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A B S T R A C T

Satellite-based Net Primary Production (NPP) estimates are arguably the best way to improve our understanding 
of large-scale ocean productivity and to validate Earth System Models. Despite significant progress over recent 
decades, satellite-derived NPP estimates still suffer from large uncertainties, primarily due to the limited number 
of in situ primary production (PP) measurements available for their validation. In addition, the most widely used 
algorithms lead to different, sometimes even contradictory, results. Along with measurements of chlorophyll a 
concentration (Chla) and phytoplankton biomass (Cphyto), here we present in situ measurements of PP using 14C 
uptake and 13C isotope tracing, as well as O2 and 18O2 evolution inside incubation bottles, across the transition 
zone from the coastal Canary Eastern Boundary Upwelling System (CanEBUS) to the open ocean waters of the 

Cape Verde Frontal Zone (17–23◦N; 16–26◦W). We also calculate assimilation numbers (Pb
opt

)
and growth rates 

(μ) from in situ measurements. First, we compared in situ PP estimates measured concurrently using the four 
abovementioned techniques. We then tested the performance of four widely-used models including the Vertically 
Generalized Production Model (VGPM) and its variant based on Eppley’s description of the growth function 
(Eppley), the Carbon-based Productivity Model (CbPM), and the Carbon, Absorption and Fluorescence Euphotic- 
resolving model (CAFE), along with the satellite-derived input variables that feed these algorithms. We found 
that the Chla-based VGPM and Eppley models were significantly correlated with in situ estimates, regardless of 
the satellite source used as input data. As for models based on Cphyto, only the CbPM from the Visible Infrared 
Imaging Radiometer Suite (VIIRS) data demonstrated performance comparable to that of the Chla-based models. 
In all other cases, Cphyto-based models were uncorrelated with in situ PP estimates. Our results indicate that the 
bias associated with the VGPM and Eppley models is primarily due to the algorithms’ inability to accurately 
assess Popt

b . Meanwhile, the retrieval of both satellite-derived Cphyto and μ leads to a poor estimate of NPP by the 
CbPM. Our findings suggest that enhancing the accuracy of NPP estimates derived from satellite-based models 
necessitates the refinement of the methodology employed in deriving the input data and their subsequent 
validation, rather than developing increasingly complex models.
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1. Introduction

Few ecosystems on Earth play as significant an ecological, climato
logical, and socio-economic role as the Eastern Boundary Upwelling 
Systems (EBUS’s; Kämpf and Chapman, 2018). Despite comprising less 
than 3 % of the total ocean area, wind-driven upwelling of cold, 
nutrient-rich waters along EBUS contributes to approximately 10 % of 
global phytoplankton biomass production (Carr, 2002; Lachkar and 
Gruber, 2012; Messié and Chavez, 2015), supporting about 20 % of the 
global fish catch (FAO, 2022; Pauly and Christensen, 1995; Pauly and 
Zeller, 2016). Furthermore, these regions are important biodiversity 
hotspots, hosting various marine mammals and migrant seabirds, and 
supporting a lucrative eco-tourism industry (Arístegui et al., 2009; Block 
et al., 2011; Fréon et al., 2009; Kämpf and Chapman, 2018). The goods 
and services provided by EBUS are estimated to benefit around 80 
million people living along their coastal regions, with an economic value 
of approximately half a billion euros (FAO, 2022; García-Reyes et al., 
2015; Levin and Le Bris, 2015). Understanding the spatial and temporal 
variability of the EBUS productivity, as well as the potential effects of 
climate change on their ecological functioning, is closely linked to the 
study of primary production (PP; Barange et al., 2014; Blythe et al., 
2020; Kulk et al., 2020). However, the large spatial and temporal scales, 
along with the heterogeneity of EBUS in terms of productivity, compli
cate the study of PP in these systems (Arístegui et al., 2009; Basterretxea 
and Arístegui, 2000).

Measuring PP in marine waters relies on time-consuming tempera
ture and light-controlled incubations in which oxygen and carbon pro
duction are typically measured over a period of 24 h. Most common 
techniques are based on radiolabeled 14C-uptake and Winkler-based 
oxygen measurements (Carpenter, 1965; Steeman-Nielsen, 1952). 
Additional methods include using stable isotopes like 18O2 (Bender 
et al., 1987) and 13C (Slawyk et al., 1977), measuring variations in the 
isotopic composition of dissolved O2 and Ar ratios (Luz and Barkan, 
2011), and active fluorescence (Kolber and Falkowski, 1993). Despite 
the latter being less time-consuming, the 14C and O2 methods remain the 
gold standard.

While these methods have contributed to significant global datasets, 
the coverage is still insufficient to accurately study large, heterogeneous 
ecosystems like the EBUS (Bouman et al., 2018; Mattei and Scardi, 
2021). Moreover, all these techniques often yield different results, 
impeding comparisons between methods and thus limiting the spatial 
and temporal coverage of the data (Fahey and Knapp, 2007). Although 
attempts to reconcile these discrepancies have been proposed (Arístegui 
et al., 1996; Arístegui and Harrison, 2002; López-Sandoval et al., 2018; 
Lottig et al., 2022; Regaudie-de-Gioux et al., 2014; Sanz-Martín et al., 
2019), they remain a subject of ongoing debate (Marra, 2012; Quay 
et al., 2010). Hence, a larger spatiotemporal coverage of high-quality in 
situ PP measurements is critical for validating satellite-based net primary 
production (NPP) models.

The development of satellite-based NPP estimates marked a signifi
cant breakthrough in the study of large-scale ecosystems, as they over
come the spatial and temporal limitations of in situ methods. These 
remotely sensed NPP estimates are computed using satellite-derived 
data on phytoplankton biomass -either chlorophyll a (Chla) or phyto
plankton carbon (Cphyto)- which are converted into organic carbon 
production rates by means of algorithms. These algorithms, or models, 
are then validated against in situ PP data (Groom et al., 2019; Lee et al., 
2015; Westberry et al., 2023). The models are based on long-established 
relationships between the photosynthetic process, Chla and light avail
ability (Platt and Sathyendranath, 1988; Platt and Lewis, 1987; Ryther, 
1956; Ryther and Yentsch, 1957).

Despite decades of effort, satellite-derived NPP estimates remain far 
from satisfactory. Discrepancies between in situ and satellite-derived PP 
estimates can be as large as two to three times, regardless of temporal or 
spatial scales (e.g., Campbell et al., 2002; Carr et al., 2006; Friedrichs 
et al., 2009). Comparisons among models have also produced different, 

and sometimes even contradictory, results (Campbell et al., 2002; Carr 
et al., 2006; Friedrichs et al., 2009; Gómez-Letona et al., 2017; Saba 
et al., 2011). In fact, the IPCC Special Report on the Ocean and Cryo
sphere in a Changing Climate assigns a low confidence level to satellite- 
based marine PP trends (Bindoff et al., 2022).

The inaccuracies of NPP models become more pronounced in EBUS, 
where the ocean’s most productive and least productive regions 
converge. These regions require the simultaneous study of contrasting 
surface bio-optical properties and water column structures. Therefore, 
resolving the sources of discrepancies between in situ and satellite- 
derived model inputs -such as Chla, Cphyto, assimilation numbers (Pb), 
or growth rate (μ)- and outputs like NPP is crucial for improving model 
accuracy (Brewin et al., 2021; IPCC, 2022).

Our objectives are twofold. First, we aim to reconcile the most widely 
used in situ methodologies for measuring PP; and second, we evaluate 
the performance of four widely used satellite-based PP models, to 
identify the most suitable option for studying highly contrasting eco
systems such as EBUS. This study significantly advances our under
standing of the complex relationships between various methods of 
estimating PP in the ocean, including in situ techniques and remote 
sensing. Notably, this study stands as the sole published dataset that has 
measured these relationships simultaneously through the application of 
four predominant techniques, as far as we know.

2. Methods

2.1. Sampling collection and incubation

The in situ data for this study was obtained during the FLUXESI 
cruise, from July 10 to August 11, 2017, onboard the R/V Sarmiento de 
Gamboa. A grid of 35 stations spanning the Coastal Transition Zone of 
the Mauritanian part of the Canary Eastern Boundary Upwelling System 
(CanEBUS) was sampled (Fig. 1). At each station, CTD (Sea-Bird CTD 
911+, Sea-Bird Scientific, USA) casts were performed down to the sea
floor. At 11 of the 35 stations, water samples were collected for PP 
measurements using a General Oceanics rosette sampler equipped with 
24 Niskin bottles of 12 L (Fig. 1). Samples for in situ primary production 
(PP) measurements were directly poured from Niskin bottles using a 
silicone tube with a 280 μm mesh attached to its end to remove preda
tors from three depths: surface, above the Deep Chlorophyll Maximum 
(DCM), and at the DCM. After water collection, the samples were placed 
in incubators. Three on-deck methacrylate incubators were used, 
simulating the in situ light and temperature conditions corresponding to 
the different sampling depths. Natural light was attenuated using blue 
foil screening (172 Lagoon Blue foil, Lee filters, USA) according to light 
profiles obtained at each station with a Photosynthetically Active Ra
diation (PAR) sensor (Li-COR/Biospherical, LICORbio, USA) attached to 
the CTD rosette. Given that the three depths at which PP was measured 
were within the mixing layer, the differences in temperature were 
minimal. This made it impossible to reproduce these differences using 
water chillers. Consequently, surface water was circulated through the 
three incubators to control the temperature. All samples were incubated 
for 24 h, with their positions arranged in the incubators to minimize 
shadowing as much as possible.

