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1 | Introduction

This project aims to obtain a practical and usable module to generate underwater maps
by means of an imaging sonar.

Nowadays we can think of several technologies that make it possible for us to gen-
erate a map of our surroundings with different sensors. Here we have to consider three
key elements, the map, the sensor and the environment. Before considering anything
else we must think about the where that will condition everything else. What will this
map represent? Under what conditions will the data be gathered? What are the main
characteristics of this environment? Due the characteristics of a regular underwater
environment and the conditions we want to be able to work with both the range of
mapping technologies and the sensors that are suitable for the task are not the same
as if we considered mapping using an aerial robot or a land robot.

Conditioned by the characteristics of an underwater environment we have considered
the Multi Level Surface Maps as the way of representing the map. In the following
section it will be shown why.

The other part we have to consider is the sensor we will use for the mapping con-
ditioned to the environment. In other conditions we could consider having laser based
sensors for acquiring data, they work just great for land robots but they are not good
enough for underwater mapping. Some tests on laser response in an underwater en-
vironment [7] prove that, while we could use laser based sensors for close interaction
and precisely mapping objects, they lack the range that a sonar provides. Yet, laser
technology should not be discarded without giving it a thought, there are some devel-
opments that aim to provide better laser based sensors for underwater by means of
pulsing light ( [8]) and we must also balance between range and resolution, if we just
need to build a model of an object that’s close by a laser will do the job better than a
sonar due to its superior accuracy.

Sonar is of great importance in underwater environments. Even though laser can be
more resilient to environmental changes like temperature, salinity and pressure, sonar
provide a key feature in the underwater world, which is visibility. With a sonar we
will not get the level of detail of a laser sensor, but it is good enough for building a
general map of an underwater terrain under a wider set of water visibility conditions,
which is why sonar is selected as the sensor that will provide the information needed
for building our map.

1.1 Objectives
Among the objectives of this project we can find direct objectives, which can be iden-
tified as what it aims to accomplish, and the indirect objectives, which are derived
from the direct objectives,and also the technologies and platforms used. In general,the
conditions under which the project is developed.

1
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1.2 Direct objectives

The main objective of this project is clear: To develop a hardware-software module for
building obstacle maps using sonar readings. It also aims to develop a module that will
provide needed capabilities in order to overcome the missions in SAUC-E.

Also, this project is intended as the basis for future project that should expand the
mapping and localisation capabilities of the platform and perform further real world
testing.

1.3 Indirect objectives

This objectives do not have a direct relation with this projects mission.

• Getting to know ROS framework and obtain experience using it.

• Gain experience with software design, since the project needs communication with
other software and also comprises a number of different modules.

• Acquire experience with data filtering methods.

• Acquire experience with detection methods.

• Acquire experience in 3D data handling.

• Solve problems on the current software.

• Acquire experience using LATEX.

• Generate a proper documentation for future AVORA generations.



2 | State of the art

In this section different mapping and sonar technologies are discussed in order to get a
proper image of the state of the art in this area.

2.1 Mapping technologies

As it is widely known, the Simultaneous Localization and Mapping or SLAM problem
requires both the agent to generate a map and localise himself within that map. Along
the years multiple ways of representing those maps have been suggested. Commonly,
to analyse also traversability, these maps discretise the world in a grid in which values
of elevation or information regarding the existence of elements are attached to each
measured position. The use of the terms for these models differ greatly among the
community but I will go for what I think is the most sensible use of them.

Digital Elevation Model (DEM)
A DEM is usually grid based model in which every cell of the grid covers the same area
and contains the elevation information for that position.

Digital Terrain Model (DTM)
A DTM can be seen as an upgraded DEM, a DTM contains XYZ information rather
than only elevation. It has the DEM information combined with geographical elements
and natural features such as rivers, ridges etc. This extended information generally
comes from other resources that complement the bare sensor data that a DEM provides.

Digital Surface Model (DSM)
A DSM represents the different elevations found in the reflective surfaces of trees,
buildings and other elements rather than just the "Bare Earth".

3
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Point Clouds
Point clouds are very close to the raw representation of data acquired from range
sensors. They store each measurement value as a 3D point, and also some other fields
can be added such as colour, intensity, etc. Due to this, they are not quite efficient
when it comes to map size, since there is no compression between the raw data acquired
and the point cloud.

Multi Level Surface Map (MLSM)
These maps are grid based maps. The approach used in these maps is biased towards
memory efficiency. Each map has a grid in which each grid cell contains a list of occupied
blocks along with several parameters that detail how many cells in that vertical are
ocuppied. The parameters stored allow to fuse several blocks that contain adjacent
similar information. I will go deeper about this structure in the following chapters, but
more information can also be found at [13] and [11].

Octomap
Octomap is a type of probabilistic occupancy grid. While the other grid types can
easily become probabilistic grids, octomap takes it a little bit further to provide some
other features that the rest of implementations lack. In [9], besides being a probabilistic
approach, the authors propose an efficient way of mappping by storing the data blocks
in octrees, and also model unmapped areas, thus claiming an improvement over the
rest of mapping technologies most used in robotics like elevation maps, point clouds
and MLSM.

Even though I define the terminology used in mapping, [10] defines DEM as a subset
of DTM, being the most fundamental component of DTM:

In practice, these terms (DTM, DEM, DHM, and DTEM) are often as-
sumed to be synonymous and indeed this is often the case. But sometimes
they actually refer to different products. That is, there may be slight dif-
ferences between these terms. Li (1990) has made a comparative analysis
of these differences as follows:
• Ground: ”the solid surface of the earth”; ”a solid base or foundation”;
”a surface of the earth”; ”bottom of the sea”; etc.
• Height: ”measurement from base to top”; ”elevation above the ground
or recognized level, especially that of the sea”; ”distance upwards”;
etc.
• Elevation: ”height above a given level, especially that of sea”; ”height
above the horizon”; etc.
• Terrain: ”tract of country considered with regarded to its natural
features, etc.”; ”an extent of ground, region, territory”; etc.

2.2 Sonar technologies

There is a wide range in sonar technologies but the most adequate for mapping is the
active sonar, which can both emit and receive acoustic signals. Opposed to passive
sonar which can only receive echoes. Several active sonar devices are described next.
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2.2.1 Echo sounder

This is one of the simplest range sensor. The echo sounder emits a pulse from its
transducer. When this pulse is reflected by a surface it returns to the sensor head and
the time of flight can be measured and so, the distance can be estimated. This kind of
device is suitable for measuring the distance of the vehicle to the seabed or structures
like walls. It is normally while mounted on static positions looking down or to the
sides.

Most large vessels carry with them an echo sounder for acquiring bathymetry. They
are also commonly used for fishing, since the echo sounder will register a difference in
depth where a school of fish is located.

Most echo sounders are not too precise, and water conditions such as temperature
must be considered when intending to obtain accurate measurements with any acoustic
sensor. When detailed measurements are required, one must turn to specific echo
sounders for hydrography and also evaluate an array of different factors in those, like
resolution, acoustic beamwidth and so on.

2.2.2 Mechanically scanning profiler

This sensor is composed of a mechanically actuated transducer which can be oriented
at different angles and produce a series of measurements. Usually the size of the scan
sector can be set up from a few degrees to a 360 deg scan. The scanning profiler can be
oriented at different angles with respect to the vertical direction, to produce different
types of maps.

The mechanically scanning profilers are capable of returning echo intensity values
from the insonified area. These measurements can be used to build what is called
an acoustic image, which is an acoustic representation of the environment in terms of
intensity and position. The most common types of imaging sonar are the following:

Mechanically scanned imaging sonar

Similar to the mechanically scanning profiler, this device also has an actuated rotatory
transducer which can emit fan-shaped beams at different orientations. It is usually
placed in a vertical position so it can perform the scanning in the horizontal plane.
These devices generally have a configurable scan sector and it is not unusual to find
models which can perform full 360 deg scans, making them perfect for detecting objects
around the vehicle. Its main draw-back is the slow refresh rate.

Electronically scanned imaging sonar

Also know as multibeam imaging sonar and forward-looking imaging sonar, this sonar
is equipped with an array of hydrophones which produce a complete acoustic image of
the insonified area in a single pulse. This area is usually limited to a small sector, but
can be scanned at very high rates. The main drawback is the cost which can be around
ten times the price of a mechanically scanned sonar.
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Sidescan sonar
This sonar is designed for imaging large seabed areas. It works in an analogous way
to the one of the multibeam echo sounders, but oriented to imaging tasks. This sonar
emits fan shaped pulses, which makes it capable of producing a strip of echo intensity
measurements which, mounted looking down, can produce data to build a large acoustic
image of the seabed.

2.2.3 Multibeam echo sounder
This sensor is able to produce bathymetric maps of large areas of seabed. It is composed
of an array of hydrophones which emit fan shaped beams, producing a whole strip of
points in the direction of the pulses emitted. This type of sonar can produce readings
at high rate and resolution.



3 | Project Requirements

In this chapter we will discuss the requirements that are needed in order to build this
project. These requirements are separated into hardware and software requirements.

3.1 Hardware requirements

• Work station: First of all we will need a platform in which most of the work will
be developed. A PC with the according software requirements would be enough
since there are no special requirements for the PC unless we consider being able
to connect to Ethernet or Wifi such a special requirement. A laptop will suffice
for this task.

• Sensors: In the matter of building underwater maps using sonar it is obvious
that we will need such a device, or a way of simulating it. The sonar is already
provided by the AUV developed by the AVORA team. This sonar is an Imaginex
852 mechanically scanned imaging sonar.

• Platform: In order to manipulate the sonar we will need a platform to which
it will be connected. For this we have a very complete one, the AUV Charl-e,
which allows us to much more than just move the sonar and obtain readings, as
is explained in the next section of Project analysis.

• Test environment: For the purpose of gathering sonar readings using the actual
sensor, we will need an environment suitable to do so. We mainly have two test
areas and what we would consider a bonus one. First of all we have a pool donated
to the AVORA project by PLOCAN (Plataforma Oceánica de Canarias). For a
more realistic test environment PLOCAN has also given us access to a port located
in Taliarte. Finally, since part of the target of the project is to provide a module
for SAUC-E it is logical to gather data from the competitions environment.

7
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3.2 Software requirements

• Operative system: The PC will require a Linux based operative system. The
selected one has been Ubuntu, due to being already known to the student but
also because is the only officially supported operative system for ROS.

• ROS : In order to develop this project the ROS framework was used, both due
to the fact that Charl-e was already built around this framework and the stated
benefits of such framework as explained in section 3.3.

• Editing environment: Many editing environments have been used for this project.
For editing directly inside Charl-e we have used vim, since it allows us to edit
through a ssh connection. We have also used gedit, when editing from an external
PC, due to its simplicity and syntax highlight.

• Programming IDE : In order to work more efficiently it is recommended to use
an IDE for programming. After searching in the ROS web page, I found that
several IDEs could be configured to be integrated with ROS. First I started using
Eclipse, which needed some configuration in order to work and also tended to have
some problems. Then QtCreator was selected as main programming environment,
since it supports CMake projects directly and ROS catkin projects are of such
kind. In the beginning of this project and the students collaboration on the
AVORA project all the development in an exterior workstation to Charl-e was
mas through regular text editors like gedit. After checking the ros.org web page
for IDEs we found that eclipse could be used, given some configuration was done.
This modification did not prove hard, and the benefits from it were as many
as having such an IDE for programming. Such as autocompletion, user friendly
debbuging environment etc. Also another environment was checked. The BRIDE
IDE developed by the BRICS project. In this IDE you can create ROS packages
using a graphic tool that allows you to create the graph architecture before you
start programming, setting connections between topics and different nodes, all
using a graphic environment. After the design is done you can also use it for
programming. This IDE was just tested since it seemed to need more intensive
familiarisation and QTCreator was already good enough to work on this project.

• Simulator : It is a good thing to have a simulator at hand whenever we are devel-
oping any software, more so if we are developing software that requires interaction
with an environment, and even more so if that environment is underwater. Test-
ing the system with real conditions can be hard and expensive so we turn to a
simulator for basic testing.
The simulator selected for the development of this project is Gazebo due to its easy
integration with ROS and the fact that some AVORA software already considered
the use of Gazebo. We will analyse Gazebo deeper in the following section.

• LATEXEditor Even though an editing environment is not needed for creating doc-
uments with LATEXthey ease the process of building a document a lot, and also
offer a better user experience since they provide a lot of useful features for writ-
ing documents. In the beginning the editor used was Texmaker but due to some



3.2. Software requirements 9

problems it was replaced by TexStudio which, in my opinion offers a better user
experience.

3.2.1 Libraries

This project has made use of several libraries and tools provided by different entities, but
the ones considered of most importance, without talking about ROS, are the following.

OpenCV

OpenCV (Open source Computer Vision) is a library of programming functions for
realtime computer vision originally developed by Intel. It is released under BSD license
so its free to use for both academic and comercial use. It is multi-platform, supporting
Windows, Linux, Android, iOS and Mac OS. The library aims to provide an evironment
in which the users can develop applications easily and efficiently, so the functionalities
provided are very optimised. The library has C, C++, Python and Java (Android)
interfaces so it could be easily integrated in our C++ code.

Point Cloud Library (PCL)

The Point Cloud Library (or PCL) is a large scale, open project [15] for 2D/3D image
and point cloud processing. The PCL framework contains numerous state-of-the art
algorithms including filtering, feature estimation, surface reconstruction, registration,
model fitting and segmentation. These algorithms can be used, for example, to filter
outliers from noisy data, stitch 3D point clouds together, segment relevant parts of a
scene, extract keypoints and compute descriptors to recognize objects in the world based
on their geometric appearance, and create surfaces from point clouds and visualize them
– to name a few.

PCL is released under the terms of the 3-clause BSD license and is open source
software. It is free for commercial and research use.

PCL is cross-platform, and has been successfully compiled and deployed on Linux,
MacOS, Windows, and Android/iOS. To simplify development, PCL is split into a
series of smaller code libraries, that can be compiled separately. This modularity is
important for distributing PCL on platforms with reduced computational or size con-
straints. Another way to think about PCL is as a graph of code libraries, similar to
the Boost set of C++ libraries. Here’s an example:
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Boost

Even though is not the most important library used in the system I believe is worth
mentioning. The Boost library is an Open Source library released under its own licence,
which is pretty much the same as a Gnu General Public License, but allows commercial
and non-commercial derivative works and several other features that can be checked
at [1]. In general the library aims to extend the features of C++, and from that
features I have taken the smart pointers and the multi_array. The first is a pointer that
manages itself, destroys itself when no object is using it, and are less messy to use than
plain C pointers. The latter is used for the map grid structure, since this multi_array
can grow dynamically when we need it to, so the map can start growing without any
inconvenience when the data that comes is out of the bounds set on creation.

