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Abstract

The H2TRAIN project proposes a comprehensive edge—cloud Al
continuum for real-time, secure, and personalized health and per-
formance monitoring through wearable technologies. By integrat-
ing in vivo physiological measurements, artificial intelligence, and
biometric encryption, H2TRAIN addresses the growing demand
for adaptive digital health solutions. The system leverages embed-
ded intelligence at the edge to perform immediate data processing
and personalized analytics, while offloading complex tasks to fog
and cloud layers for scalability. In vivo measurements enable the
development of Al models that reflect real-world conditions, ensur-
ing accuracy and ecological validity. At the same time, biometric
cryptographic techniques based on physiological signals guarantee
data security and user authentication, even in dynamic and uncon-
trolled environments. H2TRAIN establishes a secure, intelligent,
and energy-efficient infrastructure applicable to clinical, rehabilita-
tion, and sports domains.
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1 Introduction

Wearable health monitoring technologies are rapidly evolving in re-
sponse to the convergence of the Internet of Things (IoT), artificial
intelligence (AI), and edge computing. As demands for real-time,
context-aware health feedback rise, systems must not only capture
and process complex physiological data but also protect users’ pri-
vacy through advanced cryptographic methodsAENEAS, EPoSS,
and INSIDE Industry Association [1]. Traditional solutions often
fall short due to their reliance on centralized computing, limited per-
sonalization, and vulnerability to data breaches. Addressing these
challenges, the H2TRAIN project presents a novel digital health
architecture rooted in embedded intelligence, in vivo validation,
and biometric encryption.

Building on the state of the art in low-latency computing and
physiological sensing, H2TRAIN’s approach integrates multi-modal
wearables capable of capturing ECG, EMG, glucose, lactate, and
motion data under real-life conditions [9]. The project prioritizes
in vivo measurements to ensure that Al models are trained and
validated on authentic user data, increasing both robustness and
relevance [4]. Its edge-fog—cloud continuum supports decentralized
Al enabling on-device inference for tasks such as fatigue detection
or ECG anomaly classification, while reserving cloud resources for
federated learning and global optimization [2].

A central innovation lies in the project’s implementation of bio-
metric encryption techniques based on physiological signals [5]. By
generating non-invertible cryptographic keys from user-specific
biosignals like ECG or PPG, H2TRAIN ensures privacy-preserving
authentication and data integrity. Deep learning models further
support adaptability and resilience to signal drift or environmental
variability. Collectively, the system’s architecture combines embed-
ded analytics, privacy-enhancing technologies, and Al-powered
personalization to redefine real-time health monitoring across use
cases including remote rehabilitation, intelligent coaching, and
assisted living.

The paper is organized into five main sections that describe the
H2TRAIN project’s innovative approach to wearable health and
sports monitoring within an edge—cloud AI continuum. Section 2
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Figure 1: H2TRAIN conceptual schema for system of systems. The application layer for use cases Remote Assisted Living (RAL),
Intelligent Adaptive Sport Coaching (IASC) and Remote Post-Surgery & Rehab Monitoring (RPS&RM)

presents the platform’s architecture, including its modular design
and human-centered

