

ESCUELA DE INGENIERÍA DE TELECOMUNICACIÓN

Y ELECTRÓNICA

TRABAJO DE FIN DE GRADO

 WiWiewCast. Sistema de streaming interactivo

multiusuario con WebRTC utilizando Raspberry Pi y

dispositivos móviles.

Titulación: Grado en Ingeniería en Tecnologías de la Telecomunicación

Mención: Sistema de Telecomunicaciones

Autor: Benito Santana Díaz

Tutor: Miguel Ángel Quintana Suárez

Fecha: Julio 2025

 Resumen

Este trabajo presenta un estudio exploratorio y aplicado sobre el diseño, desarrollo y

evaluación de WiWiCast, un sistema de streaming interactivo multiusuario orientado a

entornos educativos con recursos limitados. La iniciativa surge ante la necesidad de

mejorar la visibilidad y la participación en laboratorios universitarios, integrando tecnologías

web modernas como WebRTC, Node-RED y Socket.IO sobre una arquitectura accesible

basada en Raspberry Pi. El objetivo principal consiste en ofrecer una solución flexible y de

bajo coste que permita la transmisión de vídeo en tiempo real y herramientas colaborativas,

como la pizarra interactiva, favoreciendo la inclusión y la experimentación docente.

Durante el desarrollo, se examinaron diferentes arquitecturas de transmisión (P2P, SFU,

MCU) optando finalmente por un enfoque híbrido con SFU, que equilibra la escalabilidad,

el consumo de ancho de banda y la baja latencia. El sistema se compone de varias capas:

hardware económico (Raspberry Pi 5 y router dedicado), un ecosistema de software open

source (Node.js, Node-RED, módulos WebRTC y Socket.IO), y una interfaz web

diferenciada según los roles de emisor, espectador y administrador. Esta estructura

promueve la colaboración y facilita el aprendizaje activo, permitiendo la adaptación sencilla

a diversos escenarios educativos.

La evaluación en entornos reales mostró que WiWiewCast es capaz de superar las

barreras tradicionales de visibilidad e interacción en el aula, demostrando su robustez en

laboratorios con numerosos alumnos y recursos limitados. Se validaron diferentes modos

de uso y configuración, destacando la mejora significativa en la interacción grupal y en la

gestión docente, así como la accesibilidad del sistema tanto para estudiantes como para

profesores. El análisis identificó puntos de mejora, especialmente en la gestión de

autenticación, la ampliación de funcionalidades colaborativas y la integración de nuevas

herramientas multimedia.

Finalmente, el trabajo plantea diversas líneas futuras para la evolución del sistema, entre

ellas: el refuerzo de la seguridad y autenticación, la incorporación de grabación

multicámara, la expansión de las capacidades de anotación y la creación de diferentes

niveles de permisos. Se discute también el impacto de WiWiewCast en el proceso

educativo, subrayando cómo una solución tecnológica adaptada puede contribuir a la

equidad digital, a la mejora de las competencias TIC y al fomento de un aprendizaje

colaborativo y personalizado en la educación superior.

 Abstract

This work presents an exploratory study on the design, implementation, and evaluation of

WiWiCast, an interactive, multi-user streaming system developed for educational

environments with constrained resources. The project is motivated by the need to enhance

both visibility and student participation in university laboratories, leveraging modern web

technologies such as WebRTC, Node-RED, and Socket.IO. These are integrated into a

cost-effective architecture centered on a Raspberry Pi serving as the central server within

a dedicated local network. The primary goal is to provide a flexible, low-cost solution that

enables real-time video streaming and interactive digital tools—including a collaborative

whiteboard—to foster inclusive and hands-on learning experiences.

The development process involved a technical analysis of different streaming architectures

(P2P, SFU, MCU), with the final system adopting a hybrid SFU approach to balance

scalability, bandwidth usage, and low latency. The architecture is structured in layers:

affordable hardware (Raspberry Pi and dedicated router), a modular open-source software

stack (Node.js, Node-RED, WebRTC, and Socket.IO modules), and a web interface tailored

to the roles of broadcaster, viewer, and administrator. This design facilitates collaborative

learning and allows for easy adaptation to diverse educational scenarios.

Real-world testing demonstrated that WiWiewCast effectively addresses traditional

classroom visibility and interaction challenges, proving robust in environments with many

students and limited resources. Different usage modes and configurations were validated,

highlighting significant improvements in group interaction, classroom management, and

accessibility for both students and instructors. The evaluation also identified areas for future

enhancement, particularly in authentication management, expanded collaborative features,

and the integration of additional multimedia tools.

The study concludes by outlining future directions for system evolution, including enhanced

security and authentication, multicamera recording capabilities, advanced annotation

features, and differentiated user permissions. It also discusses the educational impact of

WiWiCast, emphasizing how tailored technological solutions can promote digital equity,

improve ICT competencies, and encourage collaborative, personalized learning in higher

education settings. The project serves as a practical example of how advanced, interactive

technologies can be made accessible and effective in resource-limited educational

contexts.

i

Tabla de contenido

Índice de Figuras .. - 1 -

Índice de Tablas .. - 2 -

Capítulo 1. Introducción y Objetivos ... - 3 -

1. Introducción .. - 3 -

2. Antecedentes ... - 3 -

3. Objetivos .. - 5 -

4. Estructura del documento .. - 6 -

5. Uso de IA Generativas .. - 7 -

Capítulo 2. Fundamentos técnicos .. - 9 -

1. Introducción .. - 9 -

2. WebRTC y sus componentes clave ... - 10 -

2.1. Arquitectura y componentes principales... - 11 -

2.2. Protocolos de conectividad y optimización de red ... - 12 -

2.3. Códecs y optimización multimedia ... - 14 -

3. Node.js ... - 15 -

3.1. Arquitectura y características fundamentales .. - 16 -

3.2. NPM y el ecosistema de paquetes ... - 16 -

4. Socket.io .. - 17 -

5. Axios .. - 18 -

6. Node-RED .. - 19 -

7. Arquitecturas de transmisión de vídeo ... - 20 -

8. Características del hardware: Raspberry Pi y red local - 22 -

8.1. Raspberry Pi: Servidor central del ecosistema .. - 22 -

8.2. Router WiFi: Infraestructura de red dedicada .. - 23 -

Capítulo 3. Instalación y configuración del sistema .. - 25 -

1. Configuración de la Raspberry Pi .. - 25 -

2. Instalación de Node.js y Node-RED ... - 28 -

ii

3. Creación de certificados SSL autofirmados .. - 30 -

4. Configuración y acceso a Node-RED .. - 31 -

Capítulo 4. Especificaciones de la aplicación y arquitectura del sistema - 36 -

1. Introducción .. - 36 -

2. Especificaciones de la aplicación .. - 38 -

3. Arquitectura del Sistema .. - 41 -

3.1. Backend: Node-RED .. - 41 -

3.2. Flujo de Broadcast (Emisor) ... - 42 -

3.3. Flujo de Consumer (Visualizadores) .. - 42 -

3.4. Flujo de Gestión de Eventos Socket.IO.. - 43 -

3.5. Flujo de Archivos Estáticos .. - 45 -

4. Frontend. Navegador web .. - 45 -

5. Ciclo básico de funcionamiento ... - 48 -

Capítulo 5. Evaluación y Conclusiones ... - 50 -

1. Ejecución y Evaluación del sistema. ... - 50 -

2. Conclusiones ... - 51 -

3. Trabajo futuro .. - 53 -

Bibliografía .. - 54 -

Pliego de condiciones .. - 56 -

1. Especificaciones de hardware ... - 56 -

2. Requisitos de software ... - 57 -

2.1. Configuración de red local .. - 58 -

Presupuesto .. - 59 -

1. Materiales usados ... - 59 -

2. Trabajo por tiempo empleado .. - 61 -

3. Aplicación de impuestos y coste total ... - 63 -

Objetivos de Desarrollo Sostenible ... - 65 -

Anexo 1. Manuales.. - 66 -

1. Manual de instalación ... - 66 -

iii

1.1. Primera configuración ... - 66 -

1.2. Instalar Node.js y Node-RED ... - 67 -

1.3. Crear certificados autofirmados .. - 67 -

1.4. Configurar Node-RED... - 68 -

1.5. Configurar Node-RED como servicio ... - 68 -

1.6. Importar Configuración ... - 69 -

1.7. URLs de Acceso ... - 69 -

2. Manual del Usuario ... - 69 -

2.1. Manual del Emisor .. - 70 -

2.2. Manual del Viewer (Espectador) .. - 72 -

2.3. Manual del Administrador ... - 74 -

- 1 -

 Índice de Figuras
Figura 1. Arquitectura del Sistema WebRTC más Node-RED. .. - 5 -
Figura 2. Diagrama general de WebRTC. Fuente [4]. .. - 10 -

Figura 3. Proceso de captura y uso de transmisiones multimedia en una aplicación WebRTC. Fuente [10] . - 12

-

Figura 4. Localización de candidatos para una conexión WebRTC. Fuente [11]. .. - 13 -

Figura 5. Ventana de ejemplo de Node-RED.. - 20 -
Figura 6. Raspberry Pi utilizada. .. - 23 -

Figura 7. Ejemplo de conexiones al router WiFi. Elaboración propia. ... - 24 -
Figura 8. Página de descarga de Raspberry Pi Imager .. - 26 -

Figura 9. Flujo de "Hola Mundo" ... - 33 -
Figura 10. Hola mundo desde Node-RED ... - 33 -

Figura 11. Clase masificada ... - 37 -

Figura 12. Caso de uso 1 .. - 39 -
Figura 13. Caso de uso 2. ... - 40 -

Figura 14. Caso de uso 3 .. - 41 -
Figura 15. Diagrama de flujo de Broadcast (Emisor) ... - 42 -

Figura 16. Flujo de Consumer (Visualizadores). ... - 43 -

Figura 17. Flujo de Gestión de Eventos Socket.IO .. - 44 -
Figura 18. Flujo de Archivos Estáticos ... - 45 -

Figura 19. Página de autenticación .. - 70 -
Figura 20. Modo Emisor antes de empezar a transmitir ... - 71 -

Figura 21. Modo Emisor en estado emitiendo ... - 72 -
Figura 22. Modo Viewer recibiendo video ... - 73 -

Figura 23. Modo Viewer dibujando ... - 74 -

Figura 24. Modo Admin recibiendo emision .. - 75 -
Figura 25. Modo admin recibiendo video y dibujos ... - 75 -

Figura 26. Modo Admin emitiendo video .. - 76 -

- 2 -

Índice de Tablas
Tabla 1 Tabla de amortización de recursos de hardware .. - 60 -
Tabla 2. Valores del factor de corrección en función a las horas trabajadas .. - 61 -

Tabla 3. Presupuesto del trabajo tarifado y amortización de los recursos materiales - 62 -
Tabla 4.Tabla 24 Aplicación de impuestos a los costes ... - 63 -

Tabla 5. Objetivos de desarrollo sostenible ... ¡Error! Marcador no definido.