2.2. In situ data

2.2.1. Primary production
To estimate 14C-based PP rates, four 70 mL water samples were 

collected in tissue culture treated flasks of 25 cm2 of growth area (Sar
stedt, Germany). Each sample was spiked with 15 μCi of 14C-labelled 
sodium bicarbonate solution (NaH14CO3; >99 atom %, Perkin Elmer, 
USA). One of the four samples was covered with opaque foil to shield it 
from light during incubation, allowing for the measurement of dark 
carbon uptake. Afterward, the entire sample was filtered under low 
vacuum pressure onto a 0.2 μm pore-size 25 mm ø polycarbonate filter 
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(Whatman, Merck, Germany) using a circular manifold (Oceomic, 
Fuerteventura, Canary Island, Spain) designed for collecting the filtrate. 
The filters were then placed in 10 mL scintillation vials. Five mL of the 
filtrate were place in 20 mL scintillation vials, acidified with 100 μL of 
17.5 % HCl and placed in an orbital oscillator for 24 h, while the filters 
were exposed to 37 % HCl fumes for the same duration. Finally, 10 mL 
and 5 mL of Ultima Gold XR scintillation cocktails were added to the 20 
mL and 10 mL vials, respectively, thoroughly mixed, and stored in 
darkness for 24 h. Isotopic disintegrations per minute were measured 
using a Beckman LS-6500 scintillation counter (Beckman Coulter, USA). 
Primary production rates (in mmol C⋅m− 3⋅d− 1) were calculated ac
cording Hernández-Hernández et al. (2018). The primary production 
rates obtained from the filters corresponded to particulate primary 
production (PO14C), while rates from the filtrate represented dissolved 
primary production (DO14C; not shown here). Total primary production 
(TO14C) was calculated as the sum of DO14C and PO14C.

For 13C-based PP estimations, 4.5 L polycarbonate bottles (Nalgene, 
Thermo Fisher Scientific, USA), previously cleaned with 10 % HCl, were 
filled with water samples in triplicates, ensuring no bubbles were pre
sent. One of the three samples was immediately filtered to determine the 
13C background enrichment of particulate carbon. The remaining two 
samples were inoculated with 500 μL of 500 mM 13C-labelled sodium 
bicarbonate (NaH13CO3; >98 atom %, Sigma Aldrich, USA) and incu
bated for 24 h. All samples were gently filtered onto precombusted 25 
mm ø GF/F filters (Whatman, Merck, Germany). The filters were dried 
on board at 50 ◦C for 24 h and stored in silica gel desiccant until analysis 
in land-based laboratories. The percentage of 13C atoms was measured 
using a Thermo Flash 1112 elemental analyzer interfaced with a Conflo 
III connected to a Thermo Delta V Advantage isotope ratio mass spec
trometer (Thermo Fischer Scientific, USA). Finally, PP rates (PO13C, 
mmol C⋅m− 3⋅d− 1) were calculated following the method outlined by 
Hama et al. (1993). It should be noted that 13C-based PP rates were 
measured alongside 15N2 fixation rates. For details of the complete 
procedure see Hallstrøm et al. (2022).

For PP estimations based on the evolution of oxygen concentration 
during the incubation period, 4 L bottles were filled with water sample 
and maintained inside the corresponding incubators to avoid tempera
ture changes during subsampling. 12 calibrated 125 mL BOD bottles 
were filled using silicone tubes to allow for sample overflow, ensuring a 
final bubble-free state after closing. Four of the 12 bottles, referred to as 

‘initials’, were immediately fixed by sequentially adding 1 mL of man
ganese sulfate (MnSO4), and 1 mL of sodium iodide‑sodium hydroxide 
(NaI + NaOH) alkaline solution. These bottles were then stored sub
merged in seawater under dark conditions. The remaining bottles were 
placed in incubators for 24 h, with half of them (four bottles) covered 
with light proof bags (‘dark’) and the other four left uncovered (‘light’). 
After incubation, the ‘dark’, and ‘light’ samples were fixed following the 
same procedure as the ‘initials’ and allowed to sediment the precipitate 
for at least 4 h. Finally, all samples were acidified with 1 mL of 5 M 
sulphuric acid (H2SO4) just prior to analysis using an automated, precise 
titration system with colorimetric end-point detection (SiS DOA, GmbH, 
Germany) following the Winkler technique and the recommendations of 
Bryan et al. (1976), and Hansen (1999). Net community production 
(NCP, mmol O2⋅m− 3⋅d− 1) rates were calculated as the difference be
tween the ‘light’ and ‘initial’ bottles; community respiration (CR, mmol 
O2⋅m− 3⋅d− 1) was calculated as ‘initials’ minus ‘dark’ bottles (not shown 
here); and gross primary production (GPP, mmol O2⋅m− 3⋅d− 1) was 
determined as the sum of NCP and CR. The disparities among replicates 
were seldom greater than 2 mmol O2⋅m− 3, with a standard deviation 
ranging from 0.075 to 2.427 and a mean standard error < 0.1 mmol 
O2⋅m− 3. Replicates demonstrating discrepancies surpassing 3 mmol 
O2⋅m− 3 were systematically excluded from the analysis.

For 18O-based PP measurements, seawater samples were distributed 
into eight borosilicate vials (12 mL) designed to allow overflow, pre
venting atmospheric contamination. Half of the vials (four vials) were 
immediately poisoned for the determination of natural δ18O by adding 
100 μL of saturated mercury chloride (HgCl2) and storing them in the 
darkness. The other four vials were spiked with 80 μL of H2

18O (>98 atom 
%) and gently mixed before being incubated for 24 h. After incubation, 
all vials were fixed following the previously mentioned procedure and 
stored in the darkness until analysis at the land-based Stable-Isotope 
Laboratory of IACT-CSIC in Armilla, Spain. Prior to analysis, the samples 
were diluted to avoid contamination of the analyzer (~1:20) with a 
laboratory standard of known isotopic composition. The δ18O compo
sition of the samples was measured using a liquid water isotope analyzer 
(Los Gatos Research, USA). The 18O-based PP rates, expressed in mmol 
O2⋅m− 3⋅d− 1, were calculated following the methods outlined by Bender 
et al. (1999). The precision of the 18O2 technique demonstrated a high 
degree of similarity to that of the O2 method, with differences among 
replicates generally less than 2 mmol O2⋅m− 3 (sd: 0.025–2.123; se: <0.1 

Fig. 1. Oceanographic stations sampled during the FLUXES I cruise, superimposed on a map of monthly-averaged surface chlorophyll a (Chla, mg⋅m− 3) for July 
2017. Stations where primary production samples were collected are highlighted with red circles. The Chla data is part of the Ocean Colour Climate Change Initiative 
(OC-CCI) and was downloaded from the “PRIMary-productivity in Upwelling Systems (PRIMUS)” project site (https://primus.eofrom.space). CC: Canary Current; 
MC: Mauritanian Current; CVFZ: Cape Verde Frontal Zone. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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mmol O2⋅m− 3).
A photosynthetic quotient (PQ = moles O2 released / moles C fixed) 

of 1.4 (Trentman et al., 2023) was used to convert oxygen to carbon 
units in order to compare with satellite-derived PP estimates. Depth- 
integrated in situ PP rates (mg C⋅m− 2⋅d− 1) were calculated by employ
ing the trapezoidal rule on the surface-to-DCM profiles of volumetric 
rates.

2.2.2. Chlorophyll a
Five hundred mL of water was gently filtered onto 0.2 μm pore-size 

25 mm ø polycarbonate filter (Whatman, Merck, Germany) under low 
vacuum pressure using a flat filtration manifold. The Chla collected on 
the filters was extracted in 10 mL of 90 % v/v acetone and stored at 
− 20 ◦C for 24 h. Chla concentration (mg Chla⋅m− 3) was then measured 
fluorometrically using a previously calibrated Turner 10-AU bench 
fluorometer (Turner Designs, USA), following the method of Holm- 
Hansen et al. (1965).

