Universidad de eIl:=
Las Palmas de ESCUELA DE
Gran Canaria INGENIERIA INFORMATICA

Trabajo de Fin de Grado

Control y Analisis de la Densificacion
en 3D Gaussian Splatting

TITULACION: Grado en Ingenieria Informéatica
AUTOR: Acaymo Jesis Granado Sanchez

TUTORIZADO POR:
Adrian Penate Sanchez y Jorge Bustos Sanchez

Junio 2025

Agradecimientos

A mi familia, en especial a mi abuela, a mis tios, a mis padres y a mis
hermanos, por ser siempre mi mayor fuente de apoyo, paciencia y
motivacion. Gracias por estar presentes en cada paso, y por ensenarme que
lo verdaderamente importante no es de donde partimos, sino hasta donde
somos capaces de llegar.

A mis tutores, Adridin Penate Sanchez y Jorge Bustos Sanchez, por su guia,
paciencia y dedicacion a lo largo de este trabajo. Gracias por confiar en mis
tdeas, por orientarme cuando mas lo necesitaba y por transmitirme la pasion

por la investigacion.

A la crew de Fortnite, por ser mucho mds que un grupo de amigos. Por
estar siempre, por las risas y por acompanarme en cada partida, dentro y
fuera del juego.

Resumen

El control de densificacion en tecnologias, como es 3D Gaussian Splatting (3DGS), es
fundamental para lograr representaciones visuales precisas y eficientes de escenas que pueden
llegar a ser muy complejas. Este proceso es bastante relevante, sobre todo en entornos de tra-
bajo donde la calidad visual y la eficiencia computacional son criticas, como en simulaciones
cientificas, efectos visuales y videojuegos. Sin embargo, uno de los retos mas significativos en
3DGS es la gestion eficiente de la densidad de los puntos en el espacio, lo cual puede afectar
considerablemente la calidad del renderizado y el rendimiento del sistema.

Este proyecto de TFG aborda este problema mediante la propuesta de un nuevo enfoque
para controlar la densificacion de puntos en un modelo basado en parches utilizando Python.
Este enfoque no solo busca reducir el costo computacional asociado con el procesamiento de
grandes volimenes de datos sino también mantener una calidad suficiente para su correcta
manejabilidad.

A través de este trabajo, se propone modificar el entrenamiento de 3DGS para que sea
basado en parches, ademas de la adiciéon de técnicas que modifican la densidad de los puntos
en funcién de criterios como la cantidad de gaussianas de la escena u otras propiedades de
estas, como pueden ser su posiciéon o su opacidad.

Una vez implementado el modelo, se disenara una serie de experimentos para evaluar y
comparar el rendimiento de la modificacién propuesta frente al 3D Gaussian Splatting con-
vencional. La comparativa se centrarda en medidas cuantitativas como LPIPS, SSIM, PSNR,
el nimero de gaussianas utilizadas y el tiempo de ejecucion.

Este TFG juega un papel muy importante en diversos campos en donde la capacidad para
generar imagenes de alta calidad de manera réapida y eficiente no solo optimiza los flujos de
trabajo, sino que también eleva el nivel de la experiencia visual ofrecida a los usuarios finales.

Abstract

The control of densification in technologies such as 3D Gaussian Splatting (3DGS) is
fundamental for achieving precise and efficient visual representations of scenes that can be
highly complex. This process is especially relevant in work environments where visual quality
and computational efficiency are critical, such as in scientific simulations, visual effects, and
video games. However, one of the most significant challenges in 3DGS is the efficient mana-
gement of point density in space, which can considerably affect rendering quality and system
performance.

This final year project addresses this problem by proposing a new approach to control
point densification in a patch-based model using Python. This approach not only aims to
reduce the computational cost associated with processing large volumes of data but also to
maintain sufficient quality for proper manageability.

Through this work, it is proposed to modify the training of 3DGS to be patch-based, in
addition to incorporating techniques that adjust the density of the points based on criteria
such as the number of gaussians in the scene or other properties of these, such as their position
or opacity.

Once the model is implemented, a series of experiments will be designed to evaluate and
compare the performance of the proposed modification against conventional 3D Gaussian
Splatting. The comparison will focus on quantitative measures such as LPIPS, SSIM, PSNR,
the number of gaussians used, and execution time.

This final year project plays a very important role in various fields where the ability to
generate high-quality images quickly and efficiently not only optimizes workflows but also
enhances the visual experience offered to end users.

indice general

T icaidnl

8

[I.1. Contexto y Relevancia| 8
[1.2. 3D Gaussian Splatting (3DGS)| 8
[L3. TLimitaciones de 3DGS| 8
[1.4. Objetivos| 9
[1.5. Organizacion del documento| 9
[2. Planificacion del trabajo| 10
[2.1. Metodologia seguidal 10
[2.2. Planificacion Temporal| o000 11
[2.3. Tecnologias usadas| 12
[3. Estado actual y objetivos iniciales| 13
[B.1. Introduccionl. 13
[3.2. Representacion de Modelos 3D: De NeRF a 3DGS|. 14
[3.2.1. Modelos Explicitos e Implicitos| 14

[3.3. Fundamentos de Aprendizaje Automatico y Redes Neuronales| 15
[3.3.1. Redes Neuronalesl 15
[3.3.2. Perceptron|. 15
[3.3.3. Aprendizaje Automatico|o 16
[3.3.4. Aplicacion del Aprendizaje Automatico en la Representacion de Mo- [

[delos SDI 17
[3.3.5. Neural Radiance Fields y sus limitaciones] 18

[3.4. 3D Gaussian Splatting (3DGS)| 19
[3.4.1. Principios de Funcionamiento| 19
[3.4.2. COLMAP vy la Inicializacion de Gaussianas|. 20
[3.4.3. Structure-from-Motion (SfM) en la Reconstruccion 3D 21
(3.4.4. Problema de la Densificacion en 3DGS| 00000 21

[3.5. Metodos para Controlar la Densificacion en 3DGS| 22
[3.5.1. Taming 3DGS: Control del Crecimiento de Gaussianas| 22
[3.5.2. Compact 3DGS: Reduccion del Tamano del Modelo| 23
[3.5.3. 3D Gaussian Splatting as Markov Chain Monte Carlo (MCMC)| . . . 24
[3.5.4. Group Training: Acelerando y Mejorando 3DGS| 26

[3.6. Objetivos del Trabajo|. 27

[4. Aportaciones del trabajol 28

[4.1. Principales aportaciones| Lo 28
[4.2. Alineamiento con los objetivos de desarrollo sostenible] 29
[4.3. Competencias especificas| L 30
5. Desarrollal 32
bI__Entrenamiento 3DGS 32
[b.I1.1. Resultados sin densificacionlo 34
[b.1.2. Resultados con densificacion habilitadal 36

[>.2. Estudio paramétrico del método de densificacion en 3DGS| 38
[5.2.1. Diseno experimental L. 39
[5.2.2. Analisis exploratorio de métricas y parametros| 40
[5.2.3. Seleccion de mejores combinaciones por escenaf 42
[5.2.4. Conclusiones del analisis paramétrico 43

[>.3. Hipotesis 1: Entrenamiento en 3DGS basado en parches| 44
[H.3.1. Introduccionl 44
[5.3.2. Uso de los parches en campos mas especificos| 44
[5.3.3. Aplicacion en 3D Gaussian Splattingl 44
[5.3.4. Implementacion técnical. 45
(.35, Resultados. 47

[>.4. Hipotesis 2: Diferentes mecanismos de densificacion| 50
Hh.41. Introduccionl.o 50
[5.4.2. Ecuacion para limitar el crecimiento de las gaussianas|. 50
[5.4.3. Influencia del parametro k sobre la curva de crecimiento| 52
[5.4.4. Simulacion del comportamiento de la tuncion|. 53
[5.4.5. Integracion de la ecuacion en el codigo de 3DGS| 54

[5.5. Parametrizacion del valor maximo de gaussianas| 55
[5.6. Control del crecimiento: experimentacion con presupuesto fijo, 56
[>.7. Planteamiento de la poda] 0L 58
[5.8. Implementacion de un mecanismo de poda basado en escala] 59
[5.9. Implementacion de un mecanismo de poda basado en opacidad|. 60
6. Resultados Parciales| 62
[6.1. Resultados con distintos presupuestos de gaussianas para poda basada en escalal 62
[6.1.1. Presupuesto del 100%| 62
[6.1.2. Presupuesto del 7T5%[. 63
[6.1.3. Presupuesto del 50% 64
6.1.4. Conclusiones 64

[6.2. Resultados con distintos presupuestos de gaussianas para poda basada en opa- [
[adadl 65
[6.2.1. Presupuesto del 100%| 65
[6.2.2. Presupuesto del 75%| 65
[6.2.3. Presupuestodel 50%| 66
6.2.4. Conclusiones 66

[6.3. Resultados con optimizador acelerado y poda basada en opacidad| 67

[6.3.1. Resultados con presupuesto del 100 % y optimizador acelerado|

[6.3.2. Resultados con presupuesto del 75 % y

optimizador acelerado|.

[6.3.3. Resultados con presupuesto del 50 % vy

optimizador acelerado|.

[6.4. Resultados generales|

(7. _Resultados]

[7.0.1. Resultados cuantitativos y comparativa de estrategias|

[r.1. Analisis cualitativo de las reconstrucciones .

[8. Conclusiones y trabajo futuro|

8.1. Conclusiones.
[8.2. Trabajo tuturo|.

[8.2.1. Analisis avanzado del parametro k en la funcion de presupuesto| . . .

[8.2.2. Presupuesto local adaptativo|.
[8.2.3. Mecanismos de poda multi-parametrol

67

68
69

71
71
72
73
74
75
76

77
77
78
78
79
79

indice de Algoritmos

[I. Actualizacion de una gaussiana con SGLD)| .

[2. Actualizacién de la posicion (media) con SGLD|

[3. Actualizacion de opacidad y escala sin ruido|

indice de figuras

(3.1. Esquema general de una red neuronal multicapa (MLP), donde se observa la |
[estructura de capas de entrada, ocultas y desalidal. 15
[3.2. Representacion de una neurona artificial, destacando la combinacion de en- |
| tradas ponderadas y la aplicacion de la funcion de activacion para generar la [
[salidal 16
[3.3. Proceso de aprendizaje automatico, donde un modelo aprende a partir de datos [
| de entrada y es capaz de realizar predicciones o clasificaciones.| 17
[3.4. Aplicacion del aprendizaje automatico en la representacion de modelos 3D, des-

tacando las diferencias entre los enfoques basados en redes neuronales (NeRF) |

y representaciones explicitas (3DGS)

17

[3.5. Funcionamiento interno de NeRF, donde se proyectan rayos a través de la

escena y se evalua una red neuronal en cada punto para obtener color y densidad.| 18

[3.6. Nube de puntos generada con COLMAP a partir de un conjunto de imagenes. |
| Imagen adaptada de [IT] 20
[3.7. Relacion entre el nimero de gaussianas generadas y el consumo de memoria [
[VRAM durante el entrenamiento de 3DGSJ.o 22
[3.8. Esquema del proceso de reduccion de gaussianas y compresion de atributos [
| propuesto en Compact 3DGS.|o 24
[3.9. Representacion de un paisaje de funcion de pérdida en un problema de opti- |
| mizacién. Imagen adaptada de [2[]. o o 0oL 24
3.10. Esquema del método Group Training aplicado a 3DGS. Las gaussianas se [
| dividen en un grupo activo, que participa en la densificacion y optimizacion, [
[v un grupo en caché, que se excluye temporalmente para reducir el coste |
| computacional.| oo 27
[5.1. Esquema general del proceso de entrenamiento en 3D Gaussian Splatting] . . 34
[h.2. Reconstrucciones sin densificacion)o L. 35
(0.3. Reconstrucciones con densificacion activadal 37
[b.4. Distribucion de las métricas SSIM, PSNR y LPIPS[3] para todas las combina- |
[donesevaluadas] 41
[5.5. Distribucion de las métricas SSIM, PSNR y LPIPS para cada escena. 41
[5.6. Ejemplo de division de una imagen en diferentes configuraciones de parches.| 45
[b.7. Codigo del utils| 46

[5.8. Comparativa entre una imagen renderizada completa (izquierda) y el parche |

| seleccionado para calcular la pérdida (derecha)| 46
[(.9. TFTujo de trabajo del sistema de entrenamiento por parches en 3D Gaussian [
| Splatting.| 47
[5.10. Parametro que indicar el numero de parches 47

[5.11. Hipotesis 2 — Densificacion innecesaria: gaussianas fuera del parche visible |
[acumulan estadisticas de densificacion a pesar de no haber recibido gradiente |

| significativo.l L 49
[5.12. Hipotesis 3 — Superposicion entre parches: las gaussianas grandes pueden [
| abarcar varios parches, contribuyendo a la redundancia en el entrenamiento.| 49
[5.13. Evolucion del nimero maximo de gaussianas permitidas en funcion del paso |
[de entrenamiento para distintos valoresde k.. 52
[>.14. Comparativa entre diferentes curvas de crecimiento del niimero maximo de [
| gaussianas para distintos presupuestos y duraciones de entrenamiento.|. . . . 53
[5.15. Funcion calculate_gaussian_budget() implementando la ecuacion de crecimien- |
[to progresivo de gaussianas.| e 54
[5.16. Fragmento de codigo donde se calcula el paso actual e invoca la tuncion den- |
| sify_and_prune() con el valor de presupuesto. 55

[6.17. Tmplementacién del presupuesto de gaussianas dentro de la funcién densify_and_prune()| 55
[5.18. Representacion teorica del crecimiento del nimero de gaussianas sin control [
[de presupuesto. El area sombreada en rojo representa el exceso de gaussianas |

| acumuladas que deberian ser podadas.| 0L 57
[>.19. Codigo Poda basada en escalal 59
[5.20. Ejemplo ilustrativo del mecanismo de poda basado en escala. Las gaussianas [

| con menor escala (en azul) son eliminadas para cumplir el presupuesto| . . . 60
[5.21. Codigo Poda basada en opacidad| 60
[5.22. Ejemplo ilustrativo del mecanismo de poda basado en opacidad. Las gaussianas |

| con menor opacidad son eliminadas para mantener el presupuesto. 61

[7.1. Comparativa visual para la escena Bonsai. Se muestran las reconstrucciones |
[obtenidas con el modelo base y las distintas configuraciones de poda v acele- |

| racion. En la parte inferior se amplian detalles de la zona marcada en rojo.| . 73
[7.2. Comparativa visual de la escena Garden. Las técnicas con poda evitan arte- [
| factos brillantes o reflejos anadidos por el modelo base.| 74
[7.3. Comparativa visual de la escena Kitchen. Las técnicas con poda simplifican |
[algunas estructuras de alta frecuencia como el patron de la valla.|. 75

[7.4. Comparativa visual para la escena Bicycle. Se muestran las reconstrucciones [
| obtenidas con el modelo base y las distintas configuraciones de poda y acele- [
| racion. En la parte inferior se amplian detalles de la zona marcada en rojo.| . 76

Indice de cuadros

[2.1. Planificacion temporal del proyectol 11
[3.1. Comparacion visual de Gaussianas con distintas modificaciones.| 20
[4.1. Grado de relacion del TFG con los Objetivos de Desarrollo Sostenible.|. . . . 29
6.1, Resultados sin densificacion]o 34
[b.2. Resultados con la densificacion activadal 36
[5.3. Parametros evaluados durante los experimentos y valores considerados.| . . . 39
[5.4. Combinaciones de parametros evaluadas| 40
[5.5. Mejores combinaciones por escena segun promedio de calidad visual|. 42
[5.6. Mejores combinaciones por escena considerando unicamente N =2.| 43
[5.7. Promedios globales obtenidos en funcion del namero de parches usados durante [

el entrenamiento. Lo 48
[5.8. Presupuesto maximo de gaussianas por escena, basado en los valores generados [

por 3DGS base.| 56
[5.9. Resultados tras aplicar unicamente la ecuacion cuadratica para controlar el |

crecimiento, sin mecanismos adicionales de poda.| 57
[6.1. Resultados con poda por escala al 100 % del presupuesto 63
[6.2. Resultados con poda por escala al 75 % del presupuesto] 63
[6.3. Resultados con poda por escala al 50 % del presupuesto.| 64
[6.4. Resultados tras aplicar la poda con un presupuesto del 100%.| 65
[6.5. Resultados tras aplicar la poda con un presupuesto del 75%.| 66
[6.6. Resultados tras aplicar la poda con un presupuesto del 50%.| 66
[6.7. Resultados con optimizador acelerado v poda por opacidad al 100 % | 67
[6.8. Resultados con optimizador acelerado y poda por opacidad al 75%.| 68
[6.9. Resultados con optimizador acelerado y poda por opacidad al 50%.| 69
[6.10. Resultados con poda basada en escala para diferentes presupuestos de gaussianas.| 69
[6.11. Resultados con poda basada en opacidad para diferentes presupuestos de gaus- |

STaNas) 70
[6.12. Resultados con optimizador acelerado y poda basada en opacidad para dife- [

rentes presupuestos de gaussianas.|. L 70
[7.1. Resumen de resultados con distintas configuraciones del pipeline 3DGS.| . . . 72

Capitulo 1

Introduccion

1.1. Contexto y Relevancia

Actualmente, la generacion de escenas 3D ha experimentado un crecimiento significativo,
respaldado por la alta demanda de industrias como el cine, el marketing y los videojuegos.
Segun un informe de The Brainy Insights, el mercado global de 3D Rendering fue valorado
en 3.11 mil millones de USD en 2022 y se espera que alcance los 34.57 mil millones de USD
para 2032, con una tasa de crecimiento anual compuesta del 27.67 % entre 2023 y 2032,
demostrando el auge de las escenas 3D en los distintos dmbitos del desarrollo de escenas a
nivel mundial [4].

1.2. 3D Gaussian Splatting (3DGS)

Dentro de este panorama, el modelo 3D Gaussian Splatting (3DGS)[5] destaca por su
capacidad para reconstruir escenas 3D a partir de un conjunto de imégenes [5] . Mediante el
uso de gaussianas para representar la informacion espacial, este método utiliza representa-
ciones tridimensionales que se componen de tres distribuciones gaussianas en los ejes X, Y y
7. Estas gaussianas son controladas mediante parametros como la varianza y la covarianza,
que determinan su forma, y las medias, que definen sus posiciones en el espacio. Este control
parametrizado permite generar nuevas imagenes desde angulos no capturados origpinalmente.

1.3. Limitaciones de 3DGS

A pesar de las innovaciones que ofrece 3DGS[5], este modelo presenta importantes lagunas.
La etapa de densificacién, encargada de detallar las representaciones, implica un alto consumo
de almacenamiento, memoria de la tarjeta grafica y tiempo de entrenamiento, en parte debido
a que se fundamenta en dos operaciones principales: la clonacién de gaussianas, que se utiliza

para rellenar espacios vacios y afinar el detalle de la escena, y la divisién de gaussianas de
gran tamafo, que permite un refinamiento adicional. Este hecho supone una limitacién en
equipos convencionales, restringiendo asi su accesibilidad de manera masiva.

1.4. Objetivos

Ante este panorama, se hace necesario implementar una metodologia que optimice o
controle el proceso de densificacion. El objetivo principal es reducir el consumo de recursos
(almacenamiento, memoria y tiempo de entrenamiento) sin comprometer la calidad de las
escenas generadas. Esto no solo facilitara el acceso a la tecnologia 3DGS[5] a un piblico més
amplio, sino que también permitira mejorar la eficiencia de sistemas en ambitos tan exigentes
como el cine, el marketing y el desarrollo de videojuegos.