3.3 ROS

3.3.1 What is ROS?

The Robot Operating System is an open-source framework for developing robot soft-
ware. It is as flexible middleware that offers a great amount of tools and libraries that
makes it simple to create complex and robust robot behaviour in a wide range of plat-
forms. ROS offers common operative system services like hardware abstraction, low-
level device control, implementation of commonly-used functionality, message-passing
between process and package management. ROS is similar in some aspects to other
robot frameworks such as Player, YARP, Orocos, CARMEN, Orca, MOOS and Mi-
crosoft Robotics Studio.

ROS used a graph-oriented architecture. Every system developed in ROS can be
seen as a graph, where each node is a process that is connected to other nodes by its
inputs and outputs, which is accomplished by using ROS communication infrastructure.
These inputs and outputs are the inter process communication channels provided by
ROS, such as topics and services. This also allows to easily distribute our architecture
among machines and still maintain the original architecture.

The ROS description on their web page [3] explains that its main goal is not to be
a framework with the most features, but to support code reuse in robotics research and
development. Apart from that, and in support of the defined primary goal, there are
some other goals for the ROS framework:

• Thin:ROS aims to be as thin as possible, making it easy to use code written for
ROS with other robot software frameworks. ROS is also easy to integrate with
other frameworks and has been successfully integrated with OpenRave, Orocos
and Player.

• ROS-agnostic libraries: It is preferred to write clean interface libraries that won’t
depend on ROS resources so they can actually be used in other non-ROS projects.
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• Language independence: ROS is easy to implement in any modern programming
language. It is already implemented in Python, C++ and Lisp, and as experi-
mental libraries in Java and Lua.

• Easy testing: ROS provides a unit/integration test framework called rostest.

• Scaling: ROS is appropriate for large runtime systems and large development
processes.

Currently, ROS is primarily tested in Ubuntu and MAC OS X systems, being Ubuntu
the only operative system listed as supported in the installation web page.

3.3.2 Organization

ROS organizes the file system in a layered fashion. In our ROS workspace we can find
the following elements:

• Packages: Packages are the most granular unit of a ROS system. They can
contain nodes, a ROS-dependent library, datasets, configuration files or anything
else that should be together. Usually each package contains nodes with similar
functionalities, or some semantic relation between them.

• Metapackages: Metapackages are packages that contain packages, so mainly is a
way of organising your packages. They come handy when your system is made
up of several repositories and you have each one being a metapackage in your
system.

• Package Manifests: Package manifests are xml files that contain metadata re-
garding the package they are in, such as name, version, description, license, de-
pendencies, and other meta information like exported packages.

• Message types: Message description files, they are stored in the msg folder of the
package and define the structure of the messages in a way similar to C structs.

• Service types: They are similar to message files, but are stored under the srv
folder and contain a request message and an answer message.
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3.3.3 Computation Graph

The ROS Computation Graph is the peer-to-peer network of ROS processes that are
being executed at a time. We will go through the elements that comprise this graph:

• Nodes: Nodes are the processes performing computation. A ROS system will
contain many nodes executing e.g. a node controlling a laser range sensor, other
controlling the wheel motors, other performing localisation, other path planning
etc.

• Master : The ROS Master is the process that provides name registration and
lookup to the rest of the elements of the Computation Graph. The Master is the
one that makes possible for nodes to find each other, communicate and invoke
services.

• Parameter Server : Currently is part of the master. Allows to store data by key
in a central location such as node parameters.

• Messages: Nodes communicate among each other by means of messages, which
are structures provided by the system or defined by the user. There are several
types of messages supported e.g. int, boolean, string, etc.

• Topics: Messages between nodes are sent using publish/subscribe semantics. A
topic is the name that identifies the channel to which nodes publish and subscribe.

• Services: Instead of a many-to-many one-way communications, services allow us
to communicate using request/reply interactions as often required in distributed
systems.

• Bags: Bag files are the files used by ROS to save all the communications pro-
duced during the recording, so we can play back the data from topics for further
developing and testing.

Topics can be seen as a conversation between nodes. One or several nodes will be
writing data using a topics name, and other nodes are able to listen to what’s coming
through that channel.

Nodes vs nodelets

Generally each node corresponds to a process in our system. Meaning that each com-
munication channel takes a TCP/IP connection, producing one of the criticised aspects
of ROS: high system overhead. In order solve the issue of several connections with large
amounts of data, ROS introduce the nodelts. Nodelets are basically nodes that instead
of running on a process, several nodes can be run as threads of the same process. This
way, instead of using the TCP/IP connection we have allow zero copy passing of data
between nodelets. Besides from that, nodelets pursue the following design goals:

• Use the existing C++ ROS interfaces.



3.3. ROS 13

• Dynamically load as plugins to break build time dependencies.

• Location transparent except for performance improvements.

• Writing code in a node or a nodelet will be minimally different.

The main difference when using nodelets is that they have some implementation
differences to nodes, and also that they require a nodelet manager to be running in
order to launch and stop the nodes.

Since this project deals with the transmission of large amounts of data, and also this
data in transmitted through several nodes, at the point of going for a more distributed
system I went for separating the processing stage into nodelets, since we have several
tasks transmitting point clouds and communication between each other. This way the
performance of the system would be enhanced.

3.3.4 Tools

ROS offers a set of tools that are very useful for visualising data, configuring node
parameters, testing our system, etc.

roslaunch

roslaunch is a tool for easily launching multiple ROS nodes locally and remotely via
SSH, as well as setting parameters on the Parameter Server. It includes options to
automatically respawn processes that have already died. roslaunch takes in one or more
XML configuration files (with the .launch extension) that specify the parameters to set
and nodes to launch, as well as the machines that they should be run on. This makes it
very easy for us to create launch files for a whole set of nodes. In the case of this project
we have a launch folder for each package where we can find a launch file for the nodes
of this package. For example, the sonar_processing package has a launch file for each
nodelet, but also a launch file that allows us to run all the nodelets together, making
it much easier to run all the processing stages. In the case of the sonar_processing
package it is even more important, since nodeletes depend on a different configuration
that nodes to be run, so we need to run a nodelet manager to be able to run the rest
of nodelets. Another interesting feature is the possibility of loading YAML files where
the parameters of the nodes are contained. These can be found in the yaml folder of
some packages.

rostopic

The rostopic command lets us acquire information regarding the topics that are being
used in our system. It has several options:

• rostopic bw: display bandwidth used by topic

• rostopic echo: print messages to screen
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• rostopic find: find topics by type

• rostopic hz: display publishing rate of topic

• rostopic info: print information about active topic

• rostopic list: list active topics

• rostopic pub : publish data to topic

• rostopic type: print topic type

rqt_reconfigure

This rqt plugin provides a way to dinamically view and edit the parameters of a node.
This way we can change the behaviour of our nodes on execution time.

Figure 3.1: rqt_reconfigure

rqt_graph

The rqt_graph is a great tool for visualising the general structure of our system which
also helps us check how the nodes are wired up and diagnose possible errors in the
communications scheme.
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Figure 3.2: rqt_graph output

rqt_publisher

The rqt_publisher plugin kind of works in the same way as rostpic publish. The
difference is that it offers a graphical user interface that makes it very easy to publish
to the existing topics, select the content, the rate of publishing, etc. Making it an useful
tool for testing our system among other uses.

Figure 3.3: rqt_publisher

rqt_console

Rqt_console is a viewer plugin that displays messages published to rosout, which is
the output of the ros output message system, the same way as stdout is the standard
output for text output in regular programs. It collects messages over time, and lets you
view them in more detail, as well as allowing you to filter messages by various means.
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Figure 3.4: rqt_console

rqt_bag

In order to work with bag files with a graphical interface, rqt provides us with rqt_bag.
Among its features it has the capability of playing and recording bag files, showing
images as thumbnails in the timeline of the bag file reproduction, plot configurable
time-series of message values, export messages in a time range to a new bag, etc.

Figure 3.5: rqt_bag

rviz

Rviz is one of the greatest tools provided by ROS. This package visualises a wide range
of elements like robot models, point clouds, images, markers etc. With the correct set
up you can actually see a model of your robot and visualise the data it is producing in
the same 3D environment.
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Figure 3.6: Rviz visualization

3.3.5 Community and collaboration

There is another level of great importance among the ROS environment, which is the
community. The contribution of the community enhances several aspects of ROS, which
include the following:

• Distributions: Ros Distributions are collections of stacks that the user can install.
They work in a similar manner to the Linux distributions, they can be seen as a
collection of software that maintains consistent versions across a set of software.
This can be easily seen in the name of the packages installed, which follow the
pattern "ros-distribution-package_name".

• Repositories: ROS relies on a federated network of code repositories in which we
can find code developed by different institutions that release their own software
components.

• The ROS Wiki: The ROS wiki provides a web portal and forum where you can
find the documentation about ROS. Any singed up user can contribute to the wiki
by writing documentation, providing corrections or updates, writing tutorials, etc.

• Mailing lists: There is a ros-users mailing list which works as the primary commu-
nication channel about ROS updates but also as a forum to ask questions among
users.

• ROS Answers: This is the Q&A site for ROS related questions, is a great place
to start searching when something goes awry.

3.3.6 TF

TF is how ROS manages coordinate systems relative to the environment or as part
of the system itself. A robotic system typically has many 3D coordinate frames that
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change over time, such as a world frame, base frame, gripper frame, head frame, etc. tf
keeps track of all these frames over time, and allows you to perform several operations
regarding these coordinate frames, such as:

• Calculation of transformation from one frame to another

• Transformation of data from one frame to another.

• Calculation of transformations between frames at a given moment e.g. five sec-
onds ago, now, etc.

We will find three basic frames that tend to be part of every mobile robot platform:

• map The map frame contains the odometry data corrected by means of sensor
that work at discrete jumps over time, like the product of a SLAM package, this
frame usually provides corrections of the drift found in odom at discrete jumps.

• odom The transformation form base_link to odom is the one provided by the
odometry in the vehicle (continuous source of data) that tends to drift over time.

• base_link Usually a frame set up as the origin in the robot. Generally it is set in
the center of mass of the robot.



4 | Project analysis

In this chapter several topics are covered. First we will describe and analyse the be-
haviour of the underwater imaging sonar and how do we model it in the simulator. We
will also go through the architecture of the AUV and the architecture of the developed
software, first from a ROS point of view, and then from a class and use case diagram.

4.1 Sonar characterisation

Before talking about any further development that comes on top of the sensor, it is
important to have a look at how our sonar behaves and what kind of data it produces.

4.1.1 Imaging

Our sonar, the imagenex 852, is a fan-shaped mechanically-scanned imaging sonar. This
type of sonar will emit a fan shaped sound wave at each head angular position, wich
are reached by mechanically rotating the internal sensor head. The beam’s movement
through the water will generate different points that form the sonar image of the area
insonified. The different points represent the time (or slant range) that takes each echo
to return, and the intensity of each point represent the echo return strength. Several
characteristics are needed in order to produce an image of some quality from the sonar
image.

• The angle through which the beam is moved is small.

• The fan-shaped beam has a narrow angle.

• The time to transmit a pulse is short compared to the time required to receive
the echo.

• The echo return information is accurately treated.

The produced image provides the viewer with enough data to draw conclusions
about the environment being scanned, thus, we aim for the autonomous robot to do
the same, being able to recognise sizes, shapes and the surface reflecting characteristics
of the different targets being focused.

The imaging sonar is mainly purposed as a viewing tool, since the data is better
suited for a human to interpret, but we hope that with proper processing we can produce
data with enough quality to be used in mapping and navigation.

19
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4.1.2 Interpretation of sonar images

In many cases the sonar image will closely resemble an optical image of the same
surroundings. But, in other cases the sonar image can be difficult to interpret due to
its greater disparities with the expected image. This is why there are a lot of factors to
be considered when processing this data for autonomous navigation and mapping. A
sonar image will always have less resolution than an optical image or laser range data,
and will also present more noise and strange effects.

Generally, rough objects reflect sound well in many directions and are therefore
good sonar targets. Smooth angular surfaces may give very strong reflections in one
particular direction, but almost none at all in other directions. Some objects, such as
smooth plane surfaces, may be difficult to see with a sonar. They can act as a perfect
mirror (specular reflectors) reflecting the sonar pulse off in unexpected directions, never
to return, or making it bounce affecting posterior readings and adding some sort of
phantom effect.

Mainly we could sum up in two the factors that will affect the echo return and the
strength: the material of the surface, and the normal of the surface to the pulse origin.

These two factors could be used to estimate the material the surface is made of
and its normal, for example, since mud absorbs the pulse emitted it will provide low
strength echoes, and might even not bounce the echo back, but we could use this to
segment the materials the sea floor is made of.

Another factor to take into account is that the ranges shown on the sonar image
are "slant" ranges, this means that we won’t usually know the relative elevations of
the targets, only the range from the transducer. This means that two targets, which
are displayed in the same location of the beam, may be at different elevations. This is
due to the fact that both have reflected an echo that produces the same return time.
In order to estimate with the height of the objects we can analyze the shadow they
produce, as shown in the figure.
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4.1.3 Sonar configuration

The sonar can be configured through several parameters that can greatly modify its
behaviour and the quality of the readings. Due to the importance of these parameters
they have to be tuned correctly, but also understood properly. Those parameters are
the following:

• Range: It defines the radius of the circumference that the readings will cover. It
can be set to 5, 10, 20, 30, 40 and 50 meters. We have to take into account that,
the higher the range, the larger the time required awaiting for the echo to come
back to the sensor, meaning that a bigger delay is introduced.

• Direction: This parameter allows us to change the direction in which the sonar
head rotates so we can have clockwise or anticlockwise behaviour.

• Gain: The gain defines the multiplier of the intensity of the acoustic pulse in dB.
High gains produce higher intensity results but also more noise. It varies from 0
to 40 dB in 1dB increments.

• Absorption: The absorption coefficient, along the frequency and the distance,
take part in the definition of the transmission loss. 20 = 0.2 dB/m 675, 850 KHz.

• Train angle: 0 to 140 (-210 to +210 degrees) in 3 degree steps. Experimentally,
we have discovered that this parameters works along with the sector width angle
to set the centre of the fan shape.

• Sector width:It is the width in degrees of the area that the sonar head will cover.
This, along with the train angle, help us define sections that will be scanned,
helping us reduce the refresh time among other features. It can take values
between 0 and 120 (0 to 360 degrees) in 3 degree steps.

