.7 muestra
los resultados obtenidos.

Cuadro 6.7: Resultados con optimizador acelerado y poda por opacidad al 100 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo
Bicycle 0.77 25.66 0.23 4.497.435 10.81 20m 21s
Bonsai 0.96 33.03 0.08 1.034.734 3.75 8m 4s
Counter 0.93 29.71 0.01 911.972 3.45 9m
Garden 0.87 27.90 0.11 3.423.012 9.10 20m 52s
Kitchen 0.95 32.75 0.06 1.380.211 4.40 11m 37s
Stump 0.78 26.95 0.22 3.980.451 8.52 16m 36s

Los resultados muestran que, al mantener el presupuesto original de gaussianas y com-
binarlo con poda basada en opacidad y el optimizador acelerado, se consigue preservar la
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calidad visual de las escenas prácticamente intacta. Métricas como SSIM[29] y LPIPS[3] se
mantienen estables, mientras que el tiempo de entrenamiento se reduce drásticamente en
comparación con el modelo original, demostrando la eficiencia del nuevo enfoque sin compro-
meter calidad visual.

6.3.2. Resultados con presupuesto del 75 % y optimizador acele-
rado

A continuación, se presenta un nuevo experimento donde se reduce el presupuesto de
gaussianas al 75 % del valor original, combinando esta limitación con el uso del optimizador
acelerado y un mecanismo de poda basado en opacidad. La Tabla 6.8 resume los resultados
obtenidos en las distintas escenas.

Cuadro 6.8: Resultados con optimizador acelerado y poda por opacidad al 75 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo
Bicycle 0.77 25.65 0.23 3.488.527 9.44 18m 35s
Bonsai 0.96 32.91 0.08 773.813 3.32 7m 8s
Counter 0.93 29.65 0.10 684.289 2.96 8m 2s
Garden 0.87 27.88 0.11 2.727.018 8.07 19m 5s
Kitchen 0.95 32.72 0.06 1.033.967 3.80 9m 54s
Stump 0.78 26.96 0.22 3.075.811 7.29 15m 25s

Al reducir el presupuesto de gaussianas al 75 %, se mantienen métricas de calidad casi
iguales a las del caso del 100 %, con una ganancia adicional en eficiencia, por lo que es posible
disminuir el número de gaussianas sin afectar de forma notable la calidad visual.

6.3.3. Resultados con presupuesto del 50 % y optimizador acele-
rado

Para explorar aún más la eficiencia del sistema, se ha llevado a cabo un experimento
reduciendo el presupuesto de gaussianas al 50 %, manteniendo tanto el optimizador acelerado
como la poda por opacidad. La Tabla 6.9 recoge los resultados obtenidos en este escenario
más restrictivo.
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Cuadro 6.9: Resultados con optimizador acelerado y poda por opacidad al 50 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo
Bicycle 0.77 25.66 0.23 2.322.018 7.46 15m 15s
Bonsai 0.96 32.71 0.09 515.413 2.92 7m 1s
Counter 0.92 29.47 0.11 452.867 2.56 7m 5s
Garden 0.87 27.77 0.12 1.812.716 6.60 15m 54s
Kitchen 0.95 32.27 0.06 686.367 3.20 8m 7s
Stump 0.78 26.96 0.23 2.046.729 5.69 13m 15s

Incluso con solo el 50 % del presupuesto original de gaussianas, el modelo es capaz de
mantener una calidad visual muy similar. Aunque se observan ligeros cambios en algunas
métricas, como PSNR o LPIPS, estas se mantienen dentro de márgenes aceptables. Además,
la reducción en el tiempo de entrenamiento y el uso de memoria es significativa.

6.4. Resultados generales

Como se puede observar en la Tabla 6.10, la estrategia de poda basada en la escala consigue
reducir bastante el número de gaussianas y el consumo de memoria VRAM. No obstante, esta
reducción también supone una pérdida considerable en las métricas de calidad, especialmente
cuando se reduce el presupuesto al 50 %. En concreto, la métrica SSIM cae hasta de un valor
de 0.888 a un valor de 0,80 y el PSNR desciende hasta los 27,10, lo que refleja descenso en
la calidad visual de las escenas reconstruidas bastante importante.