1.5. Organizaciéon del documento

El resto del documento se estructura de la siguiente manera: en el Capitulo 2 se detalla
la planificaciéon del proyecto, incluyendo las fases de desarrollo y los recursos necesarios.
El Capitulo 3 analiza el estado actual del tema y establece los objetivos iniciales de la
investigacion. En el Capitulo 4 se exponen las aportaciones y novedades que se derivan del
trabajo, asi como las competencias superadas a lo largo del proyecto. El Capitulo 5 se dedica
al desarrollo, describiendo la metodologia, las técnicas y el proceso de implementacion de la
propuesta. Posteriormente, en el Capitulo 6 se presentan los resultados parciales obtenidos
durante el desarrollo. El Capitulo 7 recoge los resultados finales alcanzados. Finalmente, en
el Capitulo 8 se ofrecen las conclusiones finales y se plantean las lineas de trabajo futuro.

Capitulo 2

Planificacién del trabajo

2.1. Metodologia seguida

Para el desarrollo de este TFG se ha adoptado una metodologia iterativa incremental,
elegida por su enfoque modular y su capacidad para realizar mejoras continuas. Esta meto-
dologia permite desarrollar y refinar el proyecto en fases consecutivas, donde cada etapa se
basa en los resultados de la anterior, facilitando la incorporacién progresiva de mejoras en el

modelo de 3DGS[5].

En cada iteracions se lleva a cabo una serie de tareas que abarcan desde el estudio de
posibles funcionalidades hasta el analisis de resultados obtenidos a partir de la implementa-
cién de estas. En primera instancia, se experimentarda con 3DGS[5] para un dataset con el
objetivo de establecer un caso base que servira para posteriores comparaciones y validaciones.
A partir de esta fase se implementaran mejoras incrementales, probando distintos métodos y
ajustando parametros.

Ademas, cada iteracion incluird la evaluacién de los resultados obtenidos, lo que permitira
identificar puntos de mejora y ajustar los pardmetros necesarios para optimizar tanto el
rendimiento como la calidad visual del modelo. De esta forma, el proyecto evoluciona de
manera progresiva y segura.

10

2.2.

Planificacién Temporal

Cuadro 2.1: Planificacién temporal del proyecto

Fases

Duracion
Estimada
(horas)

Tareas

Estudio Preliminar
/ Anélisis

40 horas

Tarea 1.1: Revision bibliografica de
métodos existentes en 3D Gaussian
Splatting y técnicas de control de
densificacion.

Tarea 1.2: Analisis de herramientas y
bibliotecas disponibles en Python[6] y
PyTorch[7] que podrian utilizarse en
el proyecto.

Diseno /
Desarrollo /
Implementacion

180 horas

Tarea 2.1: Implementaciéon de logica
basada en parches para la fase de
entrenamiento de 3DGS[5].

Tarea 2.2: Medicién de la calidad de
los resultados con distintos ntimeros
de parches usando la logica
implementada en la tarea 2.1.

Tarea 2.3: Implementacion de un
nuevo control de densificacién basado
en caracteristicas clave de las
gaussianas.

Tarea 2.4: Renderizado de las escenas
con las modificaciones realizadas.

Evaluaciéon /
Validacién /
Prueba

40 horas

Tarea 3.1: Evaluacion de resultados.

Documentacién /
Presentacion

40 horas

Tarea 4.1: Redaccion de la memoria
del Trabajo de Fin de Grado.

Tarea 4.2: Preparacion de la
presentacion del TFG.

Tarea 4.3: Realizacion de ensayos
para la presentacion final.

11

2.3. Tecnologias usadas

Para el desarrollo de este TFG se han empleado diversas herramientas y tecnologias que
facilitan la implementacién y evaluacién. Entre las principales se destacan:

« Lenguaje de programacién Python: Python [6] es un lenguaje de programacién
de alto nivel, interpretado y de cédigo abierto, el cual destaca por su sintaxis clara y
su facilidad de aprendizaje. La eleccion de Python[6] para este proyecto se basa en la
disponibilidad de un abanico de bibliotecas especializadas en procesamiento numérico,
redes neuronales y visualizacion 3D, lo que facilita la implementacion y experimentacion
de métodos, asi como el desarrollo de pruebas para la interpretacion de resultados.

« Bibliotecas numéricas y de procesamiento: Se utiliza PyTorch [7] para gestionar
las operaciones matematicas y el procesamiento de datos necesarios en la manipula-
cién de gaussianas, aprovechando su estructura de tensores y su capacidad de realizar
calculos de forma optimizada en GPUs.

« Herramientas de visualizacién y andlisis de resultados: Se utiliza matplotlib [§]
para la generacion de graficos y la realizacion de pruebas en el analisis de resultados,
TensorBoard [J] para la observacién en tiempo real de la evolucién del entrenamiento,
y GeoGebra [I0] para plantear y visualizar implementaciones mateméticas.

» Gestién de entornos: Docker [I1] se emplea para la gestion de repositorios, evitando
asi las incompatibilidades de versiones e incorrecta organizacion de direcotorios.

« Herramienta de gestién de proyectos: Jira [I2] se ha empleado para gestionar y
hacer seguimiento del progreso del proyecto. Esta herramienta de gestién de tareas per-
mite organizar el trabajo, asignar tareas especificas, y monitorizar el avance mediante
un tablero visual.

12

Capitulo 3

Estado actual y objetivos iniciales

3.1. Introduccion

Durante los tltimos anos, el renderizado y representacion de las escenas 3D han sufrido un
gran avance, gracias al desarrollo constante de modelos basados en aprendizaje automaético.
Entre estos avances destaca Neural Radiance Fields (NeRF) [13], un método que permite
generar representaciones fotorrealistas a partir de un conjunto de imégenes 2D. Sin embargo,
NeRF[I3] presenta un alto coste computacional, ya que requiere evaluar una red neuronal en
cada punto del espacio, lo que lo hace poco eficiente para aplicaciones en tiempo real.

Por ello, ha surgido 3D Gaussian Splatting (3DGS)[5], un enfoque alternativo que ofrece
una representacion mas eficiente al modelar la escena mediante nubes de puntos gaussianos
en vez de depender de redes neuronales profundas. Este método ha demostrado una mayor
velocidad y adaptabilidad que NeRF[13], Sin embargo, su proceso de densificacién introduce
un crecimiento incontrolado en el ntimero de gaussianas, lo que incrementa significativamente
el consumo de memoria y almacenamiento

A lo largo del desarrollo de este trabajo se han estudiado en profundidad multiples méto-
dos que se encuentran relacionados con la representacion de escenas 3D, los cuales han sido
clave para entender un poco mas en profundidad las limitaciones de los enfoques actuales
y orientar las soluciones propuestas. Entre ellos destacan Instant-NGP [14], que introdu-
ce técnicas de compresién y codificacion para acelerar NeRF; Mip-NeRF [15], que emplea
mip-mapping para mejorar el anti-aliasing; y Mip-NeRF 360 [16], una extensién que permite
representar escenas panoramicas completas.

13

3.2. Representacion de Modelos 3D: De NeRF a 3DGS

La representacion de escenas en 3D ha evolucionado a lo largo del tiempo, adoptando
diferentes enfoques para almacenar y procesar la informacién geométrica y visual. Estos en-
foques pueden clasificarse en dos grandes categorias: representaciones explicitas e implicitas,
dependiendo de cémo se organizan y manipulan los datos de la escena.

3.2.1. Modelos Explicitos e Implicitos

Existen dos enfoques principales para la representaciéon de modelos 3D:

1. Representaciones Explicitas: Las representaciones explicitas almacenan directamen-
te la geometria y apariencia de la escena en estructuras discretas, lo que permite un
acceso inmediato a la informacién sin necesidad de evaluar funciones matematicas o
redes neuronales durante el proceso de renderizado.

Algunos ejemplos son:
« Mallas poligonales: utilizadas en graficos 3D tradicionales.

e Voéxeles: empleados principalmente en simulaciones volumétricas y motores de
fisica.

e Nubes de puntos: formadas por un conjunto de puntos con informacién sobre
su posicién y, en algunos casos, su color u otras propiedades.

Estos métodos presentan ventajas significativas, como un renderizado mas rapido, ya
que no dependen de redes neuronales complejas, y un menor consumo de almacena-
miento en comparacién con enfoques implicitos volumétricos. Sin embargo, también
tienen desventajas, como la aparicién de artefactos visuales en caso de baja resolucion.

2. Representaciones Implicitas: A diferencia de las representaciones explicitas, los mo-
delos implicitos no almacenan directamente la geometria de una escena, sino que definen
una funcién matematica o neuronal encargada de describirla. Es decir, en lugar de con-
tar con una nube de puntos predefinida, por ejemplo, la escena se genera evaluando
una funcién en cada consulta para determinar su apariencia.

Un ejemplo de este enfoque es NeRF[I3], que utiliza una red neuronal para definir la
densidad y el color de cada punto de la escena a partir de un conjunto de coordenadas
espaciales.

Entre sus ventajas destaca la capacidad de representar detalles finos sin necesidad de
utilizar estructuras discretas complejas. Sin embargo, este método conlleva un alto costo
computacional, debido a la frecuencia de llamadas para evaluaciones.

14

3.3. Fundamentos de Aprendizaje Automatico y Redes
Neuronales

3.3.1. Redes Neuronales

Una red neuronal escencialmente es un conjunto de modelos matematicos inspirado en la
estructura y funcionamiento del cerebro humano. Esta nueva estructura esta compuesta por
las conocidas neuronas artificiales, las cuales se encuentran organizadas en capas, encargadas
de procesar la informaciéon mediante funciones de activacion y la propagacion de errores.

En el aprendizaje automatico, las redes neuronales se usan para modelar tipos de rela-

ciones complejas, permitiendo aprender patrones y haciendo tareas laboriosas, tales como la
clasificacién o generacion.

En el caso de NeRF[I3], se hace uso de una red nauronal multicapa (MLP)[17], capaz de
aprender a representar una escena 3D a partir de imagenes 2D, codificando la densidad y el
color en un escpacio de 3 coordenadas.

La Ilustracion muestra la arquitectura tipica de una red neuronal MLP, donde se
distinguen las capas de entrada (en verde), las capas ocultas (en amarillo) y la capa de
salida (en rojo). Este tipo de estructura es la base para muchos de los modelos empleados en
reconstruccién 3D mediante aprendizaje automatico.

., \i f‘:
.

k':" Vol \'w:‘l‘g \':1'4‘:‘:{ Y

PA% \ j‘ \"" o j‘ \"'l A / <7 W ,‘*

L . R . 20 . L

PR O

PR PR A
) N) AN @ LN)

[ustracién 3.1: Esquema general de una red neuronal multicapa (MLP), donde se observa la
estructura de capas de entrada, ocultas y de salida

3.3.2. Perceptréon

Una neurona(perceptron) es conocida como la unidad bésica o elemental de la red neu-
ronal y, cuya funcién principal es recibir un conjunto de entradas (x1, x2, x3...), que pueden
representar caracteristicas, pixeles o incluseo coordenadas. A las esntradas se las asigna un

15

peso (wl, w2, w2...) que indican que tan relevante o importante es cada una de las entra-
das en el célculo final. La neurona combina estas entradas ponderadas mediante operaciones
matematicas para posteriormente aplicar una funciéon de activacion que permite generar una
salida. La salida se expande a otras neuronas de capas posteriores permitiendo asi el apren-
dizaje y la toma inteligente de decisiones.

La Ilustracion muestra el esquema interno de una neurona artificial, destacando el
proceso de combinacién de entradas y la aplicacion de la funcién de activacion para producir
una salida.

Xy ©2 Z=Zwixi+b f(2) 0
i

w>
%3

[lustracion 3.2: Representacién de una neurona artificial, destacando la combinacion de en-
tradas ponderadas y la aplicacion de la funcién de activacion para generar la salida.

3.3.3. Aprendizaje Automatico

El aprendizaje automatico, conocido como Machine Learning en inglés, es una rama de
la inteligencia artificial que permite a los sistemas aprender patrones y tomar decisiones a
partir de datos de entrada, sin necesidad de estar programados explicitamente para una tarea
especifica.

Este proceso se compone de dos etapas fundamentales: el entrenamiento y la inferencia.
Durante el entrenamiento, el modelo analiza un conjunto de datos etiquetado para aprender
la relacion entre entradas y salidas esperadas. Posteriormente, en la fase de inferencia, el
modelo ya entrenado es capaz de recibir nuevos datos y realizar predicciones o clasificaciones
basadas en lo aprendido.

La Ilustracién muestra de manera esquematica este proceso. Se parte de un conjunto
de datos de entrenamiento, sobre el cual se entrena el modelo de Machine Learning. Una
vez entrenado, este modelo puede recibir nuevas entradas y producir salidas o predicciones
correspondientes.

16

Inferencia
Conjunto de datos (Entrenamiento) Modelo de ML Nueva entrada Predicci6n / salida
de entrenamiento

[lustracién 3.3: Proceso de aprendizaje automético, donde un modelo aprende a partir de
datos de entrada y es capaz de realizar predicciones o clasificaciones.

3.3.4. Aplicacion del Aprendizaje Automatico en la Representa-
cion de Modelos 3D

Dentro de los modelos 3D, el aprendizaje automatico ha cambiado la forma en que se ge-
neran, procesan y optimizan estos, permitiendo asi avances contundentes en la reconstruccion
de escenas 3D.

Uno de los avances mas destacados ha sido la reconstruccion y renderizado de escenas 3D
a partir de imégenes en dos dimensiones. Dentro de eso se encuentran modelos tales como
NeRF[I3] que utiliza redes neuronales profundas para aprender una representacién implicita
del volumen de la escena. Por otro lado, existe 3DGS[5], modelo capaz de representar escenas
mediante una nube de gaussianas, siendo asi méas eficiente al no necesitar una red neuronal.

La Tlustracion 3.4 compara de forma visual ambos enfoques. Mientras NeRF transforma
las imagenes 2D en una escena 3D mediante una red neuronal, 3DGS lo hace directamente a
través de gaussianas distribuidas en el espacio, simplificando el proceso de reconstruccion.

Escena 3D render

o)
@
o
P4
)
c
=
o
=]
o
o S

\ (Implicita)
\\ ,
am—--- BDGS - — m o o e e N

’ ~
/ \
! 1
! 1
, 0®,°® i
| ® o ® !
1 ® [) ,
1 [] 1
] ® H
: ‘ e®e !
. L ,
. 1
| Imagenes 2D Nube de Gaussianas Escena 3D render .
!

\ (Explicita)

[ustracién 3.4: Aplicacion del aprendizaje automéatico en la representaciéon de modelos 3D,
destacando las diferencias entre los enfoques basados en redes neuronales (NeRF) y repre-
sentaciones explicitas (3DGS).

17

3.3.5. Neural Radiance Fields y sus limitaciones

A lo largo de los anos, NeRF[13] se ha consolidado como una de las técnicas més des-
tacadas para la construccién y renderizado de escenas 3D. Este modelo fue introducido en
"NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”, logrando re-
construcciones detalladas y fotorrealistas a partir de imégenes 2D.

El funcionamiento de NeRF[13] se basa en una red neuronal multicapa (MLP)[17] que
aprende una funcion capaz de mapear coordenadas espaciales y direcciones de vision de las
camaras a valores de color y densidad volumétrica. Este proceso se desarrolla en los siguientes
pasos:

1. Se toma una coordenada en el espacio tridimensional (z,y, z) junto con una direccién
de visién de la cdmara (6, ¢).

2. Las coordenadas espaciales se transforman mediante positional encoding para mejorar
la capacidad de representaciéon de la red.

3. Se evaltia una MLP[I7] que predice dos valores clave: la densidad del punto en el espacio
y su color RGB.

4. Finalmente, se aplica un proceso de integracién volumétrica en el que se lanzan rayos
desde la caAmara a través de la escena. A lo largo de su trayectoria, estos rayos acumulan
los valores de color y densidad de los puntos que intersectan, lo que permite reconstruir
la imagen final.

La Ilustracién [3.5] representa visualmente este flujo de datos. A partir de una entrada
5D que combina posicion y direccién, el modelo neuronal predice color y densidad para
cada punto consultado. Estas predicciones se utilizan para sintetizar imégenes a través de la
simulacion de rayos proyectados en la escena.

Entrada 5D
Posicién + Direccidn

Salida
Color + Densidad

(x.y.2,8,¢) — —(RGBa)

Ilustracion 3.5: Funcionamiento interno de NeRF, donde se proyectan rayos a través de la
escena y se evaliia una red neuronal en cada punto para obtener color y densidad.

A pesar de sus ventajas, NeRF[13] presenta varias limitaciones importantes:

18

o Altos tiempos de entrenamiento: El modelo requiere un entrenamiento prolongado
para lograr reconstrucciones de calidad.

« Renderizado lento: La inferencia en NeRF[13] es computacionalmente costosa, lo que
dificulta su uso en aplicaciones en tiempo real.

« Dependencia de poses de cAmara precisas: La calidad de la reconstrucciéon de-
pende en gran medida de la exactitud en la calibracion de las vistas de entrada.

3.4. 3D Gaussian Splatting (3DGS)

3.4.1. Principios de Funcionamiento

3D Gaussian Splatting (3DGS)[5] fue presentado como una opcién méas innovadora para
representar y renderizar escenas 3D, siendo esta una alternativa mas eficiente que los enfoques
basados en redes neuronales, como NeRF[13]. En vez de usar una funcién implicita, 3DGS[5]
usa una nube de puntos gaussianos, permitiendo asi una representacion explicita y bastante
eficiente para el renderizado en tiempo real.

Cada gaussiana en la representacion 3D en 3DGS[5] esté definida por varios pardmetros:

o Un vector tridimensional (x, y, z) que determina la ubicacién del punto en el espacion.
Estos valores vienen dado por las las medias de las tres distribuciones gaussianas.

« Un color (r,g,b) y una opacidad « que controlan la apariencia visual del punto gaus-
siano.

« Una covarianza y una orientacién que controlan la forma y la dispercion de la gaussiana
en el espacio, permitiendo asi que la gaussiana se pueda ajustar a la geometria de la
propia escena.

Al contrario de los modelos que se basan en mallas o voxeles, cada punto gaussiano se
proyecta sobre la imagen de salida, evitando asi las reconstrucciones intermedias. Permitiendo
de esta manera un renderizado mas eficiente en GPUs, sin necesidad de evaluar funciones
neuronales para cada pixel.

El Cuadro[3.1]se muestra una comparacién visual de gaussianas 2D modificadas, reflejando
coémo varian sus formas en funcion de los parametros de escala, varianza y covarianza.

19

Distribucin Gaussiana 20 Distribucién Gaussiana 20

[e] X weda

Distribucion Gaussiana 20

Distribucion Gaussiana 20

Cuadro 3.1: Comparacién visual de Gaussianas con distintas modificaciones.

3.4.2. COLMAP y la Inicializacion de Gaussianas

COLMAP[I] es una herramienta usada en 3DGS[5], ya que permite generar una nube de
puntos mediante Structure from Motion. Esta nube de puntos facilitaran las posiciones para
las gaussianas iniciales del modelo.

La Iustracion|3.6[se muestra un ejemplo tipico de nube de puntos generada con COLMAP.
En ella se pueden observar los puntos reconstruidos (aquellso que se muestran en tonos grises)
y las posiciones de las cdmaras estimadas (en rojo)

[ustracion 3.6: Nube de puntos generada con COLMAP a partir de un conjunto de imégenes.
Imagen adaptada de [1].

20

3.4.3. Structure-from-Motion (SfM) en la Reconstruccién 3D

Sfm[I8] es una técnica de visién por computador que permite la reconstruccion de escenas
3D a partir de multiples imagenes que hayan sido tomadas desde distintos angulos. Estima
la posicion de la caAmara y la estructura tridimensional de la escena a partir de la deteccion
y emparejamiento de puntos en las imagnees.

3.4.4. Problema de la Densificacion en 3DGS

Uno de los principales problemas que presenta 3DGS[5] es el crecimiento incontrolado
del ntimero de gaussianas durante la etapa de densificacion. Este hecho impacta negativa-
mente a la eficiencia computacional y de almacenamiento del modelo, dificultando asi su
implementacion en dispositivos que tengan recursos limitados.