- 3 -

Capítulo 1. Introducción y Objetivos

1. Introducción
El desarrollo de las tecnologías web estos últimos años ha facilitado, entre otros avances,

el acceso al conocimiento en entornos educativos, eliminando barreras tradicionales de

tiempo y espacio. Esta evolución tecnológica ha modificado significativamente los métodos

educativos tradicionales, permitiendo que el aprendizaje supere las limitaciones físicas del

aula convencional. Este trabajo de fin de grado tiene como objetivo desarrollar un

ecosistema integral, basado en estas tecnologías, que permita la transmisión de video y la

interacción en tiempo real a nivel local, optimizado para el uso de dispositivos móviles. La

solución propuesta se fundamenta en la implementación de un sistema basado en

WebRTC (Web Real-Time Communication) [1] y el entorno de programación visual Node-

RED [2], tecnologías que posibilitan la transmisión de video de baja latencia junto con la

capacidad de realizar anotaciones sincronizadas sobre el contenido transmitido,

aprovechando las capacidades de Node-RED para gestionar los flujos de comunicación.

La arquitectura del sistema se implementará sobre una Raspberry Pi, utilizando una red

local dedicada a través de un router WiFi en modo punto de acceso (AP). Esto permitirá

garantizar un entorno controlado y optimizado para el uso en aulas, donde los docentes

podrán transmitir contenido audiovisual mientras los estudiantes realizan anotaciones en

tiempo real, creando así un espacio de aprendizaje interactivo y colaborativo.

La motivación principal de este proyecto surge de la necesidad de crear soluciones

educativas accesibles y universales. En este sentido, la propuesta se fundamenta en el uso

de tecnologías web modernas que, junto con la implementación de un portal para la gestión

de usuarios, garantizan el acceso desde cualquier dispositivo con un navegador web. Esta

aproximación tecnológica elimina la dependencia de software especializado y facilita su

adopción inmediata en diferentes contextos educativos.

2. Antecedentes
La transmisión de video en tiempo real en tecnologías web ha experimentado un avance

notable durante la última década, impulsado principalmente por el desarrollo de WebRTC,

- 4 -

una tecnología que permite la comunicación directa entre navegadores sin necesidad de

plugins como Flash, Silverlight o Java, eliminando así los problemas de compatibilidad que

caracterizaban las soluciones anteriores.

Entre los principales logros, destaca la estandarización de WebRTC por organismos como

el W3C (World Wide Web Consortium) y la IETF (Internet Engineering Task Force), lo que

ha permitido su adopción generalizada. Además, se han implementado tecnologías de

optimización de red como STUN (Session Traversal Utilities for NAT), TURN (Traversal

Using Relays around NAT) e ICE (Interactive Connectivity Establishment) [3] [4], facilitando

la conectividad peer-to-peer (P2P) en entornos educativos y colaborativos. Paralelamente,

el ecosistema Node-RED ha evolucionado, incorporando nodos especializados en video y

WebRTC, lo que amplía las posibilidades de integración y control de flujos multimedia.

Sin embargo, a pesar de estos avances, la implementación de sistemas de streaming

interactivo eficientes enfrenta diversos desafíos técnicos que requieren soluciones

específicas. Las limitaciones en la escalabilidad del modelo P2P cuando el número de

usuarios crece hacen necesario evaluar arquitecturas alternativas como SFU (Selective

Forwarding Unit) o Multicast. Además, la optimización del ancho de banda y la reducción

de la latencia continúan siendo aspectos críticos para garantizar una experiencia educativa

fluida y atractiva. Por otro lado, la gestión y visualización de flujos de comunicación

complejos en sistemas WebRTC puede resultar complicada, especialmente cuando se

requiere un control centralizado y una monitorización sencilla. Node-RED aporta ventajas

significativas en este ámbito, gracias a su interfaz de programación visual que facilita la

visualización, control y automatización de los procesos de comunicación.

En este contexto, el presente trabajo explora las diferentes alternativas y se centra en un

enfoque híbrido basado en SFU y WebRTC, combinando la eficiencia y escalabilidad de la

distribución de video con la interactividad y la baja latencia propias de WebRTC. Esta

estrategia, junto con la integración de Node-RED, tiene como objetivo mejorar la eficiencia

y la escalabilidad de las transmisiones interactivas en tiempo real, optimizar el uso del

ancho de banda y facilitar la gestión educativa en el aula digital.

- 5 -

Figura 1. Arquitectura del Sistema WebRTC más Node-RED.

3. Objetivos

El análisis del estado del arte y el desarrollo de este trabajo persiguen una serie de

objetivos fundamentales orientados a abordar tanto los desafíos técnicos como los

pedagógicos que plantea la implementación de sistemas de streaming interactivo en

entornos educativos. Estos objetivos buscan asegurar que la solución propuesta no solo

sea técnicamente viable, sino que también responda a las necesidades reales de docentes

y estudiantes en el contexto educativo actual.

Los objetivos específicos son:

 Comprender la arquitectura y el funcionamiento interno de WebRTC, con especial

atención a la transmisión de vídeo en tiempo real y a los protocolos que garantizan

la calidad, estabilidad y baja latencia de las conexiones. Este conocimiento es

- 6 -

esencial para ofrecer una experiencia educativa fluida y colaborativa, donde

docentes y estudiantes puedan interactuar sin demoras ni interrupciones.

 Explorar la integración de WebRTC con Node-RED, analizando tanto las ventajas

como los desafíos derivados de la combinación de ambas tecnologías. La

programación visual que ofrece Node-RED facilita la gestión, visualización y control

de los flujos multimedia, permitiendo que la administración de la información en el

aula sea más intuitiva y accesible, fomentando la participación activa de los

estudiantes.

 Evaluar diferentes arquitecturas de transmisión de vídeo, considerando aspectos

clave como la latencia, la escalabilidad, el consumo de ancho de banda y la carga

sobre servidores o clientes. Esta evaluación permitirá identificar la solución más

adecuada a las necesidades educativas y a las limitaciones técnicas del entorno de

implementación, asegurando que el sistema sea adaptable y escalable.

 Determinar la arquitectura óptima para un sistema de streaming interactivo

multiusuario, adaptada a las características de hardware y red del entorno

educativo, y que permita tanto la transmisión audiovisual como la interacción de

datos en tiempo real. El objetivo es que los estudiantes puedan no solo visualizar

contenido, sino también interactuar activamente mediante herramientas como el

dibujo colaborativo, promoviendo el aprendizaje colaborativo y la participación

directa en el proceso educativo.

4. Estructura del documento

Esta memoria se organiza en cinco capítulos, cada uno de los cuales aborda un aspecto

esencial para el diseño, desarrollo e implementación del sistema de streaming interactivo

basado en WebRTC y Node-RED, con énfasis en la interacción colaborativa y la gestión

de datos en tiempo real.

En el capítulo 1, "Introducción y objetivos", se presenta el contexto tecnológico y la

motivación del proyecto, exponiendo los antecedentes de WebRTC y Node-RED, así como

los desafíos actuales en la transmisión de video interactiva y escalabilidad en entornos

educativos. Se definen cuatro objetivos específicos que abarcan desde la comprensión de

la arquitectura WebRTC hasta la determinación de una solución óptima para streaming

- 7 -

interactivo multiusuario. Este capítulo establece el marco conceptual y justifica la relevancia

de la propuesta basada en un enfoque híbrido SFU-WebRTC con Node-RED.

El capítulo 2, "Fundamentos técnicos", desarrolla los principios y tecnologías clave del

proyecto. Se analizan en profundidad WebRTC y Node-RED, explicando sus componentes,

funcionamiento y ventajas para la transmisión de video y la gestión de flujos de datos

interactivos. Además, se revisan las diferentes arquitecturas de transmisión (P2P, SFU,

Multicast, híbridas) [5], evaluando su idoneidad para escenarios multiusuario y

colaborativos. También se introducen los conceptos de interacción de datos y dibujo

colaborativo como parte integral del sistema.

En el capítulo 3, "Instalación y configuración del sistema", se detalla el proceso de

preparación del entorno de desarrollo, incluyendo la selección y configuración del hardware

(como Raspberry Pi) y del software necesario. Se describen los pasos para instalar y

configurar WebRTC, Node-RED y los módulos específicos para la transmisión de video y

la interacción de datos. Se documentan las consideraciones de red y seguridad para

garantizar un entorno estable y controlado en el aula.

El capítulo 4, "Especificaciones de la aplicación y arquitectura del sistema", define los

requisitos funcionales y no funcionales del sistema, abarcando tanto la transmisión de video

como las funcionalidades de colaboración (por ejemplo, la pizarra digital o el dibujo

compartido en tiempo real). Se presenta el diseño detallado, los diagramas de flujo de datos

y la estructura de los módulos, justificando las decisiones tomadas con base en los

objetivos pedagógicos y técnicos del proyecto.