• Step size: Defines the size of the sonar moving transducer head, which can be 0
(no step), 3 or 6 degrees per step.

• Pulse length: Length of acoustic transmit pulse, ranges from 1 to 255 µsec in 1
µsec increments.

• Data points: Can select between 250 and 500 points in each beam.

• Switch delay:This delay can make the head pause before sending its return data
to allow the commanding program enough time to setup for serial reception of
the return data. It can take values from 0 to 510 miliseconds in 2 miliseconds
increments.

• Frequency: It can take be set to 675 KHz or 850KHz, this parameter affects the
transmission loss.
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Transmission loss and tunning of absorption and frequency

The definition of transmission loss(TL) is "The accumulated decrease in acoustic inten-
sity as an acoustic pressure wave propagates outwards from a source." As the acoustic
wave propagates through its medium the signal intensity is reduced with increasing
range due to spreading and attenuation/absorption. Stoke’s law of sound attenuation
is a formula where the attenuation of sound in a Newtonian fluid due to its viscosity is
calculated. It states that the amplitude of a plane wave decreases exponentially with
the distance travelled at a rate α, given by

α = 2ηω
3ρV 3

where η is the dynamic viscosity coefficient of the fluid, ω is the sound’s frequency, ρ is
the fluid density, and V is the speed of sound in the medium. Taking into account this
equation we can see that in order to have a lower rate we should set a lower frequency.

The absorption, measured in dB/m is represented by the attenuation coefficient a
which has two primary causes: viscous friction and ionic relaxation. The attenuation
caused by viscous friction comes from the conversion of sound energy into heat due to
internal friction at a molecular level within the fluid. There are several factors can be
analysed deeper, but in general we can see that the terms depend proportionally on
frequency, so a lower frequency should produce less absorption.

4.1.4 Communication protocol

Along other data the sonar provides the current sonar transducer head and an array of
slant ranges with the intensity of each echo return. In the following images we can see
the command used for changing the configuration and the format of the data received.
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4.2 Gazebo
Even though ROS supports building models of our robots and articulating them, we
need a simulation environment that allows us to interact with a scene. For this purpose
Gazebo is very adequate.

Gazebo (http://gazebosim.org/) is a multirobot simulator for outdoor environ-
ments. It is capable of simulating a population of robots, sensors, and objects in a
three-dimensional world. It generates both realistic sensor feedback and physically
plausible interactions between objects.

In earlier ROS versions Gazebo was integrated with ROS, being a ROS package (the
same can be said for PCL). Gazebo is now independent from ROS and its installed as
a standalone package.

Among its features we can find:

• Dynamics Simulation (Using ODE, Bullet, Simbody, and DART as physics en-
gine)

• Advanced 3D graphics using OGRE

• It provides various sensors such as laser range finders, 2D/3D cameras, Kinect
style sensors, contact sensors, force-torque, and more.

• It provide simple interfaces for plugin development, letting use the tools provided
for our own modified elements and behaviours

• Gazebo provides a variety of robot models including PR2, Pioneer2 DX, iRobot
Create, and TurtleBot. And it’s very simple to add our own using SDF and
Xacro.

• Simulations can be run on remote servers and interfaced with using socket-based
message passing, the same way as we could do with ROS.

The newest version of Gazebo includes water dynamics simulation among its features,
letting us model a submarine with its own propellers and interact with them. Sadly
this feature is very recent and the Gazebo versions that can be integrated with ROS
Indigo do not contain it.

For our sonar simulation gazebo provides two types of base sensors: a collision based
sensor which is already included as part of Gazebo, and a Laser Ray based sensor that
works through modification on a plugin.

4.2.1 SDF Modelling
SDF is an XML format that describes objects and environments for robot simulators,
visualization, and control. Originally developed as part of the Gazebo robot simulator,
SDF was designed with scientific robot applications in mind. Over the years, SDF
has become a stable, robust, and extensible format capable of describing all aspects of
robots, static and dynamic objects, lighting, terrain, and even physics.

There are a lot of tutorials where one can learn about how to model elements with
SDF, but here we will focus on how do we model our sensor so we can understand
the parameters and the modifications made on the SDF format associated to the sonar
sensor in the development section.
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Sensor definition

There are two types of sensors relevant to this project, sonar based and ray based.
From the <sensor> XML element we use the following tags:

• <always_on> With the value of true/false or 1/0, this parameter lets us decide
if the sensor should start working the moment the model is spawned on the
simulator or if it should wait for some process to subscribe to its topic to start
working. For testing it is a good thing to set this to false, but having it set to
true mimics what would happen in the real world (unless we have a sensor that
awaits for an event of some sort to start working).

• <update_rate> This is the rate at which the sensor update event happens. Usu-
ally this will directly correspond to the rate at which the data is publish, but not
necessarily.

• <plugin> This tag is for the plugin associated to the sensor. This allows us to
define the Gazebo-ROS plugin linked to the sensor. This tag also contains its
own XML child elements, that work as parameters for the plugin itself and will
be addressed specifically for each plugin.

4.2.2 Sonar sensor

This sensor works as an ultrasound range sensor, it simulates the sound pulse emitted
using a cone, and gives us the closest collision between the come and the environment,
published as a message with information about the 3D position of the collision.

XML parameters

For sonar based sensor we have the <sonar> element, which is a child of the <sensor>
element, with the following child elements:

• <min> Minimum distance at which we detect collisions.

• <max> Maximum rage of the sonar.

• <radius> Radius of the cone at maximum range.

4.2.3 Laser sensor

The laser sensor is a ray based sensor, and as such, it receives the collision of a number
of preconfigured rays that span a parametrized area. This type of sensor provides the
collision of each ray with the environment. The main difference with the sonar sensor
is that the sonar will hand out the collisions using a cone, while the laser only obtains
the collision using a line, which is not very realistic if what we want to simulate is a
sonar that emits an ultrasound pulse.
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XML parameters

For ray sensors we have the <ray> element as child of the the <sensor> element, and
can be configured with the following childs:

• <scan>

– <horizontal> Horizontal setup of the rays
∗ <samples> Number of simulated rays to generate per complete laser
sweep cycle.
∗ <resolution> This number is multiplied by samples to determine the
number of range data points returned. If resolution is less than one,
range data is interpolated. If resolution is greater than one, range data
is averaged.
∗ <min_angle> Horizontal angle where the swipe begins.
∗ <max_angle> Horizontal angle where the swipe ends.

– <vertical> Has the same childs as the <horizontal> element.

• <range>

– <min> Minimum distance for each ray.
– <max> Maximum distance for each ray
– <resolution> The resolution of each ray range.

It is important to note that the ROS plugins required for these sensors are located
under the charle_description package.

4.3 Platform architecture

Here we discuss about the platform that has supported the development of the software
module developed for this project which name is Charl-e.

Charl-e’s structure is based on a modular and easy to assemble architecture. In this
architecture we can differentiate between structural architecture, electronic architecture
and software architecture.
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4.3.1 Structural architecture

General structure

The vehicle is composed of an external frame made of high-density polyethilene (PE-
500) due to its low water absorption, low density, strength and excellent properties to
be mechanized. In this structure we can find attached different kinds of devices. Such
as wet sensors, thrusters, some other actuators, the housings where the electronics and
the batteries are disposed, and the tilting imaging sonar. The housings and sonar are
fixed to the frame in a fashion that allows fast access and easy external manipulation
in case a removal has to be performed. All this components are attached to the frame
using marine steel spoke resistant to marine environments. The AUV is propelled by
4 sets of SeaBotix BTD150 thrusters attached to the external frame in the following
fashion: two at each side pointing forward along the surge axis, and other two along
the vertical axis, one on bow and another on stern. Thus providing the vehicle with
the ability to move forward and backwards, up and down, turn board and starboard,
and also manipulate its pitch and yaw. Due to the character of the competition for
which this robot was developed, there was no actual need of pitch control, so just an
adequate trimming was enough to provide stability.

Figure 4.1: Main housing

Main housing

For the pressure vessel (main housing), that contains the electronics, we have a 200mm
diameter PVC pipe. The cover cap used for this enclosure box, has been made out
of a solid bar of 200 mm diameter PVC16 tube The caps come with 2 o-rings of 4
mm section, in order to provide a perfectly watertight closure. These caps were made
with a CNC (Computer Numerical Control) machine, one of which features waterproof
connectors leading inside to the electronics. The box contains most of the AUV systems:
embedded computer, power and control boards for the SeaBotix thrusters, Mti IMU,
pressure/depth sensor, servo controllers and more.
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Electronics rack

Inside the main enclosure the electronics are organized on a newly designed interior
rack and ring system. 3D printed rings slide into the tube and are joined together
machined plastic boards which also serve as the differing floors of the AUV electronics
system (see fig 2). This new design presented unique challenges for the design team
due to the need to fit the same amount of electronics as the year before, in an even
smaller space. The four floors of the electronic rack are as follows:

• Floor 1: Battery shelf - supplies power to internal electronics

• Floor 2: Computation shelf- where the computer and its power supply are located

• Floor 3/ 4: Electronics shelf- Containing the control systems and electronics
boards

Figure 4.2: Electronics rack

Camera and laser

The new design for the camera housing switched from a pan-tilt system to an encap-
sulated tilt system. With this change, the camera is no longer outside of the body
profile, creating less drag and buoyancy issues. The camera features a servo control
system that rotates three individual housings connected by rods. A bearing support
system was used to reduce the torque load on the servo. The addition of a second laser
helps increase the computing accuracy of the obstacle avoidance sensing. The design
uses two green laser pointers of 20mW and an analog CCD camera with a resolution of
640x480.

Battery packs

They are made of 90mm PVC tubing and house in total 6 H-38120S Headway LiFePO4
cells. The tubes are sealed with custom designed PVC caps with waterproof connectors
to allow the batteries to power the motors. A dual feature of the battery packs is their
ability to move on their supports. This makes them a key component of the buoyancy
system. Also, this design provides an easy way of replacing batteries.
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Figure 4.3: Camera housing

Thrusters

The AUV features 4 SeaBotix BTD150 thrusters. Two are placed horizontally on both
the starboard and port sides of the vehicle. They are responsible for both forward and
reverse surge as well as yaw rotation in either direction. The other two are placed at
the bow and stern of the AUV and are mainly responsible for propelling it down and
up. These two thrusters can also be used to adjust pitch; however, proper trimming of
the vehicle normally renders this an unnecessary movement.

Sensors

The sensors are directly attached to the frame and can be easily moved to suit the
needs of the mission. Another innovation is the positionable sonar which can rotate 90
degrees; allowing the vehicle to make maps of objects on the bottom.

4.3.2 Electronic architecture

Main computer

For the main computing unit we have an Acer one ultra book laptop. But we have
removed the keyboard, screen, and the whole outer structure, leaving only the main
board. This allows us to reduce the space occupied, heating and power consumption.

Data communication

The devices communicate with the computer using serial communication. For the
Sonar, Xsens Mti, and camera capturer we use a direct connection to the computer,
and for interfacing between sensors/actuator and the main computer we use Arduino
Mega I/O Boards.
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Power supply

We use three packs of LiFePo4 batteries as power supply for the whole AUV. Two packs
of six cells are used for the four thrusters and the other pack of four cells is used for the
electronic of the main housing. The electronic design makes a separation between power
electronic and sensor electronics. To protect the batteries, BMSs monitor every cell of
each pack of batteries. The battery state is controlled during the discharge and charge
states. The electronic battery pack is connected to three mini-Box DC-DC converters.
They provide three different voltage levels (5, 12 and 24V) to the electronics devices
except the thrusters.

Proprioceptive sensors

Monitoring the state if the vehicle is critical for safety reasons. There are several sensors
equipped in the vehicle that allow us to monitor this state. We measure both internal
variables like temperature, pressure, humidity inside the housing, and external variables
like pressure or speed. One of the most important sensors inside the main housing are
the humidity and leak sensors that will allow us to emerge in case of leaks inside of it.
Also the temperature sensors are important since we have a lot of electronic devices
inside a closed housing, which generates a considerable raise in temperature.

Inertial Measurement Unit

An inertial measurement unit it is an indispensable device to know the orientation
and the pose of the vehicle in each moment. We incorporate an MTi Xsens sensor
to solve this task. This sensor is able to provide an accurate 360 deg pose and the
orientation referred to Earth’s magnetic field and gravity. Sadly, this is not entirely the
case when it is located inside the main housing, surrounded by electronics. We have
yet to characterize its behaviour inside the main housing but we are also considering
locating it in its own housing.

Sonar

Avora vehicle is equipped with an Imagenex 852 miniature sonar. Due to its small
size, weight and easiness of interfacing, this sensor is well suited for usage in small
underwater vehicles. This sonar can work in a range of distances between 15 cm and
50 m; the beam width is 2, 5 deg. To make a precise 360 deg scan, the sonar needs 16
seconds. The sonar signal frequency can be adjusted, we set it to 850 KHz to reduce
the contributions of noise. The sonar is fixed to the AUV by means of a servomotor.
This allows changing the angle (tilt) of the scanning plane of the sonar from horizontal
to vertical. The vertical orientation is employed to estimate the altitude of the vehicle
working similarly as an altimeter.

Sonar data are processed to register environment features that are integrated by
the mapping system
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Figure 4.4: Sonar rotation mechanism

Propulsion system

For propulsion we have 4 SeaBotix BTD150 thrusters two for depth control, and two
for linear and angular movement. They are controlled by two dual-channel Roboclaws
2x15A boards. and powered by two packs of six cells of LiFePo4 batteries connected to
a Y-connector. The Y-connector combines the power of the two packs of batteries and
can provide power to the four thrusters with only one pack of batteries connected. This
way, the AUV can continue its mission if one pack of batteries becomes discharged or
the BMS has shut down that pack due to any other problem (excessive current, severe
unbalance...). For security a power cut-off circuit is used to stop the thrusters and can
be activated using pushing the emergency button or by software.

Vision system

We use an analog color camera equipped with a Sony HAD II CCD sensor (vertical
resolution 700 lines). EasyCap USB camera framegrabber digitizes the analog camera
signal before being processed by the computer. Two 20mW green laser pointers are
situated at both sides of the camera to calculate distance and an approximate size of
the objects. An RC servo motor makes possible to orient the camera over 170 deg, this
camera tilting can obtain frontal images, sea bottom or surface images.