Durante el entrenamiento de 3DGSJ[5], se realiza el proceso de densificacién, en el cual el
modelo ajusta de forma dinamica la cantidad de gaussianas que tiene la escena. Este proceso
tiene dos operaciones claves:

1. Clonacién de gaussianas: Se generan gaussianas adicionales en zonas donde la recon-
truccion es escasa, rellenando espacios vacios para mejorar la cobertura en aquellas
regiones de las escenas que se encuentran poco detalladas. Sin embargo, esto puede
provocar una sobrepoblacion innecesaria, pues los criterios seguidos en la densificacion
se basan en umbrales.

2. Divisién de gaussianas grandes: Las gaussianas que presentan un gran tamafo se subdi-
viden para mejorar el nivel de detalle de la escena, permitiendo asi una representacion
mas precisas en aquellas regiones de la escena que presenten cambios geométricos brus-
cos. Por otro lado, esto puede generar un ntimero excesivo de gaussianas, aumentando
asi el consumo de la memoria.

El crecimiento incontrolado de guassianas presenta varios problemas criticos:

1. Aumento del consumo de memoria VRAM: A medida que el niimeor de gaussianas

generadas es mayor, la cantidad de datos que se almacenan en los tensores y por ende
en la GPU, es inviable.

2. Mayor costro computacionale durante el entrenamiento. Cuando se procesa y optimiza
cada gaussiana se requiere actualizar los parametros de estas, haciendo que el entrena-
miento sea mas lento y supongo un mayor coste en el hardware

En la Ilustracion se muestra la relaciéon entre el niimero de gaussianas y el consumo
de memoria VRAM en distintas escenas. Se observa una correlacién clara, donde escenas
con mayor numero de gaussianas presentan un mayor uso de memoria, lo que evidencia la
necesidad de controlar esta densificacion.

21

Relacion entre Numero de Gaussianas y Consumo de Memoria

@ Escenas Blcyclv.a

—==- Tendencia Lineal -

11 +

10 ~ -

Consumo de Memoria (GB)

Kitche
4 1 Bonsai
Colint

34

T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Numero de Gaussianas (Millones) 1e6

[lustracion 3.7: Relaciéon entre el niimero de gaussianas generadas y el consumo de memoria
VRAM durante el entrenamiento de 3DGS.

3.5. Métodos para Controlar la Densificacién en 3DGS

3.5.1. Taming 3DGS: Control del Crecimiento de Gaussianas

Taming 3DGS[19] introduce un nuevo sistema de limitaciéon del crecimiento de gaussia-
nas, basado en una ecuacién cuadratica que regula el proceso de densificacién de manera
controlada y predecible.

Para evitar el crecimiento incontrolado de gaussianas durante el entrenamiento, Taming
3DGS[19] establece un limite maximo de gaussianas en cada etapa del proceso, determinado
mediante una ecuacién cuadrética. Este limite se ajusta en funciéon de un presupuesto de
gaussianas previamente estipulado por el usuario, lo que permite distribuir de manera eficiente
la cantidad de gaussianas a lo largo de todo el entrenamiento.

Ademas, se implementa un mecanismo de seleccion y poda basado en un sistema de
puntuacién (score-based ranking). Este sistema evalia distintos parametros clave de cada
gaussiana para determinar cudles deben eliminarse y cuales deben conservarse.

La ecuacién es la siguiente:

22

g(x) = (W) 2* + kr+ S (3.1)

Donde:

_ 2B-5)
S

S es el nimero de puntos iniciales.
B es el nimero de puntos finales.
x representa el paso actual.

N es el paso final.

3.5.2. Compact 3DGS: Reduccion del Tamaiio del Modelo

Compact 3DGS[20] surge como solucién al problema del alto consumo de memoria y
almacenamiento de 3DGS, proponiendo un efoque méas optimo para reducir el nimero de
gaussianas y compactar los atributos de estos puntos.

Durante el entrenamiento de 3DGS[5] se incrementa el nimero de gaussianas mediante
clonacion y subdivision. Esto supone la introduccién de gaussianas redundantes que no apor-
tan cambios significativos al resultado final, lo que incrementa el uso de memoria GPU y el
almacenamiento.

Para abordar esto, Compact 3DGS[20] propone una estraegia de méscara volumétrica
basada en:

» Se eliminan las gaussianas que tienen baja opacidad .

e Se eliminan las gaussianas que son pequenas y se pueden elimnar sin afectar de forma
significativa al resultado final.

Ademas, Compact 3DGS[20] propone la reduccion del tamano d elos atributos de cada
gaussiana. En el modelo original, cada gaussiana almacena la posicion 3d, opacidad, color,
covarianza y orientacion.

Sin embargo, Compact 3DGS[20] optimiza esta representacion utilizando dos estrategias:

o Se reduce el almacenamiento del color. En vez de almacenar los valores de color de cada
gaussiana, se usa una red neuronal basada en grids lo que permite interpolar los colores
y reducir el nimero de prametros necesarios.

e Se comprimen los adributos geométricos. Para representar los atributos como escala y
rotacion, hace uso de una cuantizacién vectorial con diccionarios de cédigo, agrupando
gaussianas con caracteristicas parecidas y guardando solo un indice de referencia en vez
de los valores completos.

23

La Ilustracion resume visualmente el proceso propuesto por Compact 3DGS, desde la
enmascaracion hasta la compresién de atributos y el renderizado final.

N Posiciones

Hash Grids

Direccién Vista

Tiny MLP

Color
N Gaussianas Gaussianas enmascaradas ~ R-VQ para Escala y Rotacion Color Dependiente de la Vista

Proyeccién y
Rasterizacion

[ustracion 3.8: Esquema del proceso de reduccion de gaussianas y compresion de atributos
propuesto en Compact 3DGS.

3.5.3. 3D Gaussian Splatting as Markov Chain Monte Carlo (MCMC)

Por otro lado, se encuentra 3DGS MCMC|21] que reformular el proceso de densificacion
de 3DGS[5], basando el proceso en un muestreo probabilistico. El objetivo de este modelo
es mejorar la distribucion de las gaussianas en la escena y evitar la generacién excesiva de
gaussianas que pueden ser innecesarias, reduciendo asi el consumo de memoria y mejorando
la eficiencia.

En 3DGSJ[5] tradicional, la colocacién de gaussianas se basa en la minimizacién de una
funcion de pérdida mediante gradientes, lo que ayuda a proporcionar soluciones locales para la
divisién y eliminacién de gaussianas. Sin embargo, 3DGS MCMCI21] interpreta esto como un

problema de muestreo probabilistico, modelando la distirbucién de las gaussianas mediante
cadenas de Markov Monte Carlo (MCMC)

En la Ilustracion se puede observar como el optimizador puede quedar atrapado en
un minimo local (regién inferior izquierda) y no alcanzar el minimo global (cima més baja a
la derecha). Este problema es especialmente critico en entornos complejos como la represen-
tacion 3D.

’ss‘\.g.o

2225 0
.:3“"

[ustracién 3.9: Representacion de un paisaje de funcién de pérdida en un problema de opti-
mizacién. Imagen adaptada de [2].

24

Este proceso de optimizacion se realiza mediante descenso por el gradiente, una técnica
usada en aprendizaje automatico. El objetivo es reducir al minimo una funcién de pérdida que
mide la diferencia entre la imagen generada (render) por las gaussianas actuales y la imagen
objetivo (ground trouth). Para ello, se calcula el gradiente de dicha pérdida con respecto a
los parametros de cada gaussiana (posicién, escala, orientacion, color, ...etc), y se actualizan
estos parametros en la direccion que reduce la pérdida. Esto se realiza durante un proceso
iterativo, donde la escala de actualizacion, también conocido por longitud de pasos, viene
dado por la tasa de aprendizaje..

Sin embargo, el descenso por gradiente clasico puede conducir a minimos locales lo
cual limita la capacidad del modelo para explorar configuraciones més 6ptimas de gaussianas.

El modelo define una distribucién de probabilidad G que asigna alta probabilidad a con-
figuaciones de gaussianas que reconstruyen de forma fiel y estable la escena

Para esto, 3DGS MCMC]21] emplea Stochastic Gradient Langevin Dynamics (SGLD)[22],
que es un método que nace del descenso del gradiente estocéstico[23], afiadiendo un término
de ruido controlado. La adiciéon de este ruido anade aleatoriedad en la actualizacion de las
gaussianas, ayudando a evitar minimos locales no 6ptimos.

A continuacion, se muestra un esquema simplificado del proceso de actualizaciéon de una
gaussiana con SGLD[22]:

Algoritmo 1 Actualizaciéon de una gaussiana con SGLD

Require: Gaussiana g, tasa de aprendizaje \;., coeficiente de ruido \,u;se
1. Calcular gradiente VL(g)
2: Muestrear ruido € ~ N (0, X)
31 g4 g—)\lr . VL(Q) -+)\noise c€

El término de ruido € es definido como:

€= Ny -0 *O Sy~ N(0,1) (3.2)

donde o es la opacidad de la gaussiana, > su covarianza, y k y ¢t son hiperparametros que
controlan la transicién suave del ruido.

A continuacion, se detallan los procedimientos especificos para actualizar los distintos
parametros que definen una gaussiana. El ruido estocastico solo se anade a la posicién (me-
dia), mientras que la opacidad y la escala se actualizan de forma determinista, ya que el
ruido, segun los autores, afecta negativamente a su estabilidad durante el entrenamiento.

25

Algoritmo 2 Actualizacion de la posicién (media) con SGLD

Require: Media actual p, gradiente VL(u), tasa de aprendizaje A, opacidad o, covarianza
by
1. Calcular factor de ruido con la funcién sigmoide: o = sigmoid(—k(o — t))
2: Muestrear ruido: n ~ N(0, 1)
3: Calcular ruido: e = N\ - 0 - X
4: Actualizar posicién: p < pu— Ay - VL(p) + €

Algoritmo 3 Actualizacién de opacidad y escala sin ruido

Require: Opacidad o, escala s, gradientes VL(o) y VL(s), tasa de aprendizaje A,
1: 04 0— X\, -VL(o)
20 $45— Ny - VL(s)

El proceso de densificacién de 3DGS[5] emplea una heuristica basada en la clonacién de
gaussianas en areas poco definidas, la divisién de gaussianas grandes para mejorar la precisién
y la poda de gaussianas con poca opacidad.

Sin embargo, estas no consideran de forma explicita la probabilidad de contibucion de
cada gaussiana a la calidad del renderizado. Por ello, 3DGS MCMC|21] define de nuevo estas
operaciones dentro de la distribuciéon de probabilidad, para mantener asi una coherencia
estadistica del modelo.

3.5.4. Group Training: Acelerando y Mejorando 3DGS

Recientemente, se ha propuesto el método Group Training[24] como una estrategia para
mejorar tanto la velocidad como la calidad del entrenamiento en 3DGS[5]. Esta técnica, que
fue introducida por Wang et al, consiste en dividir el conjunto total de gaussianas en dos
grupos: el Grupo Activo (o Under-training) y el Grupo en Caché (Cached Group). Durante
el entrenamiento, solo las gaussianas del primer grupo juegan un papel en los procesos de
densificaciéon y optimizacion, mientras que las gaussianas almacenadas en caché se excluyen
de forma temporal para asi reducir el coste computacional. Tras ciertas iteraciones, ambos
grupos se combinan y se vuelve a realizar la segementacién para organizar de nuevo las
gaussianas, asegurando asi que todas las gaussianas contribuyan en el entrenamiento.

La Tlustracién muestra un esquema general del funcionamiento de esta técnica. El
grupo activo se actualiza mediante muestreo, entrenamiento y densificaciéon, mientras que el
grupo en caché queda temporalmente bloqueado (representado con candados). Posteriormen-
te, ambos grupos se fusionan para iniciar un nuevo ciclo de entrenamiento.

26

Entrenamiento Basado en Grupos

Densificacion

~
5
A}
ﬁ{\e‘\w —_— I— :
@ .
~ ?'OV Optimizacion i
[} 1
[1
'
1
'
1
1
1

[lustracion 3.10: Esquema del método Group Training aplicado a 3DGS. Las gaussianas se
dividen en un grupo activo, que participa en la densificacién y optimizaciéon, y un grupo en
caché, que se excluye temporalmente para reducir el coste computacional.

3.6. Objetivos del Trabajo

El objetivo principal de este trabajo es analizar y desarrollar técnicas para controlar la
densificacién de gaussianas en 3DGSJ[5], con el fin de eliminar el crecimiento inctrolado del
nimero de gaussianas. Esto provoca un alto consumo de memoria, ralentiza el entrenamiento
y afecta de forma negativa a recursos como el almacenamiento.

Para ello, se plantean los siguientes objetivos:

« Estudio y andlisis del problema de densificacién en 3DGS[5]: Revisar la documentacion
actual sobre modelos basados en Gaussian Splatting e identificar factores claves que
influyan en el crecimiento de gaussianas durante el entrenamiento del modelo.

o Implementacion de técnicas para el control de la densificacion: Implementar y evaluar
técnicas para eliminar la sobreproblacion de gaussianas sin perder calidad del resultado
y probar a implementar técnicas anteriormente leidas.

e Optimizacion de los recursos: Reducir el tiempo de ejecucion del entrenamiento y mi-
nimizar el consumo de memoria VRAM, asi como el almacenamiento.

o FEvaluacién y validacion: Comparar los resultados de las nuevas técnicas frente a la
implementacién base de 3DGS[5].

27

Capitulo 4

Aportaciones del trabajo

4.1. Principales aportaciones

Este Trabajo de Fin de Grado contibuye de forma significativa al campo de la repre-
sentacion de escenas 3D mediante 3DGS[5], aportando mejora a una de sus limitaciones, el
crecimiento incontrolado de gaussianas durante el proceso de densificacion. Las principales
aportaciones han sido:

o Optimizacién del proceso de densificacion en 3DGS: Se propone un nuevo enfo-
que para controlar el nimero de gaussianas generadas en cada etapa de entrenamiento.
De esta manera, se regula la densificacién para evitar el crecimiento incotrnolado, me-
jorando asi el rendimiento del sistema sin afectar a la calidad del resultado.

» Reduccién del consumo de memoria y almacenamiento: Uno de los principales
problemas de 3DGS[5] es el alto uso de memoria VRAM y almacenamiento debido a
la generacién masiva de gaussianas. La solucién presentada en este TFG busca mini-
mizar estos requisitos, permitiendo la implementaciéon del modelo en dispositivos con
capacidades graficas mas limitadas.

o Disminucién del tiempo de entrenamiento: Al limitar la cantidad de gaussianas,
se logra reducir el tiempo de entrenamiento para generar una escena sin perder calidad
en el resultado.

« Facilitaciéon del uso de 3DGS[5] en distintas industrias: Con estas mejoras,
adoptar 3DGS[5] como herramienta para secotres como el cine y el desarrollo de los
videojuegos se vuelve mas accesible, no solo para las propias empresas sino para los
usuarios aficionados con hardware menos sofisticado.

28

4.2.

Alineamiento con los objetivos de desarrollo sos-
tenible

Cuadro 4.1: Grado de relacion del TFG con los Objetivos de Desarrollo Sostenible.

Grado de relacion
ODS 0 1 2 3
No procede | Bajo | Medio | Alto

1 Fin de la Pobreza X

2 Hambre cero X

3 Salud y Bienestar X

4 Educacién de calidad X

5 Igualdad de género

|

6 Agua limpia y saneamiento

7 Energia asequible y no contaminante X

8 Trabajo decente y crecimiento econémico X

9 Industria, innovacién e infraestructuras X

10 Reduccion de las desigualdades X

11 Ciudades y comunidades sostenibles X

12 Produccién y consumo sostenibles X

13 Accién por el clima X

14 Vida submarina

15 Vida de ecosistemas terrestres

sikalke

16 Paz, justicia e instituciones sélidas

17 Alianzas para lograr objetivos X

A

continuacion, se justifica la relacién del TFG con los Objetivos de Desarrollo Sostenible

marcados en la tabla 1k

ODS 1, 2, 5, 6, 14, 15, 16 (Grado 0 - No proceden): Estos objetivos se centran
en problemas sociales, medioambientales o politicas (como pobreza, hambre, igualdad
de género, ecosistemas, paz ... etc), que no estan directamente relacionados con la parte
técnica del TFG.

ODS 3 - Salud y bienestar (Grado 1 - Bajo): Aunque no es el objetivo principal
del trabajo, la optimizacién de la generacién de escenas 3D puede tener aplicaciones in-
directas en campos como la medicina (por ejemplo, simulaciones médicas o tratamientos
innnovadores).

ODS 4 - Educacién de calidad (Grado 2 - Medio): El uso de menos recursos
computacionales permite que instituciones educativas con recursos mas limitados acce-
dan a tecnologias de representacion 3D, facilitando asi la formacion de sus alumnos en
areas como vision artificial o TA.

ODS 7 - Energia asequible y no contaminante (Grado 1 - Bajo): El trabajo
puede influir de forma indirecta al ahorro energético, al reducir la cantidad de recursos

29

necesarios para entrenar y ejecutar modelos 3DGS[5], lo que se puede traducir como
un menor consumo energético.

« ODS 8 - Trabajo decente y crecimiento econémico (Grado 2 - Medio): Este
trabajo puede favorecer a la aparicion de nuevos perfiles laborales especializados en
ello, para ssectores como los videojuegos, la animacion o la realidad virtual.

« ODS 9 - Industria, innovacién e infraestructuras (Grado 3 - Alto): Esta es
la opcidon mas relacionado con el TFG. Se fomenta la innovacién tecnologica al propo-
ner una mejora en un método relativamente reciente como es 3D Gaussian Splatting,
facilitando su integracion en infraestructuras industriales o tecnolégicas.

« ODS 10 - Reduccién de las desigualdades (Grado 1 - Bajo): Al facilitar el uso
de herramientas graficas avanzadas en hardware con menores caracteristicas (menos
potentes), se contribuye a reducir las desigualdades tecnoldgicas entre distintas regiones
COIl MENOI acCeso a recursos.

« ODS 11 - Ciudades y comunidades sostenibles (Grado 2 - Medio): La gene-
racionion de escenas 3D podria aplicarse a la mapeo urbano, simulaciones de movilidad
o representacion de espacios publicos, haciendo de estos, proyectos méas sostenibles.

« ODS 12 - Produccién y consumo sostenibles (Grado 3 - Alto): Se reduce el
uso innecesario de memoria y almacenamiento, por lo que impacta de forma positiva
en la eficiencia del consumo de recursos.

« ODS 13 - Accién por el clima (Grado 1 - Bajo): De forma indirecta, la op-
timizacion de proceso relacionados con la generacion de escenas puede suponer una
menor huella de carbono asociada al entrenamiento de modelos, al reducir el consumo
de energia.

« ODS 17 - Alianzas para lograr objetivos (Grado 1 - Bajo): Puesto que el TFG
se basa en articulos cientificos, se promuebe la colaboracién dentro de esta comunicad,
en busca del avance colectivo a una mejor solucion..

4.3. Competencias especificas

Segun lo establecido en la Memoria del Plan de Estudios del plan 41 del Grado de Inge-
nieria Informatica, durante el desarollo de este Trabajo de Fin de Grado se han cubierto las
diversas competencias, entre las que destacan:

o CI6: Conocimiento y aplicacion de los procedimientos algoritmicos bdsicos de las tec-
nologias informdticas para disenar soluciones a problemas, analizando la idoneidad y
complejidad de los algoritmos propuestos.

e Se aplica al disefio de estrategias para controlar la densificacién en 3D Gaussian
Splatting (3DGS)[5], analizando el impacto computacional de diferentes enfoques
y si es idoneo en términos de eficiencia y consumo de recursos.

30

o CI15: Conocimiento y aplicacion de los principios fundamentales y técnicas basicas de
los sistemas inteligentes y su aplicacion practica.