En el capítulo 5, "Evaluación y Conclusiones", presenta la metodología de pruebas, los

escenarios de uso y los resultados obtenidos tras la implementación del sistema. Se

analizan métricas clave como la latencia, la escalabilidad, y la robustez de la interacción

colaborativa. Se exponen las conclusiones, el grado de cumplimiento de los objetivos y se

proponen líneas de trabajo futuro para la mejora y ampliación del sistema.

5. Uso de IA Generativas

 En cumplimiento de las "Recomendaciones sobre uso de la IAGen en la UPGC"

,aprobadas por el Consejo de Gobierno Extraordinario de la ULPGC el 6 de junio de 2024,

este TFG ha empleado inteligencia artificial generativa como herramienta de apoyo,

- 8 -

usándose de manera equivalente a un navegador web para contrastar fuentes de

información, generar ideas y proponer soluciones.

- 9 -

Capítulo 2. Fundamentos técnicos

1. Introducción

El desarrollo del sistema de streaming interactivo propuesto en este proyecto requiere la

integración de múltiples tecnologías que trabajan de manera coordinada para proporcionar

transmisión de video, interacción en tiempo real y gestión de usuarios en entornos

educativos. La solución se implementa utilizando JavaScript como lenguaje de

programación unificado, aprovechando su capacidad para ejecutarse tanto en el navegador

(cliente) como en el servidor, lo que simplifica significativamente el desarrollo y

mantenimiento del sistema.

Este capítulo examina los fundamentos técnicos de cada componente software del

ecosistema:

 WebRTC para comunicación multimedia,

 Node.js [6] como entorno de ejecución,

 Socket.io [7] para comunicación bidireccional,

 Axios [8] para integraciones HTTP, y

 Node-RED para orquestación visual de flujos de datos.

También se recogen las características específicas del hardware seleccionado, incluyendo

la Raspberry Pi [9] como servidor central y el router WiFi configurado en modo punto de

acceso para crear la red local dedicada.

Entender estas tecnologías es fundamental para comprender las decisiones de

arquitectura tomadas en el proyecto y para evaluar las diferentes alternativas de

transmisión de video (P2P, SFU, MCU), que se analizarán posteriormente. El enfoque

adoptado busca equilibrar el nivel técnico necesario y la aplicación práctica dentro del

entorno específico de este trabajo.

- 10 -

2. WebRTC y sus componentes clave

WebRTC representa un conjunto de estándares y tecnologías que permite la comunicación

en tiempo real directamente entre navegadores web, sin necesidad de plugins adicionales

o software especializado. Esta tecnología, estandarizada por el W3C (World Wide Web

Consortium) y la IETF (Internet Engineering Task Force), ha revolucionado la forma en la

que se implementan las aplicaciones de comunicación multimedia en la web,

proporcionando una base sólida para el desarrollo de sistemas interactivos y colaborativos.

La importancia de WebRTC en el contexto educativo radica en su capacidad para acercar

las tecnologías de comunicación avanzadas a todo tipo de usuario, eliminando las barreras

tradicionales de instalación de software y configuración compleja. Su implementación

nativa en navegadores modernos garantiza una compatibilidad casi universal y permite su

uso inmediato en cualquier dispositivo con acceso web, desde ordenadores hasta móviles

con pocos recursos. El diagrama general de WebRTC puede verse en Figura 2 .

Figura 2. Diagrama general de WebRTC. Fuente [4].

- 11 -

2.1. Arquitectura y componentes principales

La arquitectura de WebRTC se fundamenta en tres APIs principales que trabajan de forma

coordinada para facilitar la comunicación multimedia, cada una especializada en aspectos

específicos del proceso de transmisión:

 RTCPeerConnection

Constituye el núcleo técnico de WebRTC, implementando la lógica compleja de

establecimiento y gestión de conexiones peer-to-peer. Esta API coordina múltiples

procesos simultáneamente, incluyendo la negociación inicial de capacidades entre pares

mediante el intercambio de Session Description Protocol (SDP), el establecimiento de

canales seguros de comunicación utilizando Datagram Transport Layer Security (DTLS), la

adaptación dinámica de calidad según condiciones de red variables mediante técnicas

como Adaptive Bitrate (ABR), y la implementación de mecanismos robustos de

recuperación ante fallos de conectividad. La API gestiona automáticamente aspectos

complejos como el reordenamiento de paquetes, la detección y corrección de errores, y la

sincronización temporal entre streams de audio y vídeo.

 MediaStream (getUserMedia API)

Permite la captura y manipulación de contenido multimedia, como son el acceso a la

cámara y el micrófono del dispositivo. Esta API proporciona control sobre los recursos

multimedia del dispositivo, permitiendo configurar parámetros críticos como resolución de

vídeo (desde 320x240 hasta 1920x1080 o superior), tasa de frames (15, 24, 30 fps), calidad

de audio (8kHz a 48kHz), y selección específica del dispositivo (cuando múltiples fuentes

están disponibles). Esta flexibilidad es fundamental para optimizar una adecuada

experiencia de usuario, según las capacidades del hardware disponible, garantizando que

dispositivos menos potentes puedan participar adecuadamente en sesiones interactivas

mediante configuraciones adaptadas a sus limitaciones.

- 12 -

Figura 3. Proceso de captura y uso de transmisiones multimedia en una aplicación WebRTC. Fuente [10]

 RTCDataChannel

Extiende las capacidades de WebRTC más allá de la transmisión multimedia,

proporcionando canales bidireccionales de baja latencia para el intercambio de otros datos

entre pares conectados. Según las necesidades específicas de la aplicación, estos canales

pueden configurarse como confiables (asegurando la entrega ordenada de los datos

mediante mecanismos similares a los del protocolo TCP) o no confiables (priorizando

velocidad mediante mecanismos similares a los utilizados en el protocolo UDP).

RTCDataChannel facilita la implementación de características colaborativas avanzadas

como anotaciones sincronizadas en tiempo real, pizarras digitales compartidas con

resolución de conflictos, sistemas integrados de mensajería instantánea, transferencia de

archivos entre participantes, y sincronización de estados de aplicación para mantener

coherencia entre múltiples usuarios.

2.2. Protocolos de conectividad y optimización de red

WebRTC utiliza un conjunto de protocolos especializados para asegurar una conectividad

robusta y eficiente, incluso en redes complejas y heterogéneas. Estos protocolos son

esenciales para aplicaciones WebRTC que funcionan a través de Internet y deben superar

barreras como NAT y firewalls. En la Figura 4 puede verse el esquema general que se

utiliza para la localización de otros equipos. En este proyecto la comunicación se realiza

sobre una red local dedicada, configurada mediante un router WiFi en modo punto de

acceso. En este entorno controlado, muchos de los mecanismos destinadas a superar esos

obstáculos no resultan necesarios. No obstante, es relevante comprender cómo funcionan

- 13 -

estos protocolos para valorar las ventajas y simplificaciones que aporta la arquitectura de

red local implementada.

Figura 4. Localización de candidatos para una conexión WebRTC. Fuente [11].

 STUN (Session Traversal Utilities for NAT)

Este protocolo permite a los dispositivos descubrir automáticamente su dirección IP pública

y caracterizar el comportamiento del NAT que está utilizando su router o firewall. STUN

opera mediante un servidor externo que refleja la dirección y puerto desde los cuales recibe

peticiones, proporcionando información crucial sobre la topología de red. Esta información

incluye el tipo específico de NAT (Full Cone, Restricted Cone, Port Restricted, o

Symmetric), la dirección IP pública asignada, y los puertos disponibles para comunicación

externa. En nuestro sistema con una red local dedicada, los dispositivos pueden descubrir

directamente sus direcciones IP locales sin necesidad de servidores STUN externos,

simplificando significativamente el proceso de establecimiento de conexiones.

 TURN (Traversal Using Relays around NAT)

Es un mecanismo de respaldo robusto cuando las conexiones directas P2P no son viables

debido a configuraciones restrictivas de seguridad de red. El servidor TURN actúa como

un proxy multimedia inteligente, recibiendo y retransmitiendo todo el tráfico entre pares que

no pueden conectarse directamente. TURN implementa mecanismos de autorización para

prevenir uso no autorizado, gestión eficiente de recursos para minimizar latencia adicional,

y balanceado de carga para distribuir el tráfico entre múltiples servidores cuando el

volumen lo requiere. Al operar en una red local controlada, nuestro proyecto elimina la

necesidad de servidores TURN, ya que todos los dispositivos están en el mismo segmento

de red y pueden establecer conexiones directas, reduciendo latencia y eliminando

dependencias de infraestructura externa.

- 14 -

 ICE (Interactive Connectivity Establishment)

Es un protocolo que coordina el uso de STUN y TURN para encontrar la mejor forma de

conectar dos dispositivos en red. Su función principal es probar diferentes caminos de

conexión y seleccionar el más eficiente. Para ello, ICE recopila varias combinaciones

posibles de direcciones IP y puertos, llamadas candidatos ICE, y realiza pruebas

simultáneas para ver cuál funciona mejor. Estos candidatos pueden ser locales, públicos

(obtenidos mediante STUN) o de retransmisión (mediante TURN). Luego, el protocolo

verifica la conectividad en ambos sentidos y elige el par de candidatos con mejor

rendimiento. En nuestro caso, como el sistema opera dentro de una red local dedicada,

ICE se simplifica considerablemente, ya que solo necesita usar candidatos locales. Esto

reduce la complejidad y permite establecer la conexión de manera más rápida y predecible.