4.3.3 Software

Most of our software is integrated using ROS as middleware. This integration allows
us, following our architectural design, to develop modules quite fast and easily. On
the other hand we rely on an asynchronous architecture which depends on different
modules communicating among them and performing different tasks at the same time,
for which ROS is very suitable.
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Architecture

Through the lifespan of the project, a layered modular architecture has been followed
as a design standard for the development of the different packages that build our
system in order to give it the different capabilities we will need in the variety of tackled
scenarios. This architecture aims to create a considerably simple system, which should
be easy to understand by both developers and the rest of the team. Also it tries to
provide an architecture in which adding a new module can be done quickly, thanks to
the independence between modules and the intra system communication scheme used,
which is basically supported by ROS. We will go through the different layers of the
architecture and will comment on the most important modules of each layer.

Figure 4.5: Software architecture

World modelling

Our imaging sonar is the main tool used for modelling our environment, since it is
mounted with a servomotor it can provide us with data while tilting to obtain a proper
map. Due to the accumulation of errors and the accuracy of the sensor measurements,
we use a probabilistic world model, we basically accumulate evidence of the different
elements found in our environment, as walls and buoys, and push them to the upper
layers of the architecture with an uncertainty value, which will be managed by the
mapper module in order to accumulate the evidence of certain elements.
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Sensor and actuator level

In this level we can find the different drivers needed to provide the rest of the system
with the data coming from the sensors and also the communication protocols needed for
the hardware. This level will also receive control data from higher levels so the different
actuators can be controlled, and also some of the sensor dynamically reconfigured, e.g.
changing the sonar range, or sector size.

Detection level

Here we can find the modules that are in charge of interpreting the data coming from
the sensor and produce something useful for upper layers. These modules will process
the sensor data and will transmit to other modules the characteristics of the elements
detected, and also a level of uncertainty associated to the measurements, which value
will depend on the accuracy and drift of the sensor, but also the level of confidence
that the INS generates while is not corrected by sonar odometry.

Navigation and mapping

We aim to navigate using an INS and fusing it with odometry estimated from the sonar
images. The INS would be fed by our Xsens IMU, and then would be reinforced by
the occasional data coming from the sonar. The odometry produced by the sonar is a
product of the wall detection algorithm, since we can use the position of the walls of the
arena to localise ourselves and correct the drift that the INS produces. We trust that
periodical sparse scans will be enough so we can keep up with the rest of the demands
of the system that require different uses of the sonar. Basically the combined odometry
will be produced by an Extended Kalman Filter (EKF) that will fuse IMU data with
occasional odometry from the sonar. Since the data from the INS will be much more
frequent the system will behave mostly as an INS, and the sonar odometry will be in
charge of palliating the drift of the INS. Also, the system is prepared for accepting
visual odometry from the algorithm proposed in [6] which can be used as another input
for the EKF node. For mapping we have developed a node that builds a Multi Surface
Level Map using point clouds that are a product of the sonar readings. This module
can be fed with both the processed sonar data, and the product of the detection nodes.

Task level

In this level we find the modules that perform different tasks, e.g. gate crossing, wall
following. These tasks are basically modelled using a relatively simple state machine.
These automatons will flow through one state or to another depending on the current
state of the platform and the environment, e.g. when a buoy is detected.
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Management level

This level is the one in charge of the general control of the robot, it encompasses the
highest level behaviours. Here we can find the mission executive and the integrity
supervisor modules. The first one will be the one launching the different tasks needed
for accomplishing a mission. Also it will perform the tasks simple enough not to
require a state machine. The second one will be in charge of taking over the system in
an emergency. It will monitor the different sensors to detect dangerous situations and
take actions to avoid them or sustain the lowest possible damage

4.4 Analisys

4.4.1 The competition

In order to further comprehend the motivation of this work and its environment it is
interesting to understand how the competition for which the robot and the software
were designed takes place. The SAUC-E competition takes place at La Spezia, Italy,
in a salt water basin of 120 meter long and 50 meter wide, with a constant depth of 5,5
msw and negligible currents. The competition it’s formed by a series of missions that
the AUV will have to accomplish which are explained next:

Gate Crossing
The first mission consists on crossing a gate made with two buoys situated at least at
8 meters from the starting point and 2 meters apart from each other. This distance
makes the localization of the gate quite difficult by means of visual detection due to
the poor visibility given in the environment and the fact that there’s no prior knowl-
edge of where the buoys are situated from the sonars initial position. The task can be
accomplished by traversing at the controlled depth towards the centre of the Arena,
make a 90 degree turn, and pass through the validation gate.

Underwater structure inspection
In this mission the vehicle must perform the inspection of an ”underwater structure”
made of cylinders in a pipe-like arrangement. The structure consists in concentric cylin-
ders and a set of circles placed on top of another set to increase the object’s height. The
objective is to inspect this structure an imaging sensor while maintaining a required
stand-off distance from it.

Wall Inspection
This mission consists of four parts. First a wall must be followed with a position be-
tween 2 and 4 meters from it and an ”anomaly” (buoy) must be detected. Second, after
detecting the anomaly, the AUV must signal the ASV to go to the location where the
anomaly is. Third the ASV must be capable of acquiring and detecting the anomaly
based on the information given by the AUV and giving the location of the anomaly.

Black box detection and area mapping
In this mission three tasks have to be performed. First we have to build a map of the
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environment. Second, a stationary black box must be found, and third, we have to
surface in the zone within 3 meters of the black box.

As we can see from the missions, this competition requires the robot to be able to
make a map of its surrounding environment in order to know its location and identify
some elements like walls, buoys, boxes etc. But not only considering SAUC-E’s envi-
ronment we find the need for mapping. From the beginning if we think of autonomous
navigation, we think of mapping and localisation. With this sort of missions and needs
it is logical to develop a good and reliable component in order to map an underwater
environment, and also it has great value outside the AVORA project itself since... In
an underwater environment we could think of mapping using feature detection over
camera, laser, or fusing laser and camera data which would lead us in the direction of
Visual Simultaneous Localisation And Mapping (V-SLAM). The main problem with
this approach is that laser beams are attenuated and dispersed in water while cameras
limit most of their applications to navigation in clear water and close to the seafloor. In
the case of SAUC-E competition we find an environment with such conditions of poor
visibility, making the laser and camera not very useful unless we are working within
distances of around 2 meters. For all of the above, we approach the underwater map
construction by means of a sonar.

4.4.2 Considered scenarios

In order to approach the development of this project we need to define the different
situations we might face. In this section I will discuss about this scenario and the
capabilities developed in order to perform correctly in any them.

Scenario 1: Static observer and static environment

In this scenario the platform remains still while the sonar head gathers readings. The
movement considered is the one of the sonar head, since this one can be easily measured
by the movement of the servomotor that rotates the sonar for the 3D scan. The
environment is also considered static, so no elements are supposed to move, appear or
disappear.

In order to perform the mapping under the conditions explained we only need the
basic features of the software module, which are the data filtering and its posterior
conversion to map blocks. We also won’t need any actuators or different sensors from
the vehicle rather than the sonar and the servomotor in it.

Scenario 2: Dynamic observer and static environment (Step movement)

This scenario does not consider mapping while moving. Instead we assume that we
will have different static positions from which we will map. In this scenario use each of
these static poses to provide ourselves some odometry so we can know where we are,
and also add to the map the data we have just gathered. In order to accomplish this,
a custom Iterative Closest Points (ICP) that works with the developed structures for
Multi Surface Level Maps has been developed. ICP will be discussed further in this
section.
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Scenario 3: Dynamic observer and static environment (Continuous move-
ment)

In this scenario we aim to provide odometry data while we move, so we can transform
the data received while moving. This will also depend on how fast the sensor can
provide us with reliable data so that the algorithm can find the matched needed to
produce an accurate (and correct) result. For this purpose, some modifications have
been added to the original ICP algorithm, which will be explained in the development
section.

4.4.3 Methodology

The methodology followed in general has been in spiral with hints of prototyping. First
of all there was an objective identification, but then each module has been more or less
developed sequentially. The functionalities of the packages where developed and tested
separately, but, in order to test smaller versions without the complete functionalities,
small prototypes of each module were developed. For example, in the beginning the
system was tested with thresholding and detection but not a proper structure for map
generation.

4.5 Design

4.5.1 Architecture from ROS point of view

Here we will talk about how the system is configured in terms of the ROS Computation
Graph, going through the packages and nodes that build the system. There are some
structures we have to talk about before jumping to the description of the nodes and the
data they produce. We can also see the computation graph extracted from rqt_graph
for an overview of nodes and topics in figure 4.6.

Messages and data types

In order to communicate the nodes we need different message types that will hold the
data produces the nodes of our system. There are several messages that have are of
importance for the communication of these nodes and the processing that takes place
inside them.

PCL points and point clouds
PCL provides templated clouds so that the user can create clouds with any point
data type provided by PCL. The user can even define its own point type and
integrate it to create point clouds of custom point types. The point type used for
this project is the PCL::PointXYZI type. This point contains the regular XYZ
position data, but it also adds an intensity value, which we can use to hold the
echo return strength for our sonar. The point cloud that holds this data has been
renamed to "IntensityCloud" so it can be more user friendly when developing.
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Figure 4.6: Computational graph of project nodes

ROS point clouds
ROS provides its own pointclouds to use as messages which are of sensor_msgs::PointCloud2
type. This clouds do not hold the attributes in the same way as PCL clouds, in-
stead, they are designed to hold pretty much whatever point cloud type we want
and then easily conver it back to a PCL cloud, which are easier to manage. This
is the structure of a sensor_msgs::PointCloud2.

std_msgs/Header header
uint32 height
uint32 width
sensor_msgs/PointField[] fields
bool is_bigendian
uint32 point_step
uint32 row_step
uint8[] data
bool is_dense

As we can see there is not much to get directly from it. The other problem we
would face is that we would not be able to use all the tools provided by PCL,
so the usual way to proceed is to convert these clouds to PCL clouds and them
work with them.

Custom cloud messages
Even though ROS and PCL provide quite complete data types, we needed some
data that was not covered in their point cloud types and messages, which was
the timestamps of each recorded beam. Thus, we created a new message con-
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taining the original sensor_msgs::PointCloud2 and an array of timestamps con-
taining the timestamp of each point. This was required for the modified ICP
which takes into account when each point is measured. This message type is
avora_msgs::StampedIntensityCloud.

Driver package

imagenex_852_driver
This node is the sonar driver. It basically uses serial communication for implementing
the protocol specified in the manual of the Imagenex 852 sonar. It is one of the com-
ponents that did not change through the evolution since the implementation was solid
enough. Publications:

• /sonar/raw (avora_msgs::SonarScanLine): ROS topic where the raw sonar data
is published, along some configuration options and the ROS message header. The
struct is as follows:

Header header
# scan
float32 angle
uint8[] intensities

# sonar parameters
float32 maxrange_meters
float32 range_resolution
uint8 gain
float32 sensorAngle

Sonar_processing package

This package holds the nodes responsible of processing the raw data produce by the
sonar driver. It contains the implementation of the filtering steps and also nodelets for
detection in point clouds. SonarToCloud
This nodelet takes the avora_msgs::SonarScanLine and turns it into a point cloud in
the robots reference system, using the data from the sonar servomotor position. It
allows for different configurations. It can store the beams until a certain amount are
stored or the servomotor position is changed. It can also convert the readings to laser-
like point clouds, where each beam produces only one valid measure or just turn them
into point clouds that will be filtered later.

Subscriptions:

• avora_msgs::SonarScanLine

Publications:

• /sonar/scan/sonarCloud (avora_msgs::StampedIntensityCloud)
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• /sonar/scan/laserCloud (sensor_msgs::PointCloud2)
Thresholder
This nodelet is the first step to produce clean data from the raw readings. It performs an
intensity based thresholding operation on the point cloud, being able to select different
methods that will be explained in the development section.

Subscriptions:
• sesor_msgs::PointCloud

Publications:
• /sonar/scan/thresholded (avora_msgs::StampedIntensityCloud)

OutlierRemover
This removes outlier points from the point cloud, it mostly helps eliminate the high
intensity points that appear alone or in very small clusters. Subscriptions:
• sensor_msgs::PointCloud2

Publications:
• /sonar/scan/cleaned (avora_msgs::StampedIntensityCloud)

LineDetector
This nodelet takes the incoming clouds and detects lines in them producing the points
associated to the line. Subscriptions:
• avora_msgs::StampedIntensityCloud

Publications:
• /sonar/scan/line (sensor_msgs::PointCloud2)

• /sonar/scan/line/coefficients

mlsm_manager
Here we can find the node developed for mapping and scan matching, which makes use
of the classes and tools developed for handling MLS maps. MLSMCore
This node is in charge of mapping. It receives avora_msgs::StampedIntensityCloudPtr
which contains the cloud of generated points and the timestamps for each point. This
node will produce a point cloud with the means of each block, or the blocks using a
ROS marker array. It also produces the frame transformation from "odom" to "map"
which helps us localise ourselves.

Subscriptions:
• avora_msgs::StampedIntensityCloud

Publications:
• /MLSM/cloud (visualization_msgs::MarkerArray)

• /MLSM/Markers (sensor_msgs::PointCloud2)

4.5.2 Class diagram
Generally, object wise, each ROS node object inherits from the parent ros::Node class,
and the functions and procedures are implemented as part of the child node class. This
is the case of the processing nodelets. Due to their simple nature, they can easily
be implemented as nodes that contain some processing functions. In the case of the
mapping node we can find a more elaborate construction, but still, its quite simple
thanks to the segmentation of processing units into nodes and nodelets.
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Figure 4.7: Collision based gazebo sonar

Figure 4.8: Laser based gazebo sonar
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5 | Economical and Legal
Aspects

5.1 License

There are several licesing factors that intervene on this project. There are several
licenses that must be uphold:

• Third party software: In this case we can go through the licenses of the third
party software used:

– ROS : As stated in http://www.ros.org/is-ros-for-me/,
The core of ROS is licensed under the standard three-clause BSD
license. This is a very permissive open license that allows for reuse
in commercial and closed source products. [...] While the core
parts of ROS are licensed under the BSD license, other licenses are
commonly used in the community packages, such as the Apache
2.0 license, the GPL license, the MIT license, and even proprietary
licenses. Each package in the ROS ecosystem is required to specify
a license,[..]

– Gazebo: As stated in their webpage,
Gazebo is open-source licensed under Apache 2.0

which can be found at http://www.apache.org/licenses/LICENSE-2.0.
– KdTree library The kdTreelibrary used specifies that

kdtree is free software. You may use, modify, and redistribute it
under the terms of the 3-clause BSD license.

