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Summary
Introduction Intra-operative supplemental oxygen and mechanical ventilation expose the lungs to potentially
injurious energy. This can be quantified as `chemical power´ and `mechanical power´, respectively. In this study,
we sought to determine if intra-operative chemical and mechanical power, individually and/or in combination,
are associatedwith postoperative pulmonary complications.
Methods Using an individual patient data analysis of three randomised clinical trials of intra-operative
ventilation, we summarised intra-operative chemical andmechanical power using time-weighted averages. We
evaluated the association between intra-operative chemical andmechanical power and a collapsed composite
of postoperative pulmonary complications using multivariable logistic regression to estimate the odds ratios
related to the effect of 1 J.min-1 increase in chemical or mechanical power with adjustment for demographic
and intra-operative characteristics. We also included an interaction term to assess for potential synergistic
effects of chemical andmechanical power on postoperative pulmonary complications.
Results Of 3837 patients recruited to three individual trials, 2492 with full datasets were included in the
analysis. Intra-operative time-weighted average (SD) chemical power was 10.2 (3.9) J.min-1 and mechanical
power was 10.5 (4.4) J.min-1. An increase of 1 J.min-1 in chemical power was associated with 8% higher odds of
postoperative pulmonary complications (OR 1.08, 95%CI 1.05–1.10, p < 0.001), while the same increase in
mechanical power raised odds by 5% (OR 1.05, 95%CI 1.02–1.08, p = 0.003). We did not find evidence of a
significant interaction between chemical and mechanical power (p = 0.40), suggestive of an additive rather
than synergistic effect on postoperative pulmonary complications.
Discussion Both chemical andmechanical power are independently associated with postoperative pulmonary
complications. Further work is required to determine causality.
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Introduction
Intra-operative ventilation transfers energy from the

ventilator to lung tissue, which can be quantified as

`mechanical power´ [1, 2]. Elevated intra-operative

mechanical power levels may harm the lungs and are

associated with worse patient outcomes [3, 4].

Interventions that seek to reduce mechanical power are

under consideration for patients who require

intra-operative ventilation [5]. However, less is known

about the use of supplemental oxygen during

intra-operative ventilation, quantified as `chemical power´

[6]. The chemical power concept was introduced recently

as a quantitative measure of the biochemical stress

induced by hyperoxia and translates oxygen exposure

(fraction of inspired oxygen, FIO2) into a power metric with

units of joules per minute (J.min-1). This involves

estimation of pulmonary oxygen consumption; calculation

of oxygen fraction converted into reactive oxygen species;

and multiplication of the rate of reactive oxygen species

production by the energy released per mole of superoxide

formation [6].

Exposure to high chemical power is linked with

postoperative pulmonary complications (PPCs); multiorgan

injury; and mortality [7, 8]. The simplest way to reduce

chemical power is to reduce FIO2 to the lowest safe level,

including the use of recruitment manoeuvres and/or

titration of positive end-expiratory pressure (PEEP). Despite

potential dangers of high intrapulmonary oxygen levels,

high fractions of oxygen continue to be utilised during

intra-operative ventilation [9]. Clinical guidelines continue

to recommend higher intra-operative oxygen fractions [10,

11], justified by perceived safety margins for airway

complications and limited evidence for a reduction in

postoperative wound infections [12, 13]. Preclinical studies

suggest that the combined effect of chemical and

mechanical power may amplify the risk of pulmonary injury

synergistically [14, 15], but the clinical relevance of this

observation is uncertain.

Our aim was to evaluate how intra-operative chemical

and mechanical power, individually and in combination,

influence the incidence of PPCs.We conducted a secondary

analysis on the Re–Evaluation of the effects of high PEEP

During General AnesThesia for surgery (REPEAT) database

[16, 17]. This resource integrates individual patient data

from three randomised clinical trials that evaluated the

impact of intra-operative ventilation with high PEEP on

the incidence of PPCs. We hypothesised that both chemical

and mechanical power are individually associated with

PPCs, with a synergistic interaction.