« Este TFG profundiza en la optimizacion de 3DGS[5] mediante técnicas avanzadas
de aprendizaje automatico, asegurando un mejor control del proceso de densifica-
cion.

o CI16: Conocimiento y aplicacion de los principios, metodologias y ciclos de vida de la
ingenieria del software.

e A lo largo del proyecto, se han seguido metodologias de experimentacion y de-

sarrollo para implementar y validar soluciones optimizadas en los resultados del
modelofd.

o TFG: Ejercicio original a realizar individualmente y presentar y defender ante un tri-
bunal universitario, consistente en un proyecto en el ambito de las tecnologias especifi-
cas de la Ingenieria en Informdtica de naturaleza profesional en el que se sinteticen e
integren las competencias adquiridas en las ensenanzas.

31

Capitulo 5

Desarrollo

La etapa de desarrollo de este TFG se centrara principalmente en analizar en profundidad
el comportamiento del método de densificacion empleado en 3DGS. Este analisis permitira
determinar la importancia y el impacto que tiene dicha etapa en la calidad final de las escenas
renderizadas, asi como estudiar los efectos emergentes al modificar diferentes parametros del
modelo.

Posteriormente, se abordara el estudio, implementacién y validacién de resultados del
método de densificacion basado en parches. Finalmente, se propondran nuevas hipotesis me-
todologicas, cuya implementacion se llevara a cabo con el propésito de evaluar su eficacia
mediante un andlisis de los resultados obtenidos.

5.1. Entrenamiento 3DGS

En primer lugar, se llevara a cabo el entrenamiento de miltiples escenas del dataset
Mip-NeRF 360 [25], comparando los resultados obtenidos con la densificacién activada y
desactivada, con el objetivo de analizar la relevancia e impacto que tiene este proceso en los
resultados generales del modelo.

Es importante destacar que la calidad de los resultados dependera principalmente de
cuatro aspectos clave: la calidad de imagen, el ntimero de gaussianas de la escena, el consumo
de memoria grafica y el tiempo requerido para el entrenamiento.

Todos los experimentos se entrenaron durante 30000 iteraciones, utilizando los mismos
parametros base para garantizar una comparacion justa entre las distintas configuraciones.

Dado que gran parte de los experimentos fueron realizados en una GPU NVIDIA RTX
3090 con 24 GB de memoria VRAM, se aplico un downscaling por un factor de 4 a todas
las imagenes de entrada. Esta reduccién fue necesaria para asegurarse de que los procesos
pudieran ejecutarse dentro de la memoria disponibles.

32

En ciertos experimentos mas exigentes, donde las escenas superaban las capacidades de
la 3090, se trasladaron los experimentos a una GPU NVIDIA A100 con 80 GB de VRAM.

La calidad de imagen se evaluara mediante distintas métricas:

o SSIM (Structural Similarity Index Measure)[26]: Esta métrica mide la similitud

estructural entre dos imagenes, considerando factores como la luminancia, el contraste y
la estructura. Su valor se correlaciona estrechamente con la percepciéon visual humana.

PSNR (Peak Signal-to-Noise Ratio) [27]: Esta métrica mide la relacion entre la
potencia maxima de una senal (la imagen original o ground truth) y la potencia del ruido
generado por las diferencias con la imagen reconstruida, ofreciendo asi una valoracion
objetiva de la calidad general de la imagen.

LPIPS (Learned Perceptual Image Patch Similarity) [28]: Esta métrica utiliza
redes neuronales previamente entrenadas para evaluar la distancia perceptual entre
imagenes, proporcionando una medida precisa de la similitud visual percibida desde la
perspectiva humana.

El proceso de entrenamiento en 3DGS[5] sigue un proceso iterativo de optimizacién, en
el que se ajustan los pardmetros de cada gaussiana con el objetivo de minimizar la dife-
rencia entre las imagenes generadas por el modelo y las imagenes reales del conjunto de
entrenamiento.

Tal y como se representa en la Imagen [5.1] en cada iteracién del entrenamiento se realiza
lo siguiente:

1.
2.

Se selecciona aleatoriamente una camara del conjunto de vistas disponibles.

Se genera una imagen renderizada de la escena desde esa vista, utilizando el estado
actual del modelo.

Se compara la imagen generada con la imagen real (Ground Truth), obteniendo asi una
medida de error o pérdida.

Se calcula el gradiente de esa pérdida respecto a los pardmetros de las gaussianas, y se
actualizan en la direcciéon que reduce dicho error.

Si la densificacién esta habilitada y se cumplen las condiciones necesarias, se realiza
una fase de densificacion: se anaden, dividen o eliminan gaussianas en funcién de su
escala, opacidad o cobertura.

33

Entrenamiento §e selecmona. Renderizar imagen .Comparar con C,alc.ulo de la
camara aleatoria con modelo imagen real (GT) pérdida (loss)

Si . — i . . /
| Densificacion] Densificacién habilitada \>

Densificacion deshabilitada

N <iters

[lustracién 5.1: Esquema general del proceso de entrenamiento en 3D Gaussian Splatting

Este bucle se repite durante un ntimero determinado de iteracionesa. El proceso de den-
sificacion, permite afinar la representacion de la escena adaptando el niimero, en base a una
serie de umbrales aplicados a las propiedades de las gaussianas.

5.1.1. Resultados sin densificacion

En primer lugar, se abordara el método sin densificacion. Para desactivar la densificacién
basta con modificar un parametro del modelo llamado densify_until_iter, estableciendo su
valor en cero, o comentar directamente la llamada a la funcién densify_and_prune() durante
el proceso de entrenamiento. De esta manera, es posible evaluar facilmente el impacto de este
proceso sobre los resultados.

La Tabla [5.1|muestra los resultados obtenidos al entrenar las escenas sin aplicar el proceso
de densificacion. Se incluyen métricas como SSIM, PSNR y LPIPS, asi como el nimero de
gaussianas utilizadas, la memoria maxima consumida y el tiempo de entrenamiento.

Ademés, en la Figura[5.2]se presentan visualmente las reconstrucciones obtenidas sin den-
sificacion, lo que permite una comparacion directa con las reconstrucciones que se mostraran
posteriormente cuando la densificacién esta habilitada.

Escena SSIM PSNR LPIPS N¢ Gaussianas Max Mem (GB) Tiempo

Bicycle 057 22,75 0,46 54.275 3,68 14m 9s
Bonsai 094 31,28 0,13 206.613 2,29 8m 57s
Counter 0,91 2861 0,14 155.767 1,89 8m 29s
Garden 0,74 2522 0,31 138.766 3,74 15m 16s
Kitchen 0,94 30,65 0,09 241.367 2,25 9m 35s
Stump 0,56 23,04 0,50 32.049 2,48 13m 33s

Cuadro 5.1: Resultados sin densificacién

34

(a) Bicycle (b) Bonsai

(e) Kitchen (f) Stump

Tlustracion 5.2: Reconstrucciones sin densificacion.

35

5.1.2.

Resultados con densificacién habilitada

Una vez obtenidos los resultados en el escenario sin densificacion, se procede a evaluar el

comportamiento del modelo con la densificacién activada.

En la Tabla se presentan los resultados cuantitativos obtenidos con la densificacién
activada. Se muestran las métricas SSIM, PSNR y LPIPS, junto con el nimero total de
gaussianas generadas, la memoria maxima utilizada y el tiempo de entrenamiento requerido
para cada escena.

Asimismo, en la Figura [5.3] se muestran las reconstrucciones visuales obtenidas tras en-
trenar cada escena con la densificacion habilitada. Estas imagenes permiten comparar vi-
sualmente el impacto de la densificaciéon con respecto a las reconstrucciones previas sin este

Proceso.
Escena SSIM PSNR LPIPS N© Gaussianas Max Mem (GB) Tiempo
Bicycle 0,78 25,69 0,20 4.652.308 11,11 37m 8s
Bonsai 0,96 33,01 0,08 1.040.856 3,74 12m 50s
Counter 0,93 29,59 0,10 919.028 3,25 13m 53s
Garden 0,87 27,83 0,10 3.638.595 9,43 35m 35s
Kitchen 0,95 32,53 0,06 1.385.668 4,21 16m 39s
Stump 0,78 26,88 0,20 4.103.252 8,89 30m 59s

Cuadro 5.2: Resultados con la densificacién activada

36

(a) Bicycle (b) Bonsai

(e) Kitchen (f) Stump

Tlustracién 5.3: Reconstrucciones con densificacién activada.

La Figura [5.3| presenta las reconstrucciones obtenidas tras entrenar las escenas con la
densificaciéon activada. A simple vista, se puede observar una mejora visuall significativa
respecto a los resultados obtenidos sin densificacién (Figura , especialmente en escenas
con mayor complejidad geométrica.

37

La densificacién consiste en anadir nuevas Gaussianas durante el entrenamiento, en regio-
nes donde se detecta poca cobertura espacial o fotométrica; dividir gaussianas cuando estas
son extremadamente grandes para asi rellenar més espacios sin informacion y eliminarlas
cuando la opacidad es tan baja como para no contibuir en la reconstruccion. Este proceso
permite que la representacion gane en precision y en capacidad de reconstruccion, al incre-
mentar la cantidad de gaussianas disponibles para aproximarse a la forma y el color de la
escena.

Como se observa en la Tabla[5.2] esta mejora visual se refleja también en métricas objetivas
como SSIM[29], PSNR y LPIPS[3], que experimentan una mejora notable respecto a sus
valores sin densificacién (Tabla [5.1). Ademds, el ntmero de Gaussianas se incrementa de
forma drastica, lo que supone un mayor uso de memoria y un incremento considerable en el
tiempo de entrenamiento.

Este pequeno experimento evidencia que el proceso de densificacion es clave dentro de
3DGS[H], siendo determinante para obtener una reconstrucciones mas realistas al igual que
detalladas. Tener la densificacion activada permite al modelo adaptarse mejor a la escenas y
capturar detalles mas finos, lo cual es beneficioso en escenarios con estructuras mas complejas.

5.2. Estudio paramétrico del método de densificaciéon
en 3DGS

La etapa de densificacién incluye varios parametros internos que afectan de forma directa
al comportamiento del proceso. En concreto, existen tres hiperparametros clave que inicial-
mente no estan expuestos para su ajuste, pero que al ser modificados de forma interna en
el propio codigo permiten estudiar el resultado de nuevas configuraciones del modelo. Estos
parametros son:

o Numero de Gaussianas Clonadas (IN): Este valor determina en cudntas gaussia-
nas va a ser dividida una gaussiana cuando tenga las condiciones necesarias para ser
dividida. A mayor valor de N, mas agresiva es la division, lo que a priori puede hacer
mas precisa la representacion de la escena pero, también generar mas puntos y por lo
que, puede consumir un mayor almacenamiento y un valor de memoria VRAM mayor.

o Umbral de Escala (Scale Threshold): Este umbral define a partir de qué valor de
escala una gaussiana se considera lo suficientemente grande como para ser dividida.
Una reduccién supone una mayor sensibilidad al tamano de la gaussiana, pues a menor
valor mayor frecuencia de subdivisiones, por lo que afecta de forma directa al niimero
de gaussianas generadas durante la densificacion.

» Opacidad Minima (Min Opacity): Durante el entrenamiento, aquellas gaussianas
cuya opacidad esta por debajo de este umbral son candidatas para ser eliminadas. Un
valor alto provoca un filtrado mas estricto, reduciendo el niimero de gaussianas en la
escena, y arriesgando de este modo el detalle de la escena, pues se va a eliminar un
mayor numero de gaussianas.

38

Estos tres parametros tienen un gran peso en la precision de los resultado en la recons-
truccion de la escenala. Sin embargo, el impacto real no ha sido estudiado en profundidad,
por lo que se propondra a continuacion.

5.2.1. Diseno experimental

Con el objetivo de analizar en profundidad el impacto de los parametros clave en el proceso
de densificaciéon, y su relaciéon tanto con la calidad final del modelo como con la eficiencia
computacional, se ha disefiado un conjunto de experimentos.

Para ello, se han seleccionado las seis escenas pertenecientes al conjunto de datos utilizado
(Bicycle, Bonsai, Counter, Garden, Kitchen y Stump). Sobre cada una de estas escenas se han
realizado multiples entrenamientos, variando de forma combinada los siguientes parametros:

Cuadro 5.3: Parametros evaluados durante los experimentos y valores considerados.

Parametro Descripcion

N Numero de gaussianas generadas durante el proceso de
clonacién. Valores evaluados: {2,3}.

scale_threshold Umbral minimo de escala necesario para permitir la clo-

naciéon de una gaussiana. Valores evaluados: {15, 20, 25}.
opacity _threshold | Umbral minimo de opacidad requerido para consi-

derar una gaussiana como activa. Valores evaluados:
{0,001, 0,005, 0,01}.

El ntmero total de combinaciones posibles asciende a 18, como resultado de combinar los
valores considerados para cada parametro:

2 (N) x 3 (scale_threshold) x 3 (opacity_threshold) = 18 combinaciones

Cada una de estas configuraciones ha sido aplicada a las seis escenas seleccionadas, resul-
tando en un total de 108 experimentos independientes.

La tabla recoge todas las combinaciones de parametros evaluadas:

39

N scale_threshold opacity_threshold

2 15 0.001
2 15 0.005
2 15 0.01
2 20 0.001
2 20 0.005
2 20 0.01
2 25 0.001
2 25 0.005
2 25 0.01
3 15 0.001
3 15 0.005
3 15 0.01
3 20 0.001
3 20 0.005
3 20 0.01
3 25 0.001
3 25 0.005
3 25 0.01

Cuadro 5.4: Combinaciones de pardmetros evaluadas

Para cada combinacion de pardmetros y escena, se han registrado métricas de calidad
visual (SSIM[29], PSNR y LPIPS). Ademads, en aquellos casos que han presentado mejores
resultados en términos de calidad, se ha analizado también el consumo de memoria y el tiempo
total de entrenamiento, con el objetivo de evaluar la eficiencia global de cada configuracion
y su impacto sobre los recursos computacionales disponibles.

5.2.2. Analisis exploratorio de métricas y parametros

Con el objetivo de entender de forma visual y estadistica el comportamiento de las métri-
cas de calidad (SSIM, PSNR, LPIPS) y la relacién que existe con los pardmetros seleccionados
del modelo, se llevo a cabo un anélisis de los datos recogidos tras los entrenamientos.

En primer lugar, se analizaron las distribuciones globales de las tres métricas de calidad
mediante histogramas con suavizado por densidad. Tal y como se muestra en la Figura
se observa una gran dispersion en los valores de SSIM, PSNR y LPIPS entre las diferentes
combinaciones de parametros evaluadas.

40

Distribucion de SSIM Distribucion de PSNR Distribucion de LPIPS

Count
Count
Count

0
0775 0800 0825 0850 0875 0900 0.925 0.950 26 27 28 29 30 31 2 33 0.06 0.08 0.10 012 0.14 0.16 018 020
SsiMm PSNR LPIPS

Ilustracion 5.4: Distribucién de las métricas SSIM, PSNR y LPIPS[3] para todas las combi-
naciones evaluadas.

En particular, se puede observar que las métricas SSIM y PSNR no siguen una tunica
tendencia, sino que se agrupan en dos zonas principales. Esto puede sugerir que hay combi-
naciones de parametros que generan resultados muy distintos entre si, en cuanto a calidad.
En el caso de LPIPS, los valores se concentran sobre todo en los extremos, lo que puede indica
que algunas configuraciones generan reconstrucciones muy parecidas a la original, mientras
que otros resultados presentan un claro empeoramientto

Como segundo paso, se representaron las métricas de calidad mediante diagramas de
caja (boxplots) por escena, con el objetivo de analizar como varia el resultado del modelo
en funcion del dataset utilizado. Como se observa en la Figura escenas como Bonsai y
Kitchen presentan valores de SSIM y PSNR consistentemente altos, junto con valores bajos
de LPIPS, lo que puede indicar que estas escenas son mas faciles de reconstruir con buenos
resultados y estar relacionado con la geometria o la cantidad de puntos presentes en la
inicializacion.

SSIM por Dataset PSNR por Dataset LPIPS por Dataset

- = — E—
0.950 = ? 0.20 ?
32 o
0.925 0.18
31
0.900 0.18
30
= 0875 —_— 9 —_— @014
17} 17 a
L o 29 %
0,850 012
3
E——
0825 — 0.10 ——
27 —
0.08
0800 ———

o
—— — — 0.06 ——
0775

bicycle counter garden stump bonsai kitchen bicycle counter garden stump bonsai kitchen bicycle ocounter garden stump bonsai Kitchen
Dataset Dataset Dataset

[lustracion 5.5: Distribucion de las métricas SSIM, PSNR y LPIPS para cada escena.

41

5.2.3. Seleccion de mejores combinaciones por escena

Con el objetivo de identificar la mejor combinacion de parametros para cada escena, se
prestard atencién a las métricas de calidad obtenidas (PSNR, SSIM y LPIPS), teniendo en
cuenta que un menor valor de LPIPS indica una cuan similar es la percepcion entre la imagen
reconstruida y la original.

Finalmente, se seleccion6 la mejor configuraciéon para cada escena, identificando aquella
que obtuvo con la mejor combinacién de valores.

Se observa que en la Tabla las mejores configuraciones obtenidas corresponden al caso
en que el valor de N es igual a 3. Esto tiene sentido, ya que un mayor nimero de gaussianas
generadas tras cada division permite al modelo capturar con mayor precision los detalles de
la escena, afinando asi los pequenos detalles, y con ello, la propia escena.

Escena Opacity N Scale SSIM PSNR LPIPS Max Mem (GB) Tiempo
Bicycle 0.001 3 15 0.78 25.75 0.2 11.7 52m 13s
Bonsai 0.001 3 20 0.96 33.08 0.07 4.02 22m 10s
Counter 0.001 3 20 0.93 29.66 0.1 3.42 20m 02s
Garden 0.005 3 20 0.88 27.85 0.1 9.8 47Tm 12s
Kitchen 0.001 3 20 0.95 32.67 0.06 4.78 27m 13s
Stump 0.005 3 20 0.78 26.99 0.20 9.12 50m 51s

Cuadro 5.5: Mejores combinaciones por escena segiin promedio de calidad visual.

Sin embargo, al comparar estos resultados con los obtenidos en la configuracién base de
3DGS[H] (sin variacién de pardmetros), se aprecia un incremento notable en el consumo de
memoria VRAM y en el tiempo total de entrenamiento. Esto también es esperable, dado que
al generar mas gaussianas se incrementa la cantidad de datos que deben ser almacenados y
procesados durante cada iteracion.

Por este motivo, se decide llevar a cabo un analisis méas equilibrado, por lo que se procedera
a filtrar nuevamente los resultados considerando tinicamente aquellas combinaciones en las
que el valor de N es igual a 2.

En la Tabla se muestran las mejores configuraciones obtenidas para cada escena bajo
esta restriccion. Si bien los valores de las métricas de calidad son, en general, ligeramente
inferiores a los alcanzados con N = 3, representan configuraciones mucho mas eficientes, tanto
desde el punto de vista de recursos, como el almacenamiento y la memoria VRAM, debido
al descenso en el niimero de gausianas, como en el propio tiempo de entrenamiento.

42

Escena Opacity N Scale SSIM PSNR LPIPS Max Mem (GB) Tiempo
Bicycle 0.001 2 15 0.77 25.71 0.20 11.2 38m 12s
Bonsai 0.005 2 25 0.96 33.07 0.07 3.62 12m 02s
Counter 0.001 2 20 0.92 29.69 0.09 3.18 13m 35s
Garden 0.001 2 20 0.87 27.86 0.10 9.38 35m 27s
Kitchen 0.005 2 25 0.95 32.56 0.05 4.18 16m 18

Stump 0.010 2 25 0.78 26.92 0.20 8.78 30m 38s

Cuadro 5.6: Mejores combinaciones por escena considerando tnicamente N = 2.