 DTLS (Datagram Transport Layer Security)

Es el protocolo de seguridad utilizado en WebRTC para cifrar toda la comunicación de

extremo a extremo, asegurando la confidencialidad e integridad de los datos sin afectar el

rendimiento en tiempo real. Está diseñado específicamente para entornos donde es crucial

la baja latencia, e incluye procesos de negociación optimizados (handshakes) y una gestión

eficiente de claves de cifrado. Aunque en este proyecto el sistema opera en una red local,

DTLS sigue siendo necesario, ya que la protección de las comunicaciones es fundamental

e independiente del tipo de red utilizada.

2.3. Códecs y optimización multimedia

WebRTC ofrece soporte nativo para una amplia gama de códecs de audio y video de última

generación, integrando mecanismos de selección automática y adaptación dinámica según

las capacidades del dispositivo, las condiciones de red y los requisitos específicos de la

aplicación.

 Vídeo

En el caso del video, la suite incluye códecs como VP8, VP9, H.264 (en sus perfiles

baseline, main y high), AV1 y H.265, cada uno optimizado para distintos escenarios. VP9

destaca por su alta eficiencia de compresión, especialmente útil para contenido estático

como presentaciones o pantallas compartidas, mientras que H.264 garantiza una

compatibilidad amplia y aceleración por hardware en la mayoría de los dispositivos móviles.

Por su parte, AV1 representa el estado del arte en compresión eficiente, ideal para

- 15 -

conexiones con ancho de banda limitado. La selección del códec más adecuado se realiza

automáticamente teniendo en cuenta factores como el hardware disponible, el ancho de

banda detectado, el tipo de contenido (por ejemplo, video de cámara frente a pantalla

compartida) y las prioridades definidas por la aplicación.

Para adaptarse a variaciones en la calidad de la red, WebRTC incorpora técnicas como

Simulcast (transmisión simultánea de múltiples resoluciones) y Scalable Video Coding

(SVC), que permiten ajustar dinámicamente la calidad del video transmitido. Estas

estrategias permiten una degradación gradual de la calidad visual en situaciones adversas,

manteniendo la continuidad de la transmisión y priorizando la comprensibilidad del

contenido. En los casos donde los recursos son limitados, se da preferencia a preservar el

audio frente al video.

 Audio

En cuanto al audio, WebRTC incluye códecs como Opus (altamente optimizado para voz y

música), G.711 (para compatibilidad con sistemas antiguos) y G.722 (que ofrece mayor

calidad). Además, se emplean técnicas avanzadas de procesamiento digital de señales,

como la cancelación automática de eco (AEC), la reducción de ruido (NS) y el control

automático de ganancia (AGC). Estas funciones están orientadas a mejorar la inteligibilidad

del audio, especialmente en entornos como aulas, donde pueden coexistir múltiples fuentes

de sonido y distintos dispositivos de entrada. No obstante, en el sistema desarrollado para

este proyecto, el componente de audio no es relevante, ya que la comunicación se limita a

la transmisión de video y a la interacción a través del dibujo colaborativo.

3. Node.js

Node.js [6] es un entorno de ejecución (runtime environment) de JavaScript de código

abierto y multiplataforma que permite ejecutar código JavaScript fuera del navegador, es

decir, en el servidor. Esto ha revolucionado el desarrollo de aplicaciones web, ya que antes

JavaScript solo podía usarse en el lado del cliente, pero con Node.js se pueden crear

aplicaciones de red rápidas y escalables usando el mismo lenguaje tanto en el cliente como

en el servidor. Su funcionamiento se basa en reaccionar a eventos (event-driven) y en no

quedarse esperando a que una tarea termine para empezar otra (non-blocking I/O), lo que

lo hace muy eficiente para aplicaciones que necesitan atender a muchos usuarios al mismo

tiempo y responder rápidamente. Por eso, Node.js es especialmente útil para desarrollar

plataformas interactivas en tiempo real, como chats, juegos online o sistemas de

- 16 -

colaboración, donde es fundamental manejar múltiples conexiones simultáneas sin perder

rendimiento.

3.1. Arquitectura y características fundamentales

Node.js está construido sobre el motor V8 de Google Chrome, que es el encargado de

ejecutar JavaScript de manera muy rápida. Una de las cosas más importantes de Node.js

es cómo gestiona muchas tareas al mismo tiempo sin necesidad de crear un hilo (thread)

para cada una. Esto lo consigue gracias a un sistema llamado bucle de eventos (event

loop), que es un coordinador que va atendiendo las tareas una a una y decide cuándo

puede pasar a la siguiente.

Cuando Node.js necesita hacer algo que puede tardar, como leer un archivo o consultar

una base de datos, no se queda esperando a que termine. En vez de eso, deja esa tarea

en segundo plano y sigue atendiendo otras cosas. Cuando la tarea larga termina, Node.js

recibe un aviso y ejecuta la función que estaba esperando ese resultado. Esta asincronía

es posible gracias al event loop y al uso de funciones especiales como callbacks, promesas

(promises) y async/await

Esta forma de trabajar hace que Node.js sea ideal para aplicaciones que tienen que atender

a muchos usuarios a la vez y responder rápido, como chats, juegos online o servicios de

streaming, y en nuestro caso, peticiones de diferentes viewers para dibujar a la vez.

Nuestro desarrollo debe poder manejar diferentes conexiones sin volverse lento ni

bloquearse.

Además, Node.js tiene un sistema que gestiona la memoria de manera automática

(recolector de basura) y herramientas para supervisar el rendimiento y detectar problemas,

lo que es muy útil para aplicaciones que deben estar funcionando durante mucho tiempo

sin interrupciones.

3.2. NPM y el ecosistema de paquetes

NPM (Node Package Manager) es una herramienta que viene con Node.js y sirve para

instalar y gestionar librerías o “paquetes” que otros programadores han creado y

compartido. Esto hace que no tengas que programar todo desde cero, sino que puedas

aprovechar soluciones ya hechas para sumar funciones a tu proyecto, como por ejemplo

WebRTC, Socket.io o Axios, todas utilizadas en este proyecto.

- 17 -

Con NPM puedes instalar, actualizar o eliminar fácilmente estas librerías, y también te

ayuda a asegurarte de que todas las dependencias de tu proyecto (es decir, los paquetes

que necesita para funcionar) estén bien organizadas y sean compatibles entre sí. Todo

esto se controla a través de un archivo llamado package.json, donde se guarda la lista de

dependencias y sus versiones. Además, NPM utiliza un sistema llamado “versionado

semántico” (semantic versioning) para gestionar las versiones de los paquetes, asegurando

así la actualización de las librerías de forma segura, sabiendo que los cambios importantes

no romperán el proyecto, algo muy importante para mantener la estabilidad de cualquier

aplicación.

4. Socket.io

Socket.io [7] es una librería de JavaScript que permite que el servidor y los usuarios

(clientes) se comuniquen entre sí en tiempo real, es decir, que los mensajes y

actualizaciones lleguen al instante, sin necesidad de recargar la página o estar haciendo

peticiones constantes. Socket.io usa principalmente una tecnología llamada WebSocket,

pero si por algún motivo no está disponible, puede cambiar automáticamente a otros

métodos como “polling” HTTP para asegurar que la conexión siga funcionando.

Otra característica importante es la gestión de conexiones. Si un usuario pierde la conexión

durante en algún instante, Socket.io puede reconectarlo automáticamente y mantener el

estado de la sesión. De esta manera, las interrupciones temporales de la red no afectan a

la experiencia de usuario y todo sigue sincronizado para los usuarios. Además, Socket.io

permite organizar a los usuarios en “salas” o “espacios” separados, conocidos como rooms

y namespaces. Esto es útil para dividir a los participantes en grupos, clases o equipos, y

así mantener conversaciones o actividades independientes dentro de la misma aplicación.

En cuanto a los usos en aplicaciones, una de las funciones más destacadas es la

sincronización en tiempo real. Por ejemplo, en nuestro caso, cada vez que alguien dibuja,

todos los demás ven el cambio al instante en el panel de administración. También permite

definir eventos personalizados para distintas acciones, como cuando un estudiante dibuja

algo “políticamente incorrecto”, el profesor puede borrar solo su dibujo.

Por último, Socket.io puede configurarse para funcionar en varios servidores al mismo

tiempo (clustering), lo que permite que aplicaciones con muchos usuarios conectados

simultáneamente sigan funcionando sin problemas. Es decir, facilita la creación de

- 18 -

aplicaciones donde la información debe viajar rápido y sin retrasos entre todos los usuarios,

como chats, pizarras colaborativas o juegos multijugador.

5. Axios

Axios [8] es una librería que facilita el envío y recepción de solicitudes HTTP, es decir, la

comunicación entre una aplicación y servicios web o APIs. Está basada en promesas

(promises), lo que permite manejar de forma sencilla las respuestas asíncronas, tanto en

navegadores como en aplicaciones Node.js.

Una de las ventajas principales de Axios es que permite configurar interceptores

(interceptors), que son funciones que se ejecutan automáticamente antes de enviar una

petición o después de recibir una respuesta. Esto ayuda a implementar funcionalidades

comunes como la autenticación automática, el registro de operaciones (logging), el manejo

centralizado de errores y la transformación de datos, todo de forma transparente para el

desarrollador.

Axios también ofrece un sistema de manejo de errores más completo que el método nativo

fetch. Puede distinguir entre diferentes tipos de errores, como problemas de red, errores

del servidor, tiempos de espera (timeouts) o errores de validación. Esto es especialmente

útil en aplicaciones donde se requiere una respuesta adecuada según el tipo de fallo.

Otra característica importante es la posibilidad de cancelar peticiones (request cancellation)

usando tokens especiales. Esto evita problemas cuando, por ejemplo, un usuario realiza

varias acciones rápidas que generan múltiples solicitudes, y algunas de ellas quedan

obsoletas antes de completarse. Axios facilita la integración con sistemas externos como

plataformas de gestión de aprendizaje (LMS), bases de datos de estudiantes o servicios

de calificaciones, ofreciendo una forma consistente y segura de comunicarse con estas

APIs.