Presupuesto SSIM PSNR LPIPS Nº Gaussianas Max Mem (GB) Tiempo
3DGS Base 0,88 29,26 0,12 2.623.284 6,78 25m
100 % Escala 0,88 29,06 0,14 2.619.965 4,98 26m 20s
75 % Escala 0,85 28,49 0,17 1.961.943 5,81 23m 20s
50 % Escala 0,80 27,10 0,23 1.305.770 4,76 19m 50s

Cuadro 6.10: Resultados con poda basada en escala para diferentes presupuestos de gaussia-
nas.

Por otro lad, la Tabla 6.11 muestra que la poda basada solamente en opacidad presenta
un mejor equilibrio entre calidad y eficiencia. A diferencia del método anterior, esta técnica
consigue mantener las métricas de calidad casi intactas, incluso al reducir el número de
gaussianas al 75 %. Es importante destacar que, aunque al 50 % se empieza a observar un
ligero descenso en las métricas, los valores obtenidos siguen siendo aceptables y mucho mejores
que los alcanzados mediante la poda por escala. De hecho, el valor del PSNR se matinene
superior al del caso base.

69



Presupuesto SSIM PSNR LPIPS Nº Gaussianas Max Mem (GB) Tiempo
3DGS Base 0,88 29,26 0,12 2.623.284 6,78 25m
100 % Opacidad 0,88 29,32 0,14 2.618.455 6,84 26m 40s
75 % Opacidad 0,88 29,38 0,13 1.962.437 5,74 23m 10s
50 % Opacidad 0,88 29,29 0,14 1.306.334 4,67 18m 40s

Cuadro 6.11: Resultados con poda basada en opacidad para diferentes presupuestos de gaus-
sianas.

Por último, la Tabla 6.12 recoge los resultados obtenidos al combinar la poda por opacidad
con el optimizador acelerado propuesto en 3DGS. Esta combinación parece ser el método
más eficiente de todos las evaluados, consiguiendo reducir de forma significativa los tiempos
de entrenamiento, llegando incluso a entrenar escenas completas en menos de la mitad del
tiempo necesario en la versión base. Además, en cuanto a calidad, se mantienen prácticamente
idénticas, incluso con un presupuesto del 50 % de gaussianas, lo que demuestra que el método
implantado es un éxito.

Presupuesto SSIM PSNR LPIPS Nº Gaussianas Max Mem (GB) Tiempo
3DGS Base 0,88 29,26 0,12 2.623.284 6,78 25m
100 % + Opt 0,88 29,33 0,12 2.537.969 6,68 14m 15s
75 % + Opt 0,88 29,30 0,13 1.963.904 5,81 13m
50 % + Opt 0,88 29,14 0,14 1.306.018 4,74 11m

Cuadro 6.12: Resultados con optimizador acelerado y poda basada en opacidad para diferen-
tes presupuestos de gaussianas.

En resumen, a pesar de que las configuraciones con un presupuesto del 75 % en la poda
por opacidad presentan métricas ligeramente superiores, el objetivo de este Trabajo de Fin
de Grado se centra en reducir al máximo el consumo de recursos sin comprometer drástica-
mente la calidad visual. Por ello, se considera que el presupuesto del 50 % en combinación
con la poda basada en opacidad y el optimizador acelerado representa la opción más ade-
cuada, al permitir una reducción significativa de recursos manteniendo una calidad visual
prácticamente indistinguible de la versión base.
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Caṕıtulo 7

Resultados

En este caṕıtulo recoge los principales resultados obtenidos tras aplicar distintas estrate-
gias de entrenamiento en 3D Gaussian Splatting (3DGS)[5]. El objetivo es evaluar, tanto de
forma cuantitativa como cualitativa, el impacto de técnicas como el control de presupuesto,
la poda de gaussianas y la aceleración del proceso de optimización. Se busca identificar com-
binaciones que mantengan una calidad visual alta mientras reducen significativamente el uso
de recursos computacionales.