Methods
This is a secondary analysis of individual patient data from

three randomised controlled trials that investigated the

effect of low vs. high PEEP on PPCs: PROVHILO [18]; iPROVE

[19]; and PROBESE [20]. The original trials were approved

by a central institutional review board and all patients

provided informed consent. Additional institutional review

board approval or individual patient consent was required

to access this pooled database. Our report adheres to the

STROBEguideline.

For this secondary analysis, we did not include patients

withmissing data on the variables of interest (complete case

analysis); duration of surgery < 2 h; and intra-operative

mechanical power > 30 J.min-1. We extracted patient and

surgery baseline characteristics: age; sex; height; weight;

BMI; ASA physical status; ARISCAT score [21]; pre-operative

SpO2; respiratory infection; pre-operative anaemia; history

of heart failure; chronic obstructive pulmonary disease

(COPD); active cancer; pre-operative haemoglobin levels;

surgical approach (open vs. laparoscopic); emergency

procedure; duration of surgery; and surgical specialty. The

following intra-operative ventilatory variables were

available and extracted in hourly intervals: tidal volume;

respiratory rate; maximum airway pressure; PEEP; dynamic

driving pressure; and FIO2. Patients were followed up for

7 days after surgery to detect PPCs in the original trials, as

defined in online Supporting Information Table S1.

The two co-primary exposures were defined as the

time-weighted average of intra-operative chemical and

mechanical power. Chemical power was calculated using

the following equations [6]: PulmROS = 1.7 9 10-5 + ((FIO2 -

0.21) 9 1.63 9 10-4) (mol.min-1); chemical power =

141,000 9 PulmROS (J.min-1), where PulmROS is the local

superoxide production in mol.min-1. Dynamic driving

pressure (DP) was used for mechanical power calculations,

since plateau pressure was not available for all patients.

Dynamic driving pressure was calculated with maximum

airway pressure (Pmax) using the following equation:

DP = Pmax - PEEP (cmH2O), where Pmax and PEEP are

expressed in cmH2O.Mechanical powerwas calculated using

the following equation: mechanical power = 0.098 9 tidal

volume 9 respiratory rate 9 (Pmax - 0.5 9 DP) (J.min-1),

where tidal volume in litres, respiratory rate in breaths.min-1,

Pmax is maximum airway pressure in cmH2O and DP is

dynamicdrivingpressure in cmH2Oasdescribed above.

The primary study endpoint was a composite of

PPCs during the first seven postoperative days

according to the definitions of the original trials

presented in online Supporting Information Table S1. No
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formal power calculation was performed; instead, we

used all available patients with complete data from the

pooled dataset. For descriptive purposes only, the

population was divided at the median of chemical

power to create a `high chemical power group´ and a

`low chemical power group´ and the absolute

standardised difference was calculated to assess baseline

balance. Inferential statistics were performed with

continuous values of chemical and mechanical power.

Chemical and mechanical power were calculated

hourly. We summarised intra-operative chemical and

mechanical power by calculating time-weighted averages

as the area under the chemical and mechanical power time

curves divided by the number of hours of exposure

for quantifying cumulative exposure for each patient.

The association between intra-operatively applied

time-weighted average chemical and mechanical power on

a collapsed composite of PPCs was evaluated by

multivariable logistic regression, estimating the odds ratios

related to the effect of 1 J.min-1 increase in chemical or

mechanical power. Potential confounders were defined a

priori and included as covariates in themultivariable model.

To assess a potential interaction between chemical and

mechanical power, we repeated the model with an

interaction term for chemical andmechanical power.

We performed sensitivity analyses to explore our

results. This included analyses restricted to patients with

available plateau pressure; patients in whom FIO2 was likely

set by default to 0.4, 0.5 or 0.8, i.e. without titration to the

individual patient’s oxygenation requirements; removal of

exclusion criteria to include all patients in the database; and

with adjustment for potential effects between individual

trials. All analyses were performed based on an overall

significance level of 0.05, using R (version 4.4.1, R Studio,

Vienna, Austria).

Results
Of 3837 patients in the pooled database, 2492 were

included in this analysis (Fig. 1). The main reasons for

exclusion were duration of surgery < 2 h; missing BMI; and

missing information on surgical approach. The mean (SD)

patient age was 57 (15) y, 1300 (52%) were female and 1258

(50%) underwent colorectal or bariatric surgery (Table 1).