2 Integrated System Overview

H2TRAIN is structured as an integrated, human-centered digital
platform that combines wearable biosensing, environmental moni-
toring, artificial intelligence, and secure edge—cloud computing to
support adaptive health and performance management (see Figure
1). The system is designed to operate across multiple application
domains—including active aging, sports science, and post-operative
rehabilitation—by enabling personalized, real-time interventions
rooted in physiological, behavioral, and contextual data. The archi-
tecture follows a modular, service-oriented approach that ensures
scalability, data protection, and flexibility for deployment in both
clinical and non-clinical settings. At the core of the system lies
a secure ICT infrastructure that manages critical functions such
as data aggregation, connectivity, cloud-based analytics, and Al
model orchestration. This central hub enables seamless communica-
tion between edge devices, cloud services, and user-facing applica-
tions. Data security is maintained using encrypted communication
channels and embedded hardware protections such as TrustZone-
capable microcontrollers. Built around this core is the digital twin
layer, which dynamically models the user’s physical and behavioral
state based on inputs from wearable sensors and ambient data. This
layer supports features like performance estimation, program adap-
tation, therapeutic prescription, and daily tracking. These functions
are managed through automated modules that interpret continuous
data streams and adjust goals or recommendations, accordingly,
ensuring that interventions remain context-aware and user-specific.
The expert center serves as the intelligent supervisory module of the
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platform, integrating advanced analytics, diagnostic Al and remote
health monitoring. It also includes a control center responsible for
oversight and escalation in case of anomalies or emergencies. These
expert services enable the system to combine automated decision-
making with human-in-the-loop supervision, which is critical for
sensitive use cases like elderly care or post-surgery recovery. To
contextualize physiological readings, the platform incorporates an
ambience layer, which collects real-time environmental parameters
including air quality, temperature, humidity, solar radiation, and
illuminance. These variables are factored into data interpretation
and feedback loops, allowing the system to distinguish between in-
trinsic physiological changes and those influenced by external con-
ditions. The sensing and actuation layer operates on a distributed
IoT edge—cloud Al continuum, which hosts low-latency inference
models and enables intelligent data routing across different pro-
cessing levels (edge, fog, cloud). This infrastructure supports the
integration of multiple smart demonstrators and wearable units,
allowing the system to scale across diverse usage environments and
populations. AI models deployed in this continuum handle tasks
such as activity recognition, biometric authentication, anomaly
detection, and personalized feedback generation.

3 In Vivo Measurements

The H2TRAIN project addresses the design, development, and im-
plementation of human-centered digital technologies focused on
sports, health, and remote assistance applications. An essential as-
pect of the development and implementation of these technologies
is the validation of sensors and systems under real-life conditions,
i.e., in vivo measurements on real users. In vivo measurements
are fundamental to H2TRAIN, as they allow for the validation of
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the accuracy, reliability, and usefulness of sensors integrated into
smart textiles and wearables in three use cases: Remote Assisted
Living (RAL); Intelligent Adaptive Sport Coaching (IASC); Remote
Post-Surgery & Rehab Monitoring (RPS&RM) [1]. These measure-
ments are performed directly on end-users: athletes, postoperative
patients, or older adults in home or care settings. The data collected
allows for the development of artificial intelligence models trained
with real data, improving the personalization and effectiveness of
solutions [1].

3.1 Applications and Validation in Use Cases

The technologies developed within the H2TRAIN project were
conceived with a strong applied approach and validated under real-
world conditions. With the aim of responding to the specific needs
of the healthcare, sports, and telecare sectors, three representative
use cases were defined to demonstrate the utility and robustness
of the proposed system of systems [1]. In each of these cases, the
developed solutions—which include wearable sensors, artificial in-
telligence algorithms, and edge-cloud platforms—are subjected to
rigorous in vivo validation processes, i.e., through tests conducted
directly with real users in uncontrolled environments.

3.1.1 Remote Assisted Living (RAL). This use case focuses on re-
mote monitoring of older adults. In vivo measurements include
physiological parameters such as heart rate, oxygen saturation,
body temperature, and daily activity movements. The environment
is also monitored (CO2, humidity, gas leaks, etc.). This data is cap-
tured by sensors integrated into wearables and processed in real
time using edge computing.

3.1.2 Intelligent Adaptive Sport Coaching (IASC). In this case, in
vivo measurements are applied directly to athletes and active indi-
viduals during real-life training and competitions. Parameters such
as: Electrocardiogram (ECG); Electromyography (EMG); Oxygen
saturation (SpO2); Blood glucose; Lactate; Sweat pH. These mea-
surements allow the creation of adaptive coaching models using Al
algorithms trained with physiological data captured in real time.
The sensors are integrated into smart sportswear and tested in both
outdoor and aquatic (swimming) conditions, with specific require-
ments such as low latency (<250 ms) and low data loss (<25%).

3.1.3  Remote Post-Surgery & Rehab Monitoring (RPS&RM). This
scenario involves monitoring patients undergoing post-surgical
rehabilitation from their homes. In vivo measurements allow for:
Monitoring adaptive therapeutic exercise; Evaluating muscular and
cardiovascular recovery; Detecting early signs of relapse. Testing is
performed directly on real patients in collaboration with hospitals
and healthcare professionals, including the use of wearable sensors
to monitor glucose, oxygen, and motor activity.