7.0.1. Resultados cuantitativos y comparativa de estrategias

A continuación se presentan los resultados obtenidos con distintas configuraciones del
pipeline de entrenamiento de 3D Gaussian Splatting (3DGS)[5], incluyendo entrenamientos
con y sin parches, con limitación por presupuesto (budget), técnicas de poda y optimiza-
ciones para acelerar el entrenamiento. El objetivo de estos experimentos fue encontrar una
solución que mantuviera una calidad visual elevada reduciendo los recursos computacionales
necesarios.

Se decidió fijar el budget en un 50 % del modelo base, ya que supuso una reducción
significativa en el número de gaussianas y en el tiempo de entrenamiento, sin llegar a degradar
de forma notable la calidad visual. A partir de valores menores, se observó una pérdida de
fidelidad perceptible en las imágenes reconstruidas.

La Tabla 7.1 muestra un resumen de los resultados más representativos. Se incluyen
experimentos con número variable de parches, aśı como distintas técnicas de poda (por escala
y por opacidad), con y sin optimización acelerada.
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Cuadro 7.1: Resumen de resultados con distintas configuraciones del pipeline 3DGS.

Nombre SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo
3DGS Base 0,88 29,26 0,12 2.623.284 6,78 25m
3DGS 2 Patches 0,88 28,90 0,13 3.269.690 7,74 26m 35s
3DGS 4 Patches 0,87 28,19 0,15 3.857.668 8,66 28m 35s
3DGS Budget (50 %) + Poda Escala 0,80 27,10 0,23 1.305.770 4,76 17m 40s
3DGS Budget (50 %) + Poda Opacidad 0,88 29,30 0,14 1.306.334 4,66 18m 35s
3DGS Budget (50 %) + Poda Opacidad + Aceleración 0,88 29,14 0,14 1.306.017 4,74 11m

Entrenamiento por Parches. Al entrenar con múltiples parches, se observa un ligero
empeoramiento en la calidad de reconstrucción conforme aumenta su número, especialmente
a partir de 4, donde la PSNR cae a 28,19 y LPIPS[3] aumenta a 0,15, lo que se traduce en
una ligera pérdida de nitidez.

Control del presupuesto. El uso del parámetro –densify budget con un ĺımite del 50 %
permitió reducir las gaussianas generadas casi a la mitad (de más de 2,6 millones a unos
1,3 millones), lo cual disminuyó la memoria máxima usada y el tiempo de entrenamiento sin
comprometer en exceso la calidad.

Poda por escala vs. opacidad. La poda por escala resultó ser demasiado agresiva,
reduciendo considerablemente la PSNR y aumentando el LPIPS[3]. Por el contrario, la poda
por opacidad logró mantener niveles de calidad muy similares al modelo original, siendo por
tanto una técnica más efectiva.

Aceleración del optimizador. Finalmente, al aplicar la optimización propuesta en el
repositorio 3dgs-accel, que sustituye el rasterizador original y acelera el cómputo del gra-
diente, se consiguió reducir el tiempo total de entrenamiento a sólo 11 minutos, manteniendo
métricas de calidad similares al modelo base. Esta opción representa la mejor relación entre
rendimiento y coste computacional.

7.1. Análisis cualitativo de las reconstrucciones

Además de las métricas numéricas presentadas anteriormente, se realiza a continuación un
análisis visual de las reconstrucciones obtenidas para distintas escenas. Este análisis permite
evaluar mejor el impacto perceptual de las técnicas propuestas más prometedoras de las que
han sido desarrolladas y observar de manera directa las diferencias más relevantes entre los
distintos modelos.

A continuación, se analizan de forma individual las algunas de las escenas utilizadas.
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7.1.1. Escena 1 — Bonsai

En esta primera escena se aprecia cómo las métodos que usan poda no sólo consiguen
reducir de forma drástica el número de gaussianas, memoria y tiempo de entrenamiento, sino
que además logran mantener o incluso mejorar algunos detalles espećıficos respecto al modelo
base.

