Universidad de elrve

Las Palmas de ESCUELA DE INGENIERIA)
Gran Canaria DE TELECOMUNICACION Y ELECTRONICA

ESCUELA DE INGENIERIA DE TELECOMUNICACION
Y ELECTRONICA

TRABAJO DE FIN DE GRADO

WiWiewCast. Sistema de streaming interactivo
multiusuario con WebRTC utilizando Raspberry Pi y

dispositivos moviles.

Titulacion: Grado en Ingenieria en Tecnologias de la Telecomunicacion
Mencion: Sistema de Telecomunicaciones

Autor: Benito Santana Diaz

Tutor: Miguel Angel Quintana Suérez

Fecha: Julio 2025

Resumen

Este trabajo presenta un estudio exploratorio y aplicado sobre el disefio, desarrollo y
evaluacion de WiWiCast, un sistema de streaming interactivo multiusuario orientado a
entornos educativos con recursos limitados. La iniciativa surge ante la necesidad de
mejorar la visibilidad y la participacion en laboratorios universitarios, integrando tecnologias
web modernas como WebRTC, Node-RED y Socket.lO sobre una arquitectura accesible
basada en Raspberry Pi. El objetivo principal consiste en ofrecer una solucion flexible y de
bajo coste que permita la transmision de video en tiempo real y herramientas colaborativas,

como la pizarra interactiva, favoreciendo la inclusion y la experimentacion docente.

Durante el desarrollo, se examinaron diferentes arquitecturas de transmision (P2P, SFU,
MCU) optando finalmente por un enfoque hibrido con SFU, que equilibra la escalabilidad,
el consumo de ancho de banda y la baja latencia. El sistema se compone de varias capas:
hardware econdémico (Raspberry Pi 5 y router dedicado), un ecosistema de software open
source (Node.js, Node-RED, moédulos WebRTC y Socket.lO), y una interfaz web
diferenciada segun los roles de emisor, espectador y administrador. Esta estructura
promueve la colaboracion y facilita el aprendizaje activo, permitiendo la adaptacién sencilla

a diversos escenarios educativos.

La evaluaciéon en entornos reales mostré que WiWiewCast es capaz de superar las
barreras tradicionales de visibilidad e interaccidon en el aula, demostrando su robustez en
laboratorios con numerosos alumnos y recursos limitados. Se validaron diferentes modos
de uso y configuracién, destacando la mejora significativa en la interaccion grupal y en la
gestion docente, asi como la accesibilidad del sistema tanto para estudiantes como para
profesores. El analisis identificé puntos de mejora, especialmente en la gestion de
autenticacion, la ampliacién de funcionalidades colaborativas y la integracion de nuevas

herramientas multimedia.

Finalmente, el trabajo plantea diversas lineas futuras para la evolucion del sistema, entre
ellas: el refuerzo de la seguridad y autenticacion, la incorporacion de grabacion
multicamara, la expansion de las capacidades de anotacién y la creacion de diferentes
niveles de permisos. Se discute también el impacto de WiWiewCast en el proceso
educativo, subrayando como una solucion tecnoldgica adaptada puede contribuir a la
equidad digital, a la mejora de las competencias TIC y al fomento de un aprendizaje

colaborativo y personalizado en la educacion superior.

Abstract

This work presents an exploratory study on the design, implementation, and evaluation of
WiWiCast, an interactive, multi-user streaming system developed for educational
environments with constrained resources. The project is motivated by the need to enhance
both visibility and student participation in university laboratories, leveraging modern web
technologies such as WebRTC, Node-RED, and Socket.IO. These are integrated into a
cost-effective architecture centered on a Raspberry Pi serving as the central server within
a dedicated local network. The primary goal is to provide a flexible, low-cost solution that
enables real-time video streaming and interactive digital tools—including a collaborative

whiteboard—to foster inclusive and hands-on learning experiences.

The development process involved a technical analysis of different streaming architectures
(P2P, SFU, MCU), with the final system adopting a hybrid SFU approach to balance
scalability, bandwidth usage, and low latency. The architecture is structured in layers:
affordable hardware (Raspberry Pi and dedicated router), a modular open-source software
stack (Node.js, Node-RED, WebRTC, and Socket.IO modules), and a web interface tailored
to the roles of broadcaster, viewer, and administrator. This design facilitates collaborative

learning and allows for easy adaptation to diverse educational scenarios.

Real-world testing demonstrated that WiWiewCast effectively addresses traditional
classroom visibility and interaction challenges, proving robust in environments with many
students and limited resources. Different usage modes and configurations were validated,
highlighting significant improvements in group interaction, classroom management, and
accessibility for both students and instructors. The evaluation also identified areas for future
enhancement, particularly in authentication management, expanded collaborative features,

and the integration of additional multimedia tools.

The study concludes by outlining future directions for system evolution, including enhanced
security and authentication, multicamera recording capabilities, advanced annotation
features, and differentiated user permissions. It also discusses the educational impact of
WiWiCast, emphasizing how tailored technological solutions can promote digital equity,
improve ICT competencies, and encourage collaborative, personalized learning in higher
education settings. The project serves as a practical example of how advanced, interactive
technologies can be made accessible and effective in resource-limited educational

contexts.

Tabla de contenido

e Lo N e 11 -1-
e L= LN - T X -2-
Capitulo 1. Introduccion y ODJELtIVOS...........ceeeemieireciiiieineeeecsscccsssss s e ssnnen e -3-
1. INtrOdUCCION ... —————— -3-
2. Antecedentes.........ccciii -3-
3. ODbJetiVOS. ... ————— -5-
4. Estructura del documento..........coooiiiiiiiiiiiii -6 -
5. Uso de A Generativasccccceiiiiiiimrmsnni s snnnnes -7-
Capitulo 2. FUNdamentos tECNICOS............eeeeeeeeememeemeeeemnneennnnnnsnnnnnnsnnnnnssnsnnnnnnnnnnmnnnnns -9-
1. INtrOdUCCION ... ————— -9-

2. WebRTC y sus componentes claveccccoiiiiiieinneneses s -10 -
21. Arquitectura y componentes prinCipales.oooouuiiiiiieii i -11 -

2.2. Protocolos de conectividad y optimizacidn de redccccoeviieiiiiii e -12 -

2.3. Cddecs y optimizacion multimediacooociiiiiieii e -14 -

B T o T 1= 1SS -15 -
3.1. Arquitectura y caracteristicas fundamentalesc...ccoocciiiiieiii i -16 -

3.2. NPMy el ecosistema de paquetes............ccoooevieii -16 -

4, SOCKEL.IO...ceiiiiiiiieetre e ———————————— -17 -
5. AXIOS coeiiiiiiiiien e -18 -

6. NOAE-RED ...ttt -19 -
7. Arquitecturas de transmision de videocccoiiriiirrcccnn e -20 -
8. Caracteristicas del hardware: Raspberry Piy red localcccceueenennnnnnnns -22 -
8.1. Raspberry Pi: Servidor central del ecosistemacccceeeeiiiiciiiieii e, -22 -

8.2. Router WiFi: Infraestructura de red dedicadacccoceviniiiiniiiiiic e -23 -
Capitulo 3. Instalacion y configuracion del sistema...........ccccceeeereeerreermneeensanenans -25-
1. Configuracion de la Raspberry Pi.......cccoiimmiciccceeeeee e -25-
2. Instalacion de Node.js y Node-REDccccoiiiiiiinmmrmmnnn e -28 -

3. Creacion de certificados SSL autofirmados......c.cccovveiiemiireiieiireienseenssensens -30 -

4. Configuracidon y acceso a Node-RED...........cccmmirreenccceiiiirnrecreecse e e -31-
Capitulo 4. Especificaciones de la aplicacion y arquitectura del sistema............ - 36 -
I 131 e Yo L1 T T o P -36 -

2. Especificaciones de la aplicacion.........ccceveeucciiiiiiirccreccscs s e -38 -
3. Arquitectura del Sistema..........ccoeumeiiiiiiiir e ————— -41 -
3.1. Backend: NOAE-REDoooiii e -41 -

3.2. Flujo de Broadcast (EMISOI)ueiiiiiiiiiiiiiiiiiie ettt a e -42 -

3.3. Flujo de Consumer (VisualizadOres)cooiuiiiiiiiiiiiiiiece e -42 -

3.4. Flujo de Gestion de Eventos SOCKEL.1O... ..o -43 -

3.5. Flujo de Archivos EStAtiCOSoviiiiiiiiiii e -45 -

4. Frontend. Navegador Web ... e -45 -

5. Ciclo basico de funcionamiento...........ccccccememnmmnmnneeee e -48 -
Capitulo 5. Evaluacion y CONCIUSIONES............cccceceerueemeiniiicrciciseseese s ssccssssnnnnnes - 50 -
1. Ejecucidén y Evaluacidn del sistema.cccoeeeeeccciiiiiissccrecces e - 50 -

2. CONCIUSIONES........ s s s s s s s -51-
3. Trabajo fUutUrO.......coo e e r e e e snm e -53 -
12310 | Lo Te [- 1 £ TN -54 -
= 11=Te Lo X (=X o'oY 1 Lo | [od (o] o 1-X- 3OS - 56 -
1. Especificaciones de hardwarecoooeriiiimiiiiiieiicsescesee e e - 56 -

2. Requisitos de software...........ccccciiiiiiiiinnincnrrrsrr -57 -
21. Configuracion de red 10Calooiiiiiiiii e - 58 -
PreSUPUESTO.........coeeeeeeeeeeee ettt et e e s e e e e e e rn s s s ran e e nnnmm s sssnnenernmms s ern -89 -
1. Materiales USAAOScooiiiieiiiiiii e e -59 -

2. Trabajo por tiempo empleadocooooiiciiiirirrrr s -61-
3. Aplicacion de impuestos y coste total...........cccoeeiiiiiicic s -63 -
Objetivos de Desarrollo SOStenible..............ooueeeoveceeieeeeeieeeeiicieeeee e - 65 -
ANEXO 1. MANUAIES..........coeeeeeeeeeieiieieineieensnninsnnsnsnnsnsnnsssnnsnnnsnssnsnsnssssnssnnnnnssnsnsnnnnnnnnnns - 66 -
1. Manual de instalacion. ... —————— - 66 -

1.1. Primera CoNfigUIaCiONcoi i e e e a e - 66 -
1.2. Instalar Node.js Yy NOde-RED ... - 67 -
1.3. Crear certificados autofirmados............ooooiiiiiiii - 67 -
1.4. Configurar NOAe-RED...........coiiiiiii e - 68 -
1.5. Configurar Node-RED COMO SEIVICIOcoiuuiiiiiiiiie it - 68 -
1.6. Importar CoONfIGUIACIONciiiiiiiie e - 69 -
1.7. URLS A€ ACCESO0 ...ttt ettt e e e - 69 -

Manual del USUAriocccceummeriiiiiiiissire s - 69 -
21. Manual del EMISOrcooiiiiiie e s -70 -
2.2. Manual del Viewer (ESPeCtador)cooicuiiiiiiieiieecieeee e -72-
2.3. Manual del AdMINISTrador............oooiiiiii e -74 -

indice de Figuras

Figura 1. Arquitectura del Sistema WebRTC MAs NOAE-RED.ccccuueeeeieeeaeeiieieaaeeeeccivieeaaeeeecsasvennns

Figura 2. Diagrama general de WEBDRTC. FUENLE [A].ueeeeeeeeeeeeeeeeeeeeeeeeeee ettt e e esteaaa e e e e esassaeaas -10-

Figura 3. Proceso de captura y uso de transmisiones multimedia en una aplicacion WebRTC. Fuente [10]. - 12

Figura 4. Localizacion de candidatos para una conexion WebRTC. Fuente [11].ccccceeeecvvvveeeeeeeccrrnnnnn. -13-
Figura 5. Ventana de €jemplo de NOE-RED..............ccccuueeeecueeeeiiieeeseieseesieeeesitieeeesitesassisesassissesessssesessnnnes -20-
Figura 6. RASPDErry Pi ULIliZAAQ.cccc.ueeeeeeeeeeeeeeeeee ettt e ettt e e e ettt e e e st e e e aaeaaestseaeessseaasannees -23-
Figura 7. Ejemplo de conexiones al router WiFi. Elaboracion propia.cccceveueeeeeeeeeccicvveeaeeeeeecinvennnn -24 -
Figura 8. Pdgina de descarga de RASPDErry Pi IMAGELcc...uueeeeeeeeeeeiiiieaeeeeeescteeeaaeeeescteeaaaeeeessaseneaas -26 -
Figura 9. FlIujo de "Hola MUNGO"c...eeeeeeee ettt ettt e et e e et e e et e e e s a e et aeessteaennnees -33-
Figura 10. Hola MUNdo deSAe NOGE-RED................c.eeeeceeieeeeeeeesiieeesieeeeetteaesttaeeesteaessseaaesssseaessssesesssnees -33-
[1o 101 o I B B o K0 ¢ 1 Lo K { ol Lo o H USSP -37-
Lo TV I B 0o kYo e L= LYo R S -39-
FIiQUIQ 13. CASO AE USO 2. ... eeee et ee e e ettt e e ettt e e et e e e et a e e st e e e sstaaeaatseaeasaseaesssseaeaasseaenssseasensnees -40 -
L 1o 1V o I R 00 K Yo o [VLYo I F SRR -41 -
Figura 15. Diagrama de flujo de Broadcast (EMUSOI)..............ueeeeeeeeeeeueeeeeiieeeecieeeeeieeeeeteeeeeteeaeesaea e e -42-
Figura 16. Flujo de Consumer (ViSUQIIZAAOIES).ccccuuueeeeeeeeeesieeeeeee et e et e e s ctaaestaaaaesseaasnnes -43-
Figura 17. Flujo de Gestion de EVeNntos SOCKEL.IO............ooeeeeeeueeeeeeeeeeeeeiteeee e eeesteeea e e e sttt e e e e e esssasaneaas -44 -
Figura 18. FIUjO de ArCRIVOS ESTALICOScccuuvveeiieeeeeeieieee ettt a e ettt e e e e e st et a e e e e s e s ssaeaaeeeeessssenaaas -45 -
Figura 19. PAQinG d@ QUEENTICACIONeoeeeeeeeeesiiieeeeit e eeeeee et e e et e et e e s tte e e e tttaeesseaaessseaeessseaensanees -70-
Figura 20. Modo Emisor antes de empezar G trANSIMILITc.eeeeevereeeiieeesiieeeesiteeeesieaeesitaeaeesseeesennes -71-
Figura 21. Modo Emisor en eStado @MIti@NGO................ueeeeeeeeeieiee ettt e ettt ae e e e e e e st e e e e e e e ssnsenaaas -72-
Figura 22. Modo Viewer reCibiendo VIAEOcccccuueeeeieeeeecieeee ettt e eeetataaa e e e e et aaaaeessnassneas -73-
Figura 23. Modo VIieWer diDUJANGOcc..uueeeeeieeeeeieeeeeee et et ee et te e ettt e e taaestaaaeesaseeesnnees -74 -
Figura 24. Modo Admin recibi@Ndo @MISION...............c..uueeeeieeeeeciieee e eeeectteea e eee sttt e e e e e e ettt aaaeeeesssssaees -75-
Figura 25. Modo admin recibiendo vVideo Y dibDUJOS..............ccccueeeeeeieeeeceieeee et e e e -75-
Figura 26. Modo Admin emitieNdO VIAOc..eeeeeueieeeeeiieeseeeeetie e e e ste e et e e e etaaestaeaeesaseaeesnnes -76 -

indice de Tablas

Tabla 1 Tabla de amortizacion de recursos de hardware.................ccoeceeeeeercieenceenciieneeseeeseesee e -60 -
Tabla 2. Valores del factor de correccion en funcion a las horas trabajadas..............cccceveeeeeeeecccivvenanannn. -61-
Tabla 3. Presupuesto del trabajo tarifado y amortizacion de los recursos materiales................ccceceuunee... -62-
Tabla 4.Tabla 24 Aplicacion de impuestos G 10S COSTESuuuuuureriiieeeiciieeeiieeeescteeesiteeeesiteaeesrreaessraeaeas -63-
Tabla 5. Objetivos de desarrollo sostenible...............cuoueeueieveceeevsiieeeeiieaennnn jError! Marcador no definido.

Capitulo 1. Introduccion y Objetivos

1. Introduccion

El desarrollo de las tecnologias web estos ultimos afios ha facilitado, entre otros avances,
el acceso al conocimiento en entornos educativos, eliminando barreras tradicionales de
tiempo y espacio. Esta evolucion tecnologica ha modificado significativamente los métodos
educativos tradicionales, permitiendo que el aprendizaje supere las limitaciones fisicas del
aula convencional. Este trabajo de fin de grado tiene como objetivo desarrollar un
ecosistema integral, basado en estas tecnologias, que permita la transmision de video y la
interaccion en tiempo real a nivel local, optimizado para el uso de dispositivos moviles. La
solucion propuesta se fundamenta en la implementaciéon de un sistema basado en
WebRTC (Web Real-Time Communication) [1] y el entorno de programacién visual Node-
RED [2], tecnologias que posibilitan la transmisién de video de baja latencia junto con la
capacidad de realizar anotaciones sincronizadas sobre el contenido transmitido,

aprovechando las capacidades de Node-RED para gestionar los flujos de comunicacion.

La arquitectura del sistema se implementara sobre una Raspberry Pi, utilizando una red
local dedicada a través de un router WiFi en modo punto de acceso (AP). Esto permitira
garantizar un entorno controlado y optimizado para el uso en aulas, donde los docentes
podran transmitir contenido audiovisual mientras los estudiantes realizan anotaciones en

tiempo real, creando asi un espacio de aprendizaje interactivo y colaborativo.

La motivacién principal de este proyecto surge de la necesidad de crear soluciones
educativas accesibles y universales. En este sentido, la propuesta se fundamenta en el uso
de tecnologias web modernas que, junto con la implementacion de un portal para la gestion
de usuarios, garantizan el acceso desde cualquier dispositivo con un navegador web. Esta
aproximacion tecnolégica elimina la dependencia de software especializado y facilita su

adopcion inmediata en diferentes contextos educativos.