Además, gracias a los interceptores, es posible implementar mecanismos de autenticación

automática con tokens JWT, renovar estos tokens sin que el usuario lo note, y cerrar sesión

automáticamente cuando las credenciales expiran, manteniendo la seguridad sin afectar la

experiencia del usuario.

Esta librería permite configurar opciones para optimizar el rendimiento, como establecer

tiempos máximos de espera (timeouts), reintentos automáticos en caso de fallos, y

- 19 -

reutilización de conexiones (connection pooling). Estas características son clave en

entornos donde la calidad de la red puede variar.

Axios es una herramienta potente y sencilla que ayuda a manejar las comunicaciones

HTTP de manera eficiente, segura y adaptable a las necesidades específicas de

aplicaciones modernas, incluyendo las educativas. En este proyecto Axios se utiliza en los

dispositivos clientes para hacer peticiones HTTP.

6. Node-RED

Node-RED [2] es una herramienta de programación visual que permite crear aplicaciones

conectando bloques llamados nodos, sin necesidad de escribir mucho código. Estos nodos

se pueden arrastrar y soltar desde un panel en el navegador, y luego se conectan entre sí

para definir cómo fluye la información entre ellos, los servicios web y las APIs. Gracias a

este enfoque, Node-RED hace que la programación sea más accesible y sencilla, incluso

para quienes no son expertos en desarrollo de software, ver Figura 5.

La arquitectura de Node-RED se basa en el concepto de flujos de datos: cada nodo realiza

una función específica, y las conexiones entre nodos marcan el camino que siguen los

datos a lo largo del sistema. Aunque Node-RED está construido sobre Node.js y aprovecha

todas sus ventajas, añade una capa visual que facilita mucho la comprensión y el

mantenimiento de sistemas complejos. Además, permite integrar fácilmente cualquier

paquete de Node.js como un nodo personalizado, lo que significa que librerías como

Socket.io, Axios o WebRTC pueden usarse dentro de los flujos visuales para sumar

funcionalidades avanzadas.

El ecosistema de Node-RED incluye nodos especializados para diferentes tareas. Por

ejemplo, hay nodos para gestionar conexiones WebRTC, que simplifican la creación de

videollamadas o la transmisión de datos en tiempo real, y pueden trabajar junto con

servidores Socket.io para coordinar conexiones entre usuarios. También existen nodos

HTTP y WebSocket para conectar con APIs y servicios web, y nodos de procesamiento de

vídeo que permiten manipular imágenes, aplicar filtros o adaptar los vídeos a las

capacidades de distintos dispositivos.

En la gestión de sistemas, Node-RED ofrece ventajas como la monitorización visual en

tiempo real del estado del sistema y de las conexiones activas. Esto facilita detectar

problemas rápidamente y entender cómo se comporta la aplicación. Además, permite

- 20 -

modificar los flujos de trabajo mientras el sistema está funcionando, sin necesidad de

reiniciar servicios ni interrumpir la actividad de los usuarios.

Por último, Node-RED es muy flexible y escalable: facilita añadir nuevas funciones o

integrar servicios externos mediante la creación de nodos personalizados, manteniendo

siempre la simplicidad visual y aprovechando toda la potencia del ecosistema Node.js. Por

todo esto, Node-RED se ha convertido en una herramienta clave tanto en la industria como

en proyectos educativos, domótica e Internet de las Cosas.

Figura 5. Ventana de ejemplo de Node-RED.

7. Arquitecturas de transmisión de vídeo

La arquitectura de transmisión de vídeo es clave para el rendimiento y la capacidad de

crecimiento de cualquier sistema educativo basado en streaming. Cada tipo de arquitectura

tiene sus propias ventajas y limitaciones, por lo que es importante analizar cuál se adapta

mejor a cada situación.

En la arquitectura P2P, cada participante se conecta directamente con los demás,

formando una red donde todos se comunican sin intermediarios. Esto permite una latencia

muy baja y una alta calidad de transmisión, ya que no hay servidores centrales que

recodifiquen el vídeo ni gestionen todo el tráfico. Sin embargo, este modelo tiene un gran

inconveniente: a medida que aumenta el número de participantes, también crece de

manera exponencial el número de conexiones y el consumo de ancho de banda, lo que

limita seriamente su escalabilidad. Por eso, el P2P es ideal para grupos pequeños, como

- 21 -

tutorías individuales o equipos de trabajo reducidos, donde la interacción directa y la

rapidez son más importantes que la cantidad de usuarios.

Por otro lado, la arquitectura SFU (Selective Forwarding Unit) utiliza un servidor central

que recibe los vídeos de todos los participantes y los reenvía selectivamente a quienes los

necesitan. El servidor SFU no modifica ni recodifica los vídeos, solo los distribuye, lo que

reduce la carga de procesamiento y mantiene la latencia baja. Cada usuario envía su vídeo

solo una vez al servidor, que luego se encarga de repartirlo a los demás. Esto mejora

mucho la escalabilidad y permite adaptar la calidad de cada transmisión según la conexión

y el dispositivo de cada usuario. Además, facilita funciones como la grabación de sesiones,

la moderación y la obtención de estadísticas. En entornos educativos, la SFU permite, por

ejemplo, que el profesor transmita en alta calidad mientras los estudiantes lo hacen en

resoluciones más bajas, optimizando así los recursos disponibles.

La arquitectura MCU (Multipoint Control Unit) es diferente, ya que el servidor central recibe

todos los vídeos, los decodifica, los combina en una sola imagen y luego envía ese

resultado a todos los participantes. Este proceso requiere mucho más procesamiento y

puede introducir algo de retraso, pero ofrece un control total sobre cómo se ve la imagen

final. Es especialmente útil en situaciones donde se necesita una presentación unificada,

como conferencias con varios ponentes, evaluaciones en las que se debe ver al estudiante

y su trabajo al mismo tiempo, o grabaciones con un diseño visual profesional.

Finalmente, existen arquitecturas híbridas y adaptativas que combinan las ventajas de

los modelos anteriores. Por ejemplo, se pueden usar conexiones P2P para subgrupos

pequeños y SFU para la transmisión general, o emplear MCU solo para ciertos elementos

visuales mientras el resto de los vídeos se distribuyen mediante SFU. Algunos sistemas

pueden cambiar automáticamente de arquitectura según el número de usuarios, la calidad

de la red o el tipo de actividad educativa que se esté realizando.

Además de las arquitecturas tradicionales como P2P, SFU y MCU, existe la posibilidad de

implementar un sistema de transmisión multicast en colaboración con un router específico

que soporte este tipo de tráfico. En una red multicast, el servidor envía un solo flujo de

vídeo a una dirección IP especial, y solo los dispositivos que estén interesados en recibir

ese contenido se suscriben a ese grupo multicast. Esto permite que, independientemente

del número de usuarios conectados, el servidor mantenga la misma carga y el consumo de

ancho de banda no aumente con cada nuevo receptor, a diferencia de lo que sucede en

unicast o en arquitecturas P2P.

- 22 -

Para que el multicast funcione correctamente, es fundamental que tanto el router como los

switches de la red sean compatibles y estén configurados para gestionar tráfico multicast,

utilizando protocolos como IGMP Snooping en IPv4 o MLD en IPv6. Este enfoque es

especialmente eficiente en entornos educativos o institucionales donde muchos usuarios

necesitan recibir el mismo contenido en tiempo real, ya que reduce la saturación de la red

y optimiza el uso de los recursos disponibles. Sin embargo, su implementación requiere

una infraestructura de red adecuada y un control centralizado sobre los dispositivos

conectados.

Elegir la arquitectura adecuada permite optimizar tanto la calidad de la experiencia como

el uso de los recursos, asegurando que el sistema pueda adaptarse a diferentes tamaños

de grupo, necesidades pedagógicas y condiciones técnicas.

8. Características del hardware: Raspberry Pi y red

local

La implementación del sistema propuesto se apoya en una arquitectura de hardware

accesible y potente, basada en una Raspberry Pi 5 [9] (8GB RAM) como servidor central y

un Router WiFi: ASUS Wireless-AC2900 configurado en modo punto de acceso para crear

una red local dedicada. Esta combinación resulta ideal para entornos educativos, ya que

ofrece un equilibrio óptimo entre capacidad técnica, bajo costo, portabilidad y facilidad de

gestión institucional.

8.1. Raspberry Pi: Servidor central del ecosistema

La Raspberry Pi 5 (8GB RAM) utilizada en este proyecto incorpora un procesador

Broadcom BCM2712 de cuatro núcleos ARM Cortex-A76 a 2,4 GHz, junto con 8 GB de

memoria LPDDR4X-4267 SDRAM. Para mejorar significativamente el rendimiento de

almacenamiento y la velocidad de acceso a datos, hemos implementado una placa

extensora que permite la conexión de un SSD NVMe de 256GB, proporcionando

velocidades de lectura/escrituras muy superiores a las tarjetas microSD tradicionales, ver

Figura 6.

- 23 -

Figura 6. Raspberry Pi utilizada.

En el apartado multimedia, la GPU VideoCore VII de 800 MHz soporta decodificación y

codificación por hardware de vídeo H.265 (HEVC) en 4K, así como OpenGL ES 3.1 y

Vulkan 1.2. Esto reduce la carga sobre la CPU principal al manejar varios streams de vídeo,

manteniendo baja la latencia y permitiendo que la CPU se enfoque en la lógica de

aplicación, como la gestión de usuarios y la sincronización de pizarras digitales.

En cuanto a conectividad, la Raspberry Pi 5 incorpora Wi-Fi 5 de doble banda (2,4 y 5

GHz), Bluetooth 5.0/BLE y un puerto Ethernet Gigabit para conexión cableada. Dispone de

dos puertos USB 3.0 y dos USB 2.0 para almacenamiento externo, cámaras o dispositivos

de entrada, así como de dos salidas micro-HDMI capaces de emitir vídeo en 4K a 60 Hz

de forma simultánea, ideal para presentaciones o proyección en el aula.