5.2.4. Conclusiones del analisis paramétrico

Los resultados que se han obtenido, refleja el gran impacto que tienen estos parametros
menos accesibles a nivel usuario para la densificaicon en 3DGS[5]. En particular, se confirma
que un mayor nimero de gaussianas por division (N = 3) permite afinar los detalles y obtener
métricas superiores, aunque a costa de un aumento considerable en el uso de memoria VRAM
y el tiempo de entrenamiento.

Por otro lado, filtrar el anélisis por N = 2, se observan combinaciones de parametros mas
eficientes en términos de recursos, con una pérdida asumible de calidad visual en muchos
casos.

Un punto interesante que se puede concluir a partir de las Tablas[5.5]y[5.6]es que se presen-
tan todos los valores posibles para los pardmetros opacity_threshold y scale_threshold.
No existe una tnica combinacién para todas las escenas; por el contrario, cada dataset parece
obtener mejores resultados a partir de valores distintos para estos umbrales. Este hecho puede
sugerir que el uso de umbrales estaticos y deterministas podria no ser lo méas adecuada para
un buen resultado general en todos los casos.

Por tanto, una posible mejora futura podria consistir en explorar mecanismos mas dinami-
cos para determinar estos valores, basados en caracteristicas especificas de cada escena. Esto
podria permitir mantener la calidad de las reconstrucciones reduciendo el sobrecoste compu-
tacional.

43

5.3. Hipoétesis 1: Entrenamiento en 3DGS basado en
parches

5.3.1. Introduccion

A lo largo de la historia de la informatica, y mas concretamente de la inteligencia artificial,
se ha demostrado que el uso de fragmentos de datos de conjutnos mayores es una estrategia
que ha arrojado buenos resultados en cuanto a la eficiencia y la capacidad de generalizacion.
Esta idea ha sido aplicado en campos tan convencionales como el procesamiento de imégenes,
el andlisis de audio y texto.

Si se profundiza en la visién por computador, por ejemplo, es muy comun deividr una
imagen en parches mas pequenios para poder ser procesados de manera independientes. De
este modo, los modelos aprenden patrones locales con una mayor precision y pueden entre-
narse en dispositivos cuyos recursos son mnas limitados. Esta técnica también es usada en
campos como videojuegos, donde se cargan chunks de informacién dependiendo de la posicion
del jugador o, incluso en la medicina, donde se analizan fragmentos de una radiografias para
poder detectar anomalias.

5.3.2. Uso de los parches en campos mas especificos

En del aprendizaje profundo, el uso de subconjuntos de datos durante el entrenamiento ha
jugado un papel fundamental dando lugar a avances significativos, como se recoge articulos
como An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [Doso-
vitskiy et al., 2020] [30], donde se introduce el modelo Vision Transformer (ViT), que divide
las iméagenes en parches fijos de 16x16 pixeles para procesarlas como secuencias de tokens,
logrando resultaods prometedores sin necesidad de convoluciones.

Otro caso destacado es el de los métodos de aprendizaje auto-supervisado, como SimCLR
[Chen et al., 2020] [31], que utilizan crops aleatorios (subimagenes) como vistas alternativas
de una misma imagen para aprender representaciones robustas sin etiquetas.

Asimismo y un ejemplo mas resonado en los ltimos anos, en la reconstruccion de escenas
3D, modelos como NeRF [I3] [Mildenhall et al., 2020] no procesan las imégenes completas,
sino que seleccionan rayos individuales (pixeles muestreados) en cada iteracion.

5.3.3. Aplicacién en 3D Gaussian Splatting

Basandose en los enfoques descritos, se propone como primera hipotesis plantear un entre-
namiento alternativo basado en parches para 3DGS[5], mediante el uso de parches aleatorios
de las imagenes usadas para el proceso de entrenamiento. En vez de renderizar la imagen
completa en cada iteracion se selecciona una region de la imagen, y se calcula la pérdida
unicamente sobre esa region.

44

Con esto, se intentara reducir el coste de los recursos, evitar que se generen tantas gaus-
sianas durante el proceso de densificacion y forzar al modelo a aprender a partir de menos
informacion.

5.3.4. Implementacion técnica

A partir de la hipdtesis planteada, se implementa un entrenamiento basado en parches
aleatorios dentro del pipeline original de 3DGS[5]. El objetivo es que el modelo aprenda
a representar la escena a partir de fragmentos mas pequenos de las imagenes, en lugar de
procesar cada imagen completa en cada iteracion.

Divisién en parches Cada imagen utilizada para el entrenamiento, de dimensiones H x W,
se divide en n parches. Esta division tiene lugar al comienzo de cada iteracion, haciendo uso
de la funcién divide_and_select_patch(width, height, num_patches), y posteriomente selec-
cionandose un parche de forma aleatoria para cada iteracién con el fin de calcular la pérdida
correspondiente.

La Figura muestra un ejemplo visual del proceso de division para distintas configu-
raciones: cuando n = 1 la imagen se procesa completa, mientras que para n =2 y n = 4 se
subdivide en partes mas pequenas, cada una identificada numéricamente.

[lustraciéon 5.6: Ejemplo de division de una imagen en diferentes configuraciones de parches.

Por ejemplo, si n = 4, la imagen se divide en cuatro parches, y tinicamente se utiliza uno
de ellos por iteracion.

Implementacion del sistema de parches La logica de division de las imagenes en par-
ches estd implementada en la funcién divide_and select_patch(width, height, num_patches),
incluida en el modulo patches_utils.py del proyecto. Esta funciéon toma como entrada el ancho
y alto de la imagen, junto con el niimero de parches deseado (n € {1,2,4}), y devuelve una
lista de coordenadas que definen los distintos parches.

45

divide_and_select_patch(width, height, num_patches):
if num_patches
rai

if num_patches ==

patches = [[0, ©, width, height]]
elif num_patches ==

patches = [[@, @, width // 2, height], [width // 2, @, width, height]]
elif num_patches ==

patches = [
[e, @, width // 2, height // 2],
[width // 2, @, width, height // 2],
[e, height // 2, width // 2, height],
[width // 2, height // 2, width, height]

]

return patches

[ustracion 5.7: Codigo del utils

Internamente, la funcién divide la imagen en regiones de igual tamafio. Por ejemplo:

o Para n = 1: se devuelve un tnico parche que abarca toda la imagen.

o Para n = 2: se divide la imagen verticalmente en dos mitades iguales.

o Para n = 4: se genera una cuadricula de 2 x 2, dividiendo la imagen en cuatro regiones.

Este proceso se ilustra en la Figura donde se compara una imagen completa con el
parche seleccionado para el calculo de la pérdida. Como se puede observar, solo se utiliza una
parte de la imagen renderizada en cada iteracion.

Parche Usado

Imagen Completa

[ustracién 5.8: Comparativa entre una imagen renderizada completa (izquierda) y el parche
seleccionado para calcular la pérdida (derecha).

Proceso de renderizado y calculo de pérdida Durante cada iteracién del entrenamien-
to, se sigue un flujo bien, el cual se muestra en la Figura [5.9] Este flujo muestra el proceso

46

que permite calcular la pérdida sobre un parche de la imagen.
o Se selecciona aleatoriamente una camara del conjunto de entrenamiento.
o Serenderiza la imagen desde esa vista, obteniendo la imagen renderizada image_rendered.
 Se selecciona aleatoriamente un parche P = (1, y;, T2, y2) dentro de la imagen.
 Se recorta el parche renderizado: image rendered[:, y_1:y_2, x_1:x_2].

 Se extrae el parche correspondiente de la imagen real (ground truth): gt_image|:, y_1:y_2,
x_1:x_2].

e Se calcula la pérdida entre ambos parches, por ejemplo con una combinacién de L1 y
SSIM:

patch_rendered = image_rendered[:, yl:y2, x1:x2]
patch_gt = gt_imagel[:, yl:y2, x1:x2]
loss = L1(patch_rendered, patch_gt)

Entrenamiento 'Se selecmona. Renderizar imagen ‘ Division de la Seleccion de uln

camara aleatoria con modelo imagen en parches parche aleatorio
r Densificacion Célculq dela Comparaci(’)n con Becone de la
L pérdida imagen real imagen real

[ustracién 5.9: Flujo de trabajo del sistema de entrenamiento por parches en 3D Gaussian
Splatting.

Paradmetro patch number El ntmero de parches utilizado durante el entrenamiento se
controla mediante un nuevo parametro —patch_number, que se pasa como argumento desde
la linea de comandos al lanzar el script de entrenamiento. Este valor se recoge en el archivo
principal, se almacena en los argumentos globales del programa y se utiliza posteriormente
para invocar a la funcién divide_and_select_patch. De esta forma, el usuario puede determinar
en cuantos parches se dividen las imagenes de entrenamiento sin modificar el codigo fuente.

r, default="true™)

parser.add_argument(» ty , default=1)

[lustracién 5.10: Parametro que indicar el niimero de parches

5.3.5. Resultados

Los resultados obtenidos reflejan un aumento significativo en el nimero de Gaussianas,
respecto al entrenamiento base. En lugar de limitarse, el modelo produjo una explosion del
nimero de estos puntos, incluso mas que en 3D Gaussian Base.

47

En la Tabla se muestran los valores promedios obtenidos en funcién del nimero de
parches utilizados durante el entrenamiento. Se comparan las métricas de calidad visual
(SSIM, PSNR y LPIPS), junto con el nimero total de gaussianas generadas, la memoria
VRAM utilizada y el tiempo de entrenamiento.

Patch Number SSIM PSNR LPIPS N¢ Gaussianas Max Mem (GB) Tiempo

3DGS 0.88 29.26 0.12 2.623.200 6.77 24m 24s
1 0.88 29.25 0.12 2.623.500 6.8 24m 55s
2 0.88 28.90 0.13 3.272.000 7.75 26m 30s
4 0.87 28.19 0.15 3.855.000 8.68 28m 52s

Cuadro 5.7: Promedios globales obtenidos en funcién del nimero de parches usados durante
el entrenamiento.

A partir de los resultados obtenidos, se observa un incremento generalizado en el niimero
de gaussianas generadas, asi como un mayor consumo de memoria VRAM y un aumento
en el tiempo de entrenamiento. Por otro lado, aunque las métricas de calidad visual como
SSIM[29], PSNR y LPIPS[3] muestran un descenso, esta no es especialmente dréstico. Esto
puede sugerir que, a pesar de trabajar con fragmentos cada vez més pequenos de la imagen
en lugar de la imagen completa, el modelo mantiene, dentro de lo que cabe, una capacidad
razonable de generalizacion.

Hipétesis Sin embargo, volviendo al aumento que se observa en el niimero de gaussianas,
asi como en el uso de memoria VRAM y el tiempo de entrenamiento, se plantean tres posibles
hipétesis que podrian explicar este comportamiento:

1. Priorizacién del detalle local: al trabajar con secciones méas pequenas de la imagen
(parches), el modelo podria estar forzando una representacién mas precisa de los detalles
locales, lo que provoca una generaciéon mayor de gaussianas para cubrir con precision
esas zonas limitadas.

2. Densificacion innecesaria: es posible que se estén densificando gaussianas que no
contribuyen significativamente a la pérdida, es decir, gaussianas que no han recibido
gradiente en la vista actual, pero que atn asi participan en el proceso de densificacion.
Este fendmeno se representa en la Figura[5.11] donde se observa cémo ciertas gaussianas
ajenas al parche activo acumulan estadisticas sin haber sido optimizadas directamente.

3. Superposicién entre parches: dado que una misma gaussiana puede ocupar un area
grande, podria estar jugando un papel en multiples parches a lo largo del entrenamiento.
Esto puede provocar acumulacion de gradiente redundante y, por tanto, un aumento
innecesario del niimero de gaussianas. Un ejemplo visual se presenta en la Figura [5.12]
donde se ilustra como una gaussiana puede abarcar varias regiones de la imagen.

48

0. 0. 0. 0. 0. 0. 0. 0. 0 0.
0. oa3qo@jes 0 0. 0. 0. o
0. 0.8} 1. |0.7 0 0.
0. 03%04 0.1 0. 0. 0.
0. 0. 0. 0. 0. o. O
0. 0. 0. 0. 0. 0 0.
~ToToTo. 0.‘0. 0—.0' 0. 0.0‘
0. 0.0 0 0. 0. 0. 0. 0. 0 0.
05 0. 0. 0.
83104777 |
0305 01 0. 0.
0.3 08)01) 0. 0. 0./ 0.]0.
BN A ;rlf;’n,,o,.ﬂ-—rh’
.00 0000 00 0.0 . 0. 0. 0000
-0z 833 01 0.10 0 0.0 0/0 00 0 0
1.01./08/02 o0.] 0. 0. 0. 0. . 0. 0.0
1.lpa/03 0. o]0 0. 0. 0. g,
0.1 0203 o1 0.0 0. 30, 0.
0.1 0.2 01]0. 0. 0. 0. 0.
0. 1. |05 0.1 0. 0. 0. 0. 0.
0. 1..05 0. 0. 0.0 0. 0. 0. 0.
0. 0. 0. 0. 0203 o1 0. 0. 0.§0. 0. 0. 0. 0.

[ustraciéon 5.11: Hipdtesis 2 — Densificacién innecesaria: gaussianas fuera del parche visible
acumulan estadisticas de densificaciéon a pesar de no haber recibido gradiente significativo.

j

[ustracién 5.12: Hipdtesis 3 — Superposicion entre parches: las gaussianas grandes pueden
abarcar varios parches, contribuyendo a la redundancia en el entrenamiento.

49

5.4. Hipotesis 2: Diferentes mecanismos de densifica-
cion

5.4.1. Introduccion

Como segunda hipétesis, se plantea el estudio de métodos alternativos ya existentes que
abordan problemas similares, con el objetivo de conseguir mecanismos que permitan imple-
mentar una solucién al problema del crecimiento excesivo del nimero de gaussianas durante
la generacién de escenas. Esto conlleva un aumento significativo en el consumo de memoria
grafica, almacenamiento y tiempo de entrenamiento, lo que dificulta su adopcién en entornos
con recursos mas casuales.

5.4.2. Ecuacién para limitar el crecimiento de las gaussianas

En el articulo de Taming 3DGS[19] se introduce un mecanismo determinista para con-
trolar el crecimiento del niimero de gaussianas a lo largo del proceso de entrenamiento. Este
enfoque no se basa inicamente en establecer un limite, sino en distribuir de forma progresiva
y predecible la cantidad maxima de gaussianas permitidas en cada paso del entrenamiento,
asegurando asi que no supere presupuesto total de gaussianas para todo el entrenamiento.

Para ello, se define una funcién cuadratica que acttia como guia para la densificacion,
asignando en cada iteracion un nimero maximo de gaussianas que el sistema puede generar
o densificar. Esta féormula determinaria el ntimero maximo de gaussianas que debe haber
presente en cada uno de los pasos para llegar de forma progresiva al objetivo final.

La ecuacion propuesta es la siguiente:

g(x) = <B_irz_kN> 2* +kr+ S (5.1)

donde:
e g(z): nimero méximo de gaussianas permitidas en la iteracién z.
« S: numero de gaussianas iniciales.

e B: numero total de gaussianas permitidas al final del entrenamiento (presupuesto glo-

bal).

N: ntimero total de pasos (iteraciones) de entrenamiento.

x: paso actual del entrenamiento.

k: pendiente inicial del crecimiento, que se define como:

20

k= N (5.2)
Deduccién de la ecuacion
La funcién de crecimiento se obtiene a partir de un polinomio cuadratico general:
g(r) = ax® +bxr +c (5.3)

Se aplican las siguientes condiciones:

1. En el paso inicial z = 0, debe cumplirse que g(0) = S, pues en el primer paso solo
pueden existir las gaussianas primitivas designadas como puntos inicializados:

g0)=a-0°+b-0+c=S=c=S9 (5.4)

2. En el paso final x = N, debe cumplirse que g(IN) = B, pues el valor de las gaussianas
debe ser igual al presupeusto de gaussianas designado para el entrenamiento:

B—-S—bN

g(N)=aN?* +bN+S=B=a= e

(5.5)

3. Se define b = k para obtener una expresioén en funciéon de un pardametro de crecimiento

ajustable:
CL:B—i;ld\f (5.6)
4. El valor de k se elige como:
WEE -

El valor de k asegura que la curva de crecimiento comience con una pendiente inicial
elevada, permitiendo al modelo densificar rapidamente durante las primeras fases del
entrenamiento, donde la capacidad de representacion ain es limitada. A medida que el
entrenamiento avanza, esta pendiente decrece de forma natural gracias al componente
cuadratico, lo que ofrece un comportamiento suave y progresivo.

Sustituyendo a, b = k' y ¢ = S en la ecuacién original se obtiene la expresiéon final de la
funcién de crecimiento (Ec. [5.1]).

Esto proporciona un control méas fino y predecible sobre el ntimero de gaussianas, ase-
gurando que se mantenga dentro del limite designado por el usuario y distribuyéndolas con
logica creciente a lo largo del entrenamiento.

o1

5.4.3. Influencia del parametro k sobre la curva de crecimiento

La ecuacion cuadrética planteada en la Seccién [5.1) permite controlar de forma progresiva
el nimero maximo de gaussianas que el modelo puede generar en cada paso del entrenamiento.
Esta funcién depende de un pardmetro de crecimiento k, que condiciona la pendiente inicial
de la curva y, por tanto, determina cuan rapido se permite densificar la escena.

Para comprender como influye este parametro en la evolucién del niimero de gaussianas,
se ha realizado un graficado experimental para distintos valores de k, manteniendo fijos el
nimero de pasos (INV), las gaussianas iniciales (S) y el presupuesto total (B). La Figura
muestra la evolucion del nimero maximo de gaussianas permitidas en funcién del paso de
entrenamiento, comparando distintos valores de k.

Evolucion del nimero maximo de gaussianas para distintos valores de k

—_ k=0
—_B-§
k=5

2500000

_— k=£ﬁﬂ(Base)
4(B-35)

— k=

2000000

1500000 +

1000000 +

Maximo de gaussianas permitidas

500000 -

T T T T T T
o 250 500 750 1000 1250 1500 1750 2000
Paso de entrenamiento (x)

[ustraciéon 5.13: Evolucién del nimero méximo de gaussianas permitidas en funcion del paso
de entrenamiento para distintos valores de k.

A partir de la Figura [5.13] se pueden extraerse las siguientes conclusiones:

e k = 0: genera una curva puramente cuadratica con crecimiento lento al inicio. Esto
puede dificultar que el modelo capture la estructura inicial de la escena, ya que dis-
pone de pocas gaussianas en las primeras etapas. Solo aquellas escenas con un mayor
porcentaje de puntos iniciales, saldran beneficiadas.

o k= BT_S: ofrece un crecimiento mas moderado y lineal. Es ttil para entornos donde se
desea evitar una explosién temprana de gaussianas, aunque puede no ser suficiente en
escenas complejas.

52

2(B—S . - . o

e k= % (base): se muestra como una opcién equilibrada. Refleja un crecimien-

to progresivo que alcanza el presupuesto de gaussianas al final del entrenamiento sin
saturar el sistema en etapas iniciales.

A(B—S o . . .
o k= %: provoca un crecimiento muy agresivo, alcanzando el maximo de gaussianas

demasiado pronto. Esto puede hacer explotar el consumo memoria y producir gaussianas
antes de que el modelo haya convergido lo suficiente como para optimizarlas eficazmente.

Por tanto, se concluye que el valor k£ = %LN_S)

mayoria de casos.

representa una eleccién razonable para la

5.4.4. Simulacion del comportamiento de la funcion

Con el objetivo de analizar como se comporta la funciéon propuesta en diferentes escena-
rios, se ha desarrollado un pequeno script en Python[6] que permite simular la evolucion del
nimero maximo de gaussianas permitidas a lo largo del entrenamiento. Este programa im-

plementa la ecuacién y grafica su evolucién para diferentes combinaciones de parametros
S, By N

La Figura [5.14] muestra una comparativa entre distintas curvas generadas al modificar
el presupuesto total de gaussianas B, el nimero de puntos iniciales S y la duracién del
entrenamiento V.