Tal y como se indica en la Ilustración 7.1, el modelo base genera aproximadamente
1.040.856 gaussianas, mientras que las configuraciones con poda al 50 % reducen esta ci-
fra a tan solo 515.413, lo que supone un ahorro del 50 % en primitivas. Este cambio también
se traduce en una reducción sustancial del uso de memoria (de 3.74 GB a 2.88–2.92 GB) y
en tiempos de entrenamiento que pasan de 12m 50s a tan solo 7m 1s con el optimizador
acelerado.

Ilustración 7.1: Comparativa visual para la escena Bonsai. Se muestran las reconstrucciones
obtenidas con el modelo base y las distintas configuraciones de poda y aceleración. En la
parte inferior se ampĺıan detalles de la zona marcada en rojo.

En cuanto a las métricas, los métodos con poda (50 %) presentan un PSNR ligeramente
inferior al modelo base. Sin embargo, la reducción de gaussianas es muy significativa, pasando
de más de un millón a apenas unas 515.000, lo cual se puede traducir en un menor uso de
memoria y tiempos de entrenamiento mucho más reducidos.

A nivel visual, si se compara el detalle ampliado en la parte inferior de la figura, se observa
que los métodos con poda son capaces de preservar mejor ciertos reflejos y brillos en el hierro
de la bicicleta, aportando un aspecto más limpio y definido en comparación con el método
base, que tiende a difuminar ligeramente estos detalles.
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7.1.2. Escena 2 — Garden

En esta escena se aprecia una ligera ventaja de las técnicas con poda en cuanto a eficiencia
y calidad visual. A nivel numérico, las técnicas de poda por opacidad y aceleración presentan
un menor número de gaussianas (alrededor de 1,8 millones frente a los más de 3,6 millones
del método base), una reducción considerable en el uso de memoria (6,5-6,6 GB frente a 9,43
GB) y un tiempo de entrenamiento notablemente menor, especialmente cuando se utiliza
aceleración (15 minutos frente a 35 minutos del método base).

En cuanto a calidad, las métricas PSNR se mantienen estables respecto al modelo base,
incluso ligeramente superiores para la poda de opacidad.

Desde el punto de vista perceptual, observando la ampliación de la zona metálica del
suelo, se aprecia que el método base introduce unos reflejos o tonos más claros que no están
presentes en la imagen original (GT). Este efecto parece ser una reconstrucción excesivamente
brillante, lo que puede deberse a una mayor cantidad de gaussianas que buscan sobreajustarse
a la zona local. Por el contrario, las técnicas con poda consiguen una apariencia más realista
y ajustada a la referencia, evitando estos comportamiento de reflección.

La Figura 7.2 muestra una comparativa visual completa de la escena Garden, incluyendo
una ampliación de la zona metálica del suelo. En dicha ampliación se aprecian diferencias
relevantes: el modelo base introduce un brillante alrededor del objeto, que no está presente
en la imagen original (GT). Por el contrario, las técnicas con poda eliminan este artefacto,
generando una reconstrucción más realista y fiel a la escena, sin sobreajustes ni reflejos
artificiales.

Ilustración 7.2: Comparativa visual de la escena Garden. Las técnicas con poda evitan arte-
factos brillantes o reflejos añadidos por el modelo base.
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7.1.3. Escena 3 — Kitchen

En la escena Kitchen se observan de nuevo mejoras significativas en cuanto a eficiencia al
aplicar técnicas de poda y aceleración. El número de gaussianas se reduce aproximadamente
a la mitad (de 1,38 millones a 686 mil), disminuyendo el consumo de memoria (de 4,21 GB
a unos 3,1 GB) y el tiempo de entrenamiento (de 16 minutos a tan solo 8 minutos con
aceleración).

En términos de calidad visual, las métricas PSNR se mantienen en niveles similares al
modelo base, aunque en el caso de la poda con opacidad aumenta un poco, lo que indica que
el proceso de poda no afecta de manera significativa a la fidelidad global de la reconstrucción.