– Laser based range sensor In the case of the software that was used as base
for the imaging sonar simulator using laser scans, the authors specify their
of license which is the following:

// Copyright (c) 2012, Johannes Meyer, TU Darmstadt // All rights
reserved.
// Redistribution and use in source and binary forms, with or with-
out // modification, are permitted provided that the following con-
ditions are met: // * Redistributions of source code must retain the
above copyright // notice, this list of conditions and the following
disclaimer. // * Redistributions in binary form must reproduce the
above copyright // notice, this list of conditions and the following
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disclaimer in the // documentation and/or other materials provided
with the distribution. // * Neither the name of the Flight Systems
and Automatic Control group, // TU Darmstadt, nor the names
of its contributors may be used to // endorse or promote products
derived from this software without // specific prior written permis-
sion.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS "AS IS" AND // ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED //WARRANTIES OFMERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE //
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER
BE LIABLE FOR ANY // DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES //
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND // ON ANY THEORYOF LIABILITY,WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

• AVORA team software The first avora team stated that the software developed
by the team was licensed under a BSD Licensed. The license is the following:

* Copyright (c) 2012, The Avora I Project, All rights reserved. * * The
Avora I Project is composed by the following members: Anil Motilal
* Mahtani Mirchandani, AarÃşn MartÃŋnez Romero, Luis SÃąnchez
Crespo, Daniel * GarcÃŋa Pereira, David Morales Ventura, Federico
Maniscalco MartÃŋn, * Enrique FernÃąndez Perdomo * * Redistribu-
tion and use in source and binary forms, with or without * modification,
are permitted provided that the following conditions are met: * 1. Re-
distributions of source code must retain the above copyright notice, *
this list of conditions and the following disclaimer. * 2. Redistribu-
tions in binary form must reproduce the above copyright notice, * this
list of conditions and the following disclaimer in the documentation *
and/or other materials provided with the distribution. * 3. All ad-
vertising materials mentioning features or use of this software * must
display the following acknowledgement: * This product includes soft-
ware developed by The Avora I Project. * 4. Neither the name of
The Avora I Project nor the names of its contributors * may be used
to endorse or promote products derived from this software * without
specific prior written permission. * * THIS SOFTWARE IS PRO-
VIDED BY THE AVORA I TEAM ”AS IS” AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND
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FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO * EVENT SHALL THE AVORA I TEAM BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARIS-
ING IN ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The rest of the software is licensed under the same BSD license with changes only
regarding authors.

• Software developed as part of this project: The software developed for this project,
which can be found at https://github.com/Aridane/underwater_map_construction/
contains its own LICENSE file which is a three clause BSD license.

• Documentation Finally this document, is licensed under a Creative commons
Attribution-NonCommercial-NoDerivs License (CC BY-NC-ND).

5.2 Expenses

The equipment used for this project did not involve the acquisition of new elements. In
case of using a simulation environment it does not involve the purchase of any devices
nor licenses. For real world testing some platform should be used, so we can actually
go through an estimate of what the platform built by the AVORA team costs:

Component Unit cost Amount Total cost
Sony CCD 700TVL 25e 1 25e
Servo Futaba s3001 11.00e 1 11.00e
Arduino Mega 2560 12.00e 1 12.00e
Sonar Imagenex 852 3955.00e 1 3955.00e
DUB-H7 7 port USB 2.0 Hub 25.58e 1 25.58e
Pressure sensor U5100 series transducer 150.38e 1 150.38e
H-38120S Headway LiFePO4 14.86e 24 356.64e
H-38140S Headway LiFePO4 19.62 8 156.96e
DC-DC USB Intelligent buck-boost DC-DC 70.51e 3 211.53e
Seaconn Connectors (Various) 70e - 50e 11 650e
10A 5-25V Dual Channel DC Motor Driver 50.54e 2 101.8e
SG90 Servo 3.50 2 7e
Seabotix BTD150 422.63e 4 1690.52e
Odroid Xu4 + eMMc 32Gb 130e 1 130e
Total Cost 7483,41e

It is important to note that the cost of testing at sea is not included due to the fact
that is minimal, considering that it was by deploying the vehicle by hand from a dock
ramp.

https://github.com/Aridane/underwater_map_construction/
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6.1 Introduction

We have defined our objectives and analysed the problems we might face. In this chapter
the approach used to fulfil our objectives and deal with the existing problems will be
addressed. Separate modules performing different tasks can be identified. Among these
the following, which does not mean they have to belong to different packages or nodes,
we only highlight the stages that are important and can be differentiated from the rest:

• Simulation

• Transform sensor output to cloud data

• Clean cloud data

• Detect shapes

• Build map

• Match clouds to map

6.2 Multi Level Surface Maps

Since the structure chosen for this project is the MLSM we will go a bit deeper on its
structure and characteristics.

6.2.1 Structure and manipulation

The MLSM is basically a grid with cells at each position of the grid cij . Each cell
contains a list of blocks(bkij) that correspond to measurements made at different heights
for the cell position i and j. Following the work in [11] the blocks are identified by a
tuple with the following elements:

• Mean µkij : Corresponding to the mean of all the measurements gathered in that
block.

• Variance σkij : Corresponding to the variance of the measurements gathered.

• Height h: This is the value of the highest measurement belonging to the block.
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• Depth d: The depth of a block is the difference between the highest and lowest
measurement contained.

• Type π: The type allows us to characterise the distribution of the measurements
in a block. In [11] the blocks are divided in horizontal and vertical. Since this
work intended to be compatible with plane detection, these two block types are
preserved. Also a "free" type has been introduced to characterise the detected
free. This will allow us to discern between unknown/unmapped areas and free
areas.

• Intensity: The blocks also store the mean intensity of the measurement, not
exactly as a separate field, but as part of the mean and variance, thus having a
mean intensity and intensity variance. This data is also important since they can
be a factor on determining the certainty of the existence of an obstacle in that
block, or, in future work, it could help characterise the object it belongs to, or
the type of terrain that produced those echoes.

Every time a measurement p = {px, py, pz, pi} is collected, the cell cij which satisfies
that px ≥ j · cell_size and px < j · (cell_size + 1) and pi ≥ i · cell_size and py <
i·(cell_size+1) is iterated to obtain a list of candidate blocks to hold the measurement.
These candidate blocks bkij must satisfy that |pz − heightkij | < cellsize and |heightkij −
depthkij − pz| < cellsize. Then we have the following situation:

• No candidate: This case is the simplest one, we create a new block with mean
µkij = p, σkij = 0, d = 0, h = pz, π = Horizontal.

• One candidate: We update the parameters of that block.

• Several candidates: In this case the blocks are fused into one vertical block,
combining the means and variances of all candidate blocks.

6.3 Iterative Closest Points (ICP)

The ICP algorithm is, as its names points out, an iterative algorithm for point cloud
matching. The original algorithm is described in [5]. It aims to find the transformation
between a point cloud and some reference surface (or another point cloud), by mini-
mizing the square errors between the correspondences established. The iterative part
of ICP comes from the fact that the correspondences are recalculated on each iteration
as the algorithm converges to a local minimum on the error function. ICP is a gradient
descendent method, and being such it depends on a relatively good starting point in
advance, otherwise it can be easily trapped in a local minimum and stay there providing
a worthless solution. In the field of mobile robots, ICP has been extensively used to
match 2D laser scans. This is due to the fact that laser sensors can provide a full scan
of an area at high speed and accuracy. This way we will have successive point clouds
with small errors that can be matched for map building and also providing localization
since we know the transformation between each scan.

The ICP algorithm was originally stated as follows:
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• The point set P withNp points {~pi} from the data shape and the model
shape X (with Nx supporting geometric primitives: points, lines, or
triangles) are given.
• The iteration is initialized by setting P0 = P, ~q0 = [1, 0, 0, 0, 0, 0, 0]t
and k = 0. The registration vectors are defined relative to the initial
data set P0 so that the final registration represents the complete trans-
formation. Steps 1, 2, 3, and 4 are applied until convergence within
a tolerance τ . The computational cost of each operation is given in
brackets.
a Compute those closest points: Yk = C(Pk, X)(cost O(NpNx) worst
case, O(NplogNx) average).

b Compute registration: (~qk, dk) = Q(P0, Yk) (cost: O(Np)).
c Apply the registration:
d Terminate the iteration when the change in mean-square error

falls below a threshold τ > 0 specifying the desired precision of
the registration: dk − dh+1 < τ .

6.3.1 ICP Implementation

The ICP algorithm has been implemented in the ICP class under the mlsm_manager
package. The ICP solver is used every time the mapper node receives a point cloud
and the matching topic is publishing true.

The in-depth analysis of the implementation and method followed can be found in
the mlsm_manager package.

6.4 Gazebo simulation

Gazebo provides an easy way to work from already implemented sensors, i.e. Plugins.
This is a appropriate if we want to take an existing type of sensor and modify it to
suit our purposes. The issue arises when what we want to do is directly make gazebo
provide the raw data our sensor would produce, and such sensor is not among the
already provided by Gazebo. These two approaches have been followed in order to
provide a simulated imaging sonar and are addressed next.

Gazebo

Sensors

ROS

Sensor Plugin Ros nodes

Gazebo topics ROS Topics

Figure 6.1: Gazebo-ROS Sensor interaction
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6.4.1 Collision based simulation

The first implementation went through adding a new sensor to Gazebo, not just adding
a pluging to transform incoming data. The easiest way to do so was to install gazebo
form source and add the required modifications to it. These modifications can be
summarized as follows:

• Adding the sensor message

• Adding the sensor to gazebo infrastructure

• Implementing the sensor

• Implement Gazebo sensor plugin

• Implement Gazebo-ROS sensor plugin

Published data

The sensor produces a Gazebo message in a topic the imaging sonar ros plugin sub-
scribes to. The plugin basically makes a conversion from the Gazebo message to our
avora_msgs::SonarScanLine so there is not much to say about the plugin. The sensor
message created was similar to the one defined for ROS since it was supposed to contain
the same data as a sonar beam.

package gazebo.msgs;

/// \ingroup gazebo_msgs
/// \interface Sonar
/// \brief Message for a sonar value

import "pose.proto";
import "vector3d.proto";

message SonarScanLine
{
required string frame = 1;
required gazebo.msgs.Pose world_pose = 2;
required double range_min = 3;
required double range_max = 4;
required double radius = 5;
required double range = 6;
required double angle = 7;

repeated int32 intensities = 8;
}
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6.4.2 XML parameters

To the already defined XML parameters of the Sonar sensor we added some extra ones
by modifying the source code of SDF 1.5, since we have a source installation of both
Gazebo and SDF. These parameters are set as children of the <sonar> element:

• step: Defines the step the sonar head takes each time it rotates.

• opening: This is the aperture width of the cone. Instead of using the radius of
the cone at maximum distance, it is easier to have a parameter like this, since
the imaging sonar specification will directly give us this parameter.

• binCount: Number of bins existing for each beam. This ir also a parameter in
the imagenex 852.

The Sensor

The sensor developed was based on the SonarSensor provided by Gazebo. This sensors
calculates the closest collision between an established shape (a cone) and the environ-
ment and publishes the data according to that collision (3D point). Our sensor is a bit
different, first, we do not consider just a collision, we need all the collisions along the
length of the cone so we can fill the array of slant ranges with their intensities from
the collisions that are feasible to come from an echo return. And second, we need the
sensor to internally rotate the sensor so it produces a reading at each angular position,
so we can simulate the head rotation of the original imaging sonar.

The sensor basically sets up a collision filter and then updates and publishes its
data when a update event occurs. For the collision filter we need to first create the
shape we will use for collision search and then feed it to the collision element. Here we
set up the shape used for collisions using the parameters specified in the sdf file of the
robot model.

this->sonarShape = boost::dynamic_pointer_cast<physics::MeshShape>(
this->sonarCollision->GetShape());
// Use a scaled cone mesh for the sonar collision shape.
this->sonarShape->SetMesh("unit_cone");
this->sonarShape->SetScale(math::Vector3(this->radius*2.0,
this->radius*2.0, range));
// Position the collision shape properly. Without this, the shape will be
// centered at the start of the sonar.
math::Vector3 offset(0, 0, range * 0.5 + 0.2);
offset = this->pose.rot.RotateVector(offset);
this->sonarMidPose.Set(this->pose.pos - offset, this->pose.rot);

Then we set up the collision element from the shape defined before:
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this->sonarCollision->SetRelativePose(this->sonarMidPose);
this->sonarCollision->SetInitialRelativePose(this->sonarMidPose);
// Don’t create contacts when objects collide with the sonar shape
this->sonarCollision->GetSurface()->collideWithoutContact = true;
this->sonarCollision->GetSurface()->collideWithoutContactBitmask = 1;
this->sonarCollision->SetCollideBits(~GZ_SENSOR_COLLIDE);
this->sonarCollision->SetCategoryBits(GZ_SENSOR_COLLIDE);

// Create a contact topic for the collision shape and filter using our collision
std::string topic =
this->world->GetPhysicsEngine()->GetContactManager()->CreateFilter(

this->sonarCollision->GetScopedName(),
this->sonarCollision->GetScopedName());

Finally we set up a callback for every time the collisions are updated. Even though the
collisions are updated constantly, the sensor only publishes the results at the specified
rate in the SDF file.

// Subscribe to the contact topic
this->contactSub = this->node->Subscribe(topic,

&ImagingSonarSensor::OnContacts, this);

The ImagingSonarSensor::OnContacts function will update a vector containing the
current collisions so that we can access them when the update event triggers, which is
where the processing is made. In this function we use the array of collision elements
to keep a count of how many collisions take place at each slant range. Then we assign
an intensity depending on how many collisions occurred at each range. In order to
make the readings a it more realistic we add more contacts around each contact using
a Gaussian distribution.