3.2 Methodological Approach

The methodological approach adopted in H2TRAIN for the design,
development and implementation is represented in 1. Based on a
“V” type model, the diagram Figure 2 how the requirements defined
from the user-system level are progressively translated into techni-
cal specifications, passing through different levels of development
and integration, until reaching validation in real scenarios. The
left axis of the model shows the specification and design phases,

165

CF Companion ’25, May 28-30, 2025, Cagliari, Italy

beginning with the identification of functional and non-functional
requirements from both the user and system perspectives. These re-
quirements are translated into subsystem specifications that include
software, sensors, and wearable units, thus establishing the basis
for the development of electronic components and their integration

into wearable devices.
Bench and
T field tests

Saftware lavel
design
and
Integration

Subsaystem
requirements:
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Software, intagration
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system,

Figure 2: V-Model, H2TRAIN activities and implementation
issues.

The right axis of the model reflects the return path from pro-
totype to validation, where the various components—once inte-
grated—are functionally verified using software, integrated into
wearable environments, and finally evaluated in field and labora-
tory tests. This part of the process also includes the evaluation of
usability, performance, and robustness under in vivo conditions,
as part of the validation of the three defined use cases: Remote
Assisted Living (RAL), Intelligent Adaptive Sport Coaching (IASC),
and Remote Post-Surgery & Rehab Monitoring (RPS&RM). The
central component of the diagram highlights these three use cases
as the backbone of technological development. Each of them rep-
resents a specific application with different levels of complexity
and specific requirements, both technical and ethical, which are
addressed in a cross-cutting manner

3.3 Wearable Devices and Embedded
Technology

The devices employed for in vivo measurements are advanced wear-
ables seamlessly integrated into textiles, electronic tattoos, or bands.
These include electronic sweat tattoos featuring printed, flexible
sensors capable of detecting sweat parameters such as pH, lactate,
and cortisol; textile-based glucometers that incorporate glucose sen-
sors into clothing with automatic calibration powered by artificial
intelligence; non-invasive devices combining electrocardiogram
(ECG) and oxygen saturation (SpO2) monitoring with advanced
communication capabilities for continuous tracking; aquatic track-
ers equipped with waterproof accelerometers and gyroscopes de-
signed for sports activities; and textile-integrated trackers utilizing
accelerometers and magnetometers to support applications in reha-
bilitation and athletic performance.

The H2TRAIN project addresses edge-fog computing by propos-
ing a multi-layered architecture that integrates wearable sensors,
edge processing, and cloud-based services to enable real-time health
monitoring and decision-making. The system leverages an Edge
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Virtual Assistant (EVA) acting as a multiservice gateway within the
Assisted Home (AH), allowing for immediate local processing and
feedback without constant reliance on the cloud. This edge-layer
is complemented by a centralized Cloud Platform (CP), which ag-
gregates and analyzes data across multiple homes for long-term
insights and system-wide oversight. Such a structure enhances re-
sponsiveness, scalability, and reliability in healthcare delivery (see
Figure 3).

Figure 3: Use case high-level architecture of the remote as-
sisted living (RAL)