Comparativa de distribucién del nimero maximo de gaussianas

—— Caso 1: 5=50k, B=1M, N=1k
Caso 2: 5=50k, B=500k, N=1k
—— Caso 3: S=20k, B=500k, N=500
—— Caso 4: 5=100k, B=2M, N=2k
—— Caso 5: S=50k, B=1M, N=500

2000000 4

1750000 +

1500000

1250000 4

1000000 +

750000

Maximo de gaussianas permitidas

500000 +

250000

T T T T T T T T
o 250 500 750 1000 1250 1500 1750 2000
Paso de entrenamiento (x)

[ustracion 5.14: Comparativa entre diferentes curvas de crecimiento del niimero méaximo de
gaussianas para distintos presupuestos y duraciones de entrenamiento.

23

e Caso 1: con S = 50000, B = 1000000, y N = 1000, se observa un crecimiento
progresivo y equilibrado.

e Caso 2: con S = 50000, B =500000y N = 1000, el crecimiento es mas limitado, lo
que reduce significativamente el niimero de gaussianas finales. Este caso representa un
escenario en el que se busca reducir el uso de recursos manteniendo la misma duracién
de entrenamiento.

o Caso 3: con un valor inicial reducido de .S = 20000, B = 500000 y N = 500, se simula
un entrenamiento mas corto con presupuesto bajo. El crecimiento es réapido desde el
inicio, util para dispositivos con limitaciones mas estrictas.

e Caso 4: con S = 100000, B = 2000000 y N = 2000, se permite mayor grado de
crecimiento. Esta configuracion es ideal para entornos de alto rendimiento, donde se
prioriza la calidad final por encima del tiempo o el consumo de memoria.

e Caso 5: con S = 50000, B = 1000000 y N = 500, se mantiene el mismo presu-
puesto que en el Caso 1, pero en la mitad de iteraciones, lo que da como resultado un
crecimiento mucho mas agresivo del niimero de gaussianas.

5.4.5. Integracion de la ecuacion en el cédigo de 3DGS

La ecuacién comentada anteriomente ha sido implementada dentro del proceso de densi-
ficacién. Para ello, se ha anadido una funcién especifica llamada calculate_gaussian_budget(),
encargada de calcular el nimero méximo de gaussianas permitidas en cada paso del entre-
namiento segin la ecuacién

Esta funcion tiene como parametros el paso actual (current_step), el numero total de pasos
de entrenamiento (total_steps), el niimero de puntos iniciales (initial_points) y el presupuesto
global de gaussianas (budget). A partir de estos valores, calcula el limite de cada paso de
gaussianas que deben estar presentesf.

calculate gaussian_budget(self, current step, total steps, initial points, budget):
if current_step > total steps:
return budget
current_step
total steps
budget
initial points
=(2*(B-5))//N
target = int((B - 5 - (k*N)) / N¥¥2) * x**¥2 + k * x + S
return target

X

Mustracién 5.15: Funcién calculate_gaussian_budget() implementando la ecuacién de creci-
miento progresivo de gaussianas.

El valor que devuleve esta funcién se usa durante la ejecuciéon de la funcién densify_and_prune(),
que se invoca en cada paso de entrenamiento dentro de la densificacién. Primero se calcula

o4

el paso actual y el ntimero total de pasos validos para la densificacién, y luego se llama a la
funcién junto con el presupuesto introducido.

if iteration > opt.densify from iter iteration % opt.densification interval == @:
size_threshold = 2@ if iteration > opt.opacity reset_interval e

total_steps = opt.densify until iter - opt.densify from_iter
current_step = max(@, iteration - opt.densify_from iter)

gaussians.densify and prune|(
opt.densify grad_threshold,
min_opacity=0.0e5,
extentzscene.'amerasiextentj
max_screen size=20,
radii=radii
current_step=current_step,
total steps-total steps,
budget=introduced_budget

[ustracion 5.16: Fragmento de cédigo donde se calcula el paso actual e invoca la funcion
densify_and_prune() con el valor de presupuesto.

Finalmente, dentro de la funcién densify_and _prune() se obtiene el nimero de puntos
iniciales y se calcula el ntimero objetivo de gaussianas mediante calculate_gaussian_budget().

densify and prune(self, max_grad, min_opacity, extent, max_screen_size, radii, current_step, total steps, budget):
grads = XY adient_accum / .denom
grads[grads.isnan

.tmp_radii = radii

initial points = .get _xyz.shape[®]
target gaussians = .calculate gaussian_budget(current step, total steps, initial points, budget)

.densify and clone(grads, max grad, extent)
.densify_and_split(grads, max_grad, extent)

prune_mask = (.get_opacity < min_opacity).squeeze()
if max_screen_size:

big points vs .max_radii2D > max_screen_size

big points ws = .get_scaling.max(dim=1).values > @.1 * extent
prune_mask = torch.logical or(torch.logical or(prune mask, big points vs), big points ws)

tmp_radii = .tmp_radii
.tmp_radii =

torch.cuda.empty_cache()

[lustracién 5.17: Implementacién del presupuesto de gaussianas dentro de la funciéon den-
sify_and_prune()

5.5. Parametrizaciéon del valor maximo de gaussianas

Para asegurar que el sistema tenga un mayor controls sobre el nimero total de gaussianas
que dbee contener la escena generada tras el entrenameinto, se anade un nuevo parametro
denominado —budget. Este pardametro representa el nimero méaximo de gaussianas que el
modelo puede llegar a tener al finalizar el proceso de entrenamiento y densificacién. De esta

95

manera, el usuario podra determinar de forma explicita el nimero de gaussianas maximo,
determinando este la prioridad entre uso de recursos y calidad del resultado.

La adicién de este nuevo parametro dse hizo de la siguiente forma:
parser.add_argument ("--budget", type=int, default=1000000)

El valor definido por este parametro se utiliza como presupuesto global de gaussianas
(B) en la ecuacién cuadratica presentada anteriormente en la Seccién , que regula el
crecimiento progresivo de gaussianas durante el entrenamiento.

5.6. Control del crecimiento: experimentacién con pre-
supuesto fijo

Con el objetivo de comprobar cudl es el comportamiento del modelo al incorporar la ecua-
cion de crecimiento de gaussianas, se ha llevado a cabo una serie de experimentos, utilizando
como presupuesto B los valores maximos de gaussianas generadas en las ejecuciones originales
de 3DGSJ5] con densificacién activada Estos valores, que serviran como limite superior para
el nimero de gaussianas permitidas durante el entrenamiento, se detallan en la Tabla [5.8]

Escena Budget

Bicycle 4.652.308
Bonsai 1.040.856
Counter 919.028

Garden 3.638.595
Kitchen 1.385.668
Stump 4.103.252

Cuadro 5.8: Presupuesto maximo de gaussianas por escena, basado en los valores generados
por 3DGS base.

A pesar de establecer un niimero maximo de gaussianas, los resultados reflejan que el
nimero real de gaussianas generadas sobrepasa el valor objetivo. Esto indica que, si bien el
modelo es capaz de calcular el limite tedrico, como se observo en los experimentos basicos,
no existe ain un mecanismo efectivo que limite la creacion de nuevas gaussianas una vez
alcanzado dicho presupuesto.

La Tabla [5.9|resume los resultados obtenidos al aplicar tinicamente la ecuacién cuadratica
para controlar el crecimiento, sin incorporar técnicas de poda adicionales. Como se puede
observar, en todas las escenas el nimero final de gaussianas excede el presupuesto previamente
definido, acompanado de un mayor consumo de memoria y tiempo de entrenamiento.

26

Escena SSIM PSNR LPIPS N°© Gaussianas Memoria Maxima (GB) Tiempo

Bicycle 0.78 25.72 0.20 5.648.547 12.81 44m 24s
Bonsai 0.96 33.08 0.08 1.330.141 4.19 15m 34s
Counter 0.93 29.67 0.10 1.167.766 3.63 15m 50s
Garden 0.88 27.97 0.10 4.057.787 10.14 40m 12s
Kitchen 0.96 33.06 0.06 1.493.873 4.40 18m 9s
Stump 0.79 26.99 0.21 4.516.967 9.64 34m 35s

Cuadro 5.9: Resultados tras aplicar tinicamente la ecuacién cuadratica para controlar el
crecimiento, sin mecanismos adicionales de poda.

Este fendmeno se debe a que la ecuacién cuadratica tinicamente indica el nimero maximo
deseado de gaussianas en cada iteracion, pero no impide explicitamente que el sistema siga
creando mas. La densificacion contintia anadiendo nuevas gaussianas en cada paso sin un
control estricto que verifique si se ha excedido el objetivo actual.

En otras palabras, el modelo conoce el valor de referencia g(z), pero no actia en conse-
cuencia cuando lo sobrepasa, lo cual provoca un crecimiento descontrolado en las etapas del
entrenamiento.

Para ilustrar mejor esta hipotesis, se ha generado una figura que muestra el comporta-
miento tedrico del modelo cuando no existe un mecanismo de poda. En ella se representa
el crecimiento deseado (presupuesto), el crecimiento real del sistema, y el exceso acumulado
que se produce cuando se ignora el limite establecido.

1e6 Evolucién tedrica del nimero de gaussianas

—— Gaussianas generadas (real)
Presupuesto objetivo (target)

Exceso de gaussianas
1.2f J

1.0

0.8} >

0.6

0.4} /

0.2}

NUmero de gaussianas

0.0k

0 200 400 600 800 1000
Paso de entrenamiento

Ilustracion 5.18: Representacion tedrica del crecimiento del niimero de gaussianas sin control
de presupuesto. El area sombreada en rojo representa el exceso de gaussianas acumuladas
que deberian ser podadas.

27

Por ello, es conveniente desarrollar un mecanismo adicional de control, que elimine de
forma activa el exceso de gaussianas generadas para ajustarse al limite. Esta idea se abordara
en el siguiente apartado.

5.7. Planteamiento de la poda

En el aprendizaje automatico, la poda es una técnica utilizada para reducir la complejidad
de los modelos, eliminar redundancia y mejorar la eficiencia computacional.

Si se aplica esta idea a 3DGS[5], la poda hace referencia a eliminar gaussianas que se con-
sideran innecesarias o excedentes, ya sea porque se tiene que lograr un objetivo de gaussianas
o porque no son suficientemente significativas para la reconstruccion de la escena.

En el apartado anterior se observd que, tras implementar un mecanismo de crecimiento
controlado mediante una funcién cuadratica, el niimero real de gaussianas generadas puede
superar el objetivo establecido en cada iteracion. Esto ocurre porque, aunque se calcula
correctamente el presupuesto g(z) en cada paso, el sistema no elimina el exceso de gaussianas
ya existentes, provocando que el niimero total siga creciendo.

Por ello, se debe introducir un mecanismo adicional de poda que actiie cuando se detecte
un exceso de gaussianas respecto al valor objetivo. Este mecanismo podria consistir en:

1. Calcular cuantas gaussianas hay actualmente en el modelo.
2. Obtener el nimero méaximo deseado segin el paso actual del entrenamiento (target).

3. Determinar el exceso:

exceso_gaussianas = nimero_actual — target_gaussians

4. Si hay exceso, eliminar ese niimero de gaussianas del sistema.

Este proceso se puede llevar a cabo utilizando distintos criterios de seleccion para decidir
qué gaussianas eliminar.

Dado que el modelo no dispone de un mecanismo para eliminar gaussianas excedentes,
en el siguiente apartado se propone una primer estrategia de poda basada en la opacidad de
las gaussianas.

Esta decision surge a raiz de los analisis realizados en secciones anteriores, donde se
observo que el pardametro min_scale tiene una gran influencia en los resultados, pero su valor
6ptimo varia entre escenas. Por tanto, en lugar de utilizar este parametro como un umbral
fijo durante la densificacién, se plantea emplearlo como criterio dindmico para seleccionar
las gaussianas menos relevantes (aquellas con menor escala) cuando sea necesario reducir su
nimero.

o8

5.8. Implementacion de un mecanismo de poda basado
en escala

El primer intento para limitar el nimero de gaussianas durante el entrenamiento es un
mecanismo de poda basado en la escala de cada gaussiana. El planteamiento es que las
gaussianas de menor escala (es decir, que ocupan un espacio 3D méas pequeno) podrian tener
una menor contribucion visual, y por tanto, podrian ser candidatas para eliminarlas.

if excess gaussians > @:

scales = .get _scaling.max(dim=1).values

low scale indices = torch.argsort(scales)|[:excess gaussians]

mask = torch.ones(.get xyz.shape[0], dtype=bool, device="cuda")
mask[low scale indices] =

won

.prune_points(~mask)

[lustracion 5.19: Codigo Poda basada en escala

La Figura ilustra visualmente este procedimiento, donde se muestra cémo, tras la
densificacion, se seleccionan las gaussianas con menor escala y se eliminan para respetar el
presupuesto.

El procedimiento es el siguiente:
1. Se calcula el nimero de gaussianas excedentes como:
exceso_gaussianas = nimero_actual — target_gaussians
2. Si hay exceso, se calcula la escala maxima de cada gaussiana (valor maximo entre sus
tres componentes de escala).
3. Se ordenan las gaussianas por este valor maximo de escala, de menor a mayor.
4. Se eligen tantas gaussuanas con menor escalar como exceso exista.

5. Se genera una mascara booleana en la que estas gaussianas quedan marcadas como
False.

6. Finalmente, se aplica esta mascara al método prune_points(), eliminando asi las gaus-
sianas seleccionadas.

29

FILTRADO POR ESCALA

mask([i] = True

= o

Comienzo
Poda

Densificacion

PR
o

mask[i] = False

[lustracion 5.20: Ejemplo ilustrativo del mecanismo de poda basado en escala. Las gaussianas
con menor escala (en azul) son eliminadas para cumplir el presupuesto.

5.9. Implementacion de un mecanismo de poda basado
en opacidad

La estrategia de poda consiste en eliminar el nimero exacto de gaussianas necesarias
para volver al limite deseado en cada uno de los pasos del entrenamiento. Para seleccionar
cuales eliminar, se utiliza como criterio la opacidad: se asume que las gaussianas con menor
opacidad tienen una menor relevancia en la reconstruccion de la escena y, por tanto, pueden
ser descartadas con menor impacto.

if excess gaussians > O:

low opacity indices = torch.argsort(.get_opacity.squeeze())[:excess_gaussians]

mask = torch.ones(.get xyz.shape[@], dtype=bool, device="cuda™)
mask[low opacity indices] =

.prune_points(~mask)

[lustracion 5.21: Codigo Poda basada en opacidad

60

El procedimiento completo puede verse ilustrado en la Figura|5.22] donde se muestra como
se eliminan las gaussianas menos opacas para respetar el limite de presupuesto definido.

1. Se calcula el exceso de gaussianas como:

excess_gaussians — nUmero_actual — target_gaussians

2. Si el exceso es positivo, se ordenan todas las gaussianas segin su opacidad en orden
ascendente.

3. Se seleccionan los indices de las gaussianas con menor opacidad, correspondientes al
nimero en exceso.

4. Se construye una mascara booleana en la que estas gaussianas quedan marcadas como
False y el resto como True.

5. Finalmente, se aplica esta méascara inversa al método prune_points(), que elimina las
gaussianas seleccionadas del modelo.

FILTRADO POR OPACIDAD

1

r -

1 . !

V% |

H 1

:. !

H 1

! i

N0 %

1

® ! ® .

0 | '

| mask[i] = True :

| ! !

h 1

| 1

> C> .
0 0 o '
° Densificacion ® o&ls;zo: :
1

\ i

| 1

H 1

H 1

H 1

H 1

H 1

\ /l

[lustracion 5.22: Ejemplo ilustrativo del mecanismo de poda basado en opacidad. Las gaus-
sianas con menor opacidad son eliminadas para mantener el presupuesto.

61

Capitulo 6

Resultados Parciales

Este capitulo presenta los resultados parciales obtenidos tras implementar y evaluar dis-
tintos mecanismos de control del crecimiento de gaussianas en 3DGS[5]. En concreto, se
analizan los efectos de la poda basada en la escala, la poda basada en la opacidad y el uso de
un optimizador acelerado. Para cada estrategia, se explora el impacto de aplicar diferentes
presupuestos maximos de gaussianas (100 %, 75 % y 50 %) sobre métricas de calidad visual,
consumo de memoria y tiempo de entrenamiento.

6.1. Resultados con distintos presupuestos de gaussia-
nas para poda basada en escala

Una vez implementado el mecanismo de poda basado en escala descrito en el apartado
anterior, se ha procedido a evaluar su eficacia en la limitacién del crecimiento del ntimero
de gaussianas. Para ello, se realizaron varios experimentos utilizando distintos presupuestos
méaximos (budgets) de gaussianas para cada escena. Estos presupuestos se definieron como
un porcentaje del nimero total de gaussianas generadas en la version base de 3DGS[5] con
la densificacion activada.

En concreto, se probaron tres configuraciones:

o 100 %: presupuesto igual al ntimero de gaussianas de la version base.
e 75 %: reducciéon del presupuesto al 75 % del total original.

e 50 %: reduccion del presupuesto al 50 % del total original.

6.1.1. Presupuesto del 100 %

Para evaluar la efectividad del mecanismo de poda basado en la escala, se ha fijado un
presupuesto equivalente al 100% del nimero de gaussianas generadas por 3DGS[5] en su

62

versién base. Los resultados de esta evaluacién se presentan en la Tabla [6.1]

Cuadro 6.1: Resultados con poda por escala al 100 % del presupuesto.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo

Bicycle 0.77 25.60 0.23 4.650.215 7.98 40m 40s
Bonsai 0.95 31.53 0.10 1.036.104 2.96 13m 41s
Counter 0.92 29.51 0.12 915.634 2.50 14m 37s
Garden 0.87 27.88 0.11 3.637.795 6.93 37m 36s
Kitchen 0.96 32.88 0.06 1.378.580 3.22 17m 26s
Stump 0.78 26.98 0.22 4.101.465 6.27 33m 10s

A pesar de mantener el mismo presupuesto de gaussianas que 3DGS[5] base, se observa
una ligera caida en métricas como PSNR y SSIM en varias escenas. En particular, Bonsai,
Bicycle y Counter presentan descensos notables en la métrica PSNR con respecto a los valores
originales. Esto puede sugerir que la eliminacion basada en la escala puede afectar a gaussianas
relevantes para la reconstruccion, sobre todo en aquellas que tienen geometria muy compleja
y necesita de las gaussianas pequenas para afinar el detalle.

6.1.2. Presupuesto del 75 %

Para analizar el impacto de una reduccion mas agresiva del presupuesto de gaussianas, se
evalud el rendimiento del modelo aplicando un recorte al 75 % del presupuesto original. Los
resultados obtenidos se resumen en la Tabla [6.2

Cuadro 6.2: Resultados con poda por escala al 75 % del presupuesto.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo

Bicycle 0.74 25.07 0.27 3.483.177 9.48 35m H3s
Bonsai 0.94 30.89 0.11 774.691 3.33 12m 32s
Counter 0.91 29.20 0.14 682.355 2.87 13m 00s
Garden 0.86 27.67 0.13 2.725.224 8.10 33m 15s
Kitchen 0.95 32.40 0.06 1.034.968 3.68 15m 27s
Stump 0.71 25.70 0.32 3.071.245 7.41 28m 58s

Al reducir el presupuesto al 75 %, se evidencia atin més la pérdida de caldidad, especial-
mente en Bicycle y Stump, donde el PSNR y LPIPS empeoran significativamente. Si bien es
cierto que el tiempo y la memoria muestran un claro ahorro con respecto a 3DGS[5] Base, la
calidad visual se comienza a ver comprometida.