Sin embargo, observando la ampliación de la zona seleccionada, se aprecia un compor-
tamiento interesante respecto al patrón de la valla o estructura metálica situada al fondo.
En este caso, los métodos que aplican poda (tanto por opacidad como con poda y acelera-
dor) logran representar de forma más clara y definida el patrón de ĺıneas y la forma de la
estructura.

La Figura 7.3 muestra una comparativa visual entre las distintas configuraciones. En la
ampliación de la zona seleccionada, se aprecia un comportamiento interesante en el patrón
de la valla metálica al fondo: las técnicas con poda (ya sea con o sin aceleración) logran
representar de forma más clara y definida las ĺıneas y formas de dicha estructura.

Ilustración 7.3: Comparativa visual de la escena Kitchen. Las técnicas con poda simplifican
algunas estructuras de alta frecuencia como el patrón de la valla.

Por el contrario, el modelo base presenta mayores dificultades para reproducir este detalle
fino, generando un resultado más difuminado, poco definidos y en alguna ocasión, bastante
ruidoso en dicha región. Esto podŕıa indicar que los mecanismos de poda favorecen una
representación más precisa en las zonas de mayor importancia visual o contraste, evitando el
solapamiento de gaussianas irrelevantes.
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En cualquier caso, este resultado refuerza la idea de que las técnicas de poda no solo
permiten reducir recursos computacionales, sino que en algunos escenarios pueden incluso
potenciar la calidad visual percibida en determinadas estructuras.

7.1.4. Escena 4 — Bicycle

En esta escena se puede apreciar un claro ejemplo de cómo las técnicas de poda y acelera-
ción permiten reducir de forma significativa los recursos computacionales manteniendo una
calidad visual decente.

A nivel de métricas, la poda por opacidad (50 %) muestra los mejores resultados globales
en cuanto a PSNR, número de gaussianas y uso de memoria. Esto confirma que, para esta
escena, la reducción controlada mediante opacidad permite conservar mejor la calidad de la
reconstrucción.

La combinación de poda y acelerador muestra un PSNR ligeramente inferior al método
base, pero mantiene una calidad visual global muy similar, consiguiendo además de esto, un
tiempo de entrenamiento considerablemente menor, lo cual supone una mejora significativa
en eficiencia.

La Figura 7.4 muestra una comparativa visual detallada. En la parte inferior, se observa
que las técnicas de poda son capaces de afinar mejor los detalles pequeños, como las hojas y
ramas en la parte superior de la imagen. A pesar de tener un PSNR algo inferior, los métodos
con poda por opacidad consiguen preservar mejor las texturas finas y los elementos del fondo
respecto al método base, lo que evidencia ciertas limitaciones de las métricas numéricas para
capturar la calidad perceptual.

Ilustración 7.4: Comparativa visual para la escena Bicycle. Se muestran las reconstrucciones
obtenidas con el modelo base y las distintas configuraciones de poda y aceleración. En la
parte inferior se ampĺıan detalles de la zona marcada en rojo.
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Caṕıtulo 8

Conclusiones y trabajo futuro

8.1. Conclusiones

Durante este proyecto se ha llevado a cabo un estudio sobre la optimización del proceso de
densificación dentro de 3DGS[5], comenzando por un análisis paramétrico de los hiperparáme-
tros más relevantes del proyecto base para llegar a una comprensión del funcionamiento de
los mismo y, finalizando con el desarrollo de diferentes mecanismos orientados a controlar y
mejorar el crecimiento de este modelo.

Los principales ojetivos planteados inicialmente se han cumplido satisfactoriamente. Se
ha conseguido controlar de maneara efectiva el número de gaussianas generadas durante
el entrenamiento del modelo mediante la implementación de presupuestos de gaussianas y
mecanismos de poda, reduciendo aśı el tamaño final del modelo sin afectar drásticamente a
la calidad visual de las escenas.

Por otro lado, se han planteado y evaluado distintas estrategias de poda basadas en
propiedades de las propias gaussianas, como la escala o la opacidad, evidenciando que es
posible eliminar un porcentaje elevado de gaussianas sin provocar un descenso significativo
en las métricas de calidad (SSIM, PSNR, LPIPS).