// Iterate over all the contact messages
for (ContactMsgs_L::iterator iter = this->incomingContacts.begin();
iter != this->incomingContacts.end(); ++iter)
{

// Iterate over all the contacts in the message
for (int i = 0; i < (*iter)->contact_size(); ++i)
{

for (int j = 0; j < (*iter)->contact(i).position_size(); ++j)
{

pos = msgs::Convert((*iter)->contact(i).position(j));
normal = msgs::Convert((*iter)->contact(i).normal(j));

math::Vector3 relPos = pos - referencePose.pos;
double len = pos.Distance(referencePose.pos);
/*

Here we calculate the corresponding index on the slant range array
from the distance from the sensor to the collision. We don’t really
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need its 3D position
*/
index = ceil((len * (this->binCount/this->rangeMax))) - 1;
if (index > (this->binCount-1)) continue;
scan->set_intensities(index,scan->intensities().Get(index) +1 );
if (scan->intensities().Get(index) > maxContactCount){

maxContactCount = scan->intensities().Get(index);
}
/*

Then we add 10 more collisions around each collision using a
using a gaussian distribution with a standard deviation of 0.6
The idea was for both the number of poitns and the standard
deviation were configurable with a parameter in the sdf file

*/
double auxLen;

for (int k=0;k<10;k++){
auxLen = gazebo::math::Rand::GetDblNormal (len, 0.6);
index = ceil((auxLen * (this->binCount/this->rangeMax))) - 1;
if (index > (this->binCount-1)) continue;

scan->set_intensities(index,scan->intensities().Get(index) +1 );

if (scan->intensities().Get(index) > maxContactCount){
maxContactCount = scan->intensities().Get(index);

}
}

}
}

}

After that we just use the maximum collision count as the maximum strength point for
computing the echo streng at each slant range.

for (int i = 0; i < this->binCount; ++i){
scan->set_intensities(i,(127*scan->intensities().Get(i)) / maxContactCount);

}

Then, the only thing left to do is rotate the sonar head. The logical step here would
seem to rotate the collision shape around the sensor origin, but, since the access to that
rotation and the effect it has on the collision filter is a bit obscure, the easiest thing to
do is rotate the sensor frame SonarDato using a continuous joint which is not accessible
form the charle_control package. The main problem here is that the joint is hardcoded
so in order to make it usable in any other model this is set as a parameter.

// We update our angular position
this->angle = fmod((this->angle + (this->step * M_PI/180.0)),2*M_PI);
// And then set the positon of our continuous rotation joint
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physics::ModelPtr model = this->world->GetModel("robot1");
physics::JointPtr joint = model->GetJoint("sonarDato_to_sonar");
joint->SetPosition(0,this->angle);
joint->Update();

Even though the results are quite similar to what a clean sonar image would look
like, the proper thing to do would be to use the collision element to obtain the normal
of the collision surface (which would require to operate with the shape and orientation
of the whole element it collides with) and also use the material defined for the element
from the map. These two considerations would be a great addition to the simulation,
but there are several issues. First, it would require more processing on a piece of code
that should run as fast as it cans and it should not be too computationally heavy.
Second, we would have to define each element of the map as a separate element with its
own material, which would mean that we can not just take a 3D model from another
3D modelling tool, since they provide the whole map as one element. Still, it is possible
to do it and it is a great idea for future work.

Sonar cone bug

When the sensor simulation was complete, some strange elements appeared on the data
that were being published. Basically some points that yielded no collision and collisions
detected where there was nothing at all. This issues can be observed in figure 6.2.

Figure 6.2: Bug where collision is ignored

This issue makes the collision based sonar unusable for the moment, but, since I
believe is the best way of implementing it, it should be tested with other gazebo versions
when support for ROS Jade is available.
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6.4.3 Laser cone based simulation

Team Hector [4] from the Technic University of Darmstadt has developed some Gazebo-
ROS plugins for their robot simulation. These packages can be found at the hec-
tor_gazebo_plugins [2] package wiki and provide several modified tools for simulation.
Such as GPS, IMU, Range sensor (laser based), etc. The imaging sonar sensor ex-
plained here is a modification of their GazeboRosSonar. The parameters in this case
are exactly the same as the ones for the regular laser sensor. The only difference is
data are treated, since we have a number of rays that form a pyramid that we could
treat as an approximation to a cone and then produce our intensity arrays from that
data.

In this case we have not added a new sensor to Gazebo, but instead work through a
plugin that takes the laser pyramid data and turns it into beams. In this case we also
have the step and binCount parameters. The good thing about this plugin is that it
is much easier to modify since we rely on an already configured sensor. The iteration
through readings is pretty much the same:

for(int i = 0; i < num_ranges; ++i) {
double ray = sensor_->GetLaserShape()->GetRange(i);
int index = ceil((ray * ((double)binCount_/(double)sensor_->GetRangeMax()))) - 1;
if (ray == sensor_->GetRangeMax()) continue;
if (index < 0) index = 0;
contactCount[index] += 1;
if (contactCount[index] > maxContactCount){

maxContactCount = contactCount[index];
}

}

Here we do not generate the Gaussian points when the collisions are received, instead
we accumulate each contact in its according intensity array index so we can generate
the Gaussian points around each contact. In order to generate the sparse data, we use
the contact count accumulated on the array to generate points around te collisions.
The more collisions we have, the more sparse points we generate around it.

for (int i=0;i<binCount_;i++){
if (contactCount[i] != 0){

for (int k=0;k<contactCount[i];k++){
double ray = i * sensor_->GetRangeMax() / binCount_;

double auxRay= gazebo::math::Rand::GetDblNormal(ray, 1);
index = ceil((auxRay * (binCount_/sensor_->GetRangeMax()))) - 1;
if (index < 0) index = 0;
if (index > (binCount_-1)) continue;
intensities[index] += 15;
if (intensities[index] > 127) intensities[index] = 127;

}
}

}



6.5. ROS 55

After that we also generate some noise in each beam to be a little more realistic. Here we
generate 15 points using a distribution with an standard deviation of 4 meters and then
generate the point with an intensity that follows another Gaussian distribution.

for (int k=0;k<15;k++){
double auxRay = gazebo::math::Rand::GetDblNormal (range_.range, 4);
index = ceil((auxRay * (binCount_/sensor_->GetRangeMax()))) - 1;
if (index < 0) index = 0;
if (index > (binCount_-1)) continue;

scanLine_.intensities[index] = gazebo::math::Rand::GetDblNormal (53, 20);
}

6.5 ROS

6.5.1 Nodes and nodelets

As we have mentioned before, the scan data acquired from the sonar (simulated or real)
undergoes a process that takes it through different processing stages, that will end up
producing point cloud data useful for the mapping node (or any other node that listens
to the corresponding topic). This pipeline, consist of some simple and functional nodes
that can be linked to the stages of processing defined previously, these being:

• Sonar to cloud conversion

• Cloud thresholding

• Outlier removal

• (Optional) Basic shape detection

6.5.2 Sonar to cloud conversion

This node is the "SonarToCloud" nodelet, we have mentioned before that this node is
in charge of taking the sonar scans and turning them into point clouds. There is a bit
more than "just" that in the process of converting the point clouds. This process can
be summed up in a few steps:

• Node initialization.

• Beam acquisition, transformation, and storage.

• Scan publish.
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Node initialization

This node has several configurable parameters that we have conveniently stored into a
yaml file. Among the most important parameters we can find the following:

• Mode: Allows us to select how the result cloud should be built. There are two
modes SONAR and LASER. And we can also add CONT to the mode. SONAR
mode will produce a point cloud where each group of points corresponds to a
slant range and the intensity of that slant range. Meanwhile, the LASER mode
will produce laser like data. Instead of considering all the points, the result
cloud will only contain one point for each received beam, so that the result can
be interpreted the same way a laser scan would be, where we have one point
representing the distance for each laser line. The additional CONT part lets
us decide whether the result should be published each time a beam is received
(letting as process the whole scan every time there is new data), or if the scan
cloud should only be published once for each complete scan.

• Scan size: Defines how many measurements should be gathered before publishing
a result. By default this is set to 120, which is the number of beans we can find
in a scan with 3◦step. If we wanted to process each beam separately, we could
set the scan size to 1.

• Velocity topic: This topic helps us know which beams of the scan were measured
while moving. This will help with the processing when the data arrives to the
mapping node.

• Target frame: Indicates to which tf frame the data should be converted. In general
this should be set to "odom" or "map" since these are the frames that contain the
latest transforms to world coordinates.

Another important step of the initialization is the creation of the tf filter as show
in the following snippet:

tf_filter_ = new tf::MessageFilter<avora_msgs::SonarScanLine>(scanLine_sub_,
listener_, targetFrame_, 120);

tf_filter_->registerCallback( boost::bind(&SonarToCloud::beamCallback, this, _1) );

This will synchronize the beam callbacks with the tf broadcasting, this way we can
assure that the available transformation to the target frame is the one corresponding
to when the measurement was made, otherwise, when we change the coordinate system,
we could be transforming into the future or into the past, something we do not desire.
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Cloud transformation

Here is where the processing takes place.Depending on the mode configuration, some
different things will happen, but in general, for both SONAR and LASER modes, the
steps taken are pretty much the same and can be synthesized in the following flow chart.

NBeams == ScanSize

Set Msg Header

Continuous mode?

Erase oldest beam

Publish cloud

Clear cloud

For each slant range

Set stamp

Transform to sonar frame

Transform to target frame

Push to cloud

NBeams++

6.5.3 Thresholding

The thresholding nodelet is the first one to start transforming our cloud. The operation
this node performs is a simple thresholding based on intensity. The main idea is to
perform a thresholding operation similar to the local maximum search performed in [14].
But, our approach does not rely on local maximum intensities but in a global intensity
threshold applied to the cloud. In order to provide certain level of customization and
also being able to test which options work better there are several modes we can select
through the parameters. Before talking about this mode lets take a look at the most
important parameters we have:
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• Mode: The thresholding mode. This parameters can take one of two values plus
an optional extra parameter, similarly to the SonarToCloud nodelet. The pos-
sible values are OTSU for OTSU based thresholding and FIXED for a fixed
threshold value that is set in another parameter. The optional part is PRO-
PORTIONAL This indicates that the value calculated with the OTSU method
should be multiplied by a factor specified in another parameter. There is also
the choice to set only the proportional parameter, which will use the maxi-
mum and minimum intensities to calculate the threshold using the Max Thresh-
old Proportion and Min Threshold proportion with the following formula: θ =
maxProportion ·maxIntensity +minProportion ·minIntensity

• OTSU Multiplier : This is the multiplier applied to the threshold calculated with
the OTSU algorithm.

• Min Threshold: This parameters sets a bottom value for the thresholding oper-
ation, since sometimes we might find that OTSU gives a value that is too low,
or that there are not enough strong intensities to calculate a proper value using
other modes.

OTSU thresholding

Fixed and proportional thresholding modes are simple enough, and there is not much
to say about them. So we will focus on the OTSU algorithm which is much more
interesting.

Otsu’s method described in [12] is an algorithm used to automatically perform
clustering-based image thresholding, and produce a binary image. This algorithm as-
sumes that there are two classes of pixels following a bi-modal histogram (foreground
and background pixels), it then calculates the optimum threshold that separates the
two classes so that their combined spread is minimal so that their intra-class variance
is minimal.

In this method we search for the threshold value that minimizes the intra-class
variance, which is defined as the sum of variances of the two classes:

σ2
ω(t) = ω1(t)σ2

1(t) + ω2(t)σ2
2(t) (6.1)

Weights ωi are the probabilities of the two classes separated by a threshold t and σ2
i

are the variances of these classes. Expressing it in terms of the probabilities ωi and
each class mean µi we have the equation:

σ2
b (t) = σ2 − σ2

ω(t) = ω1(t)ω2(t)[µ1(t)− µ2(t)]2 (6.2)

Which shows that minimizing the intra-class variance is the same as maximizing the
inter-class variance. The class probability ω1(t) is computed from the calculated his-
togram as t:

ω1(t) =
t∑
0
p(i) (6.3)
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while the clas mean µ1(t) is:

µ1(t) = [
t∑
0
p(i)x(i)]/ω1 (6.4)

where x(i) is the value at the centre of the ith histogram bin. ω2(t) and µ2 can be
computed similarly on the right-hand side of the histogram for bins greater than t.

The following algorithm can be extracted for the stated method:

1. Compute the histogram and probabilities of each intensity level

2. Set up initial ωi(0) and µi(0)

3. Step through all possible thresholds t = 1 : MaxIntensity

(a) Update ωi and µi
(b) Compute σ2

b (t)

4. The desired threshold corresponds to the maximum σ2
b (t)

5. Two maxima, and two corresponding thresholds, can be calculated. σ2
b1(t) is the

greater maximum and σ2
b2(t) is the grater or equal maximum

6. Our desired threshold is threshold = threshold1+threshold2
2

In general this algorithm yields good results if we have a population of noisy ele-
ments, since it will help remove elements that have an insignificant intensity compared
to what the algorithm classifies as foreground. In case we had a big population of zero
elements that are fed into the algorithm we could calculate the threshold feeding only
the non zero intensity values, this way, we can get rid from the effect of having too
many zero intensity readings.

6.5.4 Outlier removal

This node has the same mechanics as the thresholder node, we take an input cloud,
transform it and publish it. Its goal is to get rid of isolated noisy points, i.e. out-
liers. This is done by means of the pcl::StatisticalOutlierRemoval<pcl::PointXYZI>
and pcl::RadiusOutlierRemoval<pcl::PointXYZI> classes. Before going into how they
works lets take a look at the parameters of this node:

• Mode: This parameter lets us decide which kind of outlier removal should be
used. The values it can take are STATISTICAL and RADIUS which are self
explanatory.

• Min radius: Minimal radius for the radius outlier remover.

• Min neighbours: This parameter specifies the minimum number of neighbours a
point must have not to be erased in the removal process
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Radius outlier removal

As its name suggest, the radius outlier remover gets rid of outliers based on a radius.
It basically searches for a minimum number of neighbours in a specified radius. Even
though it is a simple approach when correctly tuned it can yield quite good results,
since our valid points should appear in more or less populated clusters. The usage is
quite simple as the following code snippet shows:

//Set source points
radius_outlier_removal.setInputCloud(cloudPtr);
// Set radius for neighbor search
radius_outlier_removal.setRadiusSearch(minRadius_);
// Set threshold for minimum required neighbors neighbors
radius_outlier_removal.setMinNeighborsInRadius(minNeighbours_);
// Do the filtering
radius_outlier_removal.filter(*cloudPtr);

Statistical outlier removal

This other outlier remover follows a more elaborate process than the radius outlier
remover. This outlier remover performs a statistical analysis on each point’s neigh-
bourhood, and trims the points that do not meet certain criteria extracted from the
previous analysis. The PCL statistical outlier remover bases its filtering on the com-
putation of the distribution of point to neighbours distances in the input dataset. For
each point, it computes the mean distance from it to all its neighbours. By assuming
that the resulted distribution is Gaussian with a mean and a standard deviation, all
points whose mean distances are outside an interval defined by the global distances
mean and standard deviation can be considered outliers and trimmed from the dataset.
Like the previous outlier remover, this class does not need any sort of difficult config-
uration:
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// Set source points
sor.setInputCloud (cloudPtr);
// Set the number of nearest neighbors to use for mean distance estimation.
sor.setMeanK (20);
/* Set the standard deviation multiplier for the distance threshold

calculation.
The distance threshold will be equal to: mean + stddev_mult * stddev.
Points will be classified as inlier or outlier if their average neighbour
distance is below or above this threshold respectively.