3.4 Scientific and Technological Significance of
In Vivo Data Acquisition

The integration of in vivo data collection within the H2TRAIN
framework constitutes a scientifically grounded and technologi-
cally advanced strategy to ensure the ecological validity of sen-
sor performance, data acquisition, and Al model development. By
embedding biosensors directly into wearables and textiles and de-
ploying them in uncontrolled, real-life environments, the project
bypasses the limitations of controlled laboratory settings, thereby
capturing physiological and biomechanical signals under authen-
tic conditions of use. These signals—ranging from cardiovascular
and muscular activity to chemical makers such as cortisol, lactate,
and glucose—are key indicators of physical and mental health, and
their dynamic variation is essential for modeling stress, fatigue,
exertion thresholds, and recovery trajectories [9]. Each use case
within H2TRAIN, whether focused on aging populations, athletes,
or patients in rehabilitation, relies on these live measurements to
inform the functional design of hardware and software components,
ensuring that both are responsive to the realities of deployment.
In parallel, the real-world complexity captured through vivo
measurements enables a robust feedback loop for the calibration,
testing, and refinement of embedded systems [4]. For instance, the
system’s ability to cope with motion artifacts, variable environ-
mental conditions (humidity, water immersion, interference), and
inter-subject variability is assessed through iterative validation tri-
als. This empirical methodology enhances the generalizability and
resilience of the system and supports certification-relevant metrics
such as signal integrity, real-time responsiveness (<250 ms), trans-
mission error rate (<25%), and wearability under repeated washing
and physical stress. From a design perspective, the incorporation
of 2D material-based sensors (e.g., graphene-based electrochemical
biosensors) and ultra-low power embedded systems (<120 nA at 2.7
V) further reinforces the alignment between cutting-edge research
and practical implementation [2]. Overall, H2TRAIN’s approach
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places scientific rigor at the core of its system validation strategy,
bridging the gap between research innovation and operational reli-
ability in complex human-centered environments.

4 Artificial Intelligence for Edge-Enabled
Health and Performance Analytics
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Figure 4: Use case high-level architecture of the remote as-
sisted living (RAL)

H2TRAIN integrates artificial intelligence (Al) across a distributed
edge—fog-cloud architecture to enable responsive, personalized,
and energy-efficient health and performance monitoring (see Fig-
ure 4). At the edge level, lightweight Al models—such as decision
trees, convolutional neural networks (CNNs) for time-series clas-
sification, and threshold-based anomaly detectors—are deployed
directly on ultra-low-power ARM Cortex-M processors embed-
ded in wearable devices. These models perform on-device signal
preprocessing (e.g., filtering, normalization), real-time inference
(e.g., fatigue detection, abnormal ECG pattern recognition), and
generate context-sensitive alerts with sub-250 ms latency, without
relying on continuous cloud access. This ensures autonomous op-
eration in bandwidth-constrained environments while preserving
user privacy [2]. Intermediate fog nodes—implemented on local
gateways or mobile devices—perform data aggregation, short-term
trend analysis, and model coordination across multiple users [5].
They also manage encrypted communication with the cloud, where
resource-intensive tasks such as model retraining, population-level
clustering, and federated learning updates are performed. The archi-
tecture allows modular over-the-air updates and supports adaptive
AT models that calibrate user-specific baselines using in vivo data
streams [5]. This layered design minimizes energy consumption,
reduces data transmission load, and enables scalable deployment
of real-time Al in clinically relevant and real-world use cases [5].

4.1 AI Models and Algorithms

To support real-time health and performance analytics, H2TRAIN
leverages a modular suite of Al algorithms tailored for physiological
signal processing and user-specific interpretation. These models
are deployed across the edge—fog—cloud stack, with design choices
driven by energy efficiency, model interpretability, and adaptability
to heterogeneous hardware platforms.
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Time-series classification tasks—such as detecting activity states,
stress levels, or cardiac events—are addressed using lightweight con-
volutional neural networks (CNNs) and recurrent neural networks
(RNNs), including LSTM variants. These models are quantified and
optimized for microcontroller-based inference using frameworks
like TensorFlow Lite for Microcontrollers and CMSIS-NN. For in-
stance, CNNs are trained on segmented windows of ECG, EMG, and
accelerometer signals, extracting temporal-spatial patterns to clas-
sify exercise intensity or movement type. Models typically operate
with an input window of 2-5 seconds, using 1D convolutions fol-
lowed by pooling and fully connected layers, constrained to under
30 KB of memory .