The time-weighted averages of chemical and

mechanical power were mean (SD) 10.2 (3.9) J.min-1

and 10.5 (4.4) J.min-1, respectively (Table 2). Patients who

were administered higher chemical power were older; more

often male; had a lower median BMI; and a lower median

ARISCAT score (Table 1). The time-weighted average

mechanical power was similar in patients with low and high

Figure 1 Study flow chart. COPD, chronic obstructive pulmonary disease; SpO2, peripheral oxygen saturation.

© 2025 The Author(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists. 3
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chemical power. Patients administered high chemical power

tended to receive higher tidal volumes but lower respiratory

rates (Table 2). Patients who experienced PPCs were more

likely to have received higher intra-operative chemical

power (online Supporting Information Figure S1).

We observed that a 1 J.min-1 increment in chemical

power was associated with an 8% increased risk of PPCs (OR

1.08, 95%CI 1.05–1.10, p < 0.001). A 1 J.min-1 increment in

mechanical power was associated with a 5% increased risk

of PPCs (OR 1.05, 95%CI 1.02–1.08, p < 0.003) (Table 3).

The probability of PPCs increased linearly over the range of

chemical power (Fig. 2a), whereas the probability of PPCs

started to increase after 15 J.min-1 of delivered mechanical

power (Fig. 2b). Our model-derived risk of PPCs suggests

that chemical and mechanical power did not interact

(p = 0.40, Fig. 3).

These findings were not altered in sensitivity analyses

when we limited patients to those who had plateau

pressures available (online Supporting Information

Tables S2–S4 and Figures S2 and S3); and to patients in

whom FIO2 was likely set by default to 0.4, 0.5 or 0.8 (i.e.

without titration to the individual oxygenation

Table 1 Baseline characteristics for all included patients and for patients with below and abovemedian chemical power. Values
aremean (SD) or number (proportion).

Overall
n = 2492

Chemical power
< 9 J.min-1

n = 1532

Chemical power
> 9 J.min-1

n = 960

SMD

Age; y 57 (15) 55 (15) 62 (14) 0.496

Sex; female 1300 (52%) 882 (58%) 418 (44%) 0.283

Height; cm 170 (9.4) 170 (9.4) 170 (9.3) 0.099

Weight; kg 94 (31) 100 (30) 84 (29) 0.569

BMI 34 (10) 36 (10) 30 (9.6) 0.586

ASAphysical status 0.077

1 144 (6%) 96 (6%) 48 (5%)

2 1255 (50%) 783 (51%) 472 (49%)

3 1069 (43%) 639 (42%) 430 (45%)

4 24 (1%) 14 (1%) 10 (1%)

ARISCAT score 38 (9.2) 40 (8.1) 36 (10) 0.468

Pre-operative SpO2;% 97 (2.0) 97 (1.9) 97 (2.1) 0.148

Respiratory infection 113 (5%) 67 (4%) 46 (5%) 0.020

Pre-operative anaemia 679 (27%) 337 (22%) 342 (36%) 0.304

Heart failure 201 (8%) 151 (10%) 50 (5%) 0.177

COPD 161 (6%) 110 (7%) 51 (5%) 0.077

Active cancer 1181 (47%) 511 (33%) 670 (70%) 0.783

Pre-operative haemoglobin; g.dl-1 13 (4.5) 14 (4.9) 13 (3.9) 0.111

Laparoscopic surgery 1138 (46%) 706 (46%) 432 (45%) 0.022

Emergency procedure 34 (1%) 30 (2%) 4 (0%) 0.143

Durationof surgery;min 220 (85) 210 (85) 230 (84) 0.176

Specific procedure 0.704

Abdominal/visceral 1153 (46%) 549 (36%) 604 (63%)

Bariatric 685 (27%) 569 (37%) 116 (12%)

Urologic 212 (9%) 132 (9%) 80 (8%)

Gynaecologic 117 (5%) 71 (5%) 46 (5%)

Vascular 45 (2%) 28 (2%) 17 (2%)

Hernia 36 (1%) 27 (2%) 9 (1%)

Other 244 (10%) 156 (10%) 88 (9%)

Postoperative pulmonary complications 872 (35%) 444 (29%) 428 (45%)

ARISCAT, Assess Respiratory Risk in Surgical Patients in Catalonia; COPD, chronic obstructive pulmonary disease; SMD, standardised
meandifference; SpO2, peripheral oxygen saturation.