*/
sor.setStddevMulThresh (1);
sor.setKeepOrganized(false);
sor.filter (*cloudPtr);

6.5.5 Line and circle detection

This nodes aim to perform shape recognition on the clouds resulting form the cleaning
process that takes place in previously addressed nodes. This nodes detect shapes in
the input clouds using RANSAC. For the case of each detection nodelet the parameters
used are the topics for subscription and the ones for advertisement. In the case of the
line detector we have the parameter nWalls which indicates how many lines (walls in
the case of the 2D horizontal scan) we would like to find.

RANSAC

The RANdom SAmple Consensus (RANSAC) is a general parameter estimation algo-
rithm for sets containing outliers. Assuming that the data set is comprised by outliers
and inliers, this algorithm uses an iterative approach to match subsets with a particular
model. The subsets, and the final solution, are built upon the smallest possible set and
then are expanded with sets of consistent data points by iteratively selecting a random
subset from the original data and then checking if they are inliers or ourliers as follows:

1. The model is fitted to the hypothetical inliers.

2. All other data are tested against the fitted model and, if a points fits well to the
estimated model, also considered as a hypothetical inlier.

3. The estimated model is found reasonably good if enough points are classified as
hypothetical inliers.

4. The model is estimated again using all the hypothetical inliers, since it was esti-
mated using only the initial set of inliers.

5. Finally, the model is evaluated by estimating the error of the inliers relative to
the model.
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The procedure explained above is repeated for a number of specified iterations, each
one providing a rejected model which contains too few inliers or a refined model with
a corresponding error measure. After each iteration we will keep the model if the error
is lower than the last saved model. The main advantage we have by using RANSAC is
that it can estimate the parameters with high accuracy even when the dataset contains
a significant number of outliers. On the other hand, there is no upper bound on the
time the algorithm will take to compute these parameters. By specifying the number of
iterations we can bound the execution time, but the solution might not be the best one.
Because of this, we have to keep in mind that by having more iterations we increase
the probability of producing a reasonable model, but will also increase the execution
time. RANSAC only estimates one model for a particular dataset, something we have
to deal with when trying to fit a model to a dataset where two or more models exists,
since RANSAC may fail to find either one.

Figure 6.3: RANSAC line detection

Detection

The operation of this nodelet is very similar to the ones already explained. For the
detection we try to find one set of points that are classified as inliers for the model
we have set up and then proceed to eliminate these points from the input cloud and
then try to detect again, until we have detected as many elements as the parameter
indicated or until we are unable to find anything that matches our model. In the case
of RANSAC, we set up the model, compute the best inliers and extract them from the
point cloud so we can run it again for subsequent elements.

// Input model for RANSAC
pcl::SampleConsensusModelLine<pcl::PointXYZI>::Ptr

model_l(new pcl::SampleConsensusModelLine<pcl::PointXYZI>(cloud));
pcl::RandomSampleConsensus<pcl::PointXYZI> ransac(model_l);
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// RANSAC parameters
ransac.setDistanceThreshold(RANSACDistance_);
ransac.setMaxIterations(RANSACMaxIterations_);
ransac.setProbability(RANSACProbability_);
// Computation of model and extraction of result
ransac.computeModel();
ransac.getInliers(inliers);
ransac.getModelCoefficients(coefficients);
// Copies all inliers of the model computed to another PointCloud
pcl::copyPointCloud(*cloud,inliers,line);
pcl::ExtractIndices<pcl::PointXYZI> extractor(true);
extractor.setInputCloud (cloud);
extractor.setIndices (boost::make_shared<vector<int> >(inliers));
extractor.setNegative (true);
extractor.filter(*cloud);
inliers.clear();
[...]
result += line;
line.clear();

The issue with RANSAC is that it can only estimate one model for a particular data
set, that explains why we remove the data and perform successive detection attempts.
As said before, RANSAC may fail to find either one. Still, since the data resulting from
the cleaning process does not contain many outliers, this algorithm yields good results
that can be easily usable for localization or data tagging.

6.5.6 Mapping node

This node, which is actually called MlsmCore, is the one in charge of building the map
and matching incoming data. We could synthesize the procedure of this node the same
way as the others, but that would not be enough since here we have a more complex
structure. Instead, we will go from higher levels, i.e. the MLSMCore class, to lower
levels where the actual processing happens, i.e. MLSM ans ICP classes. The class
diagram of these elements has been already seen in the analysis section, so we will
jump into the MLSMCore node, which is the one doing the interfacing with ROS.

Data structures

• Block: Blocks are implemented as structs containing the parameters seen before.
The mean and standard deviation are stored as pcl::PointXYZI containing the
values for each axis.

• Cell: Cells are defined as std::vector <boost::shared_ptr<mlsm::Block> >

• Grid: The grid of cells that will form the MLS map is actually a tow dimensional
multi_array (boost::multi_array<cell, 2> ) which allows us to easily resize the
array using the functions provided by the boost::multi_array class.
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• Quadgrid: The Quadgrid is the class used for solving the problem of having a
grid centred in the world that also needed to grow on different sides in different
ways. What we basically have is a structure with four grids that are divided
using the sign of their x and y indexes. Thus, we have: Positive(x)-Positive(y),
Positive(x)-Negative(y),Negative(x)-Positive(y),Negative(x)-Negative(y)

Kd tree

A kd tree (k-dimensional tree) is a space partitioning data structure for organizing
points in a k-dimensional space.

The main idea behind the construction of a kd Tree is using non-leaf nodes as
splitting hyperplanes dividing the space in two parts. Points of the left subtree represent
points to the left of the hyperplane and the points of the right subtree represent points
to the right of the hyperplane.

In the case of the 2d tree used for cell partitioning, we have the cell positions which
could be considered as a 2 dimensional space (x, y) and the planes used for division as
planes aligned with the z axis.

Figure 6.4: Planar representation of a 2dTree (Wikipedia)

Using a kdTree to organise the data was not an initial requirement, but it became
one the moment we begun testing the ICP algorithm. For the closest point search
we have to iterate through the cell structure of dimensions m × n where the search is
O(nxm). This slowed the algorithm too much, so the cells are also inserted into a 2d
tree, where the search cost is O(log(n×m)).

MLSMCore

This is the node in charge of interfacing with ROS. It contains parameters related to
the ROS side of the node, such as topics for subscribing and publishing, and callbacks
that provide us with data or flag some event. Among the most important parameters
we can find the following:
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Map parameters:

– Resolution: Resolution of the map, it determines the size of each cell.
– SizeXMeters: Size in meters along the X axis. This, together with SizeYMeters

and resolution define the initial number of cells the map contains.
– SizeYMeters: Size in meters along the Y axis.

ICP parameters:

– Max. iterations: Maximum number of iterations for the ICP algorithm.
– Error threshold Threshold for the iterations, when the error equals or is

below this value we can accept the transformation as valid. (This is τ in the
ICP algorithm).

– N. samples: Number of samples that should be taken in the direction of
movement when running the algorithm while the robot is moving.

– Sample step: Proportion of the step taken. The step is calculated by
multiplying the sub-estimated translation by this factor.

These nodes have two important features, one is the StartMatching topic subscrip-
tion. The other is the callback where the cloud is added to the map. The StartMatching
topic is a boolean topic that indicates whether we should run our input through ICP
or not. This is useful for the initial mapping, but also for when we already have a
known pose and we don’t really need to consume resources by executing the algorithm
for clouds we already have located.

The cloud callback just executes the addPointCloudToMap function, which will just
add the point cloud to the map or calculate the estimated direction of movement vector
and use ICP to try to undistort the data and provide the transformation before adding
the corrected cloud to the map.

MLSM

This class is where the mapping takes place. By using the addPointCloud(intensityCloud::Ptr
cloud) function, the MLSMCore node provides this class the point clouds that will be
used for building the map itself. Logically, we will start by analysing the addPointCloud
function, which is the core function of the map creation. Lets take a look at a general
flow diagram that shows the steps taken in this function:

A good thing of this type of map (based on grid) is that adding a point somewhere is
just a matter of calculating the indexes (for the 2D cell, working with the cell structure
adds complexity). Calculating the indexes is as simple as doing the following:

index.x = floor(cloudIterator->x / resolution_);
index.y = floor(cloudIterator->y / resolution_);

The simplest case we have in this function is when the cell that should hold the block
corresponding to the point does not even exist which is when this condition is not
met.
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if (((cellP = (*grid_)((int) index.x, (int) index.y)) != NULL)
&& (cellP->size() != 0)) {

In that case the only thing to do is to create a new cell with only one existing block
with the values of the current point:

blockPtr = boost::make_shared<Block>(newMean,newVariance, 1,
cloudIterator->z, 0.0, FLOOR);

cellP->push_back(blockPtr);
double pos[2] = { round(index.x), round(index.y)};
assert(kd_insert( kdtree_, pos,0) == 0);

As shown in the code snippet, we do not only insert the block in the cell, but also add
the cell indexes to the kdtree to allow for a faster search of occupied cells.

When the cell is not empty we have to go over the blocks, evaluating whether the
measurement belongs to a block or not.

if ((fabs(cloudIterator->z - iterator->get()->height_) < resolution_)
||(fabs(iterator->get()->height_ - iterator->get()->depth_

- cloudIterator->z) < resolution_)
|| ((cloudIterator->z < iterator->get()->height_)
&&(cloudIterator->z > (iterator->get()->height_

- iterator->get()->depth_))))
{

If we check the MLS map section, the theory says that

These candidate blocks bkij must satisfy that |pz − heightkij | < cellsize and
|heightkij − depthkij − pz| < cellsize.

This means that, for a point to be considered as belonging to a block, it must be at
least at a distance of resolution from both the highest point of the block and the lowest
point, which means that the block should have a maximum span of resolution. Instead
of doing that, we consider that a point belong to a block when is at a distance closer
than the resolution of the map. The other condition incorporated ((cloudIterator->z <
iterator->get()->height_)&&(cloudIterator->z > (iterator->get()->height_ - iterator-
>get()->depth_)) starts working when we have points that lie inside fused blocks that
span a column larger than resolution.

For each block in the cell we will evaluate whether the measurement could belong
to a block or not, finding the following three situations:

• If we find a candidate block, we update its parameter using addObservationTo-
Block which updates its mean, variance and the rest of parameters.

• In case we keep finding blocks after one has been found, we use the fuseBlocks
function to fuse the candidate we had with the one we just found.
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• When no blocks are found, we create a new block and insert it in the cell the
same way we did when the cell was empty.

The addObservationToBlock function synthesises what otherwise would be a blob of
code coming from the mean and standard deviation update rules which are implemented
according to the following equations:

µn+1 = nµn
n+ 1 + xn+1

n+ 1 (6.5)

Vn+1 = nVn
n+ 1 + (xn+1 − µn+1)2

n+ 1 (6.6)

The fuseBlocks function works similarly to the addObservationToBlock function,
the main difference is that the update of mean and variance is made using the mean
and variance of the blocks that are going to be fused.

The last case, where we only have to create a new block does not involve any
complications, we just initialise the new mean and variance and create the new block
that will be inserted into the cell. This procedure is the same applied when the cell
corresponding to the measurement is empty, the only difference is that if the cell was
empty the indexes are also inserted into the kdtree:

// New mean and variance
newMean.x = cloudIterator->x;
newMean.y = cloudIterator->y;
newMean.z = cloudIterator->z;
newMean.intensity = cloudIterator->intensity;
newVariance.x = 0;
newVariance.y = 0;
newVariance.z = 0;
newVariance.intensity = 0;
// Block creation
blockPtr = boost::make_shared<Block>(newMean,newVariance, 1,
cloudIterator->z, 0.0, FLOOR);
// Insertion into cell and kdtree
cellP->push_back(blockPtr);
double pos[2] = { round(index.x), round(index.y)};
assert(kd_insert( kdtree_, pos,0) == 0);

The other important functions of the MLSM class are findSuitableBlock and find-
ClosestBlock. The first one uses the same rules for searching the block where a point
be inserted to find if a given point belongs to an existing block. The second one is used
to find the closest cell to a given position using the kdTree. Both these functions are
used together to find the closest blocks to the points fed to the ICP algorithm that will
be addressed next.
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ICP

The ICP class performs the ICP algorithm which tries to match incoming clouds to
the existing map. The core procedure of this class is the getTransformation function,
which executes the main loop of the ICP algorithm. If we ignore the initialisation of
variables, the main loop is implemented as follows:

while ((iterations < maxIterations_) && (error > errorThreshold_)){
(*R) = Matrix<float, 4, 4>::Identity();
// Calculate closest points
Y = closestPoints(P,X, P0->timeStamps,eV);
// Calculate transformation
error = registration(P,&Y,P0->timeStamps,&transforms, T, R,eV);
/* Iterate through P applying the correct transformation depending

on Tv and the stamp */
applyTransformation(P,P0->timeStamps, *R, transforms, *T);
// Calculate error
error = calculateError(P, &Y);
iterations++;
// Accumulate transformations
accumulatedT += *T;
accumulatedTv += *Tv;
accumulatedR = accumulatedR * (*R);

}

As we can see, each step of the ICP iterations has been programmed into a function,
so we can easily address each of the functions separately to check how each of the steps
are implemented.