2.2.3. Phytoplankton biomass
Pigmented picoplankton (0.2–2 μm) and nanoplankton (2-20 μm) 

cells were counted using a FACScalibur (Becton and Dickinson, USA) 
flow cytometer. Samples for picoplankton (1.6 mL) and nanoplankton 
(3.2 mL) counts were collected in cryovials of 2 and 4 mL, respectively, 
fixed with paraformaldehyde to a final concentration of 2 %, incubated 
at 4 ◦C during 30 min prior flash-frozen in liquid nitrogen, and stored at 
− 80 ◦C until analysis in the land-based laboratories in Gran Canaria, 
Canary Islands. For picoplankton counts, a suspension of yellow-green 1 
μm ø latex beads (~105 bead⋅mL− 1, Polysciences, USA) was added as an 
internal standard, and samples were run at 75 μL⋅min− 1 for 150 s. For 
nanoplankton, red 2 μm ø latex beads (~105 bead⋅mL− 1, Polyscience, 
USA) were used as the internal standard, and samples were run at 170 
μL⋅min− 1 for 300 s. Picoplankton and nanoplankton groups were iden
tified based on their side-scatter (SSC) vs red (FL3), and orange (FL2) 
fluorescence signatures in bivariate plots. Water samples (250 mL) for 
autotrophic microplankton (20–200 μm) counting and identification 
were stored in brown glass bottles and immediately fixed with alkaline 
Lugol’s iodine (1 % final concentration). Back in the lab, subsamples 
(100 mL) were sedimented for at least 24 h in 100 mL Utermöhl 
chambers before being counted using an inverted microscope IX83 
(Olympus, Japan) following Utermöhl (1931).

To estimate cell-sizes of picoplankton and nanoplankton, the flow 
cytometer was calibrated using non-fluorescent latex beads of 0.5, 1, 2, 
4, 6, 10 and 15 μm in diameter (Molecular Probes, USA). The SSC values 
of the calibration beads were normalized to the SSC measured for the 
fluorescence standard beads added to each sample (1 μm for pico
plankton and 2 μm for nanoplankton settings). Linear regression was 
performed between bead diameters and normalized SSC for pico
plankton (ø = 9.914⋅log SSC - 0.219; r2 = 0.92) and nanoplankton (ø =
4.753⋅log SSC + 0.008; r2 = 0.93). Cell diameters (μm) were inferred 
from the relative SSC of each group and used to calculate cell biovolume 
(μm3), assuming spherical shapes. Biomass was estimated using con
version factors: 240 fg C⋅μm− 3 for Prochlorococcus, 230 fg C⋅μm− 3 for 
Synechococcus; 237 fg C⋅μm− 3 for picoeukaryotes (Bjørnsen, 1986); and 
220 fg C⋅μm− 3 for nanoeukaryotes (Børsheim and Bratbak, 1987). 
Microplankton cell volumes were obtained from Olenina et al. (2006), 
and volume-to‑carbon biomass was converted using equations from 
Menden-Deuer and Lessard (2000). Phytoplankton biomass (CPhyto) was 
calculated as the sum of the biomass of all groups.

2.2.4. Assimilation numbers and growth rates
Hourly TO14C rates measured at each depth were normalized to in 

situ Chla to calculate the assimilation numbers (Pb; mg C⋅ mg 
Chla− 1⋅h− 1). The highest Pb value at each station was defined as 
Pb

opt (Behrenfeld and Falkowski, 1997a). To estimate phytoplankton 
growth rates (μ; d− 1), daily TO14C rates were normalized to Cphyto. The 

highest μ value measured in the water column was selected for testing 
satellite-based products (Laws, 2013).

2.3. Remote sensing data

2.3.1. Primary production models
We selected four well-known, easily accessible, and broadly used PP 

models for comparison. They are briefly presented below. 

(1) The Vertically Generalized Production Model (VGPM) was 
described by Behrenfeld and Falkowski (1997b). This model is 
based on the dependence of PP on Chla. A Chla-specific assimi
lation term (Pb

opt) is employed to transform a standing stock, such 
as Chla, into a NPP rate. Pb

opt is defined by 7th degree polynomial 
function dependent on sea surface temperature (SST). Addition
ally, a volume function is derived based on the depth of the 
euphotic layer (ZEu) and on the daily (Lday) and vertical variation 
of PAR (f (PAR)), which is then used to obtain depth-integrated 
NPP estimates. 

NPP = Chla⋅Pb
opt⋅Lday⋅f(PAR)⋅ZEu 

(2) The modified version of the VGPM (Eppley) differs from its pre
decessor in the manner in which Pb

opt is described. Instead of using 
a polynomial function, the Eppley model employs the exponential 
expression described by Morel (1991). This function is based on 
the dependence of the growth function on SST described by 
Eppley (1972).

(3) The Carbon-based Productivity Model (CbPM) was first described 
by Behrenfeld et al. (2005) and subsequently updated by West
berry et al. (2008). This model uses carbon (CPhyto) instead of 
Chla as a proxy for phytoplankton biomass, and growth rates (μ) 
dependent on the C:Chla to transform the carbon stock into a PP 
rate. Moreover, the revised version of Westberry et al. (2008), no 
longer utilizes a volume function but instead describes a phyto
plankton proxy as a function of depth-dependent photo
acclimation (f (Ig)). 

NPP = Cphyto⋅μ⋅f
(
Ig
)

(4) The Carbon, Absorption and Fluorescence Euphotic-resolving 
model (CAFE) is the most recently described model (Silsbe 
et al., 2016). This algorithm diverges from the conventional 
approach to estimating NPP by employing a phytoplankton 
biomass proxy and a standing stock to rate transforming term. 
CAFE utilizes phytoplankton energy absorption (QPAR) and the 
efficiency (φμ) with which that energy is transformed into carbon 
biomass to estimate NPP. 

NPP = QPAR⋅ϕμ 

2.3.2. Data source and resolution
Both NPP and input data were directly downloaded from the open- 

access Ocean Productivity site of the Oregon State University (OSU, 
http://science.oregonstate.edu/ocean.productivity/). The input data 
were obtained from two satellites, the Visible Infrared Imaging Radi
ometer Suite (VIIRS), and the Moderate Resolution Imaging Spectror
adiometer (MODIS). Products were 8-day averaged compositions with a 
spatial resolution of 4 × 4 km.
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2.4. Statistical analysis

2.4.1. Data comparisons
To identify differences among the datasets used in this paper, non- 

parametric Kruskal-Wallis tests were conducted. The null hypothesis 
-that there are no significant differences between the data being 
compared- was accepted for p-values greater than the significance level 
(α = 0.05), and for H values exceeding the critical value of H (Hc) for 
each case (Kruskal and Wallis, 1952). Potential correlations between 
log-normalized datasets were assessed using model II (Reduced Major 
Axis, RMA) linear regressions.

2.4.2. Models’ performance assessment
The skill of each model was evaluated by analyzing the total root 

mean square difference (RMSD, Dorans and Holland, 2000): 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
Δ(i)2

√

where model-data misfit in log10 space (Δ) is defined as: 

Δ(i) = log(PPsat(i) ) − log(PPis(i) )

PPsat are the rates estimated by the different models, and PPis are the 
rates measured by the different in situ techniques. RMSD is composed by 
the bias (B), which represents the difference between the in situ and 
satellite means, and the unbiased RMSD (uRMSD), which represents the 
difference of variability. 

RMSD2 = B2 + uRMSD2 

B = log10(PPsat) − log10(PPis)

uRMSD =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RMSD2 − B2

√

The closer the values of B, uRMSD, and consequently RMSD are to 0, 
the better the model’s performance and predictive capabilities. The 
value of B also indicates whether a model consistently underestimates 
(negative values) or overestimates (positive values) in situ data.

Finally, we replaced the model’s satellite-estimated input data with 
in situ data when available, reran the models, and compared the results 
with the original data to assess whether the model limitations were 
associated with the satellite data or the models themselves. This pro
cedure could not be performed for CAFE, as the required input param
eters were not measured in situ.

3. Results

3.1. Comparing in situ PP measurement methods

In situ volumetric PP rates spanned three orders of magnitude, except 
for those measured by PO13C method (Fig. 2a; Table S1). Oxygen-based 
methods showed higher rates than carbon-based techniques, with mean 
values of 6.36 ± 12.51, 4.84 ± 9.07, and 3.83 ± 11.55, mmol 
O2⋅m− 3⋅d− 1 for O2-GPP, 18O2-GPP, and O2-NCP respectively; and 2.95 
± 4.83, 2.35 ± 4.04, and 1.00 ± 0.86 mmol C⋅m− 3⋅d− 1 for TO14C, 
PO14C, and PO13C, respectively (Table S1). The data distribution and 
ranges among the techniques were quite similar, with 18O2-GPP, PO14C, 
and TO14C being the most comparable to each other (Fig. 2a). The PO13C 
technique showed the lowest mean PP rates and variability, ranging 
from 0.14 to 2.85 mmol C⋅m− 3⋅d− 1 (Table S1). Nevertheless, there were 
no statistically significant differences among the six techniques as 
indicated by the Kruskal-Wallis test (p-value = 0.08; H = 9.77, Hc =

11.07). Oxygen to carbon ratios (O2:C) also displayed high variability, in 
some cases up to one order of magnitude (Fig. 2b). Ratios calculated 
using O2-GPP rates were higher (generally >3) than those obtained with 
18O2-GPP (1.22–2.18) (Table 1). O2 to TO14C ratios were consistently 
the lowest, while O2:PO14C and O2:PO13C presented the highest O2:C 
when compared with O2-GPP and 18O2-GPP, respectively. A clear depth 
gradient was observed in O2:C ratios, with values close to 1 at the surface 
and increasing with depth up to 6 (Table 1). The same pattern was 
observed for the O2 to 18O2 ratios.