2. Antecedentes

La transmisién de video en tiempo real en tecnologias web ha experimentado un avance

notable durante la ultima década, impulsado principalmente por el desarrollo de WebRTC,

-3-

una tecnologia que permite la comunicacién directa entre navegadores sin necesidad de
plugins como Flash, Silverlight o Java, eliminando asi los problemas de compatibilidad que

caracterizaban las soluciones anteriores.

Entre los principales logros, destaca la estandarizacion de WebRTC por organismos como
el W3C (World Wide Web Consortium) y la IETF (Internet Engineering Task Force), lo que
ha permitido su adopcion generalizada. Ademas, se han implementado tecnologias de
optimizacion de red como STUN (Session Traversal Utilities for NAT), TURN (Traversal
Using Relays around NAT) e ICE (Interactive Connectivity Establishment) [3] [4], facilitando
la conectividad peer-to-peer (P2P) en entornos educativos y colaborativos. Paralelamente,
el ecosistema Node-RED ha evolucionado, incorporando nodos especializados en video y

WebRTC, lo que amplia las posibilidades de integracién y control de flujos multimedia.

Sin embargo, a pesar de estos avances, la implementacion de sistemas de streaming
interactivo eficientes enfrenta diversos desafios técnicos que requieren soluciones
especificas. Las limitaciones en la escalabilidad del modelo P2P cuando el numero de
usuarios crece hacen necesario evaluar arquitecturas alternativas como SFU (Selective
Forwarding Unit) o Multicast. Ademas, la optimizacion del ancho de banda y la reduccién
de la latencia continuan siendo aspectos criticos para garantizar una experiencia educativa
fluida y atractiva. Por otro lado, la gestién y visualizacion de flujos de comunicacion
complejos en sistemas WebRTC puede resultar complicada, especialmente cuando se
requiere un control centralizado y una monitorizacién sencilla. Node-RED aporta ventajas
significativas en este ambito, gracias a su interfaz de programacion visual que facilita la

visualizacién, control y automatizacion de los procesos de comunicacion.

En este contexto, el presente trabajo explora las diferentes alternativas y se centra en un
enfoque hibrido basado en SFU y WebRTC, combinando la eficiencia y escalabilidad de la
distribucion de video con la interactividad y la baja latencia propias de WebRTC. Esta
estrategia, junto con la integracion de Node-RED, tiene como objetivo mejorar la eficiencia
y la escalabilidad de las transmisiones interactivas en tiempo real, optimizar el uso del

ancho de banda y facilitar la gestién educativa en el aula digital.

Arquitectura del Sistema WebRTC + Node-RED

Leyenda: Caracteristicas:

== Transmision de Video * Red kcal dedicada

= = Anotaciones Sincronizadas * Baja latencia WebRTC
== Geston Ncde-RED * Programacion visud

* Optimizade para moviles
* Interaccion en tiempo real

Disposiivos Movies
Il Raspterry Pl+ Router AP

Figura 1. Arquitectura del Sistema WebRTC mas Node-RED.

3. Objetivos

El andlisis del estado del arte y el desarrollo de este trabajo persiguen una serie de
objetivos fundamentales orientados a abordar tanto los desafios técnicos como los
pedagogicos que plantea la implementacién de sistemas de streaming interactivo en
entornos educativos. Estos objetivos buscan asegurar que la solucion propuesta no solo
sea técnicamente viable, sino que también responda a las necesidades reales de docentes

y estudiantes en el contexto educativo actual.
Los objetivos especificos son:

e Comprender la arquitectura y el funcionamiento interno de WebRTC, con especial
atencion a la transmisién de video en tiempo real y a los protocolos que garantizan

la calidad, estabilidad y baja latencia de las conexiones. Este conocimiento es

esencial para ofrecer una experiencia educativa fluida y colaborativa, donde

docentes y estudiantes puedan interactuar sin demoras ni interrupciones.

e Explorar la integracion de WebRTC con Node-RED, analizando tanto las ventajas
como los desafios derivados de la combinacion de ambas tecnologias. La
programacion visual que ofrece Node-RED facilita la gestion, visualizacion y control
de los flujos multimedia, permitiendo que la administracién de la informacién en el
aula sea mas intuitiva y accesible, fomentando la participacion activa de los

estudiantes.

o Evaluar diferentes arquitecturas de transmision de video, considerando aspectos
clave como la latencia, la escalabilidad, el consumo de ancho de banda y la carga
sobre servidores o clientes. Esta evaluacion permitira identificar la solucion mas
adecuada a las necesidades educativas y a las limitaciones técnicas del entorno de

implementacién, asegurando que el sistema sea adaptable y escalable.

e Determinar la arquitectura optima para un sistema de streaming interactivo
multiusuario, adaptada a las caracteristicas de hardware y red del entorno
educativo, y que permita tanto la transmisién audiovisual como la interaccién de
datos en tiempo real. El objetivo es que los estudiantes puedan no solo visualizar
contenido, sino también interactuar activamente mediante herramientas como el
dibujo colaborativo, promoviendo el aprendizaje colaborativo y la participacion

directa en el proceso educativo.
4. Estructura del documento

Esta memoria se organiza en cinco capitulos, cada uno de los cuales aborda un aspecto
esencial para el disefio, desarrollo e implementacion del sistema de streaming interactivo
basado en WebRTC y Node-RED, con énfasis en la interaccion colaborativa y la gestion

de datos en tiempo real.

En el capitulo 1, "Introduccién y objetivos", se presenta el contexto tecnoldgico y la
motivacion del proyecto, exponiendo los antecedentes de WebRTC y Node-RED, asi como
los desafios actuales en la transmision de video interactiva y escalabilidad en entornos
educativos. Se definen cuatro objetivos especificos que abarcan desde la comprension de

la arquitectura WebRTC hasta la determinacion de una solucién 6ptima para streaming

interactivo multiusuario. Este capitulo establece el marco conceptual y justifica |la relevancia

de la propuesta basada en un enfoque hibrido SFU-WebRTC con Node-RED.

El capitulo 2, "Fundamentos técnicos", desarrolla los principios y tecnologias clave del
proyecto. Se analizan en profundidad WebRTC y Node-RED, explicando sus componentes,
funcionamiento y ventajas para la transmisién de video y la gestién de flujos de datos
interactivos. Ademas, se revisan las diferentes arquitecturas de transmisién (P2P, SFU,
Multicast, hibridas) [5], evaluando su idoneidad para escenarios multiusuario y
colaborativos. También se introducen los conceptos de interaccién de datos y dibujo

colaborativo como parte integral del sistema.

En el capitulo 3, "Instalacién y configuracion del sistema", se detalla el proceso de
preparacion del entorno de desarrollo, incluyendo la seleccion y configuracion del hardware
(como Raspberry Pi) y del software necesario. Se describen los pasos para instalar y
configurar WebRTC, Node-RED y los médulos especificos para la transmision de video y
la interaccion de datos. Se documentan las consideraciones de red y seguridad para

garantizar un entorno estable y controlado en el aula.

El capitulo 4, "Especificaciones de la aplicacion y arquitectura del sistema", define los
requisitos funcionales y no funcionales del sistema, abarcando tanto la transmisién de video
como las funcionalidades de colaboracion (por ejemplo, la pizarra digital o el dibujo
compartido en tiempo real). Se presenta el disefo detallado, los diagramas de flujo de datos
y la estructura de los mddulos, justificando las decisiones tomadas con base en los

objetivos pedagdgicos y técnicos del proyecto.

En el capitulo 5, "Evaluacion y Conclusiones", presenta la metodologia de pruebas, los
escenarios de uso y los resultados obtenidos tras la implementacién del sistema. Se
analizan métricas clave como la latencia, la escalabilidad, y la robustez de la interaccion
colaborativa. Se exponen las conclusiones, el grado de cumplimiento de los objetivos y se

proponen lineas de trabajo futuro para la mejora y ampliacion del sistema.
5. Uso de IA Generativas

En cumplimiento de las "Recomendaciones sobre uso de la IAGen en la UPGC"
,aprobadas por el Consejo de Gobierno Extraordinario de la ULPGC el 6 de junio de 2024,

este TFG ha empleado inteligencia artificial generativa como herramienta de apoyo,

usandose de manera equivalente a un navegador web para contrastar fuentes de

informacion, generar ideas y proponer soluciones.

Capitulo 2. Fundamentos técnicos

1. Introduccion

El desarrollo del sistema de streaming interactivo propuesto en este proyecto requiere la
integracién de multiples tecnologias que trabajan de manera coordinada para proporcionar
transmisién de video, interaccion en tiempo real y gestion de usuarios en entornos
educativos. La solucién se implementa utilizando JavaScript como lenguaje de
programacion unificado, aprovechando su capacidad para ejecutarse tanto en el navegador
(cliente) como en el servidor, lo que simplifica significativamente el desarrollo vy

mantenimiento del sistema.

Este capitulo examina los fundamentos técnicos de cada componente software del

ecosistema:

e WebRTC para comunicacion multimedia,

¢ Node.js [6] como entorno de ejecucion,

o Socket.io [7] para comunicacion bidireccional,
e Axios [8] para integraciones HTTP, y

¢ Node-RED para orquestacion visual de flujos de datos.

También se recogen las caracteristicas especificas del hardware seleccionado, incluyendo
la Raspberry Pi [9] como servidor central y el router WiFi configurado en modo punto de

acceso para crear la red local dedicada.

Entender estas tecnologias es fundamental para comprender las decisiones de
arquitectura tomadas en el proyecto y para evaluar las diferentes alternativas de
transmision de video (P2P, SFU, MCU), que se analizaran posteriormente. El enfoque
adoptado busca equilibrar el nivel técnico necesario y la aplicacion practica dentro del

entorno especifico de este trabajo.

2. WebRTC y sus componentes clave

WebRTC representa un conjunto de estandares y tecnologias que permite la comunicacion
en tiempo real directamente entre navegadores web, sin necesidad de plugins adicionales
o software especializado. Esta tecnologia, estandarizada por el W3C (World Wide Web
Consortium) y la IETF (Internet Engineering Task Force), ha revolucionado la forma en la
que se implementan las aplicaciones de comunicacion multimedia en la web,

proporcionando una base sélida para el desarrollo de sistemas interactivos y colaborativos.

La importancia de WebRTC en el contexto educativo radica en su capacidad para acercar
las tecnologias de comunicacion avanzadas a todo tipo de usuario, eliminando las barreras
tradicionales de instalacion de software y configuraciéon compleja. Su implementacion
nativa en navegadores modernos garantiza una compatibilidad casi universal y permite su
uso inmediato en cualquier dispositivo con acceso web, desde ordenadores hasta moviles

con pocos recursos. El diagrama general de WebRTC puede verse en Figura 2 .

AN AV

Web API]

’ o=y .

Control de sesién / Senalizacion

/ Motor de Audio \ / Motor de Video \ (r Transporte ‘\

\
[
[
[
[
]
]
i
[
[
[
I
]
]
L]
| Codec ISAC /iLBC Codec: VP8 sRTP :
i
I
L}
L]
]
I
I
[
[
]
]
]
1
|

Multiplexacién

e
[

l NetEQ para voz Video jitter buffer

Mejoras de Imagen STUN+TURN+ICE

Cancelador de eco/
Recuccion de ruido

| |
\. J

[ﬁﬂm*uﬂ*mm] | /

Figura 2. Diagrama general de WebRTC. Fuente [4].

-10 -

2.1. Arquitectura y componentes principales

La arquitectura de WebRTC se fundamenta en tres APlIs principales que trabajan de forma
coordinada para facilitar la comunicacion multimedia, cada una especializada en aspectos
especificos del proceso de transmision:

e RTCPeerConnection

Constituye el nudcleo técnico de WebRTC, implementando la légica compleja de
establecimiento y gestidbn de conexiones peer-to-peer. Esta APl coordina multiples
procesos simultdneamente, incluyendo la negociacion inicial de capacidades entre pares
mediante el intercambio de Session Description Protocol (SDP), el establecimiento de
canales seguros de comunicacion utilizando Datagram Transport Layer Security (DTLS), la
adaptacion dinamica de calidad segun condiciones de red variables mediante técnicas
como Adaptive Bitrate (ABR), y la implementacion de mecanismos robustos de
recuperacion ante fallos de conectividad. La APl gestiona automaticamente aspectos
complejos como el reordenamiento de paquetes, la deteccidn y correccion de errores, y la

sincronizacion temporal entre streams de audio y video.
e MediaStream (getUserMedia API)

Permite la captura y manipulacién de contenido multimedia, como son el acceso a la
camara y el micréfono del dispositivo. Esta APl proporciona control sobre los recursos
multimedia del dispositivo, permitiendo configurar parametros criticos como resolucién de
video (desde 320x240 hasta 1920x1080 o superior), tasa de frames (15, 24, 30 fps), calidad
de audio (8kHz a 48kHz), y seleccion especifica del dispositivo (cuando multiples fuentes
estan disponibles). Esta flexibilidad es fundamental para optimizar una adecuada
experiencia de usuario, segun las capacidades del hardware disponible, garantizando que
dispositivos menos potentes puedan participar adecuadamente en sesiones interactivas

mediante configuraciones adaptadas a sus limitaciones.

-11 -

Device

User Athcat;o” (Comera/MicroPLone)

Request to Access Mes‘ia%‘

Call getUserMed:

3+ Return MediaStream - - - -

Display Media (Video/Audio

'e Element)

Handle MediaStream
(Add/Remove Tracks)
N—

Stop Med: >

Stop
MediaStreamTracks >

Device

vser Application (Camera/Microphone)

Figura 3. Proceso de captura y uso de transmisiones multimedia en una aplicacion WebRTC. Fuente [10]

e RTCDataChannel

Extiende las capacidades de WebRTC mas alla de la transmisién multimedia,
proporcionando canales bidireccionales de baja latencia para el intercambio de otros datos
entre pares conectados. Segun las necesidades especificas de la aplicacion, estos canales
pueden configurarse como confiables (asegurando la entrega ordenada de los datos
mediante mecanismos similares a los del protocolo TCP) o no confiables (priorizando
velocidad mediante mecanismos similares a los utilizados en el protocolo UDP).
RTCDataChannel facilita la implementacion de caracteristicas colaborativas avanzadas
como anotaciones sincronizadas en tiempo real, pizarras digitales compartidas con
resolucién de conflictos, sistemas integrados de mensajeria instantanea, transferencia de
archivos entre participantes, y sincronizacién de estados de aplicaciéon para mantener

coherencia entre multiples usuarios.
2.2. Protocolos de conectividad y optimizacion de red

WebRTC utiliza un conjunto de protocolos especializados para asegurar una conectividad
robusta y eficiente, incluso en redes complejas y heterogéneas. Estos protocolos son
esenciales para aplicaciones WebRTC que funcionan a través de Internet y deben superar
barreras como NAT vy firewalls. En la Figura 4 puede verse el esquema general que se
utiliza para la localizacién de otros equipos. En este proyecto la comunicacion se realiza
sobre una red local dedicada, configurada mediante un router WiFi en modo punto de
acceso. En este entorno controlado, muchos de los mecanismos destinadas a superar esos

obstaculos no resultan necesarios. No obstante, es relevante comprender cémo funcionan

-12 -

estos protocolos para valorar las ventajas y simplificaciones que aporta la arquitectura de

red local implementada.

= N
/ A
15
‘\' ’T

Relay server

»—

Peer STUN server STUN servev Pe"

Figura 4. Localizacion de candidatos para una conexion WebRTC. Fuente [11].

e STUN (Session Traversal Utilities for NAT)

Este protocolo permite a los dispositivos descubrir automaticamente su direccién IP publica
y caracterizar el comportamiento del NAT que esta utilizando su router o firewall. STUN
opera mediante un servidor externo que refleja la direccion y puerto desde los cuales recibe
peticiones, proporcionando informacién crucial sobre la topologia de red. Esta informacion
incluye el tipo especifico de NAT (Full Cone, Restricted Cone, Port Restricted, o
Symmetric), la direccion IP publica asignada, y los puertos disponibles para comunicacion
externa. En nuestro sistema con una red local dedicada, los dispositivos pueden descubrir
directamente sus direcciones IP locales sin necesidad de servidores STUN externos,

simplificando significativamente el proceso de establecimiento de conexiones.
e TURN (Traversal Using Relays around NAT)

Es un mecanismo de respaldo robusto cuando las conexiones directas P2P no son viables
debido a configuraciones restrictivas de seguridad de red. El servidor TURN actua como
un proxy multimedia inteligente, recibiendo y retransmitiendo todo el trafico entre pares que
no pueden conectarse directamente. TURN implementa mecanismos de autorizacién para
prevenir uso no autorizado, gestién eficiente de recursos para minimizar latencia adicional,
y balanceado de carga para distribuir el trafico entre multiples servidores cuando el
volumen lo requiere. Al operar en una red local controlada, nuestro proyecto elimina la
necesidad de servidores TURN, ya que todos los dispositivos estan en el mismo segmento
de red y pueden establecer conexiones directas, reduciendo latencia y eliminando

dependencias de infraestructura externa.