4 © 2025 TheAuthor(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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requirements) (online Supporting Information Tables S5–7

and Figures S4 and S5). Similarly, findings were not altered

when we extended our study population to include all

patients in the database (online Supporting Information

Tables S8–S10 and Figures S6 and S7) or included the

individual trial as an independent variable in the regression

analysis (online Supporting Information Table S11).

Discussion
We found that chemical and mechanical power are

individually associated with PPCs, but with additive rather

than synergistic effects. This is important because both

mechanical and chemical power are modifiable via

optimisation of intra-operative ventilator settings. Further

work is required to determine if these observed associations

Table 2 Intra-operative ventilation parameters for all included patients and for patients with below and abovemedian chemical
power. Values aremean (SD).

Overall
n = 2492

Chemical power
< 9 J.min-1

n = 1532

Chemical power
> 9 J.min-1

n = 960

SMD

Tidal volume;ml 460 (80) 460 (83) 470 (75) 0.208

Tidal volume;ml.kg PBW-1 7.6 (0.8) 7.5 (0.7) 7.8 (0.8) 0.425

Respiratory rate; breaths.min-1 14 (4) 15 (4) 14 (3) 0.224

Maximumairway pressure; cmH2O 25 (6) 24 (6) 25 (6) 0.110

PEEP; cmH2O 7.5 (4) 7.6 (5) 7.5 (4) 0.016

Dynamic drivingpressure; cmH2O 17 (6) 17 (6) 18 (6) 0.124

FIO2;% 55 (17) 43 (4) 74 (10) 3.875

Chemical power; J.min-1 10 (4) 7 (1) 15 (2) 3.875

Mechanical power; J.min-1 10 (4) 10 (5) 10 (4) 0.011

FIO2, fraction of inspiratory oxygen; PBW, predicted bodyweight; PEEP, positive end-expiratory pressure; SMD, standardised mean
difference.

Table 3 Multivariable logistic regression model to assess the associations of chemical and mechanical power with
postoperative pulmonary complications (n = 2492).

Odds ratio 95%CI p value

Chemical power; J.min-1 1.08 1.05–1.10 < 0.001

Mechanical power; J.min-1 1.05 1.02–1.08 0.003

Age; y 1.02 1.01–1.03 < 0.001

Sex; female 0.95 0.78–1.15 0.600

BMI 1.01 0.99–1.02 0.400

ASAphysical status

1 — —

2 1.94 1.22–3.18 0.006

3 2.84 1.77–4.72 < 0.001

4 2.24 0.83–6.09 0.110

Pre-operative SpO2;% 0.92 0.87–0.96 < 0.001

Respiratory infection 1.54 1.01–2.33 0.042

Pre-operative anaemia 1.05 0.86–1.30 0.600

Heart failure 1.36 0.98–1.88 0.064

COPD 1.12 0.79–1.59 0.500

Active cancer 0.92 0.72–1.16 0.500

Laparoscopic surgery 0.56 0.44–0.72 < 0.001

Emergency procedure 1.86 0.88–3.87 0.100

PEEP; cmH2O 0.97 0.94–0.99 0.008

Durationof surgery;min 1.01 1.00–1.01 < 0.001

COPD, chronic obstructive pulmonary disease; PEEP, positive end-expiratory pressure; SpO2, peripheral oxygen saturation.

© 2025 The Author(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists. 5
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are causal or predictive for postoperative lung injury. Given

the high biological plausibility of the contribution of

chemical and mechanical power to ventilator-induced lung

injury, we recommend titration of both parameters to aim

for safe, rather than supranormal, respiratory physiological

endpoints.