63

6.1.3. Presupuesto del 50 %

Para evaluar el limite inferior del presupuesto sin comprometer excesivamente la calidad,
se exploré un escenario de poda al 50 % del presupuesto original. Los resultados obtenidos
se muestran en la Tabla [6.3]

Cuadro 6.3: Resultados con poda por escala al 50 % del presupuesto.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo

Bicycle 0.70 24.42 0.31 2.320.719 7.95 29m 45s
Bonsai 0.91 28.88 0.15 515.413 2.93 11m 18s
Counter 0.89 28.66 0.16 452.867 2.51 11m 29s
Garden 0.84 27.18 0.17 1.812.736 6.64 28m 18s
Kitchen 0.93 30.90 0.10 686.367 3.16 13m 44s
Stump 0.52 22.53 0.47 2.046.523 2.78 24m 18s

Cuando se recorta al 50 % de las gaussianas, decae de forma drastica la calidad visual,
especialmente escenas como Stump, que pierde més de 4 puntos en PSNR y alcanza un valor
de LPIPS cercano al 0.5. El resto de escenas también presentan descensos en SSIM y PSNR,
lo puede resultar excesiva para aquellos casos en lo que sea necesario la calidad visual.

6.1.4. Conclusiones

Las métricas como PSNR y LPIPS se ven afectadas negativamente en la mayoria de esce-
nas, reflejando asi que el criterio de escala no siempre prioriza correctamente las gaussianas
mas relevantes.

Si bien es cierto que mejora la parte de eficiencia, reflejado en el tiempo, la memoria usada
y el numero de gaussianas generadas, esta mejora va acompanada de una pérdida objetiva
de calidad, especialmente en configuraciones mas restrictivas (75 % y 50 %). Esto limita lo
util que puede llegar a ser la poda por escala donde se requiere precisién visual.

64

6.2. Resultados con distintos presupuestos de gaussia-
nas para poda basada en opacidad

Al igual que la poda basada en escalaa desarrollada anteriormente, se probaron tres
presupuestos distintos para la poda basada en opacidad: 100 %, 75% y 50 % del ntimero de
gaussianas.

6.2.1. Presupuesto del 100 %

En primer lugar, se utiliza como limite el mismo nimero de gaussianas generadas en el
entrenamiento original con densificacién activada, es decir, un presupuesto del 100%. La
Tabla muestra los resultados obtenidos al aplicar la poda basada en opacidad bajo esta
condicién.

Cuadro 6.4: Resultados tras aplicar la poda con un presupuesto del 100 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo

Bicycle 0.78 25.75 0.20 4.645.749 11.29 40m 51s
Bonsai 0.96 33.04 0.08 1.033.780 3.73 14m 3s
Counter 0.93 29.75 0.10 916.420 3.23 14m 59s
Garden 0.88 27.95 0.10 3.635.310 9.50 38m 21s
Kitchen 0.95 32.48 0.06 1.379.504 4.23 17m 49s
Stump 0.79 26.95 0.21 4.099.971 9.03 33m 39s

Como puede observarse, la aplicacion de la poda permite mantener un ntimero de gaus-
sianas muy cercano al presupuesto deseado, con una ligera mejora en el uso de memoria y el
tiempo respecto al 3DGS[5] base. Las métricas de calidad visual se mantienen practicamente
intactas.

6.2.2. Presupuesto del 75 %

En el segundo experimento, se reduce el nimero maximo de gaussianas permitidas al
75 % del presupuesto original. El objetivo es analizar hasta qué punto se puede compactar el
modelo sin comprometer la calidad visual de las reconstrucciones. Los resultados obtenidos
tras aplicar la poda basada en opacidad con esta restriccion se resumen en la Tabla |6.5

65

Cuadro 6.5: Resultados tras aplicar la poda con un presupuesto del 75 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo

Bicycle 0.78 25.79 0.20 3.484.847 9.30 34m 50s
Bonsai 0.96 33.04 0.08 773.723 3.30 12m 30s
Counter 0.93 29.70 0.10 684.763 2.84 13m 33s
Garden 0.88 27.96 0.10 2.724.573 7.98 33m 19s
Kitchen 0.96 32.74 0.06 1.032.618 3.66 15m 51s
Stump 0.79 27.02 0.21 3.074.099 7.37 29m 50s

Los resultados muestran que, con un recorte del 25 %, el modelo logra mantener una cali-
dad casi idéntica, mientras que se reducen los recursos necesarios. Es especialmente destacable
la estabilidad de las métricas en escenas como Bonsai y Kitchen.

6.2.3. Presupuesto del 50 %

Finalmente, se evalia un escenario mas agresivo, reduciendo el presupuesto al 50 % del
valor original. El objetivo es comprobar si esta simplificacién impacta de forma significativa
en la reconstruccion de las escenas, tanto en calidad visual como en recursos computacionales.
Los resultados de este experimento se recogen en la Tabla [6.6]

Cuadro 6.6: Resultados tras aplicar la poda con un presupuesto del 50 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo

Bicycle 0.78 25.76 0.22 2.321.167 7.37 2Tm 18s
Bonsai 0.96 32.81 0.09 515.413 2.88 10m 22s
Counter 0.93 29.56 0.11 452.867 2.46 10m 53s
Garden 0.87 27.87 0.12 1.814.211 6.50 26m 3s
Kitchen 0.95 32.79 0.06 686.163 3.09 13m 10s
Stump 0.79 27.00 0.22 2.048.184 5.71 24m 4s

Es cierto que se observa una leve caida en métricas como LPIPS, la calidad visual global
sigue siendo sorprendentemente buena. A cambio, se consigue una mejora significativa en
rendimiento, memoria y tiempo.

6.2.4. Conclusiones

Los resultados de los experimentos reflehan que la poda basada en opacidad es apa-
rentemente eficaz para controlar el crecimiento de gaussianas durante el entrenamiento de

3DGSA.

66

Ademas, el mecanismos logra una reduccién seignificativa en el uso de memoria y en el
tiempo de entrenameinto, sin comprometer en exceso las métricas de calidad de imagen.

Se concluye que la combinacién de una funciéon de crecimiento controlado con una po-
da basada en opacidad representa una solucién acertada que permite equilibrar calidad y
eficiencia en la reconstruccion de escenas 3D.

6.3. Resultados con optimizador acelerado y poda ba-
sada en opacidad

Con el objetivo de acelerar el proceso de entrenamiento sin comprometer la calidad, se ha
decidido utilizar el optimizador acelerado incluido en el repositorio de 3DGS. Esta version
agrega un rasterizador optimizado y un nuevo tipo de optimizador llamado sparse_adam, el
cual ofrece una mejora significativa en el rendimiento.

Segun los autores del repositorio, este optimizador puede alcanzar hasta una aceleracion
de entrenamiento de 2.7x en comparacion con la version estandar.

Este ha sido utilizado para realizar los experimentos con poda basada en opacidad. A con-
tinuacién se muestran los resultados para tres presupuestos diferentes de gaussianas: 100 %,
75 % v 50 %.

6.3.1. Resultados con presupuesto del 100 % y optimizador acele-
rado

Con el objetivo de evaluar el impacto del optimizador acelerado en combinacién con un
presupuesto limitado, se ha ejecutado un experimento manteniendo el 100 % del presupuesto
original de gaussianas, junto con el mecanismo de poda por opacidad. La Tabla muestra
los resultados obtenidos.

Cuadro 6.7: Resultados con optimizador acelerado y poda por opacidad al 100 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo

Bicycle 0.77 25.66 0.23 4.497.435 10.81 20m 21s
Bonsai 0.96 33.03 0.08 1.034.734 3.75 8m 4s
Counter 0.93 29.71 0.01 911.972 3.45 9m
Garden 0.87 27.90 0.11 3.423.012 9.10 20m 52s
Kitchen 0.95 32.75 0.06 1.380.211 4.40 11m 37s
Stump 0.78 26.95 0.22 3.980.451 8.52 16m 36s

Los resultados muestran que, al mantener el presupuesto original de gaussianas y com-
binarlo con poda basada en opacidad y el optimizador acelerado, se consigue preservar la

67

calidad visual de las escenas practicamente intacta. Métricas como SSIM[29] y LPIPS[3] se
mantienen estables, mientras que el tiempo de entrenamiento se reduce drasticamente en
comparacion con el modelo original, demostrando la eficiencia del nuevo enfoque sin compro-
meter calidad visual.

6.3.2. Resultados con presupuesto del 75 % y optimizador acele-
rado

A continuacion, se presenta un nuevo experimento donde se reduce el presupuesto de
gaussianas al 75 % del valor original, combinando esta limitacién con el uso del optimizador
acelerado y un mecanismo de poda basado en opacidad. La Tabla resume los resultados
obtenidos en las distintas escenas.

Cuadro 6.8: Resultados con optimizador acelerado y poda por opacidad al 75 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo

Bicycle 0.77 25.65 0.23 3.488.527 9.44 18m 35s
Bonsai 0.96 32.91 0.08 773.813 3.32 7m 8s
Counter 0.93 29.65 0.10 684.289 2.96 8m 2s
Garden 0.87 27.88 0.11 2.727.018 8.07 19m 5s
Kitchen 0.95 32.72 0.06 1.033.967 3.80 9m 54s
Stump 0.78 26.96 0.22 3.075.811 7.29 15m 25s

Al reducir el presupuesto de gaussianas al 75 %, se mantienen métricas de calidad casi
iguales a las del caso del 100 %, con una ganancia adicional en eficiencia, por lo que es posible
disminuir el nimero de gaussianas sin afectar de forma notable la calidad visual.

6.3.3. Resultados con presupuesto del 50 % y optimizador acele-
rado

Para explorar aiin mas la eficiencia del sistema, se ha llevado a cabo un experimento
reduciendo el presupuesto de gaussianas al 50 %, manteniendo tanto el optimizador acelerado
como la poda por opacidad. La Tabla recoge los resultados obtenidos en este escenario
mas restrictivo.

68

Cuadro 6.9: Resultados con optimizador acelerado y poda por opacidad al 50 %.

Escena SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo

Bicycle 0.77 25.66 0.23 2.322.018 7.46 15m 15s
Bonsai 0.96 32.71 0.09 515.413 2.92 Tm 1s
Counter 0.92 29.47 0.11 452.867 2.56 Tm 5s
Garden 0.87 27.77 0.12 1.812.716 6.60 15m 54s
Kitchen 0.95 32.27 0.06 686.367 3.20 8m 7s
Stump 0.78 26.96 0.23 2.046.729 5.69 13m 15s

Incluso con solo el 50 % del presupuesto original de gaussianas, el modelo es capaz de
mantener una calidad visual muy similar. Aunque se observan ligeros cambios en algunas
métricas, como PSNR o LPIPS, estas se mantienen dentro de margenes aceptables. Ademas,
la reduccién en el tiempo de entrenamiento y el uso de memoria es significativa.

6.4. Resultados generales

Como se puede observar en la Tabla[6.10], la estrategia de poda basada en la escala consigue
reducir bastante el nimero de gaussianas y el consumo de memoria VRAM. No obstante, esta
reduccion también supone una pérdida considerable en las métricas de calidad, especialmente
cuando se reduce el presupuesto al 50 %. En concreto, la métrica SSIM cae hasta de un valor
de 0.888 a un valor de 0,80 y el PSNR desciende hasta los 27,10, lo que refleja descenso en
la calidad visual de las escenas reconstruidas bastante importante.

Presupuesto SSIM PSNR LPIPS N¢ Gaussianas Max Mem (GB) Tiempo

3DGS Base 0,88 29,26 0,12 2.623.284 6,78 25m

100 % Escala 0,88 29,06 0,14 2.619.965 4,98 26m 20s
75 % Escala 0,85 28,49 0,17 1.961.943 5,81 23m 20s
50 % Escala 0,80 27,10 0,23 1.305.770 4,76 19m 50s

Cuadro 6.10: Resultados con poda basada en escala para diferentes presupuestos de gaussia-
nas.

Por otro lad, la Tabla [6.11] muestra que la poda basada solamente en opacidad presenta
un mejor equilibrio entre calidad y eficiencia. A diferencia del método anterior, esta técnica
consigue mantener las métricas de calidad casi intactas, incluso al reducir el nimero de
gaussianas al 75%. Es importante destacar que, aunque al 50 % se empieza a observar un
ligero descenso en las métricas, los valores obtenidos siguen siendo aceptables y mucho mejores
que los alcanzados mediante la poda por escala. De hecho, el valor del PSNR se matinene
superior al del caso base.

69

Presupuesto = SSIM PSNR LPIPS N¢ Gaussianas Max Mem (GB) Tiempo

3DGS Base 0,88 29,26 0,12 2.623.284 6,78 25m

100 % Opacidad 0,88 29,32 0,14 2.618.455 6,84 26m 40s
75 % Opacidad 0,88 29,38 0,13 1.962.437 5,74 23m 10s
50 % Opacidad 0,88 29,29 0,14 1.306.334 4,67 18m 40s

Cuadro 6.11: Resultados con poda basada en opacidad para diferentes presupuestos de gaus-
sianas.

Por ultimo, la Tabla recoge los resultados obtenidos al combinar la poda por opacidad
con el optimizador acelerado propuesto en 3DGS. Esta combinacién parece ser el método
mas eficiente de todos las evaluados, consiguiendo reducir de forma significativa los tiempos
de entrenamiento, llegando incluso a entrenar escenas completas en menos de la mitad del
tiempo necesario en la version base. Ademas, en cuanto a calidad, se mantienen practicamente
idénticas, incluso con un presupuesto del 50 % de gaussianas, lo que demuestra que el método
implantado es un éxito.

Presupuesto SSIM PSNR LPIPS N€¢ Gaussianas Max Mem (GB) Tiempo

3DGS Base 0,88 20,26 0,12 2.623.284 6,78 25m
100% + Opt 0,88 29,33 0,12 2.537.969 6,68 14m 158
75% + Opt 088 2930 0,13 1.963.904 5,81 13m
50% + Opt 0,88 29,14 0,14 1.306.018 4,74 11m

Cuadro 6.12: Resultados con optimizador acelerado y poda basada en opacidad para diferen-
tes presupuestos de gaussianas.

En resumen, a pesar de que las configuraciones con un presupuesto del 75 % en la poda
por opacidad presentan métricas ligeramente superiores, el objetivo de este Trabajo de Fin
de Grado se centra en reducir al maximo el consumo de recursos sin comprometer drastica-
mente la calidad visual. Por ello, se considera que el presupuesto del 50 % en combinacion
con la poda basada en opacidad y el optimizador acelerado representa la opcién mas ade-
cuada, al permitir una reduccién significativa de recursos manteniendo una calidad visual
practicamente indistinguible de la version base.

70

Capitulo 7

Resultados

En este capitulo recoge los principales resultados obtenidos tras aplicar distintas estrate-
gias de entrenamiento en 3D Gaussian Splatting (3DGS)[5]. El objetivo es evaluar, tanto de
forma cuantitativa como cualitativa, el impacto de técnicas como el control de presupuesto,
la poda de gaussianas y la aceleracién del proceso de optimizacion. Se busca identificar com-
binaciones que mantengan una calidad visual alta mientras reducen significativamente el uso
de recursos computacionales.

7.0.1. Resultados cuantitativos y comparativa de estrategias

A continuacion se presentan los resultados obtenidos con distintas configuraciones del
pipeline de entrenamiento de 3D Gaussian Splatting (3DGS)[5], incluyendo entrenamientos
con y sin parches, con limitacién por presupuesto (budget), técnicas de poda y optimiza-
ciones para acelerar el entrenamiento. El objetivo de estos experimentos fue encontrar una
solucién que mantuviera una calidad visual elevada reduciendo los recursos computacionales
necesarios.

Se decidi6 fijar el budget en un 50 % del modelo base, ya que supuso una reduccién
significativa en el nimero de gaussianas y en el tiempo de entrenamiento, sin llegar a degradar
de forma notable la calidad visual. A partir de valores menores, se observé una pérdida de
fidelidad perceptible en las imégenes reconstruidas.

La Tabla muestra un resumen de los resultados mas representativos. Se incluyen
experimentos con nimero variable de parches, asi como distintas técnicas de poda (por escala
y por opacidad), con y sin optimizacion acelerada.

71

Cuadro 7.1: Resumen de resultados con distintas configuraciones del pipeline 3DGS.

Nombre SSIM PSNR LPIPS Gaussianas Max Mem (GB) Tiempo
3DGS Base 088 2926 0,12 2.623.284 6,78 25m

3DGS 2 Patches 088 2800 0,13 3.269.690 7,74 26m 355
3DGS 4 Patches 0,87 28,19 0,15 3.857.668 8,66 28m 35s
3DGS Budget (50 %) + Poda Escala 0,80 27,10 0,23 1.305.770 4,76 17m 40s
3DGS Budget (50 %) 4+ Poda Opacidad 0,88 29,30 0,14 1.306.334 4,66 18m 35s
3DGS Budget (50 %) 4+ Poda Opacidad + Aceleraciéon 0,88 29,14 0,14 1.306.017 4,74 11m

Entrenamiento por Parches. Al entrenar con multiples parches, se observa un ligero
empeoramiento en la calidad de reconstruccion conforme aumenta su ntmero, especialmente
a partir de 4, donde la PSNR cae a 28,19 y LPIPS[3] aumenta a 0,15, lo que se traduce en
una ligera pérdida de nitidez.

Control del presupuesto. El uso del pardmetro —densify_budget con un limite del 50 %
permiti6 reducir las gaussianas generadas casi a la mitad (de mas de 2,6 millones a unos
1,3 millones), lo cual disminuy6 la memoria maxima usada y el tiempo de entrenamiento sin
comprometer en exceso la calidad.

Poda por escala vs. opacidad. La poda por escala resulté ser demasiado agresiva,
reduciendo considerablemente la PSNR y aumentando el LPIPS[3]. Por el contrario, la poda
por opacidad logré mantener niveles de calidad muy similares al modelo original, siendo por
tanto una técnica mas efectiva.

Aceleraciéon del optimizador. Finalmente, al aplicar la optimizacion propuesta en el
repositorio 3dgs-accel, que sustituye el rasterizador original y acelera el computo del gra-
diente, se consiguié reducir el tiempo total de entrenamiento a sélo 11 minutos, manteniendo
métricas de calidad similares al modelo base. Esta opcion representa la mejor relacion entre
rendimiento y coste computacional.

7.1. Analisis cualitativo de las reconstrucciones

Ademas de las métricas numéricas presentadas anteriormente, se realiza a continuacién un
analisis visual de las reconstrucciones obtenidas para distintas escenas. Este analisis permite
evaluar mejor el impacto perceptual de las técnicas propuestas mas prometedoras de las que
han sido desarrolladas y observar de manera directa las diferencias mas relevantes entre los
distintos modelos.

A continuacién, se analizan de forma individual las algunas de las escenas utilizadas.

72

7.1.1. Escena 1 — Bonsai

En esta primera escena se aprecia como las métodos que usan poda no sélo consiguen
reducir de forma drastica el niimero de gaussianas, memoria y tiempo de entrenamiento, sino
que ademas logran mantener o incluso mejorar algunos detalles especificos respecto al modelo
base.

Tal y como se indica en la Ilustracién [7.0], el modelo base genera aproximadamente
1.040.856 gaussianas, mientras que las configuraciones con poda al 50 % reducen esta ci-
fra a tan solo 515.413, lo que supone un ahorro del 50 % en primitivas. Este cambio también
se traduce en una reduccién sustancial del uso de memoria (de 3.74 GB a 2.88-2.92GB) y
en tiempos de entrenamiento que pasan de 12m 50s a tan solo 7m 1s con el optimizador
acelerado.