Adicionalemnte, se hizo uso de recursos y mejoras que los propios autores del repositorio
de 3DGS[5] añaden, como puede ser el acelerador del optimizador, permitiendo reducir más
el tiempo de entrenamiento de las escenas, a pesar de que haya que pagar un mı́nimo precio
de calidad.

Este trabajo desarrollado no solo ha permitido alcanzar los objetivos iniciales, sino que
sienta las bases para futuras ĺıneas de investigación orientadas a seguir mejorando la eficiencia
y la escalabilidad de este tipo de representaciones.
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8.2. Trabajo futuro

A partir de los resultados y las metodoloǵıas desarrolladas previamente, se abren diversas
ĺıneas de trabajo futuro que permitiŕıan continuar mejorando el control, la eficiencia y la
calidad de las representaciones generadas en 3DGS[5].

8.2.1. Análisis avanzado del parámetro k en la función de presu-
puesto

El parámetro k actúa como pendiente inicial dentro de la ecuación cuadrática que regula el
crecimiento del número de gaussianas durante el entrenamiento. Un análisis futuro interesante
consistiŕıa en evaluar experimentalmente diferentes valores de k, más allá del valor base
k = 2(B−S)

N
propuesto en este trabajo, con el objetivo de estudiar su influencia sobre la

calidad final, el consumo de recursos y la velocidad de convergencia del modelo.

Además, se podŕıa explorar un mecanismo de ajuste dinámico de k durante el entrena-
miento, haciendo que su valor no sea constante sino que dependa de la complejidad de la
escena, la densidad local de gaussianas o el ritmo de mejora de la función de pérdida.

Una posible mejora podŕıa ser emplear una función k(x), dependiente del paso x, o incluso
definir k en función de la tasa de gradiente medio en las gaussianas:

k(x) = α ·mean (|∇θL|) + β (8.1)

Donde:

– ∇θL representa el gradiente de la función de pérdida respecto a los parámetros del
modelo.

– mean(·) indica que se calcula el promedio de la magnitud de los gradientes de todas las
gaussianas.

– α es un parámetro de escala que regula la sensibilidad del sistema al valor del gradiente.

– β es un término independiente que actúa como crecimiento mı́nimo, incluso cuando los
gradientes son bajos.

La raiz de este pensamiento es que cuánto más alto es el valor de los gradientes más está
aprendiendo el modelo y, por tanto, se debeŕıa permitir un mayor crecimiento del número de
gaussianas. Por el contrario, cuando los gradientes decrecen y tienden a valores bajos, esto
suele indicar que el modelo ha convergido o que las nuevas gaussianas tienen poco impacto
en la pérdida, por lo que conviene frenar el crecimiento y evitar la generación innecesaria de
puntos.
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8.2.2. Presupuesto local adaptativo

Otra ĺınea de mejora podŕıa combinar la propuesta de parches y la propuesta del presu-
puesto, donde el concepto de presupuesto global se mueve a un presupuesto local adaptativo,
donde diferentes regiones de la escena dispongan de un número máximo de gaussianas dife-
rente, en función de su complejidad geométrica o visual.

Por ejemplo, si hay zonas planas, monótonas o de baja variación podŕıan tener un pre-
supuesto más bajo, mientras que regiones con alta curvatura, fuertes gradientes de color o
cambios de tonalidad requeriŕıan un presupuesto superior.

8.2.3. Mecanismos de poda multi-parámetro

El sistema de poda actual está basado en un solo parámetro (escala u opacidad). Un
trabajo futuro interesante podŕıa consistir en definir un score ponderado que combine di-
versos atributos de las gaussianas: escala, opacidad, gradiente acumulado, cercańıa a otras
gaussianas o incluso información de los coeficientes de color.

Este score podŕıa ser de la forma:

Scorei = λ1 · αi + λ2 · Scalei + λ3 ·Gradi + λ4 ·Densityi (8.2)

donde los pesos λi seŕıan hiperparámetros o valores que se puedan aprender.
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