8.2. Router WiFi: Infraestructura de red dedicada

El router WiFi se configura como punto de acceso (Access Point, AP) para crear una red

local independiente de la infraestructura institucional. Esto elimina la dependencia de redes

corporativas, que pueden tener restricciones o políticas no optimizadas para multimedia. El

router Gateway local asignando direcciones IP privadas y gestionando el acceso de los

dispositivos de estudiantes y docentes.

Para un rendimiento óptimo, se recomienda un router con soporte Wi-Fi 802.11ac (Wi-Fi 5)

o superior, capacidad dual-band para separar el tráfico de gestión y multimedia, y puertos

Gigabit Ethernet para la conexión cableada con la Raspberry Pi. El router debe ser capaz

de gestionar al menos 30 dispositivos concurrentes sin degradación significativa del

rendimiento. En nuestro caso el ASUS Wireless-AC2900 cumple sobradamente con las

recomendaciones. En la Figura 7podemos ver un esquema de conexión de 3 dispositivos

mediante wifi y dos cableados.

- 24 -

La gestión de calidad de servicio (QoS) es fundamental: permite priorizar el tráfico WebRTC

(audio/vídeo), asignar ancho de banda garantizado al stream del docente y evitar que un

solo dispositivo consuma todos los recursos de la red, asegurando así una experiencia

educativa estable y de calidad.

Figura 7. Ejemplo de conexiones al router WiFi. Elaboración propia.

- 25 -

 Capítulo 3. Instalación y configuración del

sistema

En este capítulo presento una guía detallada para la instalación y configuración completa

del sistema WiWiewCast. La implementación del sistema se fundamenta en una

arquitectura híbrida que combina hardware de bajo costo con software de código abierto,

utilizando como elemento central una Raspberry Pi 5 equipada con 8GB de RAM y un

almacenamiento rápido NVMe, que ofrece la potencia necesaria para manejar

transmisiones de video en vivo, soportar hasta 20 usuarios conectados al mismo tiempo y

ejecutar funciones colaborativas.

La arquitectura del sistema WiWiewCast se compone de tres partes principales que

trabajan de manera integrada para ofrecer una plataforma de transmisión interactiva

eficiente y accesible. En primer lugar, el hardware base está formado por una Raspberry

Pi 5 con 8GB de RAM y una placa extensora MCUZone MPS2280, que permite conectar

un disco SSD NVMe de 480 GB, mejorando significativamente la velocidad de

almacenamiento en comparación con las tarjetas microSD tradicionales. Además, un router

WiFi configurado como punto de acceso crea una red local dedicada que garantiza la

conectividad estable de todos los dispositivos participantes.

En segundo lugar, el stack de software se basa en Raspberry Pi OS de 64 bits y utiliza

tecnologías clave como Node.js para la ejecución de aplicaciones, Node-RED para la

programación visual de flujos de datos, Socket.IO para la comunicación en tiempo real y

Axios para las peticiones HTTP a nivel de clientes.

Finalmente, la capa de servicios de aplicación ofrece interfaces diferenciadas para los

emisores de contenido, los espectadores y los administradores, permitiendo una

experiencia colaborativa y un control efectivo del sistema.

1. Configuración de la Raspberry Pi

Para poner en marcha la Raspberry Pi 5, lo primero es preparar todo el hardware necesario:

la propia Raspberry Pi 5, una fuente de alimentación adecuada, una tarjeta microSD, y un

SSD NVMe con placa adaptadora. También se necesita acceso a internet para la descarga

del software necesario.

- 26 -

El primer paso consiste en instalar el sistema operativo. Para ello, se debe descargar el

programa Raspberry Pi Imager desde la página oficial (Figura 8) en un ordenador con

acceso a internet.

Figura 8. Página de descarga de Raspberry Pi Imager

Para grabar la tarjeta microSD, usando el Imager, selecciona el dispositivo Raspberry Pi,

en este caso Raspberry Pi 5, luego la opción "Raspberry Pi OS (64-bit)" en el sistema

operativo y elige la tarjeta como almacenamiento.

Antes de grabar la imagen del sistema operativo en la Raspberry Pi, es importante ajustar

algunas configuraciones que harán mucho más fácil y seguro el uso posterior del

dispositivo. Entre estas configuraciones clave están: cambiar el nombre del dispositivo

(hostname), activar el acceso remoto seguro mediante el protocolo SSH, definir el usuario

y la contraseña, y establecer los parámetros de localización como el idioma y la zona

horaria. Activar el servicio SSH es especialmente útil porque permite administrar la

Raspberry Pi a distancia, sin necesidad de conectar un monitor, teclado o ratón. Esto

resulta ideal para el mantenimiento del sistema una vez que WiWiewCast esté funcionando

en el entorno educativo, ya que se puede acceder a la Raspberry Pi desde otro ordenador

usando la red local simplemente con el comando SSH y las credenciales configuradas.

Es fundamental cambiar el usuario y la contraseña por defecto, ya que mantener los valores

estándar supone un riesgo de seguridad considerable, especialmente si el dispositivo se

conecta a redes más amplias o tiene acceso a Internet. Para establecer la conexión remota,

el dispositivo cliente debe tener instaladas aplicaciones específicas para la comunicación

- 27 -

SSH, como PuTTY o Terminal (para acceso a consola), VNC Viewer (para acceso gráfico

remoto), o FileZilla/SCP (para transferencia segura de archivos entre la Raspberry Pi y el

dispositivo local).

Estas opciones de gestión remota, combinadas con la posibilidad de acceso físico directo

cuando sea necesario, simplifican la administración del sistema y reducen la necesidad de

recursos técnicos especializados para las tareas rutinarias. Así se garantiza la estabilidad

y el funcionamiento continuo del servicio, manteniendo una arquitectura sencilla y eficiente.

A partir de aquí vamos a configurar la Raspberry Pi con PuTTY y desde consola.

Una vez grabada la imagen, coloca la tarjeta microSD en la Raspberry Pi y conéctala en la

misma red que el dispositivo cliente. Desde el equipo cliente nos conectamos a la consola

de la Raspberry Pi averiguando primero la IP que le ha sido asignada por el router de la

red con el comando:

$> ping raspberrypi.local

Con dicha IP nos conectamos a la consola de la Raspberry Pi a través de SSH y a

continuación actualizamos el sistema:

$> ssh pi@192.168.1.XX
Dentro de la consola de Raspberry Pi actualizamos
pi@raspberrypi:~$> sudo apt update && sudo apt upgrade -y

Acabada la actualización, el siguiente paso sería configurar el equipo con una IP fija. La

elección de la IP es importante porque tiene que estar fuera del rango de direcciones DHCP

con las que configuraremos el router del sistema WiWiewCast. El comando que utilizamos

para asignar la dirección IP estática es:

$> sudo nmtui

Como último paso, y antes de pasar a instalar el entorno de desarrollo, hay que instalar el

disco NVMe SSD M.2. Apagamos la Raspberry Pi e instalamos la placa adaptadora (HAT)

para después montar y conectar el disco al puerto PCIe de la placa con el cable flex.

Después de colocar el hardware, volvemos a encender la Raspberry Pi y habilitamos el

puerto PCIe, que viene deshabilitado por defecto. Dentro de la terminal hay que ejecutar

un editor de texto para acceder al fichero que habilita el puerto, y luego introducir al final

del archivo dos líneas de configuración:

$> sudo nano /boot/firmware/config.txt
Al final del archivo insertar los siguientes comandos
dtparam=nmve #activa el puerto
dtparam=pciex1_gen=3 # activa máxima velocidad de PCIe 3.0

- 28 -

Después de guardar los cambios en el archivo, reiniciamos la Raspberry Pi para que los

cambios surtan efecto. A continuación, configuraremos la Raspberry Pi para que arranque

desde el puerto PCIe con el siguiente comando:

$> sudo rpi-eeprom-config --edit
Una vez dentro del archivo de configuración
[all]
BOOT_UART=1
POWER_OFF_0N_HALT=0
BOOT_ORDER=0Xf416
PCIE_PROBE=1

La variable BOOT_ORDER hace referencia al orden de arranque de la Raspberry Pi, donde

cada dígito representa un método de arranque diferente: el 4 equivale al USB, el 1 a la

tarjeta microSD y el 6 al puerto PCIe NVMe. El valor 0xf416 indica que intentará arrancar

primero desde USB, luego desde microSD, y finalmente desde NVMe. La línea

PCIE_PROBE=1 habilita la detección automática de dispositivos PCIe.

Guardamos el archivo y volvemos a reiniciar el sistema. Solo nos queda hacer un clon de

la tarjeta microSD al disco NVMe. Para esto instalamos en consola rpi-clone, que detecta

y monta particiones automáticamente, evita copiar sectores vacíos y cambia UUIDs

automáticamente

$>git clone https://github.com/billw2/rpi-clone.git
$>cd rpi-clone
$>sudo cp rpi-clone /usr/local/sbin
$>lsblk #verificamos que el M2 /dev/nvme0n
$>sudo rpi-clone /dev/nvme0n1 #Ejecutamos la clonación.

Una vez clonada la SD al M2, apagamos la Raspberry Pi, retiramos la tarjeta SD y volvemos

a encender. El sistema operativo arrancará desde el disco M2

2. Instalación de Node.js y Node-RED

Una vez completadas las configuraciones anteriores de la Raspberry Pi y verificado el

correcto funcionamiento del almacenamiento NVMe, procedemos a instalar el stack de

software fundamental para el sistema WiWiewCast: Node.js como runtime de ejecución y

Node-RED como entorno de desarrollo visual de flujos de datos.