Reduced major axis (RMA) linear regressions of PP rates further 
emphasize the similarities between PP techniques (Table 2). Excluding 
the 13C-uptake method, correlation coefficients (r2) between the various 

Fig. 2. (a) Violin plots showing volumetric primary production rates in units of mg C or O2⋅m− 3⋅d− 1 measured with in situ methods: 18O2-GPP, O2-GPP, O2-NCP, 
PO13C, PO14C, and TO14C. The shaded areas represent data density distribution, while the dots indicate actual PP rates. (b) Box plots of O:C ratios for PP estimates. In 
both panels, the box plots feature a rectangle representing the first and third quartiles, with the central horizontal line indicating the median. The data correspond to 
stations and depths where all four methods were measured.

Table 1 
Mean (±sd) values for O2 to C ratios, and O2-GPP to 18O2-GPP ratios for the 
surface, above the Deep Chlorophyll Maximum (DCM), and at the DCM.

Depth O2- 
GPP/ 
TO14C

O2- 
GPP/ 
PO14C

O2- 
GPP/ 
PO13C

18O2- 
GPP/ 
TO14C

18O2- 
GPP/ 
PO14C

18O2- 
GPP/ 
PO13C

O2 

/18O2- 
GPP

Surface
1.58 

± 1.01
2.40 

± 1.42
3.16 

± 4.60
1.05 

± 0.43
1.55 

± 0.62
1.68 

± 1.78
1.92 

± 0.92
Above 

DCM
3.33 

± 1.73
5.29 

± 3.97
5.48 

± 8.37
1.24 

± 0.78
1.79 

± 1.18
3.11 

± 5.64
6.24 

± 7.43

DCM
6.00 

± 4.64
11.64 
± 9.80

6.72 
± 4.71

1.36 
± 1.13

2.32 
± 1.47

1.73 
± 2.49

10.47 
±

10.01

All
3.54 

± 3.24
6.22 

± 6.84
5.04 

± 6.08
1.22 

± 0.82
1.89 

± 1.16
2.18 

± 3.62
6.21 

± 7.76
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techniques ranged between 0.51 and 0.99, with p-values well below the 
significance level (α = 0.05; Table 2). The highest r2 values were 
observed between 14C-based and 18O2-based estimates (r2 = 0.87) 
(Table 2). Similar results were found between 14C-based and O2-based 
estimates, though the correlation coefficients were lower (0.51 < r2 <

0.71). In all cases, O2-based method provided higher rates than C-based 
methods, with regressing slopes less than 1 (Table.2; Fig.S1). In contrast 
to 14C estimates, PO13C showed poor correlation with O2-based esti
mates (r2 < 0.43), but demonstrated good agreement with 14C and 18O2 
methods (r2 > 0.59).

3.2. Models’ performance

Integrated in situ PP ranged from as low as 68.30 mg C⋅m− 2⋅d− 1 at the 
oceanic stations to as high as 5323.66 mg C⋅m− 2⋅d− 1 at coastal stations 
affected by upwelling with an average value of 837.55 ± 1007.36 (Fig. 3
and Table S2). Satellite-derived NPP values fell within the range of in situ 
data, from 30.97 mg C⋅m− 2⋅d− 1 to 4924.99 mg C⋅m− 2⋅d− 1, with an 
average of 990.93 ± 900.23 mg C⋅m− 2⋅d− 1 (Fig. 3 and Table S3). VIIRS- 
based NPP generally showed lower rates than those obtained with 
MODIS (Fig. 3 and Table S3). Nevertheless, no statistically significant 
differences were identified using the Kruskal-Wallis test (p-value = 0.09; 
H = 19.08, Hc = 21.03).

Taylor diagrams provide a graphical summary of how closely a 
model’s output matches observations, offering insights into the model’s 

performance. The similarity between satellite and in situ data is assessed 
based on their correlation, the RMSD, and the amplitude of their vari
ations, represented by their standard deviation. In these Taylor diagrams 
(Fig. 4), the closer a model is to the black circle representing the in situ 
data, the better its performance.

We observed a clear pattern between the performance of Chla-based 
PP models, such as VGPM and Eppley, compared to Cphyto-based models 
(CbPM and CAFE) (Table 3 and Fig. 4). Excluding comparisons with 
PO13C, Chla-based models exhibited the highest statistically significant 
correlation coefficients with in situ techniques (0.59 < r2 < 0.85), and 
the lowest RMSD (0.29–0.53) (Table 3 and Fig. S2). On the other hand, 
the VIIRS based model is the only one among the carbon-based models 
presenting good performance and being comparable in most cases to 
Chla-based models. In contrast, CAFE and MODIS-fed CbPM models 
showed no significant correlations, with RMSD values up to two times 
higher than those of Chla-based models (0.52–0.73).

No significant differences were observed between Chla-based models 
when using VIIRS or MODIS products as input data; however, VIIRS 
consistently yielded higher r2 values and lower RMSD and bias, with 
very few exceptions (Table 3 and Fig. S2). Regarding CAFE, it showed 
poor performance in both cases. When compared with 14C, which is 
typically used as the ‘gold standard’, VGPM performed the best (Table 3
and Fig. 4a and b). Although it did not show the highest correlation 
coefficient (r2 = 0.57–0.83), it accurately predicted in situ data (Fig. 4a 
and b), presenting the lowest RMSD (0.24–0.50); followed by Eppley, 
which had r2 between 0.56 and 0.85 and RMSD of 0.44–0.64; and lastly 
by VIIRS-fueled CbPM (r2 = 0.47–0.80 and RMSD = 0.29–0.54; Table 3
and Fig. S2).

The poor correlation between Cphyto-based models and in situ data 
was attributed to the underestimation of high NPP values observed in 
the CanEBUS and the overestimation of low NPP values at oligotrophic 
stations (Figs. S2, 3, 4, and 6). In contrast, Chla-based models slightly 
overestimated low NPP values while they accurately predicting high 
NPP values (Figs. S2, 3, 4, and 6).

Considering each in situ technique separately, we observed that 
model performance varied among the methods (Fig. 4). As expected, 
since 14C (mainly PO14C) has historically been used as the ‘gold stan
dard’ for model validation, comparisons with TO14C and PO14C dis
played good performance (Fig. 4a and b). Furthermore, minor 
differences were observed depending on whether total or particulate 14C 
uptake was used. In both cases, VGPMVIIRS&MODIS, and EppleyVIIRS were 
the closest models to the in situ data, followed by CbPMVIIRS and 
EppleyMODIS (Fig. 4). When O2-GPP was used as the standard, VGPM and 
Eppley showed the best performance followed by CbPMVIIRS (Fig. 4d).

One of the key results was observed when 18O2-GPP was used as the 

Table 2 
Reduced Major Axis (RMA) regressions (Model II) statistics for the relationship 
between log-transformed primary production rates measured using different in 
situ methods: 18O2-GPP, O2-GPP, O2 NCP, PO13C, PO14C, and TO14C.

Yi Xi n Intercept Slope r2 p-value

PO14C TO14C 33 − 0.20 1.15 0.99 <0.01
PO14C PO13C 27 − 0.05 1.69 0.70 <0.01
PO14C O2-NCP 17 − 0.22 0.82 0.51 <0.01
PO14C O2-GPP 23 − 0.66 1.04 0.67 <0.01
PO14C 18O2-GPP 33 − 0.18 0.90 0.86 <0.01
TO14C PO13C 27 0.12 1.45 0.70 <0.01
TO14C O2-NCP 17 − 0.04 0.73 0.53 <0.01
TO14C O2-GPP 23 − 0.39 0.88 0.71 <0.01
TO14C 18O2-GPP 33 0.02 0.77 0.87 <0.01
TO13C O2-NCP 15 − 0.10 0.69 0.14 0.08
TO13C O2-GPP 21 − 0.37 0.73 0.43 <0.01
TO13C 18O2-GPP 27 − 0.06 0.54 0.59 <0.01

O2-NCP O2-GPP 17 − 0.59 1.41 0.85 <0.01
O2-NCP 18O2-GPP 17 0.20 0.99 0.51 <0.01
O2-GPP 18O2-GPP 23 0.49 0.83 0.62 <0.01

Fig. 3. Violin plots for integrated primary production rates (mg C⋅m− 2⋅d− 1) measured using in situ methods: 18O2-GPP, O2-GPP, PO13C, PO14C, and TO14C.; and 
satellite-derived estimates (mg C⋅m− 2⋅d− 1) from models VGPM, Eppley, CbPM, and CAFE. Subscripts indicate the satellite source, either MODIS or VIIRS. Shaded 
areas represent data density curves, with a box plot inside each density distribution. The rectangle in the box plot shows the first and third quartiles, and the central 
horizontal line represents the median. Dots indicate actual PP rates.