The evidence of pulmonary harm from high chemical

power, or high FIO2, used for mechanical ventilation during

surgery, is uncertain [7, 8]. Although older randomised trials

found no effect of inspired oxygen on the incidence of PPCs

[22, 23], more recent studies, with incorporation of

lung-protective ventilation, showed an increased risk of

postoperative atelectasis and severe PPCs with 80%

compared with 30% inspired oxygen [24, 25]. Regarding

mechanical power, to date there are no randomised clinical

trials that target mechanical power explicitly. Nevertheless,

Figure 2 Probability of postoperative pulmonary complications (PPCs) over the ranges of (a) chemical and (b)mechanical
power. Blue dots represent the probability of PPCs for each patient (n = 2492) based on the exposure to chemical ormechanical
power, estimated using the primary confounder-adjusted logistic regressionmodel (Table 3). Smoothed curves with 95%CIs
were added to highlight the trends in the average probability of postoperative pulmonary complications over the ranges of
chemical andmechanical power (red lines with grey ranges).

Figure 3 Probability of postoperative pulmonary complications (PPCs) associatedwith chemical andmechanical power. The
population (n = 2492) was divided into 9 (3 9 3) bins of equally sized ranges of chemical andmechanical power (low,
moderate, high). For each bin, the average probability of PPCswas estimated using the primary confounder-adjusted logistic
regressionmodel (Table 3) and presented on a colour scale from light yellow to dark red as a 3 9 3 field heatmap.

6 © 2025 TheAuthor(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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high mechanical power-induced lung injury has been

reported in animal studies [26, 27] and was repeatedly

associated with postoperative lung injury [28, 29]. Our

findings underline the need for large robust randomised

clinical trials on intra-operative chemical and mechanical

powerminimisation strategies.

Reduction of chemical power may seem straightforward

in most patients by avoiding unnecessarily high FIO2 levels.

However, patients prone to intra-operative atelectasis, suchas

patients with obesity and patients undergoing laparoscopic

procedures, may require recruitmentmanoeuvres and higher

PEEP values to facilitate ventilation with low FIO2. In contrast,

multiple interventions may reduce mechanical power, and it

remains unclear which intervention works best [30, 31].

Recent studies underlined three essential concepts: lowering

tidal volumes necessitates higher respiratory rates, potentially

outweighing a tidal volume-related reduction in mechanical

power [32]; lowering respiratory rate effectively reduces

mechanical power [33]; and permissive hypercapnia

tolerated to facilitate lung-protective ventilation protects the

lungs [34, 35]. Therefore, permissive hypercapnic ventilation

through low respiratory rates represents a potential strategy

to reduce intra-operative mechanical power, and warrants

evaluation in future randomised trials.

Our study has several strengths and limitations. We

developed our protocol a priori before conducting our

analysis and this strengthens the scientific rigour of

our report. A key strength is the use of robust prospectively

collected clinical trial data to reduce the risk of undetected

errors common in routine clinical documentation. The large

sample size allowed us multiple adjustments for

well-established factors of pulmonary risk. Regarding

limitations, the observational design of our study precludes

definitive conclusions about causality. Although we

adjusted for numerous potential confounders, the use of

supplemental oxygen is likely confounded by underlying

pulmonary conditions and individual responses to surgery

and ventilation. Several hundred patients were not included

due to missing covariate data. However, as missingness is

likely random, we considered the risk of selection bias from

a complete case analysis to be less significant than potential

bias introduced by imputation. We have included a

sensitivity analysis with inclusion of all patients in the

database to explore this potential effect. The original

studies used slightly different definitions of PPCs,

introducing potential variability and bias to our results.

Finally, our calculation of chemical power utilises FIO2

primarily; however, the underlying model also includes

pulmonary oxygen consumption, which could be

individualised at patient or group level in future studies.

In conclusion, both chemical andmechanical power are

independently associated with PPCs. However, while

chemical and mechanical power have an additive effect on

the risk of PPCs, we did not observe a synergistic effect. Our

findings contribute to the growing body of evidence

emphasising the need for mechanical ventilation to be as

`permissive´ as possible, minimising exposure to

mechanical and chemical power.
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