The closestPoints function takes the sensor cloud (P), the map (X), the timestamps
of each beam (P0->timeStamps) and the estimation of current velocity (eV ) as inputs.
In this function we try to find the closest point to each point of the input cloud in the
map with a small modification where the nSamples ICP parameter and the estimation
of velocity are used. For each measurement we first find the closest block conventionally,
recurring to the findClosestBlock function from the MLSM class. After that we check
if we have a velocity estimation and if the nSamples parameter has been set. After that
we find nSamples closest points, but, instead of using the original point, we search for
the closest point to the original point plus a translaction in the direction of movement
multiplied by the sample index and the sampleStep parameter. This way we have
a series of positions in the direction of movement that could provide better matches
since the measurements are displaced due to the vehicle’s motion. In order to do
this, we use the difference between the movement direction and the line from the
sample/measurement to the point found as closest point:

unitSpeed[0] = eV[0];
unitSpeed[1] = eV[1];
unitSpeed[2] = eV[2];
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unitSpeed.normalize();
for (int j=0;j<nSamples_;j++){

p[j].x = p0.x + movingTime* eV[0] * j * sampleStep_;
p[j].y = p0.y + movingTime* eV[1] * j * sampleStep_;
p[j].z = p0.z + movingTime* eV[2] * j * sampleStep_;
blockPtr = X->findClosestBlock(p[j]);
if (blockPtr == NULL) break;
// Find angle between the block and p0
unitDir[0] = blockPtr->mean_.x - p0.x;
unitDir[1] = blockPtr->mean_.y - p0.y;
unitDir[2] = blockPtr->mean_.z - p0.z;
unitDir.normalize();
angle = acos(unitSpeed.dot(unitDir));
if (fabs(angle) < closestAngle){

bestBlockPtr = blockPtr;
closestAngle = angle;

}
}

Figure 6.5: This image is an example of the directional search. As we see, the closest
point to the original measurement would be point 1. If we search one sample further in
the direction of movement we will have point 2 as the closest point. And finally after
three samples we would get point three, which is the point that best aligns with the
direction of movement

The registration function has three input parameters: The point cloud from the
sensor, the closest points from the map, and the timestamps of each measurement.
The output parameters are the transformation for each point, the rotation of the point
cloud (for still measurements), and the translation suffered by the vehicle. The original
ICP registration function uses the centroid of the input dataset and the centroid of
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(a) Global representation of
readings while moving

(b) Local map of readings (Cir-
cles) and real positions (stars)

Figure 6.6: Global and local map representations

the closest points to calculate the translation from one to the other. This works if we
assume that we are capable of getting a reading of our surroundings instantaneously
while moving, or that we are not in motion when gathering the readings. In the case of
our imaging sonar, we are able to gather a scan of the environment and then match it
using the original ICP, there is not much of a problem there. The problem arises when
we are moving but also want to use the ICP algorithm to know our position.

The original ICP assumes that the translation error between a point and its closest
match is the same for all of the input points. In our context, this is only possible when
static, gathering readings while moving would produce each point to have different
translations, which are directly related to the speed and duration of the movement. In
order to solve this we have introduced two modifications of the original ICP algorithm.
The first one has already been pointed out in the closestPoints function. The second
one is made in the registration function, where we use the slope of error to estimate
the speed and provide transformations for each point based on speed.

Figures 6.6(a) shows how the measurements are taken while moving, and 6.6(b)
shows how the measurements are represented in the local map (red) and where they
should belong(blue). The transformation that takes the measurements from the local
map to the global map is the one we try to find on the registration function. I order
to do so, we use the error between each point and its correspondence. If we consider
the initial time t0 as the moment where both movement and scan begin, and have
t0..n as the timestamps of each measurement, and e0..n as the error in the direction of
movement of samples taken at each time increment. We can assume that the initial
measurements will have less translation than the last ones. More so, the last measure-
ments’ translation, should be the same as the displacement suffered by the vehicle from
t0 to tn.

The most basic situation when calculating the transformations would be when the
vehicle is static, this produces a flat line of errors, producing the same as the centroid
difference calculation. The next basic situation would be where the vehicle is moving at
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a more or less constant speed, the curve representing the error between measurements
and corresponding points should be a line with equation y = mx+n where the slope is
actually the speed of the vehicle. If we combine these two cases, we can have a scan that
is gathered from measurements made while static and while on movement, producing
what we could call translation segments similar to the ones on figure 6.7. Following
the example on the figure, the points from t = 0 to t = 5 would have an error of 0, the
points from t = 5 to t = 10 would have a translation represented by y = 3

5(t− 5) + 0.
Jumping a bit forward, the points between t = 15 and t = 20 have a translation of 8
and the ones from t = 20 to t = 25 have the error represented as y = 20

25(t− 20) + 8.

Figure 6.7: Example or time and translation representation

Figure 6.5.6 shows how the translation are calculated by segments. We just ac-
cumulate data for each type of segment and process it differently when we reach the
end it. The diagram shown does not cover the calculation of the last segment, which
basically uses the same if condition and calculations depending on the segments’ type.

The registration process described in the former paragraph is then followed by the
applyTransformation function, which is very simple. It just takes the list of trans-
formations provided by the registration method and iterates through the input cloud
transforming each point. Even though there are methods to directly apply a trans-
formation to a point cloud, i.e. pcl::transformPointCloud, they use a transformation
matrix, and we don’t want to use the same transformation. Thus, we end up moving
points "the hard way" as shown in the following snippet.

P->at(i).x = P->at(i).x + transforms.at(i)[0];
P->at(i).y = P->at(i).y + transforms.at(i)[1];
P->at(i).z = P->at(i).z + transforms.at(i)[2];
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Figure 6.8: Flow chart for translation calculation by segments
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The next step of the ICP algorithm is error calculation. This step is performed by
the calculateError function, as its name points out. This step has been preserved the
same as the one in the original ICP algorithm. We calculate the error as the mean
euclidean distance from the transformed points to their correspondences. There is only
a slight difference, we also have a threshold that sets the error to zero for a given point
in case it is below a threshold. This is done due to the fact that blocks actually span
an area, so when a measurement has its block correspondence, the measurement could
actually belong to anywhere inside the area spanned by the block, since measurements
from different positions could yield points that are located in a different area of the
block rather than its mean.

Finally we accumulate the results of the current iteration and proceed to the next
one:

iterations++;
accumulatedT += *T;
accumulatedR = accumulatedR * (*R);

6.6 Processing distribution

After the last version, the components where a bit crumbled up, there were only two
nodes carrying out all the work to produce the final result. There was the processing
node, with quite different processing stages taking part in the same place, and the
mapper node, which basically took the product of the processing node and detection
nodes to integrate them in the map. I was already happy with the structure for the
mapper, but the other node was not so right. The other option could have been
separating each processing step into a node. The main drawback there is that there
would be around four nodes, transmitting sonar data among them, what creates a high
system overhead due to the cost of constantly sending large amounts of data. Due to
this, I went for turning each processing step into a nodelet, taking advantage of the
zero copy feature of the nodes, that makes it possible to share information at no cost,
instead of having to send it through the TCP/IP connection of regular nodes. This
way I could keep the efficiency of the monolithic processing node, with the flexibility
of having several nodes.

After this decision each component was separated into different nodes and nodelets
so that each component could be easily tested, modified, or even replaced. Each of the
"processing" components (SonarToCloud, Thresholder...) were built into nodelets.

In general, the reasons for this "extra" reorganization were the following:

• First of all, separating the processing stage into different execution units would
allow us to directly get rid of the processes that were not needed. Instead of
having several conditions to skip the unwanted processing stages.

• The code and the system would be easier to follow and debug. The stages are
clearly divided and they are also easily debugged since we can just check the
output of each stage by subscribing to it.
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• We do not incur in extra system overhead. Each stage has to transmit to the next
one the processed data, which is a point cloud message. If I had implemented each
stage in a separate node there would have been some overhead due to the point
clouds coming and going through the topics that connected each node. Since
nodelets allow us zero copy data transmission the system won’t get any overhead.

• Adding new filters or processing stages is as simple as adding a new nodelet to
the pipeline.
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This chapter addresses the results gathered from testing the developed tools. Since
these tools can be checked out independently if followed from the bottom up, meaning
that there is no point on testing the mapping tool using noisy data since the filtering
steps work properly.

In order to properly understand the images shown in this chapter the following
guidelines should be taken into account:

• Sonar scans are viewed from top, so, what is being observed is a horizontal scan.

• MLSM images show cylinders and cubes that build vertical structures. When
this structures are comprised of vertical blocks, they have a lighter colours than
the rest.

• The images showing the ICP algorithm result show the global map and the result
of the matching algorithm.

Important notice
The lack of real world testing is due damages caused to the platform during one

of the competitions, which prevented the vehicle from being used for testing. Even
though, this project will serve as a starting point for future projects that will test and
expand the software in real conditions.

7.1 Sonar simulation

A lot of factors intervene in the data returned by the beams of the sonar, as seen in
section 4. Some of these parameters where not simulated due to limitations both in
complexity and ability to extract the features needed from the tools used (Gazebo).
Figure 7.1 shows some data gathered from the sensor and from the simulator.

Figure 7.1(a) represents data gathered from the same wall (with a shorter range)
as figures 7.1(b) and 7.1(c). The main reason of this noisy image was that the gain
was not properly adjusted. Even though, posterior filtering stages can easily deal with
this kind of noise. Figures 7.1(b) and 7.1(c) show properly tuned scans, which yield
more accurate results. If we were to compare them with the one produced by the
simulator (7.1(d)), the intensities might seem a bit more concentrated and a bit noisier
than it should regarding proper tuning. Still, it can be used for simulation without
great concerns due to two reasons. The first one, and most obvious, is that this is a
simulation using a simplification of the sonar’s behaviour, developed for testing. The
second one is that after the processing stages, the result ends up being quite similar
when we have the processed data from the sensor or from the simulator.
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(a) Real sonar scan 1 (b) Real sonar scan 2

(c) Real sonar scan (clean) (d) Sonar simulation based on
laser sensor

Figure 7.1: Comparison of real and simulated scans

7.2 Sonar processing

The filtering steps work reasonably well on both original sensor data and simulated
data as figures 7.2,7.3, and 7.4 show.

For clouds similar to the ones on figure 7.4 the Otsu thresholder provides a value
around 66 which, considering that the maximum value is 127, is an intermediate value.
This is appropriate for Otsu filtering, i.e. background separation, but in general it is
good to tune this value up a bit by using the OTSUMultiplier parameter, but it should
be tuned for each environment accordingly.

7.3 Mapping

As shown on figures 7.3 and 7.6 the map is built properly. In general it is easy to see
the grid structure created. We can also notice the block fusion at it’s best on figure
7.5(b), where the small distance made possible to fuse blocks with almost the entire
height of the wall (large bright red cylinders).

On figure 7.6 we can better appreciate how the map is built when using long range
scans. We can see that the closest vertical structures contain fused blocks (light yellow
pillars) while further measurements are harder to combine due to the opening between
scan angles.



7.3. Mapping 77

Figure 7.2: Thresholding and outlier removal with simulated data

Figure 7.3: Cleaning and line detection from sensor data

(a) Cleaning and line detection from sensor
data

(b) Cleaning and line detection from sensor
data

Figure 7.4: Long range simulated scan 50m
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(a) Walled map model (b) Walled multi level surface map

Figure 7.5: Taliarte model

7.4 ICP

The static ICP has yielded the expected results, which was to be expected, since there
is not much complication on using the centroid of the clouds for translation calculation.

The screenshots of figures 7.7, 7.8, 7.9 and 7.10 show the dynamic ICP working
after different situations: Moved 5 meters on X, moved another 4 meters on Y, and
then, -10 meters on X. Instead of directly matching the clouds with no approximation,
we have used a more realistic approach for testing. Odometry is extracted from the
simulator but, since this odometry is perfect, we induce an error of 30%, which means
that for a distance of 4 meters in odometry, there is a correction of 1.2 meters to be
corrected. Each of the figures specifies how many meters the robot has moved, and also
include the correction given by the algorithm. For figure 7.7 the correction should be
around 1.2 meters (4 meters in X plus a 30% correction). For figure 7.8 we would have
around 1.2 meters in X and 0.9 in Y. And finally, for figure 7.9 we should have −1.2
in X and 0.9 in Y .

On figure 7.10 we can see the correction applied to transform from odom frame
to map frame. This is also a good visual example of how the transformation between
frames work.
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Figure 7.6: MLSM generated Taliarte model

Figure 7.7: Moved 4 odom meters on X (Correction on X = 1.348, Y = 0.001, Error =
0.313)
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Figure 7.8: Moved 4 odom meters on X and 3 odom meters on Y (Correction on X =
0.851, Y = 0.781, Error = 0.188)



7.4. ICP 81

Figure 7.9: Moved -8 odom meters on X after 7.8 (Correction on X = -1.197, Y =
0.618, Error = 0.025)

Figure 7.10: Transformation visualization for image 7.7



8 | Conclusions and future work

8.1 Conclusion

A realistic simulation tool for an Imaging Sonar sensor has been developed and in-
tegrated into Gazebo, along with a robot model, successfully, this will allow future
developments to be tested without the need of the robotic platform or the sonar itself.

There are many factors that intervene into the formation of echo returns on a Sonar
image, with our objectives in mind the developed simulation is only an approximation
to reality.

A Sonar data processing pipeline has been established and developed successfully.
The processing pipeline implemented in the sonar_processing package yields good re-
sults and can be used with real world data.

The graph architecture ROS provides is a great way of tackling both small and large
systems that require asynchronous processes. Also nodelets present a good solution to
the problem of communicating large chunks of data between nodes, like the ones we
can find when communicating point clouds.

Several mapping structures have been analysed. Each structure tends to present a
better solution for different situations, and we have to find the one that best balances
all the features we look for.

A mapping tool has been developed using point clouds as an input, so the mapping
section can be actually used with whatever sensor is desired as long as they meet the
format of message used for input, which is another benefit from ROS also.

The ICP algorithm has been analysed and also modified to suit the platform and
sensor used, which is another of the strong points of this project. The solution is
not ideal or perfect (but still, localisation algorithms do not tend to be perfect), but
provides a good solution to track our position, which works even better if we are able
to stay more or less static.

As side benefits for the developer himself, the development of a project that com-
prises of simulation, data processing and mapping altogether has been very enlighten-
ing, providing good background for future developments of this sort.
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8.2 Future work

There is always room for improvement, and among the possible ones regarding this
project we can find the following:

• The simulation node could be checked out after further releases of Gazebo-ROS
to check if Gazebo’s native sonar sensor can be used for simulation. This would
also provide room for considering more parameters in the simulation, such as the
surface of collision (its material and normal according to the sonic pulse) and any
other parameters that require gathering information on the collision itself.

• For the processing nodelets, some improvements could be made, regarding the
use of organised point clouds as input. Currently, the methods provided by PCL
for filtering require unorganised point clouds, so, if we want to keep the output
of the processing stage as organised, the fact that the filtering methods should be
implemented from scratch should be taken into account.

• The previous improvement relates also to the possibility of converting clouds into
images, thus giving the possibility of adding OpenCV methods in the process-
ing pipeline. Or making it easier to use OpenCV detection methods as Hough
Transform.

• The mapped package could be expanded to hold several types of map, providing
support for Octomap, which seems could provide optimisation space-saving wise.

• The ICP matching function for dynamic data could be improved by adding con-
siderations of the nature of the movement, since speed will not be linear.

• Finally, the pipeline conceived for data processing + matching + mapping could
be altered following the work on [14].
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