N. Hernández-Hernández et al.                                                                                                                                                                                                              Journal of Marine Systems 251 (2025) 104109 

6 



standard. Although 14C is the gold standard method for modeled-PP 
validation, we obtained better correlation using 18O2-GPP as a bench
mark, although the RMSD and bias were higher (Fig. 4e and Table 2). 
There were no statistically significant correlations between PO13C and 
the satellite models (Fig. 4 and Table 2).

3.3. Validating input data

Chla and Cphyto are key input variables for PP models. Both param
eters can be derived from ocean colour data using algorithms, making 
their accurate retrieval critical for estimating PP. Surface Chla obtained 
from in situ samples ranged from 0.07 to 2.04 mg Chla⋅m− 3. MODIS and 
VIIRS closely resemble in situ Chla estimates, spanning from 0.09 to 5.95 
mg Chla⋅m− 3 and from 0.08 to 2.59 mg Chla⋅m− 3, respectively (Fig. 5a). 
Both products, MODIS and VIIRS, were well correlated with in situ data, 
with correlation coefficients of 0.73 and 0.77 and slopes of 1.06 and 
0.90, respectively (Table S4). Nevertheless, VIIRS predicted in situ 
values more accurately, as indicated by its lower RMSD and bias (Fig. 5c 
and Table S4).

In contrast to Chla, remote sensing products did not present accurate 
estimations of in situ Cphyto. The MODIS product varied between 0.52 
and 41.53 mg C⋅m− 3, while the VIIRS product ranged from 20.02 and 
66.97 mg C⋅m− 3, compared to in situ values that ranged from 8.66 and 
177.52 mg C⋅m− 3. Although both products fall within the range of in situ 
data, they presented a significant reduced range (Fig. 5b), particularly at 

the higher end. This lack of accuracy was also evident in the linear 
correlations. Only VIIRS-based Cphyto showed a good correlation with in 
situ data (r2 = 0.82), yet the power slope was far from 1 (0.34) (Fig. 5d 
and Table S4). In contrast, MODIS products were poorly correlated with 
in situ data (r2 = 0.33) (Fig. 5d and Table S4).

The transformation of phytoplankton biomass standing stocks, such 
as Chla and Cphyto, into PP rates requires a biomass-normalized photo
synthetic parameter, such as Pb

opt in the case of Chla-based PP models, 
and μ in phytoplankton biomass-based models. These parameters are 
theoretically computed using model-specific algorithms. In our study, 
satellite-derived Pb

opt exhibited a much narrower range than in situ 
measurements. Satellite-derived Pb

opt ranged from 4.40 to 6.83 mg C⋅mg 
Chla− 1⋅h− 1, while in situ Pb

opt ranged from 2.01 to 9.75 mg C⋅mg 
Chla− 1⋅h− 1 (Fig. 6a). The constrained range of satellite Pb

opt values pre
cluded a linear correlation with in situ data (r2 < 0.07; Fig. 6c and 
Table S4). A similar lack of correlation was observed between in situ and 
MODIS-derived μ (r2 = 0.03). Conversely, VIIRS-derived μ showed a 
good correlation with in situ data, yet its accuracy remained low (Fig. 6d 
and Table S4). In this case, satellite-derived μ presented a larger range 
(0.20–2.00 d− 1) than in situ data (0.15–0.92 d− 1) (Fig. 6b). It should be 
noted that CbPM defines the maximum value of μ as 2, thus no higher 
values can be obtained.

Fig. 4. Taylor diagrams of PP from each participating model (VGPM, Eppley, CbPM, and CAFE) and for each in situ technique: (a) TO14C, (b) PO14C, (c) PO13C, (d) 
O2-GPP, and (e) 18O2-GPP. The subscript indicates the satellite source (MODIS or VIIRS). The distance from the origin (blue dotted lines) represents the standard 
deviation associated with the models, while the azimuth angle indicates the correlation coefficient between in situ and satellite PP. Black solid lines are isolines of 
RMSD. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.4. Testing models: In situ measurements as source data

To assess whether the source data affects models’ performance, all 
models were run using in situ Chla (Cphyto), and Pb

opt (μ) as input data, and 
their performances were compared with those of satellite-fueled models. 
In all cases, the performance of the models improved when in situ data 
were used as inputs (Fig. 7 and Table 4). The coefficients of correlations 
for VGPM showed minimal change (±1 %), but the RMSD decreased by 
up to 43 %, the bias was reduced by 61–72 % (Table 4). In contrast, 
Eppley improved its coefficient of correlation by up to 24 %. The re
ductions in RMSD and bias were, however, comparable to those of 
VGPM. The most significant change occurred for CbPM, which transi
tioned from being uncorrelated when using MODIS data to achieving an 
r2 of 0.74, representing an increase of three orders of magnitude when 
comparing with MODIS and 14 % improvement with VIIRS. Further
more, RMSD was reduced by 39–60 %, and the bias decreased by 90–93 
%, transforming CbPM from having no statistically significant correla
tion with PO14C in the case of MODIS to become the model with the best 
performance (Table 4).

4. Discussion

4.1. Reconciling in situ PP methods: A challenging endeavor

The various methods used to measure PP in situ yield variable esti
mates that are often difficult to compare. This has prompted the 

scientific community to seek ways to reconcile these differences by 
implementing interconversion equations, which would not only facili
tate the comparisons among methods but also enable their integration 
into larger databases. However, studies in which PP is measured 
concurrently using different techniques are limited, and many focus on 
regions with similar environmental conditions (Arístegui et al., 1996; 
Arístegui and Harrison, 2002; Bender et al., 1987; Grande et al., 1989b; 
Grande et al., 1989a; Robinson et al., 2009; Sanz-Martín et al., 2019). 
The work by Regaudie-de-Gioux et al. (2014) may be an exception, as it 
compiles published PP data measured concurrently by at least two 
methods, covering the eastern North Atlantic Ocean, the western South 
Atlantic Ocean, and a few stations in the Indian, Antarctic, and central 
Pacific Oceans. Although they compare up to five different techniques, 
the majority of the data pertained to 14C-18O2 comparisons (accounting 
for 53 % of the individual estimates), and most PP estimations were 
conducted in oligotrophic regions.

The limited number of studies comparing in situ PP techniques have 
reported significant differences among methods (Bender et al., 1987; 
Regaudie-de-Gioux et al., 2014; Robinson et al., 2009; Sanz-Martín 
et al., 2019). Generally, oxygen-based methods yield higher PP rates 
compared to carbon-based approaches. The highest rates are typically 
obtained with 18O2-GPP, followed by O2-GPP, PO13C, TO14C, and 
PO14C. While C-based methods provide estimates closer to NPP, O2- 
based methods give estimates more representative of GPP. The 18O2-GPP 
method measures total oxygen production related photosynthesis, with 
minimal labelled oxygen recycled through respiration during incubation 
(Bender et al., 1987; Cullen, 2001). The O2-GPP method also captures 

Table 3 
Reduced Major Axis (RMA) regressions (Model II) parameters (Intercept, Slope, r2, and p-value), and performance indices (RMSD, Bias, and uRMSD) for the com
parison between log-transformed in situ and satellite-modeled PP.

Xi Yi n Intercept Slope r2 p-value RMSD Bias uRMSD

TO14C

VGPMMODIS 11 0.69 0.84 0.75 <0.01 0.33 − 0.25 0.21
EppleyMODIS 11 0.57 0.89 0.62 <0.01 0.37 − 0.26 0.26
CbPMMODIS 11 2.56 0.14 0.01 0.44 0.53 − 0.23 0.48
CAFEMODIS 11 − 0.43 1.07 0.41 0.02 0.48 0.24 0.39
VGPMVIIRS 11 0.89 0.72 0.76 <0.01 0.25 − 0.13 0.22
EppleyVIIRS 11 0.76 0.78 0.66 <0.01 0.29 − 0.15 0.25
CbPMVIIRS 11 0.54 0.86 0.65 <0.01 0.29 − 0.15 0.25
CAFEVIIRS 11 1.76 0.36 0.09 0.19 0.42 − 0.03 0.42

PO14C

VGPMMODIS 11 1.16 0.71 0.72 <0.01 0.50 − 0.42 0.27
EppleyMODIS 11 1.05 0.76 0.59 <0.01 0.53 − 0.43 0.32
CbPMMODIS 11 2.70 0.09 0.01 0.45 0.67 − 0.39 0.55
CAFEMODIS 11 0.21 0.89 0.35 0.03 0.45 0.07 0.44
VGPMVIIRS 11 1.28 0.62 0.74 <0.01 0.41 − 0.30 0.28
EppleyVIIRS 11 1.18 0.66 0.65 <0.01 0.44 − 0.32 0.30
CbPMVIIRS 11 1.01 0.73 0.65 <0.01 0.44 − 0.32 0.30
CAFEVIIRS 11 2.04 0.28 0.06 0.22 0.53 − 0.20 0.49

PO13C

VGPMMODIS 9 − 3.16 2.33 0.08 0.23 0.47 − 0.30 0.36
EppleyMODIS 9 − 5.49 3.22 0.05 0.28 0.49 − 0.30 0.38
CbPMMODIS 9 8.14 − 2.01 0.06 0.26 0.42 − 0.27 0.32
CAFEMODIS 9 − 4.08 2.50 0.15 0.15 0.47 0.15 0.44
VGPMVIIRS 9 − 1.68 1.71 0.19 0.12 0.33 − 0.18 0.28
EppleyVIIRS 9 − 2.94 2.20 0.13 0.17 0.36 − 0.19 0.30
CbPMVIIRS 9 − 2.99 2.21 0.12 0.18 0.38 − 0.18 0.34
CAFEVIIRS 9 1.31 0.53 0.02 0.36 0.25 − 0.07 0.24

O2-GPP

VGPMMODIS 8 0.52 0.79 0.67 <0.01 0.24 0.11 0.21
EppleyMODIS 8 − 0.10 0.99 0.60 0.01 0.26 0.10 0.24
CbPMMODIS 8 − 0.87 1.28 0.07 0.27 0.38 0.03 0.38
CAFEMODIS 8 − 1.93 1.44 0.40 0.05 0.73 0.64 0.37
VGPMVIIRS 8 0.65 0.71 0.57 0.02 0.32 0.21 0.25
EppleyVIIRS 8 − 0.06 0.96 0.56 0.02 0.30 0.17 0.25
CbPMVIIRS 8 − 0.40 1.07 0.47 0.03 0.33 0.17 0.28
CAFEVIIRS 8 4.54 0.63 0.12 0.20 0.55 0.30 0.46

GPP-18O2

VGPMMODIS 11 1.45 0.59 0.85 <0.01 0.50 − 0.41 0.30
EppleyMODIS 11 1.38 0.62 0.85 <0.01 0.51 − 0.41 0.29
CbPMMODIS 11 2.13 0.32 0.08 0.20 0.69 − 0.38 0.58
CAFEMODIS 11 0.72 0.68 0.21 0.08 0.58 0.09 0.57
VGPMVIIRS 11 1.55 0.51 0.78 <0.01 0.45 − 0.28 0.36
EppleyVIIRS 11 1.48 0.54 0.82 <0.01 0.45 − 0.30 0.34
CbPMVIIRS 11 1.32 0.60 0.80 <0.01 0.44 − 0.30 0.32
CAFEVIIRS 11 2.16 0.23 0.06 0.23 0.61 − 0.18 0.58
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Fig. 5. Violin plots for (a) surface chlorophyll a (Chla, mg Chla⋅m− 3) measured in situ and derived from MODIS, and VIIRS satellites, and for (b) phytoplankton 
biomass (Cphyto, mg C⋅m− 3) measured in situ and derived from MODIS and VIIRS satellites. Linear regression between log-transformed (c) in situ and satellite derived 
Chla, and (d) between in situ and satellite derived Cphyto. The black dashed line corresponds to the 1:1 regression line.

Fig. 6. Violin plots for (a) assimilation numbers (Pb
opt , mg C⋅ mg Chla− 1⋅d− 1) calculated from in situ data and derived from the VGPM and Eppley models, and for (b) in 

situ growth rates (μ, d− 1) and derived from CbPM. Linear regression between log-transformed (c) in situ and satellite derived Pb
opt , and (d) between in situ and satellite 

derived μ. The black dashed line corresponds to the 1:1 regression line. The subscript indicates the satellite source, MODIS or VIIRS. The dotted line corresponds to 
VIIRS regressions.
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total oxygen produced during photosynthesis but assumes that dark and 
light respirations are equal (Carpenter, 1965; Cullen, 2001). Both PO13C 
and PO14C methods yield metrics closer to NPP, as PP is measured by the 
amount of labelled carbon incorporated into phytoplankton biomass 
(Steeman-Nielsen, 1952). Differences between O2-based and POC pro
duction methods are often amplified during 24-h incubations, as some of 
the labelled carbon incorporated into phytoplankton biomass may be 
respired or excreted as DOC (Marra, 2009; Milligan et al., 2015). These 
differences are less pronounced in the case of TOC production, which 
accounts for DOC excretion and therefore provides a metric closer to 
GPP (González et al., 2008).

Our results align with these previous studies. We found that O2-based 
estimates were up to 60 % higher than C-based estimates (Table 1 and 
Fig. S1). This degree of difference between methods is consistent with 
other reported comparisons (Juranek and Quay, 2013; Regaudie-de- 
Gioux et al., 2014; Sanz-Martín et al., 2019), which observed PP rates 
measured using O2-based techniques to be 1.5–2.5 times higher than 
those obtained with 14/13C methods. Furthermore, these differences 
increased with depth (Table 1), suggesting an expansion of the gap be
tween GPP and NPP. We noted the same depth-depended pattern in 
DO14C release, which showed peak rates at the DCM across all stations 
(Hernández-Hernández et al., 2018). Former studies have also docu
mented increased DOC production by phytoplankton linked to light 
limitation in deeper ocean layers (Marañón et al., 2004; Morán and 
Estrada, 2001). This would reduce the amount of labelled carbon 
incorporated into phytoplankton biomass, potentially explaining the 
observed pattern. However, the moderate increase in the O2-GPP:TO14C 
ratio with depth, along with relatively stable levels of 18O2-GPP:C, 
suggests that these factors alone do not fully account for the observed 
differences (see below). Despite the significant variability in O2:C ratios, 
our results were consistent with previously reported data in different 
ocean regions (Arístegui et al., 1996; Gazeau et al., 2007; Juranek and 
Quay, 2013; Sanz-Martín et al., 2019).

At the sea surface, O2-GPP rates were up to 2-fold higher than 18O2- 
GPP estimates, aligning with previous findings (Regaudie-de-Gioux 
et al., 2014; Robinson et al., 2009; Sanz-Martín et al., 2019). This ratio 
increases with depth, reaching up to 10 at the DCM. The discrepancy 

observed between 18O2-GPP and O2-GPP rates suggests that light 
respiration in our samples was lower than dark respiration, leading to an 
overestimation of O2-GPP. Additionally, this implies that the reduction 
in light respiration correlated with decreased light availability, i.e., 
increasing depth. Sanz-Martín et al. (2019) noted a similar reversal 
between these techniques during a low productivity season in the Arctic 
Ocean, dominated by small cyanobacteria-like Synechococcus spp. 
Although our study covers both high- and low-productivity regions of 
the CanEBUS, only 3 out of 11 stations were in eutrophic waters, while 
the rest corresponded to meso- and oligotrophic waters dominated by 
Prochlorococcus spp and Synechococcus spp.

Gazeau et al. (2007) also reported discrepancies similar to those 
found in our study under low light conditions. Potential explanations for 
these results may include the inhibition of the photorespiration, the 
Mehler reaction, or both, which are the primary contributors to light- 
dependent O2 uptake by phytoplankton (Halsey and Jones, 2015), 
along with an increase in dark respiration during the incubation. Light 
respiration-related metabolic pathways are expected to be stimulated 
under high light intensities as dissipators of excess energy, increasing 
18O2 concentrations by approximately 20 % (Beardall et al., 2009; Laws 
et al., 2000). Therefore, low light availability at and above the DCM may 
inhibit light respiration.

On the other hand, several authors have reported an increase in dark 
respiration during O2 evolution measurements in incubation, which in 
our case could be supported by higher DOC release at greater depths 
(Norrman et al., 1995; Puddu et al., 2003). The combined effect of these 
processes would lead to higher O2-GPP rates compared to 18O2-GPP. 
Furthermore, this hypothesis would also explain the steeper increase in 
O2:C ratios, which are influenced by both light and dark respirations, in 
contrast to 18O2:C, which only accounts for light respiration.

In contrast to our findings, previous comparisons between PO13C and 
the PO14C methods reported lower PO14C rates (López-Sandoval et al., 
2018; Mousseau et al., 1995). In our study, PO14C rates were approxi
mately 50 % higher than PO13C estimates, regardless of the productivity, 
despite the lower precision of the 13C technique. It should be noted that 
at the most oligotrophic stations, the PP was below the detection limit of 
the 13C technique in certain instances The findings of Arístegui and 

Fig. 7. Linear regression between log-transformed in situ particulate organic carbon production (PO14C, mg C⋅m− 2⋅d− 1) and derived NPP (mg C⋅m− 2⋅d− 1) using (a) 
VGPM, (b) Eppley, and (c) CbPM algorithms, with in situ measurements and MODIS and VIIRS products as input data. The black dashed line corresponds to the 1:1 
regression line.

Table 4 
Parameters of linear regressions (Intercept, Slope, r2, and p-value), along with performance indices (RMSD, and Bias), for the comparison between log-transformed in 
situ particulate organic carbon production (PO14C) and satellite-modeled PP using in situ data as inputs. The values in parentheses indicate the percentage change 
relative to the values in Table 2, with the first value corresponding to the comparison with MODIS and the second with VIIRS.

Xi Yi n Intercept Slope r2 (%) p-value RMSD (%) Bias (%)

PO14C
VGPMin situ 11 0.12 0.99 0.73 (±1) <0.01 0.29 (− 29/43) − 0.12 (− 61/72)
Eppleyin situ 11 0.12 0.99 0.73 (+12/24) <0.01 0.29 (− 34/46) − 0.11 (− 64/73)
CbPMin situ 11 − 0.21 1.07 0.74 (+/14) <0.01 0.27 (− 39/60) 0.03 (− 90/93)
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Harrison (2002) are consistent with our observations. They also re
ported higher PO14C than PO13C rates in the northern region of the 
CanEBUS. Notably, there was a surprising lack of correlation between 
13C and the O2-based methodologies, particularly given that the corre
lation coefficients among 14C, O2, and 18O2 were above 0.50. Unfortu
nately, with the current data, we are unable to provide a comprehensive 
explanation for these differences, highlighting the need for further 
comparative studies.

The study by Regaudie-de-Gioux et al. (2014) provides, to date, the 
largest available database for transforming data across in situ PP 
methods. A comparative analysis revealed that our correlation co
efficients were consistently higher than those reported by Regaudie-de- 
Gioux et al. (Table 5). Moreover, our slopes and intercepts were closer to 
the ideal values of 1 and 0, respectively. The difference in slopes be
tween the two studies ranged from 22 % to 44 %, excluding PO13C.

The stronger correlations observed in our study may be partially 
attributed to the uniformity of incubation conditions across methods. 
Unlike Regaudie-de-Gioux et al. (2014), who compared PP rates ob
tained using varying incubation methodologies, we conducted all in
cubations under identical conditions (i.e., in the same incubators and 
over the same time period). As discussed earlier, discrepancies in rates 
among different methods can be exacerbated by variations in incubation 
time, light, volume, and temperature.

However, it is important to note the substantial difference in data
base size between the two studies. The smallest dataset in Regaudie-de- 
Gioux et al. (2014) contains approximately four times as much data as 
our study, with some comparisons exceeding an order of magnitude 
difference in sample size, depending on the methods being analyzed.

4.2. Assessing model performance of NPP

From the four models tested in this study, we observed clear per
formance differences between Chla-based and Cphyto-based models. 
Excluding the comparison with PO13C, Chla-based models exhibited an 
average r2 of 0.70 ± 0.10 and RMSD of 0.38 ± 0.10 while Cphyto-based 
models displayed average r2 values of 0.28 ± 0.26 and RMSD of 0.51 ±
0.13. Among the Chla-based models, VGPM performed the best, despite 
being the earliest described model among those used in this work. This 
finding aligns with Campbell et al. (2002), who concluded that a 
model’s predictive skill is not necessarily linked to its complexity. 
Eppley presented the second-highest correlation coefficients and lower 
RMSD values, though no significant differences were observed 
compared to VGPM. Although the Cphyto provides a more precise rep
resentation of algal standing stocks, particularly in terms of NPP, which 
is a measure of carbon turnover rather than Chla, Cphyto-based models, 
such as CbPM and CAFE, demonstrated significant limitations in pre
dictive skills. These limitations were particularly evident when MODIS 
products were used as input data in the case of CbPM, and across all 
cases for the CAFE model.

To understand the limitations of the models used to accurately esti
mate in situ PP, we investigated whether these limitations arose from the 
input data or the models themselves. Most models rely on a phyto
plankton standing stock proxy, such as Chla or Cphyto, and a biomass- 

normalized photosynthetic parameter, such as Pb
opt or μ. Consequently, 

inaccuracies in estimating either of these parameters can lead to poor 
model performance.

We observed that remote sensing estimates of Chla presented a 
higher agreement with in situ data (Fig. 5 and Table S4) compared to the 
performance of VGPM and Eppley (Table. 3). This was not the case for 
Pb

opt, which did not exhibit a statistically significant correlation with in 
situ data. The discrepancy between the high accuracy of Chla estimates 
and the lower performance of models utilizing these estimates can 
therefore be attributed to models’ limited ability to accurately estimate 
Pb

opt.

Several studies have similarly reported weak agreement between in 
situ and satellite-derived Pb

opt, suggesting that it cannot be reliably 
derived using only SST (Behrenfeld and Falkowski, 1997a; Milutinović 
and Bertino, 2011; Regaudie-de-Gioux et al., 2019; Siegel et al., 2001). 
When in situ Chla and Pb

opt were used as input data, r2 improved by up to 
24 %, RMSD decreased by up to 46 % and bias was reduced by more than 
70 % (Table 4). Furthermore, the differences between NPP estimates 
using in situ Chla and Pb

opt, and those using satellite-derived Chla but in 
situ Pb

opt, were less than 4 %.
Regarding Cphyto-based models, both the satellite-derived standing 

stock (Cphyto) and the biomass-normalized photosynthetic parameter (μ) 
showed very low agreement with in situ data. Although the correlations 
between these two sources of Cphyto presented relatively high r2 values, 
in situ Cphyto was generally overestimated by up to 70 % (slope = 0.34). A 
closer examination revealed that satellite-derived Cphyto underestimated 
the highest values associated with the CanEBUS stations, while it over
estimated values at low-biomass oligotrophic stations.

Several studies have already reported the low accuracy of the algo
rithms used to estimate in situ Cphyto from satellite data (Antoine et al., 
2011; Behrenfeld et al., 2013; Brewin et al., 2012; Martínez-Vicente 
et al., 2017). On one hand, the backscatter-based (bbp) algorithm used 
for Cphyto estimation largely overlooks non-algal particles (NAP), which 
may represent and important fraction of organic carbon. Since the 
contribution of NAP to Cphyto varies spatially, its estimation may be 
either under- or overestimated depending on the region of study 
(Bellacicco et al., 2019; Sathyendranath et al., 2009). On the other hand, 
Buitenhuis et al. (2012).demonstrated that bbp accounts for particles 
larger than 1 μm in spherical diameter, thus neglecting cyanobacteria- 
like organisms that may contribute up to 50 % of phytoplankton 
biomass in oligotrophic regions.

Validating remote sensing estimates of Cphyto is a challenging task 
due to the inherent complexity of measuring phytoplankton biomass in 
situ. In most cases, biomass is not directly measured but derived from 
proxies such as particulate organic carbon or backscatter signals (Graff 
et al., 2015; Halsey and Jones, 2015). Consequently, direct measure
ments of phytoplankton carbon, which are necessary for model valida
tion, remain scarce.

As with Pb
opt, there was no correlation between satellite-derived and 

in situ values of μ. While in situ data varied between 0.15 and 0.92 d− 1, 
more than 50 % of the MODIS-derived values were 2 d− 1, which is the 

Table 5 
Reduced Major Axis (RMA) regressions (Model II) statistics for the relationship between log-transformed primary production rates measured using different in situ 
methods obtained by Regaudie-de-Gioux et al. (2014) and in this study.

Yi Xi Regaudie-de-Gioux et al., 2014 This study

Slope Intercept r2 n Slope Intercept r2 n

TO14C PO14C 0.67 2.25 0.71 107 0.86 0.17 0.99 33
O2-GPP TO14C 0.63 1.50 0.37 83 1.15 0.39 0.79 23
O2-GPP PO14C 0.76 2.15 0.49 657 0.97 0.59 0.77 23
PO13C PO14C 0.88 1.29 0.69 198 0.52 − 0.06 0.70 27

18O2-GPP PO14C 0.88 3.25 0.72 332 1.13 0.22 0.87 33
18O2-GPP O2-GPP 0.88 1.56 0.78 232 1.21 − 0.50 0.74 23
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maximum value allowed by the algorithm. In contrast, half of the values 
returned by VIIRS were slightly below 2 d− 1. The maximum value of 2 
d− 1 was established based on the highest Chla-based phytoplankton 
community growth rates obtained from an extensive compilation of iron 
enrichment experiments (Banse, 1991; Behrenfeld et al., 2005). In a 
more recent review, Laws (2013) reported that most μ values in the 
literature were below 1 d− 1, and he observed that in tropical and sub
tropical regions under light-saturated conditions, μ typically corre
sponds to roughly 1 d− 1. This is in agreement with the in situ data 
reported here and highlights that current methods for estimating μ via 
remote sensing are far from satisfactory. This discrepancy could be 
attributed to the fact that these methods are based on laboratory mea
surements, which poorly represent the natural growth environment 
(Banse, 1991; Behrenfeld et al., 2005). The marked increase in CbPM 
accuracy when in situ values were used as input data supports this 
hypothesis.

In summary, the VGPM and Eppley models exhibited the highest 
accuracy in estimating NPP, regardless of the satellite source. On the 
other hand, CbPM showed strong correlations only when VIIRS products 
were used. However, we also observed that when in situ measurements 
were used as input data, the performance of all models become similar. 
This, along with the fact that both Chla and Cphyto showed relatively 
good correlation with in situ data, suggests that assessing the biomass- 
normalized photosynthetic parameters (i.e., Pb

opt and μ) could be 
considered the Achilles’ heel in estimating NPP from remote sensing. 
Indeed, these parameters were not correlated with in situ data.

Improving satellite-based NPP estimations seems to be closely tied to 
advancing our understanding of the factors driving the spatial and 
temporal variability of photosynthesis-related parameters.

4.3. Potential of the different methods for models validation

The 14C-uptake method has historically been regarded as the gold 
standard for validating satellite-based NPP models due to its high 
sensitivity and precision in measuring the photosynthetic carbon 
retained in phytoplankton biomass. This allows for the determination of 
NPP even in unproductive oceans (Campbell et al., 2002; Carr et al., 
2006). However, the method has several limitations. The use of radio
isotopes requires specific handling and disposal procedures, which can 
significantly complicate, or even prevent, certain field operations. In 
addition, health concern and increasingly restrictive international reg
ulations regarding their use on research vessels pose further challenges 
for the continued application of this method.

In fact, the majority of available 14C-based PP estimates were pro
duced during the 1980s and 1990s as part of the Joint Global Ocean Flux 
Study (JGOFS), where it was a core measurement for understanding the 
ocean carbon cycle (Marra et al., 2021). Since then, its use has declined 
and has largely been replaced by other methods that are not subject to 
the same constraints.

The urgent need for extensive in situ data sets for model validation 
(Banks et al., 2020; Brewin et al., 2021; Groom et al., 2019; IPCC, 2022) 
is thus in direct conflict with the decreasing use of the 14C technique. 
Therefore, for future model validations, it may be necessary to turn to 
alternative methods that can generate a large in situ dataset.

Our results highlight the potential of the 18O2 method, which 
demonstrated the highest agreement with Chla-based models, though it 
tended to overestimate them. This overestimation could be attributed to 
the use of a single photosynthetic quotient (PQ) for all samples to 
convert O2 to C units. Our findings show that the C:O2 ratios vary be
tween stations and with depth, suggesting that a fixed PQ may not be 
appropriate across all conditions.

Another possible explanation for the overestimation is that O2-based 
methods provide GPP estimates, whereas C-based techniques measure 
metrics close to either NPP or GPP, depending on the fraction of primary 
production considered and the incubation time (González et al., 2008; 

Marra, 2009; Milligan et al., 2015). However, whether GPP or NPP 
provides more valuable information for biogeochemical, or climate 
change studies require further discussion (Juranek and Quay, 2013; 
Palevsky et al., 2016; Westberry et al., 2023). GPP accounts for CO2 
fixed during photosynthesis, regardless of the subsequent fate of the 
organic carbon produced, while NPP measures the amount of photo
synthetically fixed carbon available to the upper heterotrophic levels in 
the ecosystem.

From the perspective of the total atmospheric CO2 captured by the 
ocean in biological processes, GPP may provide a more useful metric 
than NPP. For example, recent satellite-based biogeochemical studies 
have reported global GPP estimates that are ~1.5–2.2 times greater than 
NPP (Huang et al., 2021; Westberry and Behrenfeld, 2014). However, if 
the carbon cycle in the ocean is to be studied in more detail, NPP seems 
to provide more insight into the fate of photosynthetically transformed 
organic carbon and its relationship with other processes within the 
Biological Carbon Pump, beyond photosynthesis.

It is true that additional measurements of dissolved organic carbon 
(DOC) production are necessary to fully understand the relationship 
between primary production and the microbial loop. With the O2 evo
lution method, both GPP and NPP, along with the community respira
tion, are measured. However, implementing this method is not without 
complexity, as it assumes equal light and dark respiration -an assump
tion that cannot be applied in all cases (Beardall, 1989; González et al., 
2008; Grande et al., 1989a). Furthermore, as Marra and Barber (2004)
pointed out, nearly all the CO2 respired during the day is re-fixed during 
photosynthesis, which suggests that twice the dark carbon loss equals 
the 24-h rate of phytoplankton respiration. As observed in this study, 
such assumption may lead to negative NPP estimates, which could 
conflict with remote sensing-based estimates. In contrast, the 18O2 
method does not require this assumption, as it is only affected by light 
respiration.

Despite the fact that the 13C method did not correlate well with any 
of the tested models, its good agreement with the 14C method suggests 
that it could be a viable alternative for model validation. Unlike 14C, 13C 
is not subject to the risks associated with the use of radioactive isotopes. 
However, due to the lower sensitivity of the mass-spectrometry tech
nique used for quantifying stable isotopes compared to scintillation 
counters, it requires larger sample volumes and incubation times longer 
than 1 h. As a result, it is not a suitable method for measuring photo
synthetic parameters through photosynthesis-irradiance (P-I) curves. 
Furthermore, because this method measures the enrichment of 13C 
relative to 12C, the accuracy of the technique depends on knowing the 
initial isotopic ratio of the particulate organic carbon (POC).

Uncertainties regarding the specific component of the PP addressed 
by each technique present another argument in favor of the 18O2 
method. While interpreting carbon uptake measurements is often com
plex, and O2− based techniques require certain assumptions, there is 
general consensus about what the 18O2 method measures (Bender et al., 
1987; Cullen, 2001). As a result, interpreting 18O2 data is less encum
bered by the ambiguities associated with other methods.

One counter-argument against all O2-based methods, including 18O2, 
is the need to apply the molar ratio of O2 produced to CO2 fixed – the 
photosynthetic quotient (PQ)- to convert O2 measurements into PP rates 
expressed in carbon units. While theoretically, PQ should range from 1 
(synthesis of carbohydrates) to a maximum of 1.5 (synthesis of lipids), 
reported values range widely from >1 to 4 (Freitas et al., 2020; Trent
man et al., 2023), influenced by a variety of environmental, taxonomic, 
and metabolic factors. In this study 18O2:14C ratios ranged from 0.5 to 
2.4, while O2:14C varied more widely, from 0.5 to 10, with a clear depth- 
dependent pattern.

5. Conclusions

The concurrent measurement of in situ PP rates using four different 
techniques across the highly contrasting regions presented here offers a 
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rare opportunity to explore the fundamental differences in the specific 
components of PP addressed by each method, and to develop equations 
that enable comparison of rates derived from these techniques. How
ever, from our results and previous attempts to reconcile in situ PP 
methods, it is evident that differences among techniques are difficult to 
reconcile. Several factors lead us to this conclusion: (1) Different tech
niques measure distinct components of PP, and in some cases, it is not 
possible to distinguish them; (2) Variations in incubation procedures 
may lead to changes in the component of PP assessed by each technique; 
and (3) Environmental and biological factors may influence PP mea
surements obtained through different methods in diverse ways. All the 
above makes it difficult to establish reliable correlations between tech
niques. We agree with other authors who suggest using a combination of 
methods in any research focused in PP. At the very least, the choice of 
method should align with the specific question being addressed.

Regarding NPP estimate from satellites, we observed that the earliest 
algorithms, i.e., the Chla-based models, produced the most accurate NPP 
estimates in our region of study. Furthermore, our results indicate that 
VIIRS products resulted in a more accurate NPP estimates than MODIS 
products, despite their lower resolution. However, our findings also 
suggest that the primary limitation of the NPP models tested here lies in 
their inability to accurately estimate Pb

opt and μ. These two essential 
parameters are crucial for converting phytoplankton standing stocks 
into PP rates, yet they have been scarcely studied in natural phyto
plankton communities. We conclude that future efforts should prioritize 
improving our understanding of the factors driving these parameters in 
natural environments to enhance the reliability of model-derived Pb

opt 

and μ and thereby improve NPP estimates.
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Fréon, P., Arístegui, J., Bertrand, A., Crawford, R.J.M., Field, J.C., Gibbons, M.J., Tam, J., 
Hutchings, L., Masski, H., Mullon, C., Ramdani, M., Seret, B., Simier, M., 2009. 
Functional group biodiversity in Eastern Boundary Upwelling Ecosystems questions 
the wasp-waist trophic structure. Prog. Oceanogr. 83, 97–106. https://doi.org/ 
10.1016/j.pocean.2009.07.034.

Friedrichs, M.A.M., Carr, M.E., Barber, R.T., Scardi, M., Antoine, D., Armstrong, R.A., 
Asanuma, I., Behrenfeld, M.J., Buitenhuis, E.T., Chai, F., Christian, J.R., Ciotti, A.M., 
Doney, S.C., Dowell, M., Dunne, J., Gentili, B., Gregg, W., Hoepffner, N., Ishizaka, J., 
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González, N., Fernández-Carrera, A., Vidal, M., Marañón, E., Cermeño, P., 
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