-13 -

¢ ICE (Interactive Connectivity Establishment)

Es un protocolo que coordina el uso de STUN y TURN para encontrar la mejor forma de
conectar dos dispositivos en red. Su funcion principal es probar diferentes caminos de
conexién y seleccionar el mas eficiente. Para ello, ICE recopila varias combinaciones
posibles de direcciones IP y puertos, llamadas candidatos ICE, y realiza pruebas
simultaneas para ver cual funciona mejor. Estos candidatos pueden ser locales, publicos
(obtenidos mediante STUN) o de retransmision (mediante TURN). Luego, el protocolo
verifica la conectividad en ambos sentidos y elige el par de candidatos con mejor
rendimiento. En nuestro caso, como el sistema opera dentro de una red local dedicada,
ICE se simplifica considerablemente, ya que solo necesita usar candidatos locales. Esto

reduce la complejidad y permite establecer la conexion de manera mas rapida y predecible.
e DTLS (Datagram Transport Layer Security)

Es el protocolo de seguridad utilizado en WebRTC para cifrar toda la comunicacién de
extremo a extremo, asegurando la confidencialidad e integridad de los datos sin afectar el
rendimiento en tiempo real. Esta disefiado especificamente para entornos donde es crucial
la baja latencia, e incluye procesos de negociacion optimizados (handshakes) y una gestion
eficiente de claves de cifrado. Aunque en este proyecto el sistema opera en una red local,
DTLS sigue siendo necesario, ya que la protecciéon de las comunicaciones es fundamental

e independiente del tipo de red utilizada.
2.3. Caodecs y optimizacion multimedia

WebRTC ofrece soporte nativo para una amplia gama de cédecs de audio y video de ultima
generacion, integrando mecanismos de seleccion automatica y adaptacién dinamica segun
las capacidades del dispositivo, las condiciones de red y los requisitos especificos de la

aplicacion.
e Video

En el caso del video, la suite incluye codecs como VP8, VP9, H.264 (en sus perfiles
baseline, main y high), AV1 y H.265, cada uno optimizado para distintos escenarios. VP9
destaca por su alta eficiencia de compresion, especialmente util para contenido estatico
como presentaciones o pantallas compartidas, mientras que H.264 garantiza una
compatibilidad amplia y aceleracion por hardware en la mayoria de los dispositivos méviles.

Por su parte, AV1 representa el estado del arte en compresion eficiente, ideal para

-14 -

conexiones con ancho de banda limitado. La selecciéon del cédec mas adecuado se realiza
automaticamente teniendo en cuenta factores como el hardware disponible, el ancho de
banda detectado, el tipo de contenido (por ejemplo, video de camara frente a pantalla

compartida) y las prioridades definidas por la aplicacion.

Para adaptarse a variaciones en la calidad de la red, WebRTC incorpora técnicas como
Simulcast (transmisién simultanea de multiples resoluciones) y Scalable Video Coding
(SVC), que permiten ajustar dinamicamente la calidad del video transmitido. Estas
estrategias permiten una degradacion gradual de la calidad visual en situaciones adversas,
manteniendo la continuidad de la transmision y priorizando la comprensibilidad del
contenido. En los casos donde los recursos son limitados, se da preferencia a preservar el

audio frente al video.
e Audio

En cuanto al audio, WebRTC incluye cédecs como Opus (altamente optimizado para voz y
musica), G.711 (para compatibilidad con sistemas antiguos) y G.722 (que ofrece mayor
calidad). Ademas, se emplean técnicas avanzadas de procesamiento digital de sefiales,
como la cancelaciéon automatica de eco (AEC), la reduccion de ruido (NS) y el control
automatico de ganancia (AGC). Estas funciones estan orientadas a mejorar la inteligibilidad
del audio, especialmente en entornos como aulas, donde pueden coexistir multiples fuentes
de sonido y distintos dispositivos de entrada. No obstante, en el sistema desarrollado para
este proyecto, el componente de audio no es relevante, ya que la comunicacion se limita a

la transmisidon de video y a la interaccién a través del dibujo colaborativo.
3. Node.js

Node.js [6] es un entorno de ejecucién (runtime environment) de JavaScript de cddigo
abierto y multiplataforma que permite ejecutar cédigo JavaScript fuera del navegador, es
decir, en el servidor. Esto ha revolucionado el desarrollo de aplicaciones web, ya que antes
JavaScript solo podia usarse en el lado del cliente, pero con Node.js se pueden crear
aplicaciones de red rapidas y escalables usando el mismo lenguaje tanto en el cliente como
en el servidor. Su funcionamiento se basa en reaccionar a eventos (event-driven) y en no
quedarse esperando a que una tarea termine para empezar otra (non-blocking I/0), lo que
lo hace muy eficiente para aplicaciones que necesitan atender a muchos usuarios al mismo
tiempo y responder rapidamente. Por eso, Node.js es especialmente util para desarrollar

plataformas interactivas en tiempo real, como chats, juegos online o sistemas de

-15 -

colaboracién, donde es fundamental manejar multiples conexiones simultaneas sin perder

rendimiento.
3.1. Arquitectura y caracteristicas fundamentales

Node.js esta construido sobre el motor V8 de Google Chrome, que es el encargado de
ejecutar JavaScript de manera muy rapida. Una de las cosas mas importantes de Node.js
es como gestiona muchas tareas al mismo tiempo sin necesidad de crear un hilo (thread)
para cada una. Esto lo consigue gracias a un sistema llamado bucle de eventos (event
loop), que es un coordinador que va atendiendo las tareas una a una y decide cuando

puede pasar a la siguiente.

Cuando Node.js necesita hacer algo que puede tardar, como leer un archivo o consultar
una base de datos, no se queda esperando a que termine. En vez de eso, deja esa tarea
en segundo plano y sigue atendiendo otras cosas. Cuando la tarea larga termina, Node.js
recibe un aviso y ejecuta la funcion que estaba esperando ese resultado. Esta asincronia
es posible gracias al event loop y al uso de funciones especiales como callbacks, promesas

(promises) y async/await

Esta forma de trabajar hace que Node.js sea ideal para aplicaciones que tienen que atender
a muchos usuarios a la vez y responder rapido, como chats, juegos online o servicios de
streaming, y en nuestro caso, peticiones de diferentes viewers para dibujar a la vez.
Nuestro desarrollo debe poder manejar diferentes conexiones sin volverse lento ni

bloquearse.

Ademas, Node.js tiene un sistema que gestiona la memoria de manera automatica
(recolector de basura) y herramientas para supervisar el rendimiento y detectar problemas,
lo que es muy util para aplicaciones que deben estar funcionando durante mucho tiempo

sin interrupciones.
3.2. NPM vy el ecosistema de paquetes

NPM (Node Package Manager) es una herramienta que viene con Node.js y sirve para
instalar y gestionar librerias o “paquetes” que otros programadores han creado y
compartido. Esto hace que no tengas que programar todo desde cero, sino que puedas
aprovechar soluciones ya hechas para sumar funciones a tu proyecto, como por ejemplo

WebRTC, Socket.io o Axios, todas utilizadas en este proyecto.

-16 -

Con NPM puedes instalar, actualizar o eliminar facilmente estas librerias, y también te
ayuda a asegurarte de que todas las dependencias de tu proyecto (es decir, los paquetes
que necesita para funcionar) estén bien organizadas y sean compatibles entre si. Todo
esto se controla a través de un archivo llamado package. json, donde se guarda la lista de
dependencias y sus versiones. Ademas, NPM utiliza un sistema llamado “versionado
semantico” (semantic versioning) para gestionar las versiones de los paquetes, asegurando
asi la actualizacion de las librerias de forma segura, sabiendo que los cambios importantes
no romperan el proyecto, algo muy importante para mantener la estabilidad de cualquier

aplicacion.
4. Socket.io

Socket.io [7] es una libreria de JavaScript que permite que el servidor y los usuarios
(clientes) se comuniquen entre si en tiempo real, es decir, que los mensajes vy
actualizaciones lleguen al instante, sin necesidad de recargar la pagina o estar haciendo
peticiones constantes. Socket.io usa principalmente una tecnologia llamada WebSocket,
pero si por algun motivo no esta disponible, puede cambiar automaticamente a otros

métodos como “polling” HTTP para asegurar que la conexion siga funcionando.

Otra caracteristica importante es la gestion de conexiones. Si un usuario pierde la conexion
durante en algun instante, Socket.io puede reconectarlo automaticamente y mantener el
estado de la sesién. De esta manera, las interrupciones temporales de la red no afectan a
la experiencia de usuario y todo sigue sincronizado para los usuarios. Ademas, Socket.io
permite organizar a los usuarios en “salas” o “espacios” separados, conocidos como rooms
y namespaces. Esto es util para dividir a los participantes en grupos, clases o equipos, y

asi mantener conversaciones o actividades independientes dentro de la misma aplicacion.

En cuanto a los usos en aplicaciones, una de las funciones mas destacadas es la
sincronizacién en tiempo real. Por ejemplo, en nuestro caso, cada vez que alguien dibuja,
todos los demas ven el cambio al instante en el panel de administracién. También permite
definir eventos personalizados para distintas acciones, como cuando un estudiante dibuja

algo “politicamente incorrecto”, el profesor puede borrar solo su dibujo.

Por ultimo, Socket.io puede configurarse para funcionar en varios servidores al mismo
tiempo (clustering), lo que permite que aplicaciones con muchos usuarios conectados

simultaneamente sigan funcionando sin problemas. Es decir, facilita la creacion de

-17 -

aplicaciones donde la informacion debe viajar rapido y sin retrasos entre todos los usuarios,

como chats, pizarras colaborativas o juegos multijugador.
5. Axios

Axios [8] es una libreria que facilita el envio y recepcion de solicitudes HTTP, es decir, la
comunicacion entre una aplicacién y servicios web o APIs. Esta basada en promesas
(promises), lo que permite manejar de forma sencilla las respuestas asincronas, tanto en

navegadores como en aplicaciones Node.js.

Una de las ventajas principales de Axios es que permite configurar interceptores
(interceptors), que son funciones que se ejecutan automaticamente antes de enviar una
peticion o después de recibir una respuesta. Esto ayuda a implementar funcionalidades
comunes como la autenticaciéon automatica, el registro de operaciones (logging), el manejo
centralizado de errores y la transformacion de datos, todo de forma transparente para el

desarrollador.

Axios también ofrece un sistema de manejo de errores mas completo que el método nativo
fetch. Puede distinguir entre diferentes tipos de errores, como problemas de red, errores
del servidor, tiempos de espera (timeouts) o errores de validacion. Esto es especialmente

util en aplicaciones donde se requiere una respuesta adecuada segun el tipo de fallo.

Otra caracteristica importante es la posibilidad de cancelar peticiones (request cancellation)
usando tokens especiales. Esto evita problemas cuando, por ejemplo, un usuario realiza
varias acciones rapidas que generan multiples solicitudes, y algunas de ellas quedan
obsoletas antes de completarse. Axios facilita la integracién con sistemas externos como
plataformas de gestion de aprendizaje (LMS), bases de datos de estudiantes o servicios
de calificaciones, ofreciendo una forma consistente y segura de comunicarse con estas
APls.

Ademas, gracias a los interceptores, es posible implementar mecanismos de autenticacion
automatica con tokens JWT, renovar estos tokens sin que el usuario lo note, y cerrar sesion
automaticamente cuando las credenciales expiran, manteniendo la seguridad sin afectar la

experiencia del usuario.

Esta libreria permite configurar opciones para optimizar el rendimiento, como establecer

tiempos maximos de espera (timeouts), reintentos automaticos en caso de fallos, y

-18 -

reutilizacion de conexiones (connection pooling). Estas caracteristicas son clave en

entornos donde la calidad de la red puede variar.

Axios es una herramienta potente y sencilla que ayuda a manejar las comunicaciones
HTTP de manera eficiente, segura y adaptable a las necesidades especificas de
aplicaciones modernas, incluyendo las educativas. En este proyecto Axios se utiliza en los

dispositivos clientes para hacer peticiones HTTP.
6. Node-RED

Node-RED [2] es una herramienta de programacion visual que permite crear aplicaciones
conectando bloques llamados nodos, sin necesidad de escribir mucho cédigo. Estos nodos
se pueden arrastrar y soltar desde un panel en el navegador, y luego se conectan entre si
para definir cémo fluye la informacion entre ellos, los servicios web y las APIs. Gracias a
este enfoque, Node-RED hace que la programacién sea mas accesible y sencilla, incluso

para quienes no son expertos en desarrollo de software, ver Figura 5.

La arquitectura de Node-RED se basa en el concepto de flujos de datos: cada nodo realiza
una funcioén especifica, y las conexiones entre nodos marcan el camino que siguen los
datos a lo largo del sistema. Aunque Node-RED esta construido sobre Node.js y aprovecha
todas sus ventajas, afade una capa visual que facilita mucho la comprension y el
mantenimiento de sistemas complejos. Ademas, permite integrar facilmente cualquier
paquete de Node.js como un nodo personalizado, lo que significa que librerias como
Socket.io, Axios o WebRTC pueden usarse dentro de los flujos visuales para sumar

funcionalidades avanzadas.

El ecosistema de Node-RED incluye nodos especializados para diferentes tareas. Por
ejemplo, hay nodos para gestionar conexiones WebRTC, que simplifican la creacion de
videollamadas o la transmision de datos en tiempo real, y pueden trabajar junto con
servidores Socket.io para coordinar conexiones entre usuarios. También existen nodos
HTTP y WebSocket para conectar con APls y servicios web, y nodos de procesamiento de
video que permiten manipular imagenes, aplicar filtros o adaptar los videos a las

capacidades de distintos dispositivos.

En la gestion de sistemas, Node-RED ofrece ventajas como la monitorizacién visual en
tiempo real del estado del sistema y de las conexiones activas. Esto facilita detectar

problemas rapidamente y entender cémo se comporta la aplicacion. Ademas, permite

-19 -

modificar los flujos de trabajo mientras el sistema esta funcionando, sin necesidad de

reiniciar servicios ni interrumpir la actividad de los usuarios.

Por ultimo, Node-RED es muy flexible y escalable: facilita anadir nuevas funciones o
integrar servicios externos mediante la creacién de nodos personalizados, manteniendo
siempre la simplicidad visual y aprovechando toda la potencia del ecosistema Node.js. Por
todo esto, Node-RED se ha convertido en una herramienta clave tanto en la industria como

en proyectos educativos, domética e Internet de las Cosas.

=<2, Node-RED

WebRTC Broadcast + ~ || i depuracién i@ & B -

Configuracién de WebRTC

Broadcast IN - Logica Broadcast Respuesta emisor
Broadcast Clean

Receptores Légica Gonsumer Respuesta Recepotres

© funcién ‘Servir archivos estéticos Obtener archivo estatico Leer archivo Enviar archivo

switch = Mensaje a Admin
change [Recbireventos = Gestion de espectadores _]
® Mensaje aViewer
template

delay

rigger

= deog3 |
Figura 5. Ventana de ejemplo de Node-RED.

7. Arquitecturas de transmision de video

La arquitectura de transmisién de video es clave para el rendimiento y la capacidad de
crecimiento de cualquier sistema educativo basado en streaming. Cada tipo de arquitectura
tiene sus propias ventajas y limitaciones, por lo que es importante analizar cual se adapta

mejor a cada situacion.

En la arquitectura P2P, cada participante se conecta directamente con los demas,
formando una red donde todos se comunican sin intermediarios. Esto permite una latencia
muy baja y una alta calidad de transmisién, ya que no hay servidores centrales que
recodifiquen el video ni gestionen todo el trafico. Sin embargo, este modelo tiene un gran
inconveniente: a medida que aumenta el niumero de participantes, también crece de
manera exponencial el niumero de conexiones y el consumo de ancho de banda, lo que

limita seriamente su escalabilidad. Por eso, el P2P es ideal para grupos pequefios, como

-20 -

tutorias individuales o equipos de trabajo reducidos, donde la interaccién directa y la

rapidez son mas importantes que la cantidad de usuarios.

Por otro lado, la arquitectura SFU (Selective Forwarding Unit) utiliza un servidor central
que recibe los videos de todos los participantes y los reenvia selectivamente a quienes los
necesitan. El servidor SFU no modifica ni recodifica los videos, solo los distribuye, lo que
reduce la carga de procesamiento y mantiene la latencia baja. Cada usuario envia su video
solo una vez al servidor, que luego se encarga de repartirlo a los demas. Esto mejora
mucho la escalabilidad y permite adaptar la calidad de cada transmision segun la conexion
y el dispositivo de cada usuario. Ademas, facilita funciones como la grabacién de sesiones,
la moderacion y la obtencion de estadisticas. En entornos educativos, la SFU permite, por
ejemplo, que el profesor transmita en alta calidad mientras los estudiantes lo hacen en

resoluciones mas bajas, optimizando asi los recursos disponibles.

La arquitectura MCU (Multipoint Control Unit) es diferente, ya que el servidor central recibe
todos los videos, los decodifica, los combina en una sola imagen y luego envia ese
resultado a todos los participantes. Este proceso requiere mucho mas procesamiento y
puede introducir algo de retraso, pero ofrece un control total sobre como se ve la imagen
final. Es especialmente util en situaciones donde se necesita una presentacion unificada,
como conferencias con varios ponentes, evaluaciones en las que se debe ver al estudiante

y su trabajo al mismo tiempo, o grabaciones con un disefio visual profesional.

Finalmente, existen arquitecturas hibridas y adaptativas que combinan las ventajas de
los modelos anteriores. Por ejemplo, se pueden usar conexiones P2P para subgrupos
pequenos y SFU para la transmision general, o emplear MCU solo para ciertos elementos
visuales mientras el resto de los videos se distribuyen mediante SFU. Algunos sistemas
pueden cambiar automaticamente de arquitectura segun el nimero de usuarios, la calidad

de la red o el tipo de actividad educativa que se esté realizando.

Ademas de las arquitecturas tradicionales como P2P, SFU y MCU, existe la posibilidad de
implementar un sistema de transmision multicast en colaboracién con un router especifico
que soporte este tipo de trafico. En una red multicast, el servidor envia un solo flujo de
video a una direccién IP especial, y solo los dispositivos que estén interesados en recibir
ese contenido se suscriben a ese grupo multicast. Esto permite que, independientemente
del numero de usuarios conectados, el servidor mantenga la misma carga y el consumo de
ancho de banda no aumente con cada nuevo receptor, a diferencia de lo que sucede en

unicast o en arquitecturas P2P.

-21-

Para que el multicast funcione correctamente, es fundamental que tanto el router como los
switches de la red sean compatibles y estén configurados para gestionar trafico multicast,
utilizando protocolos como IGMP Snooping en IPv4 o MLD en IPv6. Este enfoque es
especialmente eficiente en entornos educativos o institucionales donde muchos usuarios
necesitan recibir el mismo contenido en tiempo real, ya que reduce la saturacion de la red
y optimiza el uso de los recursos disponibles. Sin embargo, su implementacién requiere
una infraestructura de red adecuada y un control centralizado sobre los dispositivos

conectados.