Anomaly detection is performed using autoencoders trained
to reconstruct normal physiological patterns; deviations from ex-
pected reconstruction error are flagged as anomalies. In low-power
devices, lightweight isolation forests are used to detect outliers in
biometric time series, such as unexpected spikes in glucose or HRV.
These models are pre-trained offline and then pruned for efficient
deployment, with edge devices handling score computation and
fog/cloud layers performing periodic retraining with new labeled
data. Personalized modeling is implemented via transfer learning,
where global models are fine-tuned on-device using individual data
profiles. Initial clustering using unsupervised algorithms (e.g., k-
means or Gaussian Mixture Models) groups users by physiological
similarity, enabling adaptive thresholds and targeted interventions.
These mechanisms improve prediction accuracy over time while
maintaining a compact model footprint [3], typically under 100 KB

Auto-calibration modules correct for signal drift and inter-sensor
variability using non-linear regression models (e.g., polynomial fits
or kernel ridge regression) and shallow feedforward neural net-
works [3]. These modules operate continuously in the background
and are updated based on annotated reference points collected dur-
ing guided calibration routines or in-field comparisons with gold-
standard sensors. To integrate multiple data sources, H2TRAIN
implements sensor fusion techniques across accelerometers, gyro-
scopes, and biosensors using Kalman filters for real-time motion
estimation and attention-based neural architectures to dynamically
weigh signal relevance [7]. This is particularly crucial in aquatic
environments or during high-mobility activities, where signal qual-
ity varies due to noise or displacement. Table 1 presents a selection
of relevant Key Performance Indicators (KPIs) from the H2ZTRAIN
framework that corresponds to the Al functionalities described.

Table 1: AI Functionalities KPIs

KPIID
KPI1

Al Relevance
Real-time classification and alert gener-
ation

Autoencoder and isolation forest perfor-
mance

Description
Latency, responsiveness, task distribu-
tion

Robustness, fault detection, anomaly
flagging

Hardware/software validation

Target Value
Latency < 250 ms

KPI2 Anomaly detection ac-
curacy > 90%

Modular OTA updates
supported

Model size < 100 KB,
power < 120 nA
Sensor fusion RMSE <
10%

KPI3 Federated learning, on-device fine-
tuning

Deployment of CNNs, RNNs, and re-
gressors

Kalman filters and attention-based inte-

gration

KP4 | Device design

KPI5 | Sensor fusion and multi-source data pro-

cessing

4.2 Performance Objectives and Evaluation

The effectiveness of H2TRAIN’s Al-driven computing framework is
assessed through a set of quantifiable performance metrics, defined
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to ensure that system responsiveness, classification accuracy, and
biometric estimation meet the demands of real-world health and
sports applications. These metrics are derived from both system-
level KPIs and application-specific benchmarks and are validated
through structured in vivo testing campaigns across the three de-
fined use cases.

4.2.1 Latency and Real-Time Responsiveness. A core requirement
in H2TRAIN is to achieve low-latency processing to support real-
time health and activity feedback. Across all use cases, whether
detecting abnormal ECG patterns or generating feedback for sports
coaching the system targets <250 ms total latency, from sensor
data acquisition to inference output. This is accomplished through
optimized Al models running on ARM Cortex-M embedded micro-
controllers using inference engines like CMSIS-NN and TensorFlow
Lite for Microcontrollers. Benchmark tests demonstrate median la-
tencies of 180 ms under typical conditions, even with multi-sensor
fusion enabled.

4.2.2 Classification Accuracy for Physiological Events. H2TRAIN
targets a >90% accuracy threshold for detecting key physiological
states such as fatigue, dehydration, and recovery phase transitions.
This is validated using in vivo datasets collected during controlled
and free-living conditions, labeled by domain experts. Models are
evaluated using standard metrics: precision, recall, F1-score, and
AUC-ROC, with results consistently above 0.9 across test partici-
pants.

4.2.3 Biochemical Sensing Accuracy. For biosensor modules (e.g.,
sweat glucose, lactate, cortisol), H2TRAIN aims for a mean absolute
error (MAE) <5% when compared to clinical-grade reference devices.
Validation is conducted using synchronized sampling and calibra-
tion routines in real-world trials. Al-based auto-calibration modules
reduce drift and ensure consistent output over time, particularly
under physical stress or aquatic environments.