GT 3DGS Base Poda Opacidad (50%) Poda (50%) + Acelerador

PSNR: 33.01 G: 1.040.856 PSNR: 32,81 G:515.413 PSNR: 32,71 G:515.413
Memoria: 3.74 Tiempo: 12m 50s Memoria: 2,88 Tiempo: 10m 22s Memoria: 2,92 Tiempo: 7m 1s

[ustracién 7.1: Comparativa visual para la escena Bonsai. Se muestran las reconstrucciones
obtenidas con el modelo base y las distintas configuraciones de poda y aceleracién. En la
parte inferior se amplian detalles de la zona marcada en rojo.

En cuanto a las métricas, los métodos con poda (50 %) presentan un PSNR ligeramente
inferior al modelo base. Sin embargo, la reduccién de gaussianas es muy significativa, pasando
de més de un millén a apenas unas 515.000, lo cual se puede traducir en un menor uso de
memoria y tiempos de entrenamiento mucho mas reducidos.

A nivel visual, si se compara el detalle ampliado en la parte inferior de la figura, se observa
que los métodos con poda son capaces de preservar mejor ciertos reflejos y brillos en el hierro
de la bicicleta, aportando un aspecto mas limpio y definido en comparacion con el método
base, que tiende a difuminar ligeramente estos detalles.

73

7.1.2. Escena 2 — Garden

En esta escena se aprecia una ligera ventaja de las técnicas con poda en cuanto a eficiencia
y calidad visual. A nivel numérico, las técnicas de poda por opacidad y aceleracién presentan
un menor nimero de gaussianas (alrededor de 1,8 millones frente a los mas de 3,6 millones
del método base), una reduccién considerable en el uso de memoria (6,5-6,6 GB frente a 9,43
GB) y un tiempo de entrenamiento notablemente menor, especialmente cuando se utiliza
aceleracion (15 minutos frente a 35 minutos del método base).

En cuanto a calidad, las métricas PSNR se mantienen estables respecto al modelo base,
incluso ligeramente superiores para la poda de opacidad.

Desde el punto de vista perceptual, observando la ampliacién de la zona metalica del
suelo, se aprecia que el método base introduce unos reflejos o tonos mas claros que no estan
presentes en la imagen original (GT). Este efecto parece ser una reconstruccién excesivamente
brillante, lo que puede deberse a una mayor cantidad de gaussianas que buscan sobreajustarse
a la zona local. Por el contrario, las técnicas con poda consiguen una apariencia més realista
y ajustada a la referencia, evitando estos comportamiento de refleccion.

La Figura muestra una comparativa visual completa de la escena Garden, incluyendo
una ampliacién de la zona metdlica del suelo. En dicha ampliacién se aprecian diferencias
relevantes: el modelo base introduce un brillante alrededor del objeto, que no esta presente
en la imagen original (GT). Por el contrario, las técnicas con poda eliminan este artefacto,
generando una reconstruccién mas realista y fiel a la escena, sin sobreajustes ni reflejos
artificiales.

GT 3DGS Base Poda Opacidad (50%) Poda (50%) + Acelerador

PSNR: 27.83 G:3.638.595 PSNR: 27,87 G:1.814.211 PSNR: 27,77 :1.814.712
Memoria: 9.43 Tiempo: 35m 35s Memoria: 6,5 Tiempo: 26m 3s Memoria: 6,6 Tiempo: 15m 54s

[ustraciéon 7.2: Comparativa visual de la escena Garden. Las técnicas con poda evitan arte-
factos brillantes o reflejos anadidos por el modelo base.

74

7.1.3. Escena 3 — Kitchen

En la escena Kitchen se observan de nuevo mejoras significativas en cuanto a eficiencia al
aplicar técnicas de poda y aceleracién. El ntimero de gaussianas se reduce aproximadamente
a la mitad (de 1,38 millones a 686 mil), disminuyendo el consumo de memoria (de 4,21 GB
a unos 3,1 GB) y el tiempo de entrenamiento (de 16 minutos a tan solo 8 minutos con
aceleracion).

En términos de calidad visual, las métricas PSNR se mantienen en niveles similares al
modelo base, aunque en el caso de la poda con opacidad aumenta un poco, lo que indica que
el proceso de poda no afecta de manera significativa a la fidelidad global de la reconstruccion.

Sin embargo, observando la ampliacién de la zona seleccionada, se aprecia un compor-
tamiento interesante respecto al patréon de la valla o estructura metalica situada al fondo.
En este caso, los métodos que aplican poda (tanto por opacidad como con poda y acelera-
dor) logran representar de forma mas clara y definida el patrén de lineas y la forma de la
estructura.

La Figura muestra una comparativa visual entre las distintas configuraciones. En la
ampliacion de la zona seleccionada, se aprecia un comportamiento interesante en el patron
de la valla metélica al fondo: las técnicas con poda (ya sea con o sin aceleracién) logran
representar de forma mas clara y definida las lineas y formas de dicha estructura.

GT 3DGS Base Poda Opacidad (50%) Poda (50%) + Acelerador

PSNR:32.53 G:1.385.668 PSNR: 32.79 G:686.163 PSNR: 32.27 G:686.367
Memoria: 4.21 Tiempo: 16m 39s Memoria: 3.09 Tiempo: 13m 10s Memoria: 3.2 Tiempo: 8m 7s

[ustracién 7.3: Comparativa visual de la escena Kitchen. Las técnicas con poda simplifican
algunas estructuras de alta frecuencia como el patrén de la valla.

Por el contrario, el modelo base presenta mayores dificultades para reproducir este detalle
fino, generando un resultado mas difuminado, poco definidos y en alguna ocasién, bastante
ruidoso en dicha region. Esto podria indicar que los mecanismos de poda favorecen una
representacion mas precisa en las zonas de mayor importancia visual o contraste, evitando el
solapamiento de gaussianas irrelevantes.

75

En cualquier caso, este resultado refuerza la idea de que las técnicas de poda no solo
permiten reducir recursos computacionales, sino que en algunos escenarios pueden incluso
potenciar la calidad visual percibida en determinadas estructuras.

7.1.4. Escena 4 — Bicycle

En esta escena se puede apreciar un claro ejemplo de cémo las técnicas de poda y acelera-
cién permiten reducir de forma significativa los recursos computacionales manteniendo una
calidad visual decente.

A nivel de métricas, la poda por opacidad (50 %) muestra los mejores resultados globales
en cuanto a PSNR, niimero de gaussianas y uso de memoria. Esto confirma que, para esta
escena, la reduccion controlada mediante opacidad permite conservar mejor la calidad de la
reconstruccion.

La combinacién de poda y acelerador muestra un PSNR ligeramente inferior al método
base, pero mantiene una calidad visual global muy similar, consiguiendo ademas de esto, un
tiempo de entrenamiento considerablemente menor, lo cual supone una mejora significativa
en eficiencia.

La Figura muestra una comparativa visual detallada. En la parte inferior, se observa
que las técnicas de poda son capaces de afinar mejor los detalles pequenos, como las hojas y
ramas en la parte superior de la imagen. A pesar de tener un PSNR algo inferior, los métodos
con poda por opacidad consiguen preservar mejor las texturas finas y los elementos del fondo
respecto al método base, lo que evidencia ciertas limitaciones de las métricas numéricas para
capturar la calidad perceptual.

GT 3DGS Base Poda Opacidad (50%) Poda (50%) + Acelerador

TR T e ? TEY T 2 &

TEYS =

PSNR:25.69 G:4.652.308 PSNR: 25.76 G:2.321.167 PSNR:25.66 ~ G:2.322.018
Memoria: 11.11 Tiempo: 37m 8s Memoria: 7.37 Tiempo: 27m 18s Memoria: 7.46 Tiempo: 15m 15s

[lustracion 7.4: Comparativa visual para la escena Bicycle. Se muestran las reconstrucciones
obtenidas con el modelo base y las distintas configuraciones de poda y aceleracién. En la
parte inferior se amplian detalles de la zona marcada en rojo.

76

Capitulo 8

Conclusiones y trabajo futuro

8.1. Conclusiones

Durante este proyecto se ha llevado a cabo un estudio sobre la optimizacion del proceso de
densificacién dentro de 3DGS[5], comenzando por un andlisis paramétrico de los hiperparame-
tros mas relevantes del proyecto base para llegar a una comprension del funcionamiento de
los mismo y, finalizando con el desarrollo de diferentes mecanismos orientados a controlar y
mejorar el crecimiento de este modelo.

Los principales ojetivos planteados inicialmente se han cumplido satisfactoriamente. Se
ha conseguido controlar de maneara efectiva el nimero de gaussianas generadas durante
el entrenamiento del modelo mediante la implementacion de presupuestos de gaussianas y
mecanismos de poda, reduciendo asi el tamano final del modelo sin afectar drasticamente a
la calidad visual de las escenas.

Por otro lado, se han planteado y evaluado distintas estrategias de poda basadas en
propiedades de las propias gaussianas, como la escala o la opacidad, evidenciando que es
posible eliminar un porcentaje elevado de gaussianas sin provocar un descenso significativo

en las métricas de calidad (SSIM, PSNR, LPIPS).

Adicionalemnte, se hizo uso de recursos y mejoras que los propios autores del repositorio
de 3DGSJ[5] anaden, como puede ser el acelerador del optimizador, permitiendo reducir méas
el tiempo de entrenamiento de las escenas, a pesar de que haya que pagar un minimo precio
de calidad.

Este trabajo desarrollado no solo ha permitido alcanzar los objetivos iniciales, sino que
sienta las bases para futuras lineas de investigacion orientadas a seguir mejorando la eficiencia
y la escalabilidad de este tipo de representaciones.

7

8.2. Trabajo futuro

A partir de los resultados y las metodologias desarrolladas previamente, se abren diversas
lineas de trabajo futuro que permitirian continuar mejorando el control, la eficiencia y la
calidad de las representaciones generadas en 3DGS[5].

8.2.1. Anadlisis avanzado del parametro k en la funcién de presu-
puesto

El parametro k actia como pendiente inicial dentro de la ecuacion cuadratica que regula el
crecimiento del nimero de gaussianas durante el entrenamiento. Un andlisis futuro interesante
consistiria en evaluar experimentalmente diferentes valores de k, méas alla del valor base
k = 2(37]\75) propuesto en este trabajo, con el objetivo de estudiar su influencia sobre la
calidad final, el consumo de recursos y la velocidad de convergencia del modelo.

Ademas, se podria explorar un mecanismo de ajuste dindmico de k durante el entrena-
miento, haciendo que su valor no sea constante sino que dependa de la complejidad de la
escena, la densidad local de gaussianas o el ritmo de mejora de la funcién de pérdida.

Una posible mejora podria ser emplear una funcién k(x), dependiente del paso x, o incluso
definir k£ en funcién de la tasa de gradiente medio en las gaussianas:

k(x) = a- mean (|[VoL]|) + 0 (8.1)

Donde:

— VL representa el gradiente de la funcién de pérdida respecto a los pardmetros del
modelo.

— mean(-) indica que se calcula el promedio de la magnitud de los gradientes de todas las
gaussianas.

— « es un parametro de escala que regula la sensibilidad del sistema al valor del gradiente.

— [es un término independiente que actiia como crecimiento minimo, incluso cuando los
gradientes son bajos.

La raiz de este pensamiento es que cuanto mas alto es el valor de los gradientes mas esta
aprendiendo el modelo y, por tanto, se deberia permitir un mayor crecimiento del niimero de
gaussianas. Por el contrario, cuando los gradientes decrecen y tienden a valores bajos, esto
suele indicar que el modelo ha convergido o que las nuevas gaussianas tienen poco impacto
en la pérdida, por lo que conviene frenar el crecimiento y evitar la generacion innecesaria de
puntos.

78

8.2.2. Presupuesto local adaptativo

Otra linea de mejora podria combinar la propuesta de parches y la propuesta del presu-
puesto, donde el concepto de presupuesto global se mueve a un presupuesto local adaptativo,
donde diferentes regiones de la escena dispongan de un niimero méaximo de gaussianas dife-
rente, en funcion de su complejidad geométrica o visual.

Por ejemplo, si hay zonas planas, monotonas o de baja variacion podrian tener un pre-
supuesto mas bajo, mientras que regiones con alta curvatura, fuertes gradientes de color o
cambios de tonalidad requeririan un presupuesto superior.

8.2.3. Mecanismos de poda multi-parametro
El sistema de poda actual estd basado en un solo pardmetro (escala u opacidad). Un
trabajo futuro interesante podria consistir en definir un score ponderado que combine di-

versos atributos de las gaussianas: escala, opacidad, gradiente acumulado, cercania a otras
gaussianas o incluso informacion de los coeficientes de color.

Este score podria ser de la forma:

Score; = A\ - a; + Ao - Scale; + A3 - Grad; + Ay - Density; (8.2)

donde los pesos \; serian hiperparametros o valores que se puedan aprender.

79

Bibliografia

1]

2]

Johannes L. Schonberger. Colmap: Structure-from-motion and multi-view stereo. https:
//demuc.de/colmap/. Accedido: 11 de abril de 2025.

R. Arizan and B. Hassibi. Descenso de gradiente estocasti-
co (sgd), 2019. Imagen consultada en ResearchGate, subida por
Angel Sanchez Ruiz. Disponible en: |https://www.researchgate.net/figure/
Figura-3511-Descenso-de-gradiente-estocastico-SGD- Arizan-R-y-Hassibi-B-2019_
fig9_344388136.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric. arXiv preprint ar-
Xiv:1801.0592/, 2018. Accedido: 11 de abril de 2025.

The Brainy Insights. 3d rendering market size by deployment type (cloud and
on-premise), application (animation, product design & modelling, visualization
& simulation and others), organization size (smes and large enterprise), re-
gions, global industry analysis, share, growth, trends, and forecast 2023 to 2032.
https://www.thebrainyinsights.com /report /3d-rendering-market- 139364 :~:text=The%
20global%203D%20Rendering %20market, USD %2034.57%20Billion%20by %202032,
2023. Accedido: 11 de abril de 2025.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaus-
sian splatting for real-time radiance field rendering. arXiv preprint arXiv:2306.00988,
2023. Accedido: 11 de abril de 2025.

Python Software Foundation. Python documentation. https://www.python.org/doc/,
2025. Accedido: 11 de abril de 2025.

PyTorch Team. Pytorch documentation. https://pytorch.org/docs/stable/index.html.
Accedido: 11 de abril de 2025.

Matplotlib Team. Matplotlib 3.10.1 documentation. https://matplotlib.org/stable/
index.html. Accedido: 11 de abril de 2025.

TensorFlow Team. Tensorboard: el kit de herramientas de visualizacion de tensorflow.
https://www.tensorflow.org/tensorboard7hl=es-419. Accedido: 11 de abril de 2025.

80

https://demuc.de/colmap/
https://demuc.de/colmap/
https://www.researchgate.net/figure/Figura-3511-Descenso-de-gradiente-estocastico-SGD-Arizan-R-y-Hassibi-B-2019_fig9_344388136
https://www.researchgate.net/figure/Figura-3511-Descenso-de-gradiente-estocastico-SGD-Arizan-R-y-Hassibi-B-2019_fig9_344388136
https://www.researchgate.net/figure/Figura-3511-Descenso-de-gradiente-estocastico-SGD-Arizan-R-y-Hassibi-B-2019_fig9_344388136
https://www.thebrainyinsights.com/report/3d-rendering-market-13936#:~:text=The%20global%203D%20Rendering%20market,USD%2034.57%20Billion%20by%202032
https://www.thebrainyinsights.com/report/3d-rendering-market-13936#:~:text=The%20global%203D%20Rendering%20market,USD%2034.57%20Billion%20by%202032
https://www.python.org/doc/
https://pytorch.org/docs/stable/index.html
https://matplotlib.org/stable/index.html
https://matplotlib.org/stable/index.html
https://www.tensorflow.org/tensorboard?hl=es-419

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[22]

GeoGebra Team. Geogebra. https://www.geogebra.org/. Accedido: 11 de abril de 2025.
Docker documentation. https://www.docker.com/. Accedido: 11 de abril de 2025.

Jira - software de gestién de proyectos. https://www.atlassian.com/. Accedido: 11 de
abril de 2025.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. arXiv preprint arXiv:2003.08934, 2020. Accedido: 11 de abril de 2025.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neu-
ral graphics primitives with a multiresolution hash encoding. ACM Transactions on

Graphics (TOG), 41(4):102, 2022.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-
Brualla, and Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing
neural radiance fields. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5855—-5864, 2021.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-
Brualla, and Pratul P Srinivasan. Mip-nerf 360: Unbounded anti-aliased neural radiance
fields. In Proceedings of the IEEE/CVE Conference on Computer Vision and Pattern
Recognition, pages 5470-5479, 2022.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org,.

Johannes L. Schonberger and Jan-Michael Frahm. Structure-from-motion revisited.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4104-4113, 2016. Accedido: 11 de abril de 2025.

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vicente Carrasco,
Markus Steinberger, and Fernando De La Torre. Taming 3dgs: High-quality radiance
fields with limited resources. arXiv preprint arXiv:2406.15643, 2024. Accedido: 11 de
abril de 2025.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact
3d gaussian representation for radiance field. arXiv preprint arXiv:2311.13681, 2023.
Accedido: 11 de abril de 2025.

Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Yang-Che Tseng,
Hossam Isack, Abhishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi. 3d gaussian
splatting as markov chain monte carlo. arXiv preprint arXiv:2404.09591, 2024. Accedido:
11 de abril de 2025.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th International Conference on Machine Learning

(ICML), 2011.

81

https://www.geogebra.org/
https://www.docker.com/
https://www.atlassian.com/
http://www.deeplearningbook.org

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv pre-
print arXiw:1609.04747, 2016.

Chengbo Wang, Guozheng Ma, Yifei Xue, and Yizhen Lao. Faster and better 3d splatting
via group training. arXiv preprint arXiv:2412.07608, 2024. Accedido: 11 de abril de 2025.

Jonathan T. Barron. Mip-nerf 360 dataset. https://jonbarron.info/mipnerf360/. Acce-
dido: 23 de abril de 2025.

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality as-
sessment: From error visibility to structural similarity. arXiv preprint arXiv:2006.13846,
2020. Accedido: 23 de abril de 2025.

ScienceDirect. Peak signal-to-noise ratio (psnr). https://www.sciencedirect.com/
topics/computer-science /peak-signal-to-noise-ratio#:~:text=Peak%20Signal %2Dto%
2DNoise%20Ratio, better%20quality %20by%20reducing%20noise.. Accedido: 23 de abril
de 2025.

Richard Zhang. Lpips: Learned perceptual image patch similarity. https://github.com/
richzhang/PerceptualSimilarity. Accedido: 23 de abril de 2025.

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEFE Transactions on Image
Processing, 13(4):600-612, 2004. Accedido: 11 de abril de 2025.

Kai Zhang, Gernot Riegler Li, Noah Snavely, and Vladlen Koltun. Nerf+-+: Analyzing
and improving neural radiance fields. arXiv preprint arXiv:2010.11929, 2020. Accedido:
23 de abril de 2025.

Lingjie Liu, Ben Mildenhall, Matthew Tancik, Vincent Sitzmann, Srinath Sridhar,
Stephen Lombardi, and Matthias Niefiner. Nsvf: Neural sparse voxel fields. arXiv pre-
print arXiv:2002.05709, 2020. Accedido: 23 de abril de 2025.

82

https://jonbarron.info/mipnerf360/
https://www.sciencedirect.com/topics/computer-science/peak-signal-to-noise-ratio#:~:text=Peak%20Signal%2Dto%2DNoise%20Ratio,better%20quality%20by%20reducing%20noise.
https://www.sciencedirect.com/topics/computer-science/peak-signal-to-noise-ratio#:~:text=Peak%20Signal%2Dto%2DNoise%20Ratio,better%20quality%20by%20reducing%20noise.
https://www.sciencedirect.com/topics/computer-science/peak-signal-to-noise-ratio#:~:text=Peak%20Signal%2Dto%2DNoise%20Ratio,better%20quality%20by%20reducing%20noise.
https://github.com/richzhang/PerceptualSimilarity
https://github.com/richzhang/PerceptualSimilarity