 Instalación de Node.js (versión 18 LTS)

Node.js constituye el núcleo del sistema WiWiewCast, proporcionando el entorno de

ejecución JavaScript necesario para todas las aplicaciones del servidor. La versión 18 LTS

(Long Term Support) garantiza estabilidad y soporte a largo plazo. Para instalar Node.js

desde el repositorio oficial de NodeSource, ejecutamos los siguientes comandos:

- 29 -

Descargar e instalar script de configuración del repositorio
$> curl -fsSL https://deb.nodesource.com/setup_18.x | sudo -E bash –
Instalar Node.js y npm
$> sudo apt-get install -y nodejs
Verificar la instalación correcta
$> node --version # Debe mostrar v18.x.x
$> npm --version # Debe mostrar 9.x.x o superior

Es importante verificar que tanto Node.js como npm (Node Package Manager) se han

instalado correctamente. La versión de Node.js debe comenzar con v18, mientras que npm

debe estar en la versión 9 o superior para garantizar compatibilidad con todas las

dependencias del proyecto.

 Instalación de Node-RED

Node-RED es una herramienta de programación visual basada en flujos que permite

conectar dispositivos de hardware, APIs y servicios en línea de manera intuitiva. En el

contexto de WiWiewCast, Node-RED actúa como el orquestador principal que gestiona las

comunicaciones en tiempo real entre los diferentes componentes del sistema.

Instalar Node-RED globalmente en el sistema
$> sudo npm install -g --unsafe-perm node-red
Verificar la instalación
$> node-red –version

La opción --unsafe-perm es necesaria cuando se instala Node-RED como usuario root, ya

que algunos módulos requieren permisos especiales durante la compilación de

dependencias nativas.

El sistema WiWiewCast requiere módulos adicionales para manejar las comunicaciones en

tiempo real y las conexiones WebRTC. Estos módulos extienden las capacidades básicas

de Node-RED con funcionalidades específicas para streaming de video y comunicación

bidireccional.

Instalar módulo Socket.IO para Node-RED
$> sudo npm install -g node-red-contrib-socketio
Instalar WebRTC nativo para Node.js
$> sudo npm install -g wrtc # Instalar módulos adicionales necesarios
$> sudo npm install -g node-red-contrib-axios
$> sudo npm install -g node-red-dashboard

Antes de continuar, es fundamental verificar que todas las dependencias del sistema

necesarias para WebRTC estén instaladas:

Instalar librerías del sistema requeridas por WebRTC
$> sudo apt-get install -y \
libgtk-3-dev \
libnotify-dev \
libnss3-dev \
libxss1 \
libxtst6 \
xvfb \
libatspi2.0-0 \

- 30 -

libdrm2 \
libxcomposite1 \
libxdamage1 \
libxrandr2 \
libgbm1 \
libasound2-dev

Verificar que WRTC se ha compilado correctamente
$> node -e "console.log(require('wrtc'))"

Una vez instalado Node-RED, es recomendable ejecutarlo por primera vez para generar la

estructura de directorios y archivos de configuración:

$> node-red

Dado que la Raspberry Pi 5 tiene 8GB de RAM, podemos optimizar la configuración de

memoria para Node.js y Node-RED:

Añadir variables de entorno al perfil de usuario
$> echo 'export NODE_OPTIONS="--max-old-space-size=6144"' >> ~/.bashrc
$> echo 'export NODE_RED_OPTIONS="--max-old-space-size=6144"' >>
~/.bashrc

Recargar el perfil
$> source ~/.bashrc

Esta configuración permite que Node.js utilice hasta 6GB de RAM, dejando 2GB para el

sistema operativo y otros procesos, optimizando así el rendimiento del sistema

WiWiewCast.

Con estos pasos completados, el sistema dispone ya del entorno de ejecución JavaScript

y las herramientas de desarrollo visual necesarias para implementar las funcionalidades de

transmisión en tiempo real de WiWiewCast. El siguiente paso será configurar los

certificados de seguridad y establecer las conexiones HTTPS necesarias para que los

navegadores web permitan acceso a los dispositivos multimedia.

3. Creación de certificados SSL autofirmados

Los navegadores web modernos implementan políticas de seguridad estrictas que

requieren conexiones HTTPS para acceder a dispositivos multimedia como cámaras y

micrófonos. Esto es fundamental para el funcionamiento de WiWiewCast, ya que el sistema

depende del acceso a estos dispositivos para la transmisión de video en tiempo real. Por

esta razón, es imprescindible configurar certificados SSL que permitan establecer

conexiones seguras entre los dispositivos cliente y el servidor de la Raspberry Pi.

Antes de generar los certificados, necesitamos crear una estructura de directorios

organizada y configurar el entorno adecuadamente:

Crear directorio para certificados
$> sudo mkdir -p /home/pi/ssl/
$> cd /home/pi/ssl/

- 31 -

#Generar clave privada
$> sudo openssl genrsa -out server.key 2048
#Generar certificado autofirmado (válido por 365 días)
$> sudo openssl req -new -x509 -key server.key -out server.crt -days 365
#Configurar Permisos
$> sudo chown root:ssl-cert /home/pi/ssl/server.key
$> sudo chown root:ssl-cert /home/pi/ssl/server.crt
$> sudo chmod 640 /home/pi/ssl/server.key
$> sudo chmod 644 /home/pi/ssl/server.crt
#Añadir usuario pi al grupo ssl-cert
$> sudo usermod -a -G ssl-cert pi

Con estos certificados SSL correctamente instalados y configurados, el sistema

WiWiewCast podrá establecer conexiones HTTPS seguras que permitan el acceso a

dispositivos multimedia desde los navegadores web de los usuarios. Este paso es

fundamental antes de proceder con la configuración final de Node-RED y el despliegue de

la aplicación web.

4. Configuración y acceso a Node-RED

Una vez instalados los certificados SSL, procedemos a configurar Node-RED para que

utilice conexiones seguras HTTPS, lo cual es fundamental para que WiWiewCast pueda

acceder a los dispositivos multimedia de los usuarios y garantizar la seguridad de las

comunicaciones.

Antes de configurar Node-RED, necesitamos asegurar que la estructura de directorios esté

correctamente establecida:

#Crear directorio de trabajo y acceder
$> mkdir ~/.node-red | cd ~/.node-red
Crear directorio para archivos estáticos de la aplicación web
$> mkdir -p /home/pi/nodered/public

El archivo settings.js es el núcleo de la configuración de Node-RED. Este archivo define

cómo Node-RED manejará las conexiones, la seguridad y las funcionalidades específicas

del sistema WiWiewCast:

#Configurar settings.js
$> nano settings.js

javascriptvar fs = require("fs");
module.exports = {
 // Configuración HTTPS
 https: {
 key: fs.readFileSync('/etc/ssl/wiwicast/server.key'),
 cert: fs.readFileSync('/etc/ssl/wiwicast/server.crt')
 },
 // Directorio para archivos estáticos
 httpStatic: ‘/home/pi/nodered/public’,
 // Puerto para HTTPS
 uiPort: process.env.PORT || 1880,
 // Resto de configuración existente...
 functionGlobalContext: {

- 32 -

 wrtc: require('wrtc'),
 os: require(‘os’),
 },
 // Confiiguración de seguridad
 requireHttps: true
}

 Acceso a Node-RED

Tras configurar Node-RED en tu Raspberry Pi, puedes acceder fácilmente a su interfaz

gráfica desde cualquier ordenador conectado a la misma red. Solo tienes que abrir tu

navegador web y escribir en la barra de direcciones la IP de tu Raspberry Pi seguida de

:1880. Por ejemplo, si la IP de tu Raspberry Pi es 192.168.1.100, deberás ingresar en la

barra de direccines https://192.168.1.100:1880, así aparecerá la interfaz web de Node-

RED, donde podrás crear, editar y gestionar tus flujos de trabajo.

A continuación realizaremos un ejemplo de una página web que muestre “Hola Mundo”.

Para ello creamos un flujo en Node-RED y añadimos los nodos necesarios. En este caso

HTTP In (Recibir petición), Template (Generar HTML) y HTTP Response (Enviar

respuesta).

El nodo HTTP In se configura con el endpoint /hola, el nodo HTTP Response no hace falta

configurarlo y al nodo Template se le añade el siguiente código html:

<!DOCTYPE html>
<html lang="es">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <title>Hola Mundo - Node-RED</title>
 <style>
 body {
 font-family: Arial, sans-serif;
 text-align: center;
 margin-top: 100px;
 background-color: #f0f0f0;
 }
 h1 {
 color: #ff6b6b;
 font-size: 48px;
 }
 p {
 color: #666;
 font-size: 18px;
 }

- 33 -

 </style>
</head>
<body>
 <h1>¡Hola Mundo!</h1>
 <p>Esta página fue generada con Node-RED</p>
</body>
</html>

Antes de instanciar unimos los nodos HTTP In y HTTP Response al nodo Template

quedando el flujo de la siguiente como se ve en laFigura 9 :

Figura 9. Flujo de "Hola Mundo"

Ahora solo con ingresar en el navegador de cualquier dispositivo que esté en la misma red

la dirección https://ip_raspberry:1888/hola , podrá ver el mensaje “Hola Mundo” devuelto

por Node-RED como aparece en la Figura 10.

Figura 10. Hola mundo desde Node-RED

 Configuración del router

La configuración del router WiFi en modo Access Point (AP) es una parte fundamental en

la arquitectura de WiWiewCast, ya que es la encargada de crear una red local dedicada

- 34 -

que asegura una conexión estable entre todos los dispositivos que participan en el sistema.

Al establecer el router como AP, se genera una red aislada y optimizada específicamente

para la transmisión de video en tiempo real, lo que ayuda a evitar interferencias externas y

garantiza un mejor ancho de banda.