Elegir la arquitectura adecuada permite optimizar tanto la calidad de la experiencia como
el uso de los recursos, asegurando que el sistema pueda adaptarse a diferentes tamafos

de grupo, necesidades pedagogicas y condiciones técnicas.

8. Caracteristicas del hardware: Raspberry Pi y red

local

La implementacion del sistema propuesto se apoya en una arquitectura de hardware
accesible y potente, basada en una Raspberry Pi 5 [9] (8GB RAM) como servidor central y
un Router WiFi: ASUS Wireless-AC2900 configurado en modo punto de acceso para crear
una red local dedicada. Esta combinacion resulta ideal para entornos educativos, ya que
ofrece un equilibrio éptimo entre capacidad técnica, bajo costo, portabilidad y facilidad de

gestion institucional.
8.1. Raspberry Pi: Servidor central del ecosistema

La Raspberry Pi 5 (8GB RAM) utilizada en este proyecto incorpora un procesador
Broadcom BCM2712 de cuatro nucleos ARM Cortex-A76 a 2,4 GHz, junto con 8 GB de
memoria LPDDR4X-4267 SDRAM. Para mejorar significativamente el rendimiento de
almacenamiento y la velocidad de acceso a datos, hemos implementado una placa
extensora que permite la conexion de un SSD NVMe de 256GB, proporcionando
velocidades de lectura/escrituras muy superiores a las tarjetas microSD tradicionales, ver

Figura 6.

-22.

Figura 6. Raspberry Pi utilizada.

En el apartado multimedia, la GPU VideoCore VIl de 800 MHz soporta decodificacion y
codificacion por hardware de video H.265 (HEVC) en 4K, asi como OpenGL ES 3.1y
Vulkan 1.2. Esto reduce la carga sobre la CPU principal al manejar varios streams de video,
manteniendo baja la latencia y permitiendo que la CPU se enfoque en la logica de

aplicacion, como la gestion de usuarios y la sincronizacion de pizarras digitales.

En cuanto a conectividad, la Raspberry Pi 5 incorpora Wi-Fi 5 de doble banda (2,4 y 5
GHz), Bluetooth 5.0/BLE y un puerto Ethernet Gigabit para conexion cableada. Dispone de
dos puertos USB 3.0 y dos USB 2.0 para almacenamiento externo, camaras o dispositivos
de entrada, asi como de dos salidas micro-HDMI capaces de emitir video en 4K a 60 Hz

de forma simultanea, ideal para presentaciones o proyeccion en el aula.

8.2. Router WiFi: Infraestructura de red dedicada

El router WiFi se configura como punto de acceso (Access Point, AP) para crear una red
local independiente de la infraestructura institucional. Esto elimina la dependencia de redes
corporativas, que pueden tener restricciones o politicas no optimizadas para multimedia. El
router Gateway local asignando direcciones IP privadas y gestionando el acceso de los

dispositivos de estudiantes y docentes.

Para un rendimiento 6ptimo, se recomienda un router con soporte Wi-Fi 802.11ac (Wi-Fi 5)
o superior, capacidad dual-band para separar el trafico de gestién y multimedia, y puertos
Gigabit Ethernet para la conexién cableada con la Raspberry Pi. El router debe ser capaz
de gestionar al menos 30 dispositivos concurrentes sin degradacion significativa del
rendimiento. En nuestro caso el ASUS Wireless-AC2900 cumple sobradamente con las
recomendaciones. En la Figura 7podemos ver un esquema de conexion de 3 dispositivos

mediante wifi y dos cableados.

-23-

La gestion de calidad de servicio (QoS) es fundamental: permite priorizar el trafico WebRTC
(audio/video), asignar ancho de banda garantizado al stream del docente y evitar que un
solo dispositivo consuma todos los recursos de la red, asegurando asi una experiencia

educativa estable y de calidad.

< Mévil 1] = = Portatil Raspberry Pi

Figura 7. Ejemplo de conexiones al router WiFi. Elaboracion propia.

-24 -

Capitulo 3. Instalacion y configuracion del

sistema

En este capitulo presento una guia detallada para la instalaciéon y configuraciéon completa
del sistema WiWiewCast. La implementacién del sistema se fundamenta en una
arquitectura hibrida que combina hardware de bajo costo con software de cédigo abierto,
utilizando como elemento central una Raspberry Pi 5 equipada con 8GB de RAM y un
almacenamiento rapido NVMe, que ofrece la potencia necesaria para manejar
transmisiones de video en vivo, soportar hasta 20 usuarios conectados al mismo tiempo y

ejecutar funciones colaborativas.

La arquitectura del sistema WiWiewCast se compone de tres partes principales que
trabajan de manera integrada para ofrecer una plataforma de transmision interactiva
eficiente y accesible. En primer lugar, el hardware base esta formado por una Raspberry
Pi 5 con 8GB de RAM y una placa extensora MCUZone MPS2280, que permite conectar
un disco SSD NVMe de 480 GB, mejorando significativamente la velocidad de
almacenamiento en comparacion con las tarjetas microSD tradicionales. Ademas, un router
WiFi configurado como punto de acceso crea una red local dedicada que garantiza la

conectividad estable de todos los dispositivos participantes.

En segundo lugar, el stack de software se basa en Raspberry Pi OS de 64 bits y utiliza
tecnologias clave como Node.js para la ejecucién de aplicaciones, Node-RED para la
programacion visual de flujos de datos, Socket.lO para la comunicacién en tiempo real y

Axios para las peticiones HTTP a nivel de clientes.

Finalmente, la capa de servicios de aplicacion ofrece interfaces diferenciadas para los
emisores de contenido, los espectadores y los administradores, permitiendo una

experiencia colaborativa y un control efectivo del sistema.
1. Configuracion de la Raspberry Pi

Para poner en marcha la Raspberry Pi 5, lo primero es preparar todo el hardware necesario:
la propia Raspberry Pi 5, una fuente de alimentacién adecuada, una tarjeta microSD, y un
SSD NVMe con placa adaptadora. También se necesita acceso a internet para la descarga

del software necesario.

-25-

El primer paso consiste en instalar el sistema operativo. Para ello, se debe descargar el

programa Raspberry Pi Imager desde la pagina oficial (Figura 8) en un ordenador con

acceso a internet.

Raspberry Pi 0S

Your Raspberry Pi needs an operating system to
work. This is it. Raspberry Pi OS (previously called
Raspbian) is our official supported operating
system.

Install Raspberry Pi 0S using
Raspberry PiImager

' Raspberry Pi
Raspberry Pi Imager is the quick and easy way to install
Raspberry Pi OS and other operating systems to a microSD
card, ready to use with your Raspberry Pi.

Download and install Raspberry Pi Imager to a computer
with an SD card reader. Put the SD card you'll use with
your Raspberry Pi into the reader and run Raspberry Pi
Imager.

Download for Windows

Figura 8. Pagina de descarga de Raspberry Pi Imager

Para grabar la tarjeta microSD, usando el Imager, selecciona el dispositivo Raspberry Pi,
en este caso Raspberry Pi 5, luego la opcidén "Raspberry Pi OS (64-bit)" en el sistema

operativo y elige la tarjeta como almacenamiento.

Antes de grabar la imagen del sistema operativo en la Raspberry Pi, es importante ajustar
algunas configuraciones que haran mucho mas facil y seguro el uso posterior del
dispositivo. Entre estas configuraciones clave estan: cambiar el nombre del dispositivo
(hostname), activar el acceso remoto seguro mediante el protocolo SSH, definir el usuario
y la contrasefia, y establecer los parametros de localizacién como el idioma y la zona
horaria. Activar el servicio SSH es especialmente util porque permite administrar la
Raspberry Pi a distancia, sin necesidad de conectar un monitor, teclado o ratén. Esto
resulta ideal para el mantenimiento del sistema una vez que WiWiewCast esté funcionando
en el entorno educativo, ya que se puede acceder a la Raspberry Pi desde otro ordenador

usando la red local simplemente con el comando SSH y las credenciales configuradas.

Es fundamental cambiar el usuario y la contrasena por defecto, ya que mantener los valores
estandar supone un riesgo de seguridad considerable, especialmente si el dispositivo se
conecta a redes mas amplias o tiene acceso a Internet. Para establecer la conexion remota,

el dispositivo cliente debe tener instaladas aplicaciones especificas para la comunicacion

-26 -

SSH, como PuTTY o Terminal (para acceso a consola), VNC Viewer (para acceso grafico
remoto), o FileZilla/SCP (para transferencia segura de archivos entre la Raspberry Pi y el

dispositivo local).

Estas opciones de gestién remota, combinadas con la posibilidad de acceso fisico directo
cuando sea necesario, simplifican la administracion del sistema y reducen la necesidad de
recursos técnicos especializados para las tareas rutinarias. Asi se garantiza la estabilidad
y el funcionamiento continuo del servicio, manteniendo una arquitectura sencilla y eficiente.

A partir de aqui vamos a configurar la Raspberry Pi con PuTTY y desde consola.

Una vez grabada la imagen, coloca la tarjeta microSD en la Raspberry Pi'y conéctala en la
misma red que el dispositivo cliente. Desde el equipo cliente nos conectamos a la consola
de la Raspberry Pi averiguando primero la IP que le ha sido asignada por el router de la

red con el comando:
$> ping raspberrypi.local

Con dicha IP nos conectamos a la consola de la Raspberry Pi a través de SSH y a

continuacion actualizamos el sistema:

$> ssh pi@192.168.1.XX
Dentro de la consola de Raspberry Pi actualizamos
pi@raspberrypi:~$> sudo apt update && sudo apt upgrade -y

Acabada la actualizacion, el siguiente paso seria configurar el equipo con una IP fija. La
eleccion de la IP es importante porque tiene que estar fuera del rango de direcciones DHCP
con las que configuraremos el router del sistema WiWiewCast. El comando que utilizamos

para asignar la direccion IP estatica es:

$> sudo nmtui

Como ultimo paso, y antes de pasar a instalar el entorno de desarrollo, hay que instalar el
disco NVMe SSD M.2. Apagamos la Raspberry Pi e instalamos la placa adaptadora (HAT)
para después montar y conectar el disco al puerto PCle de la placa con el cable flex.
Después de colocar el hardware, volvemos a encender la Raspberry Pi y habilitamos el
puerto PCle, que viene deshabilitado por defecto. Dentro de la terminal hay que ejecutar
un editor de texto para acceder al fichero que habilita el puerto, y luego introducir al final

del archivo dos lineas de configuracion:

$> sudo nano /boot/firmware/config.txt

Al final del archivo insertar los siguientes comandos
dtparam=nmve #activa el puerto

dtparam=pciexl gen=3 # activa méxima velocidad de PCIe 3.0

-27 -

Después de guardar los cambios en el archivo, reiniciamos la Raspberry Pi para que los
cambios surtan efecto. A continuacién, configuraremos la Raspberry Pi para que arranque

desde el puerto PCle con el siguiente comando:

$> sudo rpi-eeprom-config --edit

Una vez dentro del archivo de configuracién
[all]

BOOT UART=1

POWER_OFF ON_HALT=0

BOOTiORDER:OXfZl 16

PCIE PROBE=1

La variable BOOT_ORDER hace referencia al orden de arranque de la Raspberry Pi, donde
cada digito representa un método de arranque diferente: el 4 equivale al USB, el 1 a la
tarjeta microSD y el 6 al puerto PCle NVMe. El valor 0xf416 indica que intentara arrancar
primero desde USB, luego desde microSD, y finalmente desde NVMe. La linea
PCIE_PROBE=1 habilita la deteccién automatica de dispositivos PCle.

Guardamos el archivo y volvemos a reiniciar el sistema. Solo nos queda hacer un clon de
la tarjeta microSD al disco NVMe. Para esto instalamos en consola rpi-clone, que detecta
y monta particiones automaticamente, evita copiar sectores vacios y cambia UUIDs

automaticamente

$>git clone https://github.com/billw2/rpi-clone.git
$>cd rpi-clone

$>sudo cp rpi-clone /usr/local/sbin

$>1sblk #verificamos que el M2 /dev/nvmeOn

$>sudo rpi-clone /dev/nvmeOnl #Ejecutamos la clonacidn.

Una vez clonada la SD al M2, apagamos la Raspberry Pi, retiramos la tarjeta SD y volvemos

a encender. El sistema operativo arrancara desde el disco M2
2. Instalacion de Node.js y Node-RED

Una vez completadas las configuraciones anteriores de la Raspberry Pi y verificado el
correcto funcionamiento del almacenamiento NVMe, procedemos a instalar el stack de
software fundamental para el sistema WiWiewCast: Node.js como runtime de ejecucién y

Node-RED como entorno de desarrollo visual de flujos de datos.
¢ Instalaciéon de Node.js (version 18 LTS)

Node.js constituye el ndcleo del sistema WiWiewCast, proporcionando el entorno de
ejecucion JavaScript necesario para todas las aplicaciones del servidor. La version 18 LTS
(Long Term Support) garantiza estabilidad y soporte a largo plazo. Para instalar Node.js

desde el repositorio oficial de NodeSource, ejecutamos los siguientes comandos:

-28 -

Descargar e instalar script de configuracién del repositorio

$> curl -fsSL https://deb.nodesource.com/setup 18.x | sudo -E bash -
Instalar Node.js y npm

$> sudo apt-get install -y nodejs

Verificar la instalacidén correcta

$> node --version # Debe mostrar v18.x.x

$> npm --version # Debe mostrar 9.x.x o superior

Es importante verificar que tanto Node.js como npm (Node Package Manager) se han
instalado correctamente. La versién de Node.js debe comenzar con v18, mientras que npm
debe estar en la version 9 o superior para garantizar compatibilidad con todas las

dependencias del proyecto.
¢ Instalacion de Node-RED

Node-RED es una herramienta de programacién visual basada en flujos que permite
conectar dispositivos de hardware, APIs y servicios en linea de manera intuitiva. En el
contexto de WiWiewCast, Node-RED actia como el orquestador principal que gestiona las

comunicaciones en tiempo real entre los diferentes componentes del sistema.

Instalar Node-RED globalmente en el sistema
$> sudo npm install -g --unsafe-perm node-red
Verificar la instalacidn

$> node-red -version

La opcidn --unsafe-perm es necesaria cuando se instala Node-RED como usuario root, ya
que algunos modulos requieren permisos especiales durante la compilacién de

dependencias nativas.

El sistema WiWiewCast requiere médulos adicionales para manejar las comunicaciones en
tiempo real y las conexiones WebRTC. Estos mddulos extienden las capacidades basicas
de Node-RED con funcionalidades especificas para streaming de video y comunicacion

bidireccional.

Instalar médulo Socket.IO para Node-RED

$> sudo npm install -g node-red-contrib-socketio

Instalar WebRTC nativo para Node.js

$> sudo npm install -g wrtc # Instalar mdédulos adicionales necesarios
$> sudo npm install -g node-red-contrib-axios

$> sudo npm install -g node-red-dashboard

Antes de continuar, es fundamental verificar que todas las dependencias del sistema

necesarias para WebRTC estén instaladas:

Instalar librerias del sistema requeridas por WebRTC
$> sudo apt-get install -y \

libgtk-3-dev \

libnotify-dev \

libnss3-dev \

libxssl \

libxtst6 \

xvib \

libatspi2.0-0 \

-29 -

libdrm2 \

libxcompositel \

libxdamagel \

libxrandr2 \

libgbml \

libasound2-dev
Verificar que WRTC se ha compilado correctamente
$> node -e "console.log(require('wrtc'))"

Una vez instalado Node-RED, es recomendable ejecutarlo por primera vez para generar la

estructura de directorios y archivos de configuracion:

$> node-red

Dado que la Raspberry Pi 5 tiene 8GB de RAM, podemos optimizar la configuracion de

memoria para Node.js y Node-RED:

Afladir variables de entorno al perfil de usuario

$> echo 'export NODE OPTIONS="--max-old-space-size=6144""' >> ~/.bashrc
$> echo 'export NODE RED OPTIONS="--max-old-space-size=6144""' >>
~/.bashrc

Recargar el perfil
$> source ~/.bashrc

Esta configuracion permite que Node.js utilice hasta 6GB de RAM, dejando 2GB para el
sistema operativo y otros procesos, optimizando asi el rendimiento del sistema
WiWiewCast.

Con estos pasos completados, el sistema dispone ya del entorno de ejecucion JavaScript
y las herramientas de desarrollo visual necesarias para implementar las funcionalidades de
transmision en tiempo real de WiWiewCast. El siguiente paso sera configurar los
certificados de seguridad y establecer las conexiones HTTPS necesarias para que los

navegadores web permitan acceso a los dispositivos multimedia.

3. Creacion de certificados SSL autofirmados

Los navegadores web modernos implementan politicas de seguridad estrictas que
requieren conexiones HTTPS para acceder a dispositivos multimedia como camaras y
microfonos. Esto es fundamental para el funcionamiento de WiWiewCast, ya que el sistema
depende del acceso a estos dispositivos para la transmision de video en tiempo real. Por
esta razon, es imprescindible configurar certificados SSL que permitan establecer

conexiones seguras entre los dispositivos cliente y el servidor de la Raspberry Pi.

Antes de generar los certificados, necesitamos crear una estructura de directorios

organizada y configurar el entorno adecuadamente:

Crear directorio para certificados
$> sudo mkdir -p /home/pi/ssl/
$> cd /home/pi/ssl/

-30-

#Generar clave privada

$> sudo openssl genrsa -out server.key 2048

#Generar certificado autofirmado (vélido por 365 dias)
$> sudo openssl req -new -x509 -key server.key -out server.crt -days 365
#Configurar Permisos

$> sudo chown root:ssl-cert /home/pi/ssl/server.key
$> sudo chown root:ssl-cert /home/pi/ssl/server.crt
$> sudo chmod 640 /home/pi/ssl/server.key

$> sudo chmod 644 /home/pi/ssl/server.crt

#Afiadir usuario pi al grupo ssl-cert

$> sudo usermod -a -G ssl-cert pi

Con estos certificados SSL correctamente instalados y configurados, el sistema
WiWiewCast podra establecer conexiones HTTPS seguras que permitan el acceso a
dispositivos multimedia desde los navegadores web de los usuarios. Este paso es
fundamental antes de proceder con la configuracion final de Node-RED y el despliegue de

la aplicacion web.
4. Configuracion y acceso a Node-RED

Una vez instalados los certificados SSL, procedemos a configurar Node-RED para que
utilice conexiones seguras HTTPS, lo cual es fundamental para que WiWiewCast pueda
acceder a los dispositivos multimedia de los usuarios y garantizar la seguridad de las

comunicaciones.