Table 2: Biomarker Sensing for Activity Tracking

Biomarker | Measured Range | Notes
Glucose 50-200 mg/dL Compared to commercial sen-
sor
Lactate 2-12 mmol/L Validated post-exercise
Cortisol 5-25 pg/dL Sweat-based electrochemical

sensor

4.2.4  Robustness and Real-World Evaluation. Model robustness is
tested across various conditions: motion artifacts, sweat interfer-
ence, sensor displacement, and environmental noise. Sensor fusion
algorithms (e.g., Kalman filters) and dynamic input weighting (via
attention layers) help mitigate input degradation [7]. Benchmarks
include worst-case scenarios such as swimming sessions or high-
mobility rehabilitation, where signal quality often degrades.

4.2.5 Summary of Performance KPlIs. Table 3 summarizes the core
Key Performance Indicators (KPIs) used to evaluate the real-world
performance of the H2TRAIN system. These indicators span criti-
cal aspects of functionality, including real-time inference latency,
classification accuracy for physiological states, estimation error
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for biochemical sensing, and system robustness under varying op-
erational conditions. Each KPI is aligned with specific validation
methodologies, ranging from embedded system benchmarks to
clinical comparisons and user-centered field trials. Together, these
metrics provide a comprehensive view of how the proposed Al-
enabled architecture meets the demands of responsive, reliable, and
context-aware health monitoring.

Table 3: Activity Tracking KPIs

KPI Target Validation Method

Inference latency < 250 ms Measured in embedded prototypes
Event classification > 90% F1-score | In vivo annotated datasets
Biomarker estimation error < 10% MAE Reference vs. wearable comparison

Signal processing robustness
System availability

> 85% accuracy
> 95% uptime

Under noisy or aquatic conditions
Long-term trials in real-life scenarios

5 Biometric Cryptography and
Privacy-Enhancing Al

As wearable technologies and continuous health monitoring sys-
tems become increasingly integrated into daily life, ensuring the
security and privacy of sensitive biometric data has emerged as a
critical design objective [6]. Traditional encryption methods fall
short in protecting physiological signals due to their dynamic, user-
specific nature and the need for real-time processing [6]. To address
this challenge, biometric cryptography techniques—particularly
those based on physiological signals such as electrocardiogram
(ECG) and photoplethysmography (PPG)—are being employed to
generate unique, non-invertible cryptographic keys [10].

5.1 Biometric Encryption Principles and
Methodology

he biometric encryption scheme implemented in H2TRAIN lever-
ages physiological signals—primarily ECG and PPG—as the foun-
dation for secure, user-specific cryptographic key generation. The
system operates on a structured pipeline (see Figure 5), beginning
with real-time acquisition of biometric signals using embedded
sensors integrated into wearable platforms. These signals are then
preprocessed to eliminate baseline wander, motion artifacts, and
high-frequency noise using filtering techniques such as bandpass
filters and derivative operators.

Following preprocessing, a feature extraction module identifies
stable and repeatable components of the physiological waveform.
In the case of ECG, this typically includes R-R intervals, QRS du-
rations, and morphological descriptors of the waveform segments.
These features are compact, discriminative, and sufficiently robust
to inter-session variability [8].

The extracted features are then concatenated with a system-
generated random seed to form an intermediate representation.
This fusion is critical for implementing cancelable biometrics, as it
ensures that even if a biometric template is compromised, a new
cryptographic key can be regenerated without requiring new phys-
iological data. This fused vector undergoes a transformation using
Discrete Cosine Transform (DCT) and random permutation, pro-
ducing a non-invertible and privacy-preserving bio-hash.

Finally, the resulting template is mapped to a binary crypto-
graphic key using quantization and encoding schemes that respect
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Hamming distance constraints for reproducibility and error tol-
erance. This key can be used directly for secure communication,
encryption of locally stored data, or as a token for identity verifica-
tion. The entire process is executed locally on resource-constrained
hardware—e.g., ARM Cortex-M33 platforms with TrustZone sup-
port—ensuring that raw biometric data never leaves the device
unencrypted.

Firmware

- e

Textile-integrated

Figure 5: Particularization methodology for the biosensor
integration in digital domain for biometric encryption.

5.1.1 Deep Learning Architectures for Physiological Biometrics. To
capture complex temporal and morphological characteristics in
biometric signals, H2ZTRAIN employs deep learning architectures
tailored for 1D time-series data. Among them, Convolutional Neu-
ral Networks (CNNs) are used to extract local patterns from ECG
signals—such as QRS morphology or T-wave deformation—while
Long Short-Term Memory (LSTM) networks learn long-range de-
pendencies, such as variations in heart rhythm due to activity or
stress [8]. Hybrid models combining CNNs and LSTMs have shown
strong performance in handling both spatial and temporal domains,
achieving recognition accuracies exceeding 96% under controlled
and semi-controlled conditions [8].

5.1.2  Adaptation, Fusion, and Continuous Learning. Beyond static
classification, the system includes adaptive learning modules that
personalize the model to each user. Techniques like incremental
training and domain adaptation allow the models to adjust to signal
drift, emotional states, or environmental factors over time. Addi-
tionally, multimodal biometric fusion is explored by combining
ECG with PPG or motion data using attention-based networks
and decision-level fusion. These strategies enhance robustness,
particularly in noisy settings such as during physical activity. By
dynamically weighing each input modality, the system maintains
high confidence even under partial signal degradation.
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Table 4: Datasets Implemented for Biometric Encryption

Dataset Modality | Subjects | Signals

ECG-ID ECG 90 Lead IECG
PhysioNet PTB ECG 290+ 12-lead ECG

PPG-BP PPG, BP 219 PPG, blood pressure

5.2 Datasets and Validation Protocol

The biometric encryption and authentication modules developed in
H2TRAIN were trained and validated using a diverse set of publicly
available and proprietary physiological signal datasets as shown in
Table 4. These include both unimodal (ECG, PPG) and multimodal
sources, enabling robust training across a variety of physiological,
environmental, and behavioral conditions. The primary objective of
the dataset strategy was to ensure generalizability, noise resilience,
and cross-subject scalability. Signals were selected to reflect real-
world variability, including variations in posture, physical activity,
sensor positioning, and acquisition hardware. For each dataset,
preprocessing was standardized using normalization, filtering (e.g.,
bandpass for ECG), and segmentation into fixed-length windows
(2-5 seconds).

5.3 Al-Assisted Biometric Recognition

The H2TRAIN framework integrates machine learning and deep
learning algorithms to enhance the reliability, adaptability, and
accuracy of biometric recognition based on physiological signals,
particularly ECG. Deep neural models are used to extract unique
patterns embedded in time-series data, enabling user authentication
that is both secure and continuous. Two core architectures have
been implemented: Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks. CNNs are particularly
effective at learning spatial features from short ECG segments, iden-
tifying local waveform characteristics such as QRS morphology and
T-wave profiles. LSTMs, by contrast, are designed to capture tem-
poral dependencies, such as variability in heart rhythm over time,
making them suitable for recognizing individuals under changing
physiological conditions like stress or physical exertion.

These models are trained using raw and preprocessed ECG sig-
nals, passed through standardized pipelines that include normaliza-
tion, noise filtering, and segmentation. In deployment, inference
can be performed locally on embedded processors, thanks to op-
timization techniques such as quantization and model pruning.
To improve robustness and long-term usability, adaptive learning
strategies are employed. These include incremental model updating
based on recent biometric sessions and domain adaptation methods
that adjust the network’s parameters to accommodate signal drift,
changes in user condition, or hardware variability.

Conclusions

The H2TRAIN project presents an innovative and comprehensive
approach to integrating wearable sensing, embedded intelligence,
and secure data handling in real-world applications related to health,
rehabilitation, and sports. Through extensive in vivo validation
across diverse user groups, it provides reliable, real-time physio-
logical data using a layered computing architecture—edge, fog, and
cloud—that ensures efficient task distribution, reduced latency, and
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continuous Al-driven personalization, even on resource-limited
devices. By combining physiological signal analysis with biomet-
ric cryptography, the system delivers adaptive, privacy-preserving
authentication aligned with current ethical and regulatory stan-
dards. The implementation of Al models such as CNNs and LSTMs
enhances accuracy and robustness, even under conditions of sig-
nal degradation and user variability, positioning H2TRAIN as a
solid foundation for next-generation, intelligent, and secure digital
health platforms.
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