Para implementar esta red dedicada, es necesario contar con un router que tenga la opción

de funcionar en modo Access Point, una característica presente en la mayoría de los

routers domésticos modernos, aunque puede aparecer con distintos nombres según el

fabricante, como AP Mode, Bridge Mode o simplemente Access Point. Es recomendable

que el router soporte Wi-Fi 802.11ac (Wi-Fi 5) o superior, tenga al menos cuatro puertos

Ethernet, sea capaz de gestionar más de 20 dispositivos conectados simultáneamente y

permita la configuración de red dual band (2.4GHz y 5GHz) para optimizar el rendimiento.

El primer paso para la configuración consiste en acceder a la interfaz de administración del

router, lo cual se hace conectando un ordenador al router mediante un cable Ethernet y

accediendo a la dirección IP de administración desde el navegador web. Un paso

importante es asignar una IP estática a la Raspberry Pi, por ejemplo 192.168.100.5, y

definir un rango DHCP específico para los demás dispositivos, como de 192.168.100.10 a

192.168.100.200, asegurando así una gestión ordenada de las direcciones IP en la red. El

siguiente paso es configurar las opciones de Calidad de Servicio (QoS) para priorizar el

tráfico de video y evitar saturaciones.

Tras realizar la configuración inicial, es recomendable verificar el funcionamiento de la red

y realizar pruebas de diagnóstico para confirmar que todos los dispositivos pueden

conectarse correctamente y que la transmisión de video es fluida.

 Navegadores web

Los navegadores web constituyen la interfaz principal entre los usuarios y el sistema

WiWiewCast, para la comunicación bidireccional y colaboración. La elección del navegador

y su correcta configuración son aspectos clave para que el sistema funcione bien, ya que

tecnologías como WebRTC, Media Capture API y WebSocket necesitan soporte específico

y optimizado que no todos los navegadores ofrecen de la misma manera.

El navegador no solo sirve para abrir la aplicación web, sino que también ejecuta el código

JavaScript, gestiona el acceso a la cámara y el micrófono, procesa la transmisión de video

en tiempo real y mantiene las conexiones necesarias para la colaboración instantánea. Si

- 35 -

el navegador no está bien configurado o no es compatible, la experiencia del usuario puede

verse afectada y algunas funciones podrían no funcionar correctamente.

Para WiWiewCast, Google Chrome es el navegador recomendado porque ofrece el soporte

más completo y robusto para todas las tecnologías necesarias, especialmente WebRTC y

las APIs de acceso a medios. Chrome fue uno de los primeros en implementar WebRTC y

sigue siendo el que mejor rendimiento ofrece en este tipo de aplicaciones. Se recomienda

usar Chrome versión 90 o superior en ordenadores, y Chrome Mobile 90 o superior en

dispositivos móviles, para asegurar la compatibilidad. Además, navegadores como Mozilla

Firefox, Microsoft Edge, Safari y Opera también son compatibles con WebRTC y las

tecnologías asociadas, aunque pueden presentar pequeñas diferencias en el

comportamiento o en el soporte de algunas funciones avanzadas.

Por último, es importante asegurarse de que el navegador esté actualizado y que los

permisos de acceso a la cámara y el micrófono estén correctamente configurados, ya que

estos son necesarios para la transmisión de video y la interacción en tiempo real. También

se recomienda cerrar otras pestañas o aplicaciones que puedan consumir recursos o ancho

de banda para garantizar una experiencia fluida durante el uso de WiWiewCast.

- 36 -

 Capítulo 4. Especificaciones de la aplicación y

arquitectura del sistema

1. Introducción

La motivación principal de este trabajo surge de la necesidad de superar las barreras que

todavía persisten en determinados entornos educativos, especialmente en los laboratorios

tradicionales. En estos espacios, la elevada cantidad de estudiantes suele dificultar la

visibilidad, impidiendo que todos puedan observar con claridad las demostraciones

prácticas o las manipulaciones realizadas por el profesor. Esta limitación no solo afecta la

comprensión de los procedimientos, sino que también restringe la interacción directa entre

el alumnado y el docente, reduciendo las oportunidades de participación activa y

dificultando la resolución inmediata de dudas.

El origen de estos obstáculos se encuentra, principalmente, en las restricciones físicas y

espaciales propias de los laboratorios, que limitan el acceso visual y la movilidad dentro

del aula. Como resultado, el potencial educativo de las actividades prácticas no se

aprovecha plenamente, lo que puede impactar negativamente en la calidad del aprendizaje.

Cabe destacar que no todos los laboratorios cuentan con los mismos recursos: mientras

algunos disponen de equipamiento avanzado, otros operan con medios mucho más

limitados. Este trabajo se contextualiza dentro de Anatomía Veterinaria I y II, asignaturas

impartidas en el primer y segundo curso del Grado en Veterinaria de la ULPGC. Las

sesiones prácticas, impartidas en el laboratorio, abordarán el estudio directo de diferentes

preparaciones anatómicas y la disección integral y reglada de diferentes especies de

mamíferos domésticos. Resulta evidente que el material de prácticas empleado es bastante

limitado, y requiere de condiciones especiales para su conservación, y tratamiento previo

hasta ponerse en disposición del alumnado. Estas limitaciones hacen aún más patente la

necesidad de soluciones innovadoras que permitan mejorar la experiencia educativa y

garantizar el acceso equitativo al aprendizaje práctico.

- 37 -

A continuación, se presenta la Figura 11 de la que refleja de manera visual los problemas

de visibilidad y participación que se derivan de las barreras mencionadas, sirviendo como

punto de partida para el desarrollo de la solución propuesta en este proyecto.

Figura 11. Clase masificada

La aplicación desarrollada está específicamente diseñada para superar esas limitaciones.

Para ello, integra una serie de especificaciones técnicas y funcionales que permiten

solventar las barreras de visibilidad, interacción y acceso que suelen presentarse en estos

espacios. El sistema utiliza tecnologías de transmisión de video en tiempo real, em este

caso WebRTC, que facilitan que todos los estudiantes puedan observar con claridad las

demostraciones del profesor, asegurando que cada estudiante tenga la oportunidad de

participar y visualizar el contenido desde su propio dispositivo.

Visualizar el contenido desde su propio dispositivo es una ventaja de este sistema, ya que

utiliza los recursos tecnológicos de los propios estudiantes para ofrecer una experiencia

personalizada y flexible. Esto permite que cada alumno ajuste parámetros de la imagen

según sus necesidades, y que pueda seguir la demostración sin obstáculos visuales ni

distracciones causadas por la disposición física del aula. Además, al aprovechar los

dispositivos personales, se reduce la necesidad de equipamiento adicional por parte de la

institución, facilitando la implementación del sistema incluso en laboratorios con recursos

limitados.

Otra funcionalidad destacada de la aplicación es la pizarra digital colaborativa creada sobre

la transmisión del video, con capacidad para identificar de forma visual a los usuarios que

están dibujando sobre esta. Cada estudiante que participa en la pizarra es diferenciado

mediante un color específico asignado a su trazo, lo que facilita reconocer quién está

interviniendo en tiempo real. Pensando en la accesibilidad, la aplicación incorpora una

distinción adicional basada en la forma de los píxeles de cada trazo: así, los usuarios no

- 38 -

solo se diferencian por color, sino también por patrones de pixelado únicos. Esta

característica está especialmente pensada para estudiantes con daltonismo o dificultades

para distinguir colores, permitiéndoles identificar fácilmente la autoría de cada intervención

en la pizarra, independientemente de sus capacidades visuales. De este modo, se

garantiza que la experiencia colaborativa sea inclusiva y accesible para todos los

participantes.

2. Especificaciones de la aplicación

Debido a sus especificidades y sus diferentes roles, la aplicación puede tener varios casos

de uso que a continuación se expone:

 Caso de uso 1:

La configuración del sistema es:

o Profesor: es el Administrar y Emisor utilizando un único dispositivo móvil,
o Alumnos: Visualizadores de la emisión y usuarios de la pizarra virtual.

El profesor utiliza su propio dispositivo móvil tanto para emitir la señal de video como para

administrar la sesión, mientras que los estudiantes, denominados viewers, acceden desde

sus propios dispositivos para visualizar la transmisión y participar de forma interactiva. Esta

modalidad representa la forma más sencilla de uso de la aplicación, ya que centraliza todas

las funciones de emisión y administración en un único dispositivo, facilitando la gestión

para el docente.

Sin embargo, esta configuración tiene la limitación de que la interacción entre los

estudiantes es más restringida, ya que cada viewer solo puede ver su propio dibujo y no

los de sus compañeros. Por tanto, aunque es una solución ideal para entornos con pocos

recursos o cuando se busca una implementación rápida y sencilla, no favorece tanto la

colaboración grupal ni la visualización colectiva de las aportaciones de todos los

participantes, quedando la supervisión y la interacción principalmente en manos del

profesor.

- 39 -

Figura 12. Caso de uso 1

 Caso de uso 2:

La configuración del sistema es:

o Profesor: es el Administrar y Emisor utilizando dos dispositivos,
o Alumnos: Visualizadores de la emisión y usuarios de la pizarra virtual.

En este segundo caso, la aplicación permite separar las funciones de emisión y

administración, utilizando dos dispositivos móviles diferentes: uno para emitir la señal de

video (por ejemplo, el móvil del profesor) y otro para gestionar la administración de la sesión

(como puede ser una tablet o un segundo móvil). Esta separación ofrece al docente mayor

flexibilidad y control, ya que puede ajustar la grabación, gestionar la interacción y observar

en detalle las anotaciones y dibujos de los estudiantes desde el dispositivo de

administración, sin interrumpir la transmisión principal. Los estudiantes, por su parte,

continúan accediendo desde sus propios dispositivos para visualizar la transmisión y

participar de forma interactiva. Sin embargo, al igual que en el caso anterior, la interacción

entre los viewers sigue estando limitada, ya que cada estudiante solo puede ver su propio

dibujo y no los de sus compañeros. Esta configuración resulta especialmente útil cuando

el profesor necesita supervisar de manera más detallada la participación de los estudiantes,

o cuando se requiere grabar la sesión para su posterior revisión