Antes de configurar Node-RED, necesitamos asegurar que la estructura de directorios esté

correctamente establecida:

#Crear directorio de trabajo y acceder

$> mkdir ~/.node-red | cd ~/.node-red

Crear directorio para archivos estdticos de la aplicacidén web
$> mkdir -p /home/pi/nodered/public

El archivo settings.js es el nucleo de la configuracion de Node-RED. Este archivo define
como Node-RED manejara las conexiones, la seguridad y las funcionalidades especificas

del sistema WiWiewCast:

#Configurar settings.js
$> nano settings.js

javascriptvar fs = require("fs");
module.exports = {
// Configuracién HTTPS
https: {
key: fs.readFileSync('/etc/ssl/wiwicast/server.key'),
cert: fs.readFileSync('/etc/ssl/wiwicast/server.crt')
s
// Directorio para archivos estaticos
httpStatic: ‘/home/pi/nodered/public’,
// Puerto para HTTPS
uiPort: process.env.PORT || 1880,
// Resto de configuracidn existente...
functionGlobalContext: {

-31-

wrtc: require ('wrtc'),

os: require(‘os’),
b
// Confiiguracién de seguridad
requireHttps: true

e Acceso a Node-RED

Tras configurar Node-RED en tu Raspberry Pi, puedes acceder facilmente a su interfaz
grafica desde cualquier ordenador conectado a la misma red. Solo tienes que abrir tu
navegador web y escribir en la barra de direcciones la IP de tu Raspberry Pi seguida de
:1880. Por ejemplo, si la IP de tu Raspberry Pi es 192.168.1.100, deberas ingresar en la
barra de direccines https://192.168.1.100:1880, asi aparecera la interfaz web de Node-

RED, donde podras crear, editar y gestionar tus flujos de trabajo.

A continuacién realizaremos un ejemplo de una pagina web que muestre “Hola Mundo”.
Para ello creamos un flujo en Node-RED y afiadimos los nodos necesarios. En este caso
HTTP In (Recibir peticion), Template (Generar HTML) y HTTP Response (Enviar

respuesta).

El nodo HTTP In se configura con el endpoint /hola, el nodo HTTP Response no hace falta

configurarlo y al nodo Template se le afiade el siguiente cédigo html:

<!DOCTYPE html>
<html lang="es">

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-

scale=1.0">
<title>Hola Mundo - Node-RED</title>
<style>
body {

font-family: Arial, sans-serif;
text-align: center;
margin-top: 100px;
background-color: #f0f0f0;

hl {
color: #ff6b6b;
font-size: 48px;
}

p {
color: #666;
font-size: 18px;

-32-

</style>
</head>
<body>
<hl>;Hola Mundo!</hl>
<p>Esta pagina fue generada con Node-RED</p>
</body>
</html>

Antes de instanciar unimos los nodos HTTP In y HTTP Response al nodo Template

quedando el flujo de la siguiente como se ve en laFigura 9 :

(6] O & 192168188

=<, NodeRED

Flujo 1

function
stitch
change
fange

template

delay

tiger [g¢lj ol O plntila fitp
exec

fiter
- red

mattin
Figura 9. Flujo de "Hola Mundo"

Ahora solo con ingresar en el navegador de cualquier dispositivo que esté en la misma red
la direccién https://ip_raspberry:1888/hola , podra ver el mensaje “Hola Mundo” devuelto

por Node-RED como aparece en la Figura 10.

O & 192168188 &

Esta pagina fue generada con Node-RED

Figura 10. Hola mundo desde Node-RED

e Configuracion del router

La configuracién del router WiFi en modo Access Point (AP) es una parte fundamental en

la arquitectura de WiWiewCast, ya que es la encargada de crear una red local dedicada

-33-

que asegura una conexion estable entre todos los dispositivos que participan en el sistema.
Al establecer el router como AP, se genera una red aislada y optimizada especificamente
para la transmision de video en tiempo real, lo que ayuda a evitar interferencias externas y

garantiza un mejor ancho de banda.

Para implementar esta red dedicada, es necesario contar con un router que tenga la opcién
de funcionar en modo Access Point, una caracteristica presente en la mayoria de los
routers domesticos modernos, aunque puede aparecer con distintos hombres segun el
fabricante, como AP Mode, Bridge Mode o simplemente Access Point. Es recomendable
que el router soporte Wi-Fi 802.11ac (Wi-Fi 5) o superior, tenga al menos cuatro puertos
Ethernet, sea capaz de gestionar mas de 20 dispositivos conectados simultaneamente y

permita la configuracion de red dual band (2.4GHz y 5GHz) para optimizar el rendimiento.

El primer paso para la configuracion consiste en acceder a la interfaz de administracion del
router, lo cual se hace conectando un ordenador al router mediante un cable Ethernet y
accediendo a la direccién IP de administracion desde el navegador web. Un paso
importante es asignar una IP estatica a la Raspberry Pi, por ejemplo 192.168.100.5, y
definir un rango DHCP especifico para los demas dispositivos, como de 192.168.100.10 a
192.168.100.200, asegurando asi una gestién ordenada de las direcciones IP en la red. El
siguiente paso es configurar las opciones de Calidad de Servicio (QoS) para priorizar el

trafico de video y evitar saturaciones.

Tras realizar la configuracion inicial, es recomendable verificar el funcionamiento de la red
y realizar pruebas de diagndstico para confirmar que todos los dispositivos pueden

conectarse correctamente y que la transmision de video es fluida.
e Navegadores web

Los navegadores web constituyen la interfaz principal entre los usuarios y el sistema
WiWiewCast, para la comunicacion bidireccional y colaboracion. La eleccion del navegador
y su correcta configuracion son aspectos clave para que el sistema funcione bien, ya que
tecnologias como WebRTC, Media Capture APl y WebSocket necesitan soporte especifico

y optimizado que no todos los navegadores ofrecen de la misma manera.

El navegador no solo sirve para abrir la aplicacion web, sino que también ejecuta el cédigo
JavaScript, gestiona el acceso a la camara y el micréfono, procesa la transmision de video

en tiempo real y mantiene las conexiones necesarias para la colaboracion instantanea. Si

-34-

el navegador no esta bien configurado o no es compatible, la experiencia del usuario puede

verse afectada y algunas funciones podrian no funcionar correctamente.

Para WiWiewCast, Google Chrome es el navegador recomendado porque ofrece el soporte
mas completo y robusto para todas las tecnologias necesarias, especialmente WebRTC y
las APls de acceso a medios. Chrome fue uno de los primeros en implementar WebRTC y
sigue siendo el que mejor rendimiento ofrece en este tipo de aplicaciones. Se recomienda
usar Chrome version 90 o superior en ordenadores, y Chrome Mobile 90 o superior en
dispositivos moviles, para asegurar la compatibilidad. Ademas, navegadores como Mozilla
Firefox, Microsoft Edge, Safari y Opera también son compatibles con WebRTC vy las
tecnologias asociadas, aunque pueden presentar pequenas diferencias en el

comportamiento o en el soporte de algunas funciones avanzadas.

Por ultimo, es importante asegurarse de que el navegador esté actualizado y que los
permisos de acceso a la camara y el micréfono estén correctamente configurados, ya que
estos son necesarios para la transmision de video y la interaccion en tiempo real. También
se recomienda cerrar otras pestanas o aplicaciones que puedan consumir recursos o ancho

de banda para garantizar una experiencia fluida durante el uso de WiWiewCast.

-35-

Capitulo 4. Especificaciones de la aplicacion y

arquitectura del sistema

1. Introduccion

La motivacion principal de este trabajo surge de la necesidad de superar las barreras que
todavia persisten en determinados entornos educativos, especialmente en los laboratorios
tradicionales. En estos espacios, la elevada cantidad de estudiantes suele dificultar la
visibilidad, impidiendo que todos puedan observar con claridad las demostraciones
practicas o las manipulaciones realizadas por el profesor. Esta limitacion no solo afecta la
comprension de los procedimientos, sino que también restringe la interaccién directa entre
el alumnado y el docente, reduciendo las oportunidades de participacion activa y

dificultando la resolucion inmediata de dudas.

El origen de estos obstaculos se encuentra, principalmente, en las restricciones fisicas y
espaciales propias de los laboratorios, que limitan el acceso visual y la movilidad dentro
del aula. Como resultado, el potencial educativo de las actividades practicas no se

aprovecha plenamente, lo que puede impactar negativamente en la calidad del aprendizaje.

Cabe destacar que no todos los laboratorios cuentan con los mismos recursos: mientras
algunos disponen de equipamiento avanzado, otros operan con medios mucho mas
limitados. Este trabajo se contextualiza dentro de Anatomia Veterinaria | y I, asignaturas
impartidas en el primer y segundo curso del Grado en Veterinaria de la ULPGC. Las
sesiones practicas, impartidas en el laboratorio, abordaran el estudio directo de diferentes
preparaciones anatdmicas y la diseccién integral y reglada de diferentes especies de
mamiferos domésticos. Resulta evidente que el material de practicas empleado es bastante
limitado, y requiere de condiciones especiales para su conservacion, y tratamiento previo
hasta ponerse en disposicion del alumnado. Estas limitaciones hacen aun mas patente la
necesidad de soluciones innovadoras que permitan mejorar la experiencia educativa y

garantizar el acceso equitativo al aprendizaje practico.

-36 -

A continuacién, se presenta la Figura 11 de la que refleja de manera visual los problemas
de visibilidad y participacion que se derivan de las barreras mencionadas, sirviendo como

punto de partida para el desarrollo de la solucién propuesta en este proyecto.

Figura 11. Clase masificada

La aplicacion desarrollada esta especificamente disefiada para superar esas limitaciones.
Para ello, integra una serie de especificaciones técnicas y funcionales que permiten
solventar las barreras de visibilidad, interaccién y acceso que suelen presentarse en estos
espacios. El sistema utiliza tecnologias de transmisién de video en tiempo real, em este
caso WebRTC, que facilitan que todos los estudiantes puedan observar con claridad las
demostraciones del profesor, asegurando que cada estudiante tenga la oportunidad de

participar y visualizar el contenido desde su propio dispositivo.

Visualizar el contenido desde su propio dispositivo es una ventaja de este sistema, ya que
utiliza los recursos tecnologicos de los propios estudiantes para ofrecer una experiencia
personalizada y flexible. Esto permite que cada alumno ajuste parametros de la imagen
segun sus necesidades, y que pueda seguir la demostracion sin obstaculos visuales ni
distracciones causadas por la disposicion fisica del aula. Ademas, al aprovechar los
dispositivos personales, se reduce la necesidad de equipamiento adicional por parte de la
institucion, facilitando la implementacién del sistema incluso en laboratorios con recursos

limitados.

Otra funcionalidad destacada de la aplicacion es la pizarra digital colaborativa creada sobre
la transmision del video, con capacidad para identificar de forma visual a los usuarios que
estan dibujando sobre esta. Cada estudiante que participa en la pizarra es diferenciado
mediante un color especifico asignado a su trazo, lo que facilita reconocer quién esta
interviniendo en tiempo real. Pensando en la accesibilidad, la aplicacién incorpora una

distincién adicional basada en la forma de los pixeles de cada trazo: asi, los usuarios no

-37 -

solo se diferencian por color, sino también por patrones de pixelado Unicos. Esta
caracteristica esta especialmente pensada para estudiantes con daltonismo o dificultades
para distinguir colores, permitiéndoles identificar facilmente la autoria de cada intervencion
en la pizarra, independientemente de sus capacidades visuales. De este modo, se
garantiza que la experiencia colaborativa sea inclusiva y accesible para todos los

participantes.
2. Especificaciones de la aplicacion

Debido a sus especificidades y sus diferentes roles, la aplicacion puede tener varios casos

de uso que a continuacion se expone:
e Caso de uso1:

La configuracién del sistema es:

o Profesor: es el Administrar y Emisor utilizando un unico dispositivo movil,
o Alumnos: Visualizadores de la emision y usuarios de la pizarra virtual.

El profesor utiliza su propio dispositivo mévil tanto para emitir la sefial de video como para
administrar la sesion, mientras que los estudiantes, denominados viewers, acceden desde
sus propios dispositivos para visualizar la transmision y participar de forma interactiva. Esta
modalidad representa la forma mas sencilla de uso de la aplicacion, ya que centraliza todas
las funciones de emision y administracion en un unico dispositivo, facilitando la gestion

para el docente.

Sin embargo, esta configuracion tiene la limitacion de que la interaccion entre los
estudiantes es mas restringida, ya que cada viewer solo puede ver su propio dibujo y no
los de sus companieros. Por tanto, aunque es una solucién ideal para entornos con pocos
recursos o cuando se busca una implementacion rapida y sencilla, no favorece tanto la
colaboracién grupal ni la visualizacién colectiva de las aportaciones de todos los
participantes, quedando la supervisién y la interaccion principalmente en manos del

profesor.

-38 -

Figura 12. Caso de uso 1

e Caso de uso 2:

La configuracion del sistema es:

o Profesor: es el Administrar y Emisor utilizando dos dispositivos,
o Alumnos: Visualizadores de la emision y usuarios de la pizarra virtual.

En este segundo caso, la aplicacion permite separar las funciones de emision vy
administracion, utilizando dos dispositivos moviles diferentes: uno para emitir la sefial de
video (por ejemplo, el moévil del profesor) y otro para gestionar la administracion de la sesion
(como puede ser una tablet o un segundo movil). Esta separacion ofrece al docente mayor
flexibilidad y control, ya que puede ajustar la grabacion, gestionar la interaccion y observar
en detalle las anotaciones y dibujos de los estudiantes desde el dispositivo de
administracion, sin interrumpir la transmisién principal. Los estudiantes, por su parte,
continian accediendo desde sus propios dispositivos para visualizar la transmision y
participar de forma interactiva. Sin embargo, al igual que en el caso anterior, la interaccion
entre los viewers sigue estando limitada, ya que cada estudiante solo puede ver su propio
dibujo y no los de sus companeros. Esta configuracion resulta especialmente util cuando
el profesor necesita supervisar de manera mas detallada la participacién de los estudiantes,
0 cuando se requiere grabar la sesion para su posterior revision, permitiendo asi una
gestion mas organizada y eficiente de la clase a pesar de la limitacion en la interaccion

colectiva entre los alumnos.

-30-

falal
falal

Figura 13. Caso de uso 2.

e Caso de uso 3:

La configuracién del sistema es:

o Profesor: Emisor con un dispositivo mévil y Administrador desde un PC,
o Alumnos: Visualizadores de la emision y usuarios de la pizarra virtual.

El tercer caso de uso es el que ofrece mayor nivel de interaccion y visibilidad para todos
los participantes. Aqui, el profesor utiliza un dispositivo mévil para emitir la sefial de video,
mientras que la administracion de la sesién se realiza desde un ordenador personal
conectado a una pantalla grande, como puede ser un proyector o monitor en el laboratorio.
De este modo, el administrador (que puede ser el propio profesor o un asistente) tiene un
control mas amplio sobre la sesién, pudiendo gestionar usuarios, moderar la interaccion y
visualizar en tiempo real todos los dibujos y anotaciones que realizan los estudiantes en la
pizarra colaborativa. Los viewers, ademas de seguir la transmisién desde sus dispositivos
personales, pueden ver reflejadas en la pantalla comun tanto sus propias aportaciones
como las de sus compafieros, lo que fomenta la participacion colectiva y el aprendizaje
colaborativo. Esta modalidad es ideal para sesiones practicas con grupos numerosos, ya
que maximiza la visibilidad, la interaccion y el aprovechamiento de los recursos

tecnolégicos disponibles en el aula.

-40 -

Figura 14. Caso de uso 3

3. Arquitectura del Sistema

Después de hacer varias pruebas con diferentes arquitecturas, P2P, SFU e incluso con
Multicast, la opcion elegida una arquitectura hibrida con SFU, buscando garantizar una
transmision interactiva y fluida, integrando varios componentes que se comunican de
manera eficiente. Node-RED coordina y administra todos los flujos dentro del sistema,
mientras que WebRTC se encarga del intercambio de video y audio en tiempo real, y
Socket.lO facilita la interaccién y sincronizacion entre dispositivos de usuarios, sean

emisores, espectadores o administradores.
3.1. Backend: Node-RED

El servidor backend emplea principalmente Node-RED, Node.js, Socket.lO y la libreria wrtc
para WebRTC. El motor de flujos de Node-RED gestiona los procesos y comunicaciones,
dividiendo las funcionalidades en médulos independientes (como la difusién WebRTC o la
gestion de usuarios). Cada usuario conectado, sfream activo o configuracién queda
almacenado en el contexto de Node-RED, facilitando el seguimiento y modificacion en

tiempo real.

Un punto clave es la introduccién de la Unidad de Reenvio Selectivo (SFU). Aqui, el punto
de emision (broadcaster) envia su senal al servidor que, a través de la SFU, la distribuye
eficientemente a todos los consumidores o visualizadores, permitiendo la escala a multiples

usuarios conectados simultaneamente.

-41 -

3.2. Flujo de Broadcast (Emisor)

El flujo de broadcast es el encargado de recibir y procesar el stream enviado por el emisor,
permitiendo que la sefal de video llegue correctamente al sistema para su posterior
distribucion a los visualizadores. Este proceso se inicia cuando el emisor realiza una
peticion HTTP POST al endpoint especifico /broadcast, enviando junto con la solicitud una
oferta SDP vy la identificacion de su sesion. El mensaje o Payload esperado contiene la

informacion necesaria para negociar la conexion WebRTC.

De manera complementaria, existe una ruta de limpieza llamada /cleanup-broadcast,
también accesible via POST, cuya funcién es liberar todos los recursos asociados a la
sesién WebRTC cuando el emisor se desconecta. Esto permite asegurar que no queden
conexiones abiertas innecesariamente y el sistema mantenga un uso eficiente de los

recursos disponibles.

(6] o (6]
Broadcast IN Légica Broadcast Respuesta emisor

@] O Espera
Broadcast Clean

Figura 15. Diagrama de flujo de Broadcast (Emisor)

En el nacleo de este flujo se encuentra la l6gica de broadcast, que se encarga de crear una
instancia de RTCPeerConnection para el emisor. Tras recibir y procesar la oferta SDP,
genera una respuesta SDP que se devuelve al emisor para completar el proceso de
negociacion y establecer la conexién WebRTC. El stream resultante se almacena en el
contexto global del sistema, permitiendo que esté disponible para su consumo por parte de
otros usuarios. Ademas, se implementa un temporizador automatico de 30 minutos para
gestionar la limpieza y se monitorizan los estados de conexién ICE para garantizar la
estabilidad de la transmision. Finalmente, la respuesta al emisor contiene la SDP necesaria

para cerrar el ciclo de establecimiento de la sesién WebRTC y poner el stream en linea.
3.3. Flujo de Consumer (Visualizadores)

El flujo de consumer esta orientado a distribuir el stream que ya ha sido recibido y
almacenado. Su objetivo principal es gestionar las solicitudes de los visualizadores,

permitiendo que cada uno reciba la sefal de video de manera gestionada y eficiente.

-42 -

Cuando un visualizador desea acceder al stream, realiza una peticion HTTP POST al
endpoint /consumer, enviando una oferta SDP generada desde su propio dispositivo. El
sistema, al recibir esta solicitud, ejecuta la légica de consumer que primero accede al
stream almacenado globalmente y luego crea una nueva instancia de RTCPeerConnection
para el visualizador. Cada conexién afiade las pistas del emisor al peer correspondiente
mediante pc.addTrack(track, senderStream) y, tras procesar la oferta SDP recibida, genera

una respuesta SDP personalizada para ese visualizador.

—— . ©] — 8

Receptores ' Légica Consumer Respuesta Recepotres }

Figura 16. Flujo de Consumer (Visualizadores).

Este proceso implementa el patron SFU (Selective Forwarding Unit), permitiendo que el
sistema distribuya el mismo stream a multiples consumidores de manera eficiente, sin tener
que reenviar multiples veces desde el origen. Por ultimo, la respuesta al receptor se
encarga de enviar la SDP resultante para que la conexiéon WebRTC quede establecida y el

usuario pueda visualizar el stream en tiempo real.
3.4. Flujo de Gestion de Eventos Socket.|O

El flujo de gestion de eventos mediante Socket.IO es esencial para el funcionamiento en
tiempo real del sistema WiWiCast, ya que permite la comunicacion instantanea entre todos
los participantes y la sincronizacién de sus acciones. Cuando un usuario se conecta al
sistema, ya sea como espectador, administrador o emisor, se genera un evento especifico
que es capturado por el servidor. Por ejemplo, el evento viewer-join indica la llegada de un
nuevo espectador, mientras que admin-join y emisor-join sefialan la conexion del
administrador y del emisor, respectivamente. Ademas, eventos como viewer-started y
emisor-started confirman el inicio de la visualizacién o transmision, y eventos como draw-
data transmiten los trazos realizados en la pizarra colaborativa. También existen comandos
como admin-clear-canvas y viewer-clear-canvas para gestionar la limpieza del canvas, ya

sea por parte del administrador o a solicitud de un espectador.

El sistema mantiene actualizado en todo momento un registro de los usuarios conectados

y de aquellos que estan visualizando activamente el contenido. Cada usuario recibe un

-43-

identificador unico, un color y un patron de visualizacion, lo que facilita la distincién visual
de las aportaciones individuales en la pizarra colaborativa y garantiza la accesibilidad para
usuarios con daltonismo. Ademas, el sistema procesa y distribuye los eventos de dibujo,
asegurando que todos los participantes relevantes reciban las actualizaciones en tiempo
real. Cuando un usuario se desconecta, el sistema realiza automaticamente la limpieza de
su estado, liberando recursos y manteniendo la coherencia de los listados. Por otro lado,
se actualizan estadisticas de uso y conexion en tiempo real, proporcionando informacion

para la administracion y el seguimiento del sistema.

El flujo de eventos también se encarga de enviar notificaciones especificas a los diferentes
roles. Al administrador se le informa de cambios en la lista de espectadores, de nuevos
eventos de dibujo en la pizarra, de estadisticas del sistema y de alteraciones en el estado
de las conexiones. Estas notificaciones permiten al administrador tener un control completo
y en tiempo real sobre la sesién. Por su parte, los espectadores reciben mensajes
personalizados, confirmaciones de que sus acciones han sido procesadas correctamente

y comandos para realizar determinadas acciones, como la limpieza de su canvas.

Para garantizar la estabilidad y facilitar el mantenimiento del sistema, se han incorporado
nodos de depuracién (debug) que monitorean el flujo de eventos, verifican el correcto
procesamiento de los datos, detectan errores y analizan el contenido de los mensajes
intercambiados. Estos nodos son fundamentales para identificar y resolver incidencias de

manera agil, asegurando que la plataforma funcione de forma 6ptima en todo momento.

o]
deougﬂ'.—?

o})
Recibir eventos debug 2 l =

Mensaje a Admin
(]
Gestion de espectadores

Mensaje a Viewer

o

1]

debug3 -

Figura 17. Flujo de Gestion de Eventos Socket.|O

-44 -

3.5. Flujo de Archivos Estaticos

El flujo de archivos estaticos se encarga de servir las aplicaciones web necesarias para
que los usuarios puedan acceder a la plataforma desde sus dispositivos. Este flujo captura
todas las solicitudes HTTP GET dirigidas a recursos estaticos, como HTML, CSS y
JavaScript, a través de una ruta genérica (por ejemplo, /:path). De este modo, cuando un
usuario accede a una URL como /viewer, /fadmin o simplemente /index.html, la aplicacion
identifica la ruta solicitada y la mapea al archivo correspondiente en el sistema de archivos

del servidor.

Una vez identificada la ruta, el sistema realiza una transformacion sencilla para convertir
las rutas amigables en nombres de archivo reales. Por ejemplo, la ruta /viewer se traduce
a viewer.html, /admin a admin.html, y si no se especifica una ruta concreta, se sirve por
defecto el archivo index.html. Esta Iégica permite una navegacion intuitiva y una gestion
flexible de las diferentes interfaces de usuario segun el rol del participante (emisor,

administrador o espectador).

Tras determinar el archivo a servir, el sistema procede a leer su contenido desde el sistema
de archivos, utilizando la informacién proporcionada en el mensaje de flujo (por ejemplo,
msg.filename). Finalmente, el contenido del archivo se envia al cliente que realiz6 la
solicitud, acompafado de los headers HTTP apropiados para garantizar una correcta
interpretacion por parte del navegador. Este proceso asegura que los usuarios reciban las
interfaces web necesarias para interactuar con el sistema, independientemente de su

dispositivo o sistema operativo.

@ e (] (]
Servir archivos estaticos Obtener archivo estatico Leer archivo Enviar archivo

Figura 18. Flujo de Archivos Estaticos

4. Frontend. Navegador web

La integracion del frontend con el backend en WiWiewCast se realiza principalmente a
través de dos canales: la comunicaciéon WebRTC para la transmision de video en tiempo
real y la gestién de eventos mediante Socket.lO para la interaccion y sincronizacion entre
los participantes. Dentro de esta arquitectura, el sistema de dibujo interactivo constituye

una capa adicional fundamental que permite a los visualizadores interactuar directamente

-45-

sobre el contenido de video transmitido, creando una experiencia colaborativa e inmersiva

que va mas alla de la simple visualizacién pasiva.

En el lado del cliente, el archivo JavaScript principal (index.js) implementa la logica
necesaria para que el usuario pueda seleccionar la camara deseada, iniciar la transmision
y gestionar la conexion con el servidor. Paralelamente, en la aplicacién del visualizador
(viewer.html), se implementa un canvas HTML5 superpuesto al elemento de video que
captura los eventos tactiles y de mouse del usuario. Cuando el usuario selecciona una
camara en la aplicacion emisor, el sistema actualiza el selector correspondiente y, al hacer
clic en "Iniciar", se solicita el acceso al dispositivo mediante la API getUserMedia. Del
mismo modo, cuando un visualizador toca o hace clic sobre el video, el canvas detecta las
coordenadas del evento, las normaliza proporcionalmente al tamafio del canvas y genera
un payload que incluye la posicion (X, y), el color y patron asignados unicamente a ese

usuario, y otros metadatos como el tamario del trazo.

Una vez obtenido el flujo de medios (MediaStream), se muestra una vista previa en el
elemento de video de la interfaz. A continuacién, se crea una instancia de
RTCPeerConnection y se inicia la negociaciéon SDP con el endpoint /broadcast del servidor.
Simultaneamente, el sistema de dibujo envia los datos de interaccién a través de Socket.|O
usando el evento draw-data, que contiene toda la informacion necesaria para recrear el
trazo en otros clientes. El backend de Node-RED procesa estos eventos en el nodo
"Gestion de espectadores”, donde se enriquece la informacion del dibujo con datos del
usuario (nombre, rol, color asignado) almacenados en el contexto de flujo, y posteriormente
retransmite estos datos al administrador para su visualizacién en tiempo real. En el panel
de administracion (admin.html), el sistema implementa un mecanismo de capas de dibujo
donde cada visualizador tiene su propia capa virtual gestionada mediante un canvas
HTML5 superpuesto al video. Cuando el administrador recibe un evento draw-data, el
sistema identifica al usuario emisor por su socket ID y renderiza el trazo en el canvas
usando el color y patrén especificos asignados a ese visualizador, manteniendo asi una
representacion visual clara de quién esta dibujando qué en cada momento. Cuando la
conexion WebRTC se establece correctamente, el indicador de estado cambia a "Online",
confirmando que la transmision esta activa y lista para ser recibida por los visualizadores,
quienes ahora pueden no solo ver el contenido sino también interactuar dibujando sobre
el, mientras que el administrador obtiene una vista completa de todas las interacciones

superpuestas.

- 46 -

Ademas de la transmision de video, la aplicacion utiliza Socket.|O para gestionar eventos
en tiempo real que permiten una experiencia interactiva y colaborativa. Por ejemplo,
cuando el emisor se conecta, se envia el evento emisor-join con informacion sobre el
usuario y su rol. Al iniciar la transmision, se emite emisor-started para notificar al servidor
y a los demas participantes. En el contexto del sistema de dibujo por capas, cuando un
visualizador se conecta, el servidor le asigna automaticamente un color y patrén unicos de
una paleta predefinida, enviando esta informacion a través del evento style-assigned para
que el cliente configure su indicador visual y use estos valores en sus trazos. En el panel
de administracion, esta informacién se almacena en una estructura de datos que asocia
cada socket ID con sus propiedades visuales, permitiendo que el canvas del admin
renderice correctamente cada trazo con la identidad visual correspondiente. El frontend
también escucha eventos como viewer-count-update, que actualiza en tiempo real el
contador de espectadores conectados, asi como eventos especificos del canvas como
draw-data (para mostrar dibujos de otros usuarios distribuidos por capas virtuales) y admin-
clear-canvas (que permite al administrador seleccionar especificamente qué capa de

usuario limpiar, enviando un comando dirigido solo a ese visualizador particular.

El flujo de usuario tipico en la aplicacion de emisién comienza con la carga de la pagina,
durante la cual se detectan las camaras disponibles y se rellena el selector correspondiente
para que el usuario elija el dispositivo deseado. En la aplicacién del visualizador, este flujo
incluye ademas la inicializacion del canvas interactivo, la configuracion de los event
listeners para eventos tactiles y de mouse, y la preparacion del contexto de dibujo 2D. En
el panel de administracion, se inicializa un sistema mas complejo que prepara el canvas
principal y crea una estructura de datos para gestionar las capas virtuales de cada usuario,
incluyendo un mapa de identificadores de socket con sus respectivos colores, patrones y
estados de actividad. Una vez seleccionada la camara, al hacer clic en "Iniciar" se solicitan
los permisos necesarios, se muestra la vista previa del video y se establece la conexion
WebRTC con el servidor, cambiando el estado a "Online" cuando la transmision esta ready.
Para los visualizadores, una vez establecida la conexion, pueden comenzar
inmediatamente a interactuar tocando o haciendo clic sobre el video, generando trazos que
se muestran instantaneamente en su pantalla (actualizacion optimista) y se envian al
servidor para sincronizacién con otros participantes. El administrador, por su parte, ve estos
trazos aparecer en tiempo real en su canvas, cada uno renderizado con el color y patrén
distintivo del usuario correspondiente, y puede gestionar individualmente cada capa
mediante controles especificos que aparecen en la lista de espectadores activos,

incluyendo botones para limpiar la capa de un usuario especifico o destacar temporalmente

-47 -

sus interacciones. Durante la emisién, el usuario puede consultar en tiempo real el nimero
de espectadores conectados a través de un contador actualizado automaticamente. Los
visualizadores, por su parte, pueden limpiar sus propios dibujos mediante el botén
correspondiente, lo que envia una solicitud viewer-clear-canvas al administrador quien
decide si aprobar la limpieza mediante el evento admin-clear-canvas dirigido
especificamente a la capa de ese usuario, manteniendo asi un control centralizado sobre
el contenido visual de cada participante. Finalmente, al hacer clic en "Detener", se cierran
todas las conexiones, se liberan los recursos y la aplicacion vuelve al estado inicial, lista

para una nueva sesion.

Esta integracion entre frontend y backend, combinando WebRTC para la transmision de
medios y Socket.lO para la gestion de eventos, permite ofrecer una experiencia de emision
intuitiva y adaptada a las necesidades de los usuarios, incluso desde dispositivos moviles,
garantizando interactividad, bajo retardo y una gestion eficiente de los recursos. El sistema
de dibujo por capas aporta una dimension colaborativa donde cada participante mantiene
su identidad visual y el administrador puede supervisar, gestionar y moderar las
contribuciones individuales, transformando la experiencia de visualizacién pasiva en una
herramienta de anotacion y participacion activa controlada y organizada, especialmente
valiosa en contextos educativos donde los estudiantes pueden sefialar, marcar o comentar
visualmente sobre el contenido presentado por el instructor en tiempo real, mientras que el

docente mantiene control total sobre la moderacion de estas interacciones.
5. Ciclo basico de funcionamiento

El emisor envia su stream de video a través de una peticiéon HTTP al endpoint/broadcast,
donde el servidor lo almacena en el contexto global para su posterior distribucion. Los
visualizadores solicitan el stream mediante el endpoint/consumer, recibiendo asi la
transmision de manera eficiente. Mientras tanto, los eventos gestionados por Socket.lO
actualizan el estado del sistema y notifican a administradores y espectadores segun
corresponda. El servidor también se encarga de servir las aplicaciones web necesarias

para que cada cliente pueda cargar la interfaz adecuada a su rol.

La gestion del estado compartido se realiza a través de dos contextos principales: el
contexto global, que incluye recursos criticos como el stream del emisor y la instancia de
la libreria WebRTC, y el contexto de flujo, donde se almacena informacién dinamica como
las listas de usuarios conectados y activos, la identificacién del administrador y los colores

y patrones asignados a cada usuario. La sincronizacion entre estos contextos se mantiene

-48 -

gracias a los eventos de Socket.lO, que aseguran la coherencia y consistencia en todo el

sistema.

En cuanto a los patrones de comunicacion, el sistema utiliza HTTP para la negociacion
sincrona de las conexiones WebRTC, Socket.lO para la comunicacion asincrona y en
tiempo real entre todos los participantes, y WebRTC para la transmisién de medios de baja
latencia y alta calidad, apoyandose en una arquitectura P2P centralizada a través de una
SFU. Esta combinacion de tecnologias y flujos permite una experiencia colaborativa, fluida,
adaptada a las necesidades de entornos educativos y de presentacion, donde la interaccion

en tiempo real y la gestion eficiente de recursos son fundamentales.

-49 -

Capitulo 5. Evaluacion y Conclusiones

1. Ejecucion y Evaluacion del sistema.

La ejecucion y evaluacién del sistema WiWiewCast se llevé a cabo en un entorno real,
concretamente en un aula de laboratorio de Transmision por Linea del Departamento de
Ingenieria Telematica, donde se recrearon las condiciones tipicas de un escenario
educativo con recursos tecnoldgicos limitados. Para iniciar el proceso, se conecto la
Raspberry Pi al router mediante cable Ethernet, asegurando asi una conexion estable y de

bajo retardo, y se procedi6é al encendido de ambos dispositivos.
Caso de uso 1

En el primer caso de uso, se conectaron todos los dispositivos méviles a la red Wi-Fi
WiWicast. En esta configuracion, un unico dispositivo movil asumié simultaneamente el rol
de emisor y administrador. Esto significa que desde este dispositivo se capturé y transmitio
el video, al tiempo que se gestiond la sesion, supervisando la lista de espectadores y
moderando la interaccion. El resto de los dispositivos se conectaron como viewers,
permitiendo a los estudiantes visualizar la transmisiéon y participar en la pizarra
colaborativa. Esta modalidad, aunque sencilla de implementar, mostro algunas limitaciones
en la interaccién entre los viewers, ya que cada uno solo podia ver su propio dibujo y no el
de sus compainieros, concentrando la supervision y el control en el docente. Por otro lado,
para el docente, gestionar tanto la emisién de video como el panel de administracion desde
un unico dispositivo mévil puede resultar complicado en la practica. La pantalla reducida
de un teléfono o tablet dificulta la visualizacion simultanea de la transmision, la lista de
participantes y el contenido de la pizarra colaborativa, lo que puede afectar la eficacia en

la moderacion y el seguimiento de la sesion.
Caso de uso 2

El segundo caso de uso introdujo una separacién de roles entre el emisor y el
administrador. En este escenario, un dispositivo movil se utilizé exclusivamente para emitir
el video, mientras que otro dispositivo movil distinto asumié las funciones de

administracion. El resto de los dispositivos continuaron conectados como viewers. Esta

-50 -

configuracién permitid al docente tener un mayor control sobre la sesién, pudiendo
gestionar la interaccion, monitorizar el estado de la transmisién y acceder a estadisticas en
tiempo real desde el dispositivo administrador, sin interferir en la emision principal. A pesar
de esta mejora en la gestion, la limitacion en la visualizacion de los dibujos entre viewers

persistid, aunque la experiencia para el administrador fue mas completa y flexible.
Caso de uso 3

En el tercer caso de uso, se combiné el uso de dispositivos moéviles y un ordenador de aula
conectado a un proyector. El emisor siguié siendo un dispositivo mdévil, pero el rol de
administrador lo asumié el ordenador, que proyectaba la interfaz de administracién en una
pantalla grande visible para todos los asistentes. Los espectadores se conectaron desde
sus dispositivos moviles como viewers. Esta configuracidn maximizé la visibilidad y la
interaccion grupal, ya que tanto el video como las anotaciones colaborativas podian verse
en la pantalla comun, fomentando la participacion activa y la discusion en el aula. Ademas,
el administrador podia gestionar la sesibn de manera centralizada, moderando la
participacién y resolviendo dudas en tiempo real. Esta modalidad demostré ser la mas
adecuada para sesiones practicas con grupos numerosos, ya que aprovecha al maximo

los recursos disponibles y facilita la colaboracién entre todos los participantes.

En resumen, la ejecucion del sistema en estos tres casos de uso permitio evaluar su
funcionamiento en diferentes escenarios educativos, identificando tanto las ventajas como
las limitaciones de cada configuracién. La experiencia practica confirmé que WiWiewCast
es una solucion flexible, adaptable y eficiente para la transmision interactiva de video en
entornos con recursos limitados, facilitando la colaboracion y mejorando la experiencia

educativa tanto para docentes como para estudiantes.

2. Conclusiones

WiWiewCast ha demostrado que es posible crear sistemas de transmision de video
interactivos usando tecnologias web modernas como WebRTC, Node-RED y Socket.IO, y
que estos pueden funcionar bien incluso en equipos de bajo coste. Esto es importante
porque permite que centros educativos, pequefias empresas 0 asociaciones con pocos
recursos puedan acceder a herramientas avanzadas de comunicacion visual sin tener que
invertir mucho dinero en equipos caros. El sistema funciona de manera eficiente en
dispositivos sencillos, lo que elimina una barrera econémica que antes limitaba el acceso

a este tipo de soluciones.

-51-

Para que el sistema funcione bien incluso en equipos sencillos, se han tomado decisiones
practicas en el disefio. Por ejemplo, se eligi6 Node-RED como nucleo porque es ligero y
puede manejar varias conexiones a la vez sin que el equipo se ralentice. Ademas, se usa
el patrén SFU (Selective Forwarding Unit) para enviar el video a todos los usuarios, lo que
ayuda a ahorrar ancho de banda y evita que el sistema se sature, algo comun en otras

formas de transmitir video.

El sistema integra varias funciones en una sola plataforma: transmite video en tiempo real,
permite que los usuarios dibujen y anoten sobre la imagen que ven, y gestiona quién puede
entrar y qué puede hacer cada uno. Todo esto funciona bien incluso en equipos
economicos, lo que demuestra que no hace falta gastar mucho en tecnologia para tener

herramientas modernas de comunicacion.

La forma de gestionar quién entra y qué puede hacer cada usuario es sencilla pero efectiva.
En vez de usar sistemas de autenticacién complejos que requieren servidores potentes,
WiWiewCast usa una solucion ligera basada en sessionStorage, que funciona bien en
equipos con pocos recursos. Esto permite controlar el acceso sin complicar el sistema ni

hacerlo mas lento.

Una de las caracteristicas mas valoradas es la pizarra colaborativa. Los usuarios pueden
dibujar, sefialar y escribir sobre lo que ven en la pantalla, y cada uno tiene su propio color
y patron para que se distinga quién hace cada anotacion. Esto hace que la experiencia sea
mas participativa y util, especialmente en clases donde los estudiantes pueden interactuar
directamente con el contenido. Ademas, todo esto se hace con tecnologias web estandar,

sin necesidad de instalar programas extra ni usar equipos especiales.

La estructura del sistema esta pensada para que cada parte (transmision de video, gestion
de usuarios, interaccion en tiempo real, etc.) funcione de manera independiente pero
conectada. Esto facilita el desarrollo, la correccion de errores y la posibilidad de afiadir
nuevas funciones en el futuro sin tener que cambiar todo el sistema ni comprar equipos
nuevos. Ademas, el sistema incluye mecanismos para limpiar recursos automaticamente y
desconectar usuarios inactivos, lo que ayuda a mantener la estabilidad y el buen

funcionamiento incluso en equipos con pocos recursos.

Por todo lo anterior queda patente que se han alcanzado, de manera satisfactoria, todos

los objetivos planteados al comienzo del desarrollo de este TFG.

-52 -

3. Trabajo futuro

En un trabajo futuro, seria interesante mejorar el sistema de autenticacion para que sea
mas seguro Y flexible, permitiendo, por ejemplo, que un mismo usuario pueda conectarse
desde varios dispositivos a la vez o que haya diferentes niveles de permisos (administrador,
moderador, profesor, estudiante, etc.). También se podria afiadir soporte para que varios
dispositivos transmitan video al mismo tiempo, lo que seria util cuando se necesiten varios
angulos de vision. Para esto, habria que desarrollar formas de mostrar varios videos a la

vez (por ejemplo, en pantalla dividida o con una ventana pequefia sobre la principal).

Las herramientas de dibujo y anotacién también se podrian ampliar, afiadiendo mas tipos
de pinceles, formas geométricas, texto con formato y la posibilidad de trabajar en capas
(por ejemplo, una capa para los profesores y otra para los estudiantes). Incluso se podria
reconocer automaticamente lo que se dibuja y convertirlo en formas perfectas o en texto
editable.

Otra mejora seria permitir que el administrador decida si los dibujos de los estudiantes son
visibles para todos los participantes, no solo para el propio estudiante. Esto podria activarse
selectivamente segun las necesidades de la sesién y seria especialmente Gtil en los casos

de uso uno y dos, donde actualmente los estudiantes solo ven sus propias anotaciones.

En resumen, WiWiewCast es una plataforma sdlida, sencilla y accesible que ya permite
hacer cosas avanzadas con pocos recursos. Las mejoras que se plantean para el futuro
buscan hacerla aun mas potente, flexible y facil de integrar en distintos entornos, siempre

manteniendo la simplicidad y la eficiencia que la hacen especial.

-53-

Bibliografia

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

«WebRTC 1.0: Real-time Communication Between Browsers,» W3C, 2021. [En linea].
Available: https://www.w3.org/TR/webrtc/. [Ultimo acceso: 15 de julio 2025]

«Node-RED Documentation,» Foundation, Node-RED, 2024. [En linea]. Available:
https://nodered.org/docs/. [Ultimo acceso: 15 de julio 2025]

«WebRTC Best Practices: Understanding STUN, TURN and ICE Servers,»
Technologies, EcosMob, Medium, 2023. [En linea]. Available:
https://medium.com/@ecosmobtechnologies/webrtc-best-practices-understanding-

stun-turn-and-ice-servers-4836109904ec. [Ultimo acceso: 15 de julio 2025]

A. Garcia Hernandez, «Desarrollo de una aplicacion web de videoconferencias
basada en WebRTC,» Trabajo de Fin de Grado, Dep. Ingenieria Telematica,
Universidad Carlos Il de Madrid, Madrid, Espana, 2020. [En linea]. Available:
https://e-archivo.uc3m.es/rest/api/core/bitstreams/5fc95880-9f07-41ff-a01c-
b0c5783cd336/content. [Ultimo acceso: 15 de julio 2025]

«P2P, SFU and MCU WebRTC Architectures Explained,» DigitalSamba Blog, 2023.
[En linea]. Available: https://www.digitalsamba.com/blog/p2p-sfu-and-mcu-webrtc-

architectures-explained. [Ultimo acceso: 15 de julio 2025]

«Node.js Documentation,» Foundation, Node.js, 2024. [En linea]. Available:

https://nodejs.org/en/docs/. [Ultimo acceso: 15 de julio 2025]
«Socket.lO Documentation,» Socket.lO, [En linea]. Available: https://socket.io/docs/.

«Promise based HTTP client for the browser and node.js,» Axios, 2024. [En linea].

Available: https://axios-http.com/ [Ultimo acceso: 15 de julio 2025].

«Raspberry Pi 5,» Foundation, Raspberry Pi, 2023. [En linea]. Available:
https://www.raspberrypi.org/products/raspberry-pi-5/. [Ultimo acceso: 15 de julio
2025]

-54 -

[10] M. A. Zabalza, Competencias docentes del profesorado universitario para el siglo XXI,
Madrid: Narcea, 2003.

[11] Agencia Nacional de Evaluacién de la Calidad y la Acreditacion, «<ANECA,» mayo
2022. [En lineal. Available:
https://www.aneca.es/documents/20123/81865/220106_Informe_RA-
V3.pdf/f5988756-632f-db29-c27c-e7b14ad83a8e?t=1656326305105. [Ultimo acceso:
15 Abril 2023]. [Ultimo acceso: 15 de julio 2025]

[12] F. Trujillo Saez, Propuesta para una escuela en el siglo XXI, La Catarata, 2012.

[13] ANECA, 2013. [En lineal. Available:
https://www.aneca.es/documents/20123/63546/learningoutcomes_v02.pdf/cc42ff7d-
b416-5¢32-860e-b3d0a5398f492t=1654597704825. [Ultimo acceso: 15 de julio 2025].

[14] L. M. S. Srinivas, «Harnessing Media Streams in WebRTC: Capturing and Managing
Audio and Video,,» Medium, 2023. [En lineal]. Available:
https://medium.com/@Imssrinivas/harnessing-media-streams-in-webrtc-capturing-

and-managing-audio-and-video-7d69ae43d4f5. [Ultimo acceso: 15 de julio 2025]

[15] J. U. Nunez, «Desarrollo de una aplicacion de videoconferencia usando WebRTC,»
Proyecto Fin de Carrera, E.T.S. de Ingenieros de Telecomunicacion, Universidad
Politécnica de Madrid, Madrid, Espafa, , 2015. [En linea]. Available:
https://oa.upm.es/37778/1/PFC_JORGE_ULLOA NU%C3%91EZ_2015.pdf. [Ultimo
acceso: 15 de julio 2025]

-55.

Pliego de condiciones

El presente pliego de condiciones se estructura en dos apartados claramente
diferenciados; las especificaciones técnicas del hardware y los requisitos técnicos del

software, ambos necesarios para garantizar el correcto funcionamiento del sistema.
1. Especificaciones de hardware

A continuacion, se detalla los componentes fisicos necesarios para implementar el sistema
WiWiewCast, incluyendo el servidor Raspberry Pi y el equipamiento de red. Las
especificaciones garantizan el rendimiento éptimo para transmisiones de video en tiempo

real con multiples usuarios

Raspberry Pi

Componente Especificacion recomendada
Modelo Raspberry Pi 5
RAM 8GB RAM

Almacenamiento

SSD NVMe 256GB con placa de adaptacion (HAT)

Sistema operativo

Raspberry Pi OS 64-bit

Conectividad

Ethernet

Disipacién

Ventilador Activo y disipador

Router para red local

Caracteristica

Especificacion recomendada

Estandar WiFi

802.11ac

Velocidad

1200 Mbs

Dispositivos

Soporte de al menos de 20 conexiones simultaneas

- 56 -

2. Requisitos de software

Este apartado define el entorno de software base necesario para ejecutar el sistema
WiWiewCast. Incluye, por el lado del servidor, el sistema operativo, el runtime de Node.js,
librerias especificas y Node-RED, y, por el lado de los clientes el software necesario para

los dispositivos moéviles.
Sistema operativo base

e Raspberry Pi OS , basado en Debian 11 Bullseye y Arquitectura ARM64

e Kernel Linux 5.10+

Runtime, dependencias y gestores de dependencias

Componente Version Recomendada
Node.js 18.x LTS

npm 9.x o superior
Node-RED 3.0.2 o superior
Socket.lO 4.7.0 o superior

Axios 1.4.0 o superior

Nodos Node-RED requeridos

e node-red-contrib-socketio: "*1.1.0",

e node-red-contrib-axios: "*1.3.0",

Dispositivos clientes

Tipo Especificaciones

Méviles Android 7+ o iOS 12+, camara 1080p, RAM 3gb+,

navegador actualizado

-57 -

Tablets Android 8+ o iPadOS 13+, camara 1080p, RAM 3gb+,

navegador actualizado

PC’s Windows 10/MacOS 10.14/Linux Ubuntu18+, Chrome
90+
2.1. Configuracion de red local

La correcta configuracion de los parametros de la red local es importante y a la vez
necesario para garantizar las conexiones estables entre los dispositivos. A continuacion,
se detalla un ejemplo:

e Rango IP: 192.168.1.0/24 (configurable)

o Gateway: 192.168.1.1 (router)

e DHCP: 192.168.1.100 - 192.168.1.200

e |P Raspberry Pi: 192.168.1.88 (estatica reservada)

- 58 -

Presupuesto

En este apartado se exponen los costes correspondientes a la elaboracion del proyecto.
Teniendo en cuenta el contexto académico de este Trabajo Fin de Grado, se ha tomado
como guia las directrices del Colegio Oficial de Graduados e Ingenieros Técnicos de
Telecomunicacion (COITT). Sin embargo, a la hora de la valoracion de proyectos en el
ejercicio libre de la profesion debe tenerse en cuenta “El Ministerio de Economia y
Hacienda remitié a todos los colegios profesionales una nota en la que se nos recordaba
que, siguiendo directivas europeas, se debian eliminar los baremos orientativos de

honorarios que tradicionalmente veniamos publicando.”
Los costes se han dividido en las siguientes secciones:

e Materiales usados
e Trabajo tarifado por tiempo empleado
o Costes asociados a la redaccion del Trabajo Fin de Grado

o Gastos derivados de los impuestos
1. Materiales usados

En este apartado, se examina la utilizacion de los elementos fisicos y l6gicos que sustentan
el desarrollo del proyecto. Para calcular su coste, se ha empleado un método de
depreciacién lineal, el cual distribuye equitativamente la pérdida de valor de estos
elementos a lo largo de su vida util estimada. Si bien la vida Gtil estandar considerada es
de 4 afos, la duracion real de este Trabajo de Fin de Grado ha sido de cuatro meses, lo
que ha requerido un ajuste proporcional en los calculos para reflejar este periodo

especifico.

Equipos

-59-

El Trabajo de Fin de Grado se completé en un periodo de cinco meses, un intervalo
temporal significativamente menor en comparacién con el periodo de varios afos que
comunmente se utiliza como base para calcular la depreciacién del equipamiento fisico. En
consecuencia, los gastos de amortizacién presentados corresponden exclusivamente al

valor de uso durante estos cinco meses especificos.

Debido a la diferencia temporal del periodo de elaboracion del TFG y el de vida util del
material usado, se ha tomado la relacién entre los dos periodos para el calculo de la

amortizacion:
Vida util (meses) = 4 afios * 12 meses/1 afio = 48 meses
Valor amortizado = 5 meses/48 meses * Valor de adquisicion

La Tabla 1 detalla los elementos de hardware fundamentales utilizados en el proyecto,
indicando tanto su precio de compra original como la porcion de su valor que se ha
depreciado durante el periodo de desarrollo.

Tabla 1 Tabla de amortizacion de recursos de hardware

Portatil 2323,43 € 241,63 €
Raspberry Pi 5 118,99 € 12,37 €
SSD NVMe M2 256GB 39€ 4,056 €
Router Asus RT-AC86U 103,54 € 10,7 €
Raspberry Pi 5 HAT - SSD NVMe 256GB 47,90 € 4,89 €

El coste total de amortizacion de los materiales fisicos es doscientos setenta y tres con
sesenta y cuatro céntimos (273,64€).

Software

Para el software implementado en este Trabajo de Fin de Grado, la amortizacidn se calcula

considerando una utilizacion de 5 meses dentro de un ciclo de vida util de 4 afios.

-60 -

Sin embargo, las herramientas de software seleccionadas han sido principalmente de

naturaleza gratuita y open source, salvo Claude que tiene un coste mensual:

o IDE VS Code: Al ser usado su version sin suscripcion y no requerir pago de licencia
todos los costes de amortizacién seran nulo.

¢ Windows 11: Al venir ya instalado en el portatil no requiere el pago de licencias por
lo que todos los costes de amortizacidén seran nulos.

e Claude.a (Plan Pro)i: Version de pago para busquedas profundas y propuestas de
cédigo con un coste (18€/mes * 5 meses) total de noventa euros (90€)

¢ Node-RED: Al ser Software Libre no requiere el pago de licencias por lo que todos

los costes de amortizacidon seran nulos.

En consecuencia, el coste total derivado del software utilizado es de noventa euros (90€).
2. Trabajo por tiempo empleado

En la ejecucion de este proyecto se han dedicado aproximadamente 375 horas distribuidas
entre las fases de disefio, desarrollo y creacion de la documentacion. De acuerdo con las
directrices del COITT, la valoracion econémica del trabajo realizado puede determinarse

mediante la siguiente formula:

H =Ct+74.88+H7n +Ct #96.72 «He

H: Importe total de honorarios correspondientes al proyecto

o (t: Coeficiente de ajuste en funcion de las horas empleadas

e Hn: Horas desarrolladas durante jornada laboral ordinaria

e He: Horas desarrolladas en horario extraordinario (para este proyecto su valor es
Oal no haberse registrado)

Considerando los baremos establecidos por el COITT, el coeficiente de ajuste
correspondiente a las horas empleadas, segun se especifica en la, equivale a 0,60.

Tabla 2. Valores del factor de correccién en funcioén a las horas trabajadas

X <36 1

36 <X<72 0,90

-61-

72 <X<108 0,80
108 < X <144 0,70
144 < X <180 0,65
180 < X <360 0,60
360 < X <540 0,55

Conforme a dicha tabla, al completarse este proyecto en 375 horas, corresponde aplicar el
coeficiente de ajuste con valor de 0.60. En base a esto, la expresidon matematica anterior

se establece de la siguiente forma:
H =0.6+74.88x375%+0.6+96.72+0 = 16.848 €

Los honorarios resultantes del tiempo invertido en el proyecto, sin incluir impuestos,

alcanzan un total de dieciséis mil ochocientos cuarenta y ocho euros (16.848 €)
Redaccién de documentacion
Con respecto al coste de la redaccion del documento se utiliza la ecuacion:

H =0.07 #P* ch

e R: Honorarios correspondientes a la elaboracion del documento.
e P: presupuesto total del trabajo.

e (n: coeficiente de ponderacion determinado segun el presupuesto.

El importe final resulta de la adicién de los costes laborales facturados por tiempo invertido,
previamente calculados, y la depreciacion de recursos materiales cuyo total se detalla en
la Tabla 3.

Tabla 3. Presupuesto del trabajo tarifado y amortizacién de los recursos materiales

Amortizacion de recursos materiales 273,64 €

Trabajo tarifado por tiempo empleado 16.848 €

-62 -

Total 17.121,64 €

Dado que el coeficiente de ponderacién para presupuestos inferiores a 30.050,00€ se

establece por el COITT en 1.00, el coste de elaboraciéon documental del TFG resulta:
H=0,07*17.121,64 * 1= 1.198,51 €

En definitiva, el coste de redaccion del proyecto alcanza un importe de mil ciento noventa

y ocho euros con cincuenta y un céntimos (7.798,517 €)
3. Aplicacion de impuestos y coste total

A este Trabajo de Fin de Grado se le aplica el Impuesto General Indirecto Canario (IGIC),
equivalente al 7% del importe presupuestario. El presupuesto global del proyecto se detalla
en la Tabla 4.

Tabla 4.Tabla 24 Aplicacién de impuestos a los costes

Amortizacion de recursos materiales 273,64 €
Trabaijo tarifado por tiempo empleado 16.848 €
Redaccion de documentacion 1.198,51 €
Subtotal (Sin IGIC) 18.320,15 €
IGIC (7%) 1.282,41 €
Total 19.602,56 €

-63 -

El Trabajo de Fin de Grado denominado " WiWiewCast. Sistema de streaming interactivo
multiusuario con WebRTC utilizando Raspberry Pi ", desarrollado en la Escuela de
Ingenieria de Telecomunicaciones y Electronica de la Universidad de las Palmas de Gran
Canaria, presenta un coste total de desarrollo de diecinueve mil seiscientos dos euros
con 56 céntimos (19.602,56 €), que corresponde a la suma de los importes asignados a

los conceptos anteriormente especificados.

Firmado: Benito Santana Diaz Fecha:18/07/2025

-64 -

Objetivos de Desarrollo Sostenible

Grado de relacién del TFG con los objetivos de desarrollo sostenible

Tabla 5. Objetivos de desarrollo sostenible

Grado de relacion con los ODS

OoDS 0 1 2 3
No procede Bajo Medio Alto

ODS 1 Fin de la Pobreza 'S 's e e
ODS 2 Hambre cero 'O s ' e
ODS 3 Salud y Bienestar 'S ' e e
ODS 4 Educacion de calidad e S s -
ODS 5 Igualdad de género 'O ‘e 'e e
ODS 6 Agua limpia y saneamiento 'S ' e e
ODS 7 Energia Asequible y no contaminante @ r e -
ODS 8 Trabajo decente y crecimiento econémico 'c e e e
ODS 9 Industria, Innovacion e Infraestructuras C ' ' C
ODS 10 Reduccion de las desigualdades 'S e e e
ODS 11 Ciudades y comunidades sostenibles 'O ' ' s
ODS 12 Produccion y consumo sostenibles ' ' e e
ODS 13 Accion por el clima IS ' e e
ODS 14 Vida submarina 'O e e e
ODS 15 Vida de ecosistemas terrestres ' C C '
ODS 16 Paz, justicia e instituciones sdlidas o 'S ' 's
ODS 17 Alianzas para lograr objetivos G 's e 'e

Justificacion del alineamiento del TFT con los ODS con los que se ha indicado que tiene

un mayor grado de relacion:
ODS04: Educacién de Calidad

Mejora la calidad de la ensefianza mediante la transmision de video en tiempo real con

anotaciones interactivas, facilitando el acceso a contenidos educativos digitales.
ODSO09: Industria, Innovacion y Crecimiento Econémico

Al emplear tecnologias como WebRTC y Node-RED, el proyecto fomenta el desarrollo de

plataformas de comunicacién en tiempo real eficientes, escalables y accesibles.

-65 -

Anexo 1. Manuales

Este anexo tiene como objetivo establecer las condiciones técnicas, funcionales y de
calidad para la ejecucion del sistema de transmision interactiva multiusuario denominado
WiWiewCast, conforme a las especificaciones definidas en el pliego de condiciones, asi

como proporcionar un manual de usuario para su correcta operacion.
1. Manual de instalacion

La siguiente seccidn proporciona una guia para instalar el sistema desde cero. Incluye la
preparacion del Raspberry Pi, instalacion de Node.js y Node-RED, configuracion de
certificados de seguridad, y establecimiento del sistema como servicio automatizado. El
proceso culmina con la importacién de archivos del sistema y las URLs de acceso para los

diferentes roles de usuario.

El primer paso es descargar y ejecutar Raspberry Pi Imager: htips://rpi.org/imager desde

cualquier equipo. Este programa nos ayudara a instalar el sistema operativo de la

Raspberry PI dentro de una microSD.
Durante el proceso de ejecuciéon de Tmager:

e Descargar Raspberry Pi OS (64-bit recomendado).
e Habilitar SSH.
¢ Habilitar usuario y contrasefia (ejemplo “usuario: pi, contrasefia: pi”)

e Escribirimagen en microSD
1.1. Primera configuracion

A continuacién se detallan las acciones a ejecutar para la configuracién inicial:

e Insertar la tarjeta microSD y arrancar Raspberry Pi
e Conectar Raspberry Pi a la red local del router WiFi mediante cable Ethernet.
Utilizar otro dispositivo conectado a la misma red para saber la IP asignada a la

Raspberry a través del comando:
$> ping raspberrypi.local

e Utilizar la IP para conectarse a través de SSH.
$> ssh pi@192.168.1.XX

- 66 -

e Actualizar sistema

pi@raspberrypi:~$> sudo apt update && sudo apt upgrade -y

e Configurar la IP estatica

$> sudo nmtui

1.2. Instalar Node.js y Node-RED

Una vez completadas las acciones anteriores, procedemos a instalar Node.js y el entorno
grafico Node-RED.

e Instalar Node.js (version 18 LTS)

$> curl -fsSL https://deb.nodesource.com/setup 18.x
$> sudo apt-get install -y nodejs

e Instalar Node-RED globalmente

$> sudo npm install -g --unsafe-perm node-red

¢ Instalar dependencias WebRTC

$> sudo npm install -g node-red-contrib-socketio sudo npm install
-g wrtc

1.3. Crear certificados autofirmados
Para que los navegadores modernos permitan el uso de dispositivos multimedia como la

camara o el micréfono, es necesario que la conexion esté protegida mediante SSL

(HTTPS). A continuacion, se detallan los pasos para instalar certificados autofirmados.

Crear directorio para certificados

$> sudo mkdir -p /home/pi/ssl/
$> cd /home/pi/ssl/

e Generar clave privada

$> sudo openssl genrsa -out server.key 2048

e Generar certificado autofirmado (valido por 365 dias)
$> sudo openssl req -new -x509 -key server.key -out server.crt
-days 365

e Configurar Permisos

$> sudo chown root:ssl-cert /home/pi/ssl/server.key
$> sudo chown root:ssl-cert /home/pi/ssl/server.crt
$> sudo chmod 640 /home/pi/ssl/server.key
$> sudo chmod 644 /home/pi/ssl/server.crt

e Adadir usuario pi al grupo ssl-cert

$> sudo usermod -a -G ssl-cert pi

- 67 -

14. Configurar Node-RED

El paso siguiente sera configurar el entorno de trabajo Node-RED para adaptarlo a la
conexion protegida (SSL/HTTPS).

e Crear directorio de trabajo
$> mkdir ~/.node-red | cd ~/.node-red

e Configurar settings.js

$> nano settings.js

javascriptvar fs = require("fs");
module.exports = {
// Configuracidén HTTPS
https: {
key: fs.readFileSync ('/etc/ssl/wiwicast/server.key'),
cert: fs.readFileSync ('/etc/ssl/wiwicast/server.crt')
b
// Directorio para archivos estaticos
httpStatic: ‘/home/pi/nodered/public’,
// Puerto para HTTPS
uiPort: process.env.PORT || 1880,
// Resto de configuracidn existente...
functionGlobalContext: {
wrtc: require ('wrtc'),
os: require(‘os’),
b
// Confiiguracidén de seguridad
requireHttps: true

1.5. Configurar Node-RED como servicio

Una vez modificado el archivo settings.js, procederemos a configurar Node-RED como un
servicio del sistema, de modo que se inicie automaticamente cada vez que arranque el

sistema operativo.

e Crear servicio

$> sudo nano /lib/systemd/system/nodered.service;

[Unit]
Description=Node-RED
After=syslog.target network.target

[Service]
ExecStart=/usr/bin/env node-red-pi --max-old-space-size=256
Restart=on-failure
KillSignal=SIGINT
SyslogIdentifier=node-red
User=pipi

[Install]
WantedBy=multi-user.target

- 68 -

e Habilitar Node-RED como servicio

$> sudo systemctl enable nodered.service
$> sudo systemctl start nodered.service
$> sudo systemctl status nodered.service

1.6. Importar Configuracion

Una vez instalado todo el ecosistema, solo queda descargar los archivos de la aplicacion

y alojarlos en el entorno correspondiente.

e Descargar archivos del repositorio GitHub: https://github.com/benitosd/tfg.qgit
$> cd ~/.node-red (Copiar flows.json a la Raspberry Pi)

$> cd ~/nodered/public

e Copiar archivos HTML (index.html, viewer.html, admin.html, login.html)

e Copiar Carpetas JS, CSS y todo su contenido

1.7. URLs de Acceso

Una vez el sistema configurado y reiniciado se puede acceder a los diferentes perfiles a

partir de las URLS indicadas a continuacion:

e Login: https://192.168.1.88/login.htm|

e Emisor: https://192.168.1.88/index.html

e Viewer: https://192.168.1.88/viewer.html

e Admin: https://192.168.1.88/admin.html

e Node-RED: https://192.168.1.88:1880

2. Manual del Usuario

El sistema se organiza en tres roles principales que trabajan en conjunto para crear una

experiencia de transmisién dinamica, como los siguientes:

e El Emisor se encarga de transmitir video en vivo desde su dispositivo, controlando

la cdmara y la transmision.

- 069 -

o Los Viewers (0 espectadores) pueden acceder a la transmisién en tiempo real y
participar activamente dibujando sobre el video con colores y patrones Unicos que
se les asignan automaticamente, creando una capa de interaccién colaborativa.

o EI Administrador supervisa todo el sistema: gestiona a los usuarios conectados,
modera el contenido, controla las capas de dibujo y monitorea el rendimiento

general. A continuacion, se detallan los manuales especificos para cada rol.

Iniciar Sesion

Tu nombre

&Qué rol quieres usar?

Espectador v

Espectador
Administrador

Emisor

Figura 19. Pagina de autenticacion

La eleccion de este rol se realiza al autenticarse en la aplicacion. El proceso incluye los

siguientes pasos:

o Conectar el dispositivo al WiFi de WiWiewCast
o Abrir navegador y escribir la siguiente url: https://192.168.1.88/login.html

o Iniciar sesién eligiendo el rol correspondiente en el desplegable y afiadir un

nombre para identificacion.

2.1. Manual del Emisor

Cuando el interlocutor actia como emisor transmite video en vivo desde cualquier camara
de su dispositivo. Puede cambiar entre camaras (frontal o trasera en el caso de un
dispositivo movil) y elegir la orientacién horizontal o vertical de la transmisién. Solo se
necesita que el dispositivo, con camara y navegador web, esté conectado al WiFi de

WiWiewCast y tener los permisos de camara habilitados en el navegador.

Las acciones posibles con este perfil son:

-70 -

= Configuracion de la camara
o Desplegable "Seleccionar camara" - lista todas las camaras disponibles
o Cambio de camara: Solo posible cuando NO se esta transmitiendo
o Orientacioén de Video.
= Para iniciar la transmision, los pasos a seguir son:
o Verificar preview - debe verse el video de la camara
o Clic en "Iniciar Stream", después de esto el botéon cambia a "Detener

Stream" y la etiqueta muestra un indicador con el texto "En vivo".

O & 192168188 D © @ & =

Juan (emisor)

HD Camera v Horizontal v P Iniciar Stream @ Offline

Figura 20. Modo Emisor antes de empezar a transmitir

= Para finalizar la transmision debemos:
o Clic en "Detener Stream"
o Confirmacion automatica - se liberan recursos

o Vuelta al estado inicial boton cambia a "Iniciar Stream"

-71 -

O G =01 192168188

Juan (emisor) [:EI

HD Camera v Horizontal v @ Detener Stream 1 Pausar
m @ 0 espectadores

Figura 21. Modo Emisor en estado emitiendo

2.2. Manual del Viewer (Espectador)

Cuando nos logueamos como Viewer o espectador, el usuario puede ver el video en tiempo
real y participar activamente en la experiencia colaborativa mediante el sistema de dibujo
interactivo. Cada espectador recibe automaticamente un color y patrén Unico que permite

identificar sus contribuciones en la transmision.

Con este perfil, las acciones posibles incluyen la visualizacion de video, donde puedes
hacer clic en “Ver Stream” y disfrutar de una calidad adaptativa que se ajusta

automaticamente segun tu conexion.

En cuanto al sistema de dibujo colaborativo, al conectarte recibes automaticamente los
elementos que identifican al usuario, incluyendo un color Unico y un patrén distintivo en la

forma del pixel.

-72 -

Visualizador
Interactivo

O pepe | SaliF

LIMPIAR DIBUJO

Figura 22. Modo Viewer recibiendo video

Para dibujar, simplemente toca o haz clic sobre el video, y arrastra para crear lineas y
formas; todos los usuarios veran tus dibujos en tiempo real, incluidos los administradores

desde su panel.

En cuanto a la gestion de dibujos, dispones de un boton para “Borrar mi dibujo”, que elimina
Unicamente tus trazos. Este cambio es inmediato y notifica al administrador quién ha
realizado la accion. No puedes borrar los dibujos de otros, pero puedes eliminar y redibujar

los tuyos tantas veces se desee.

-73-

O & 192168.1.88

Visualizador
Interactivo

O pepe | Salir

LIMPIAR DIBUJO

Figura 23. Modo Viewer dibujando

Los controles en los dispositivos tactiles permiten dibujar con un dedo sin interferencia de
gestos como el zoom o el pinzado, ya que toda la superficie del video esta habilitada como
area de dibujo. En ordenadores, los controles con raton permiten dibujar con el clic
izquierdo, mantener presionado para trazos continuos, y mover el puntero sin hacer clic no

genera dibujo.

2.3. Manual del Administrador

Como Administrador en WiWiCast, tienes control total sobre el sistema de transmision
colaborativa, supervisando todos los usuarios conectados, gestionando las capas de dibujo
interactivo, moderando contenido en tiempo real y monitoreando el rendimiento general del
sistema. Ademas, puedes alternar entre diferentes modos de uso para adaptarte a las

necesidades de la sesion.

En el panel de control, dispones de acceso a estadisticas generales, como el niumero total
de espectadores conectados (Viewers Conectados), los que estan visualizando
activamente la transmision (Viewers Activos) y las métricas de red, que te muestran el

uso de ancho de banda en tiempo real.

-74 -

Panel de Administra

Espectadores

Usado

‘ 0.33 Mbps

Medir ancho de banda real

Bajada: 181.82 Mbps.
Subida: 27.32 Mbps
Latencia: 42 ms

Lista de Espectadores
Figura 24. Modo Admin recibiendo emision

La gestion de viewers te permite identificar a cada usuario mediante su nombre o, asi como

ver el color y patron asignados automaticamente por el sistema.

En cuanto a la visualizacion de capas, cada usuario tiene su propia capa de dibujo, la
cual puedes mostrar u ocultar de forma independiente. Esta visibilidad individual no afecta
a la integridad de los dibujos: al ocultar y volver a mostrar una capa, los trazos permanecen
intactos. Ademas, puedes borrar unicamente los dibujos de un usuario concreto con el
botdn correspondiente, o usar la funcién "Resaltar” para mostrar solo sus trazos durante

2 segundos, facilitando la moderacién o el analisis visual.

« (¢] O G 192168.1.88

Panel de Administracion

Espectadores

Ancho de Banda

141.84 Mbps

Disp scarga

3.61 Mbps
Usado

Medir ancho de banda real

Bajada: 141.84 Mbps
Subida: 27.95 Mbps
Latencia: 23 ms.

Figura 25. Modo admin recibiendo video y dibujos

-75-

Finalmente, el sistema incluye un Modo Dual (Administrador + Emisor) que permite al
administrador convertirse también en emisor de contenido. Al pulsar el botén "Cambiar a
Modo Emisor", se activan los controles de transmision, como el manejo de la camara y el
inicio del streaming, sin perder las funciones de administracion. Puedes volver al modo
exclusivamente administrativo, deteniendo la transmision en cualquier momento y

utilizando el boton "Cambiar a Modo Admin".

< C O G =207 192168.1.88

Panel de Administracion

Espectadores

o2 2 2
Ancho de Banda
273.97 2.19

Mbps Mbps

Medir ancho de banda real

Gt ey -

Latencia: 9 ms.

Figura 26. Modo Admin emitiendo video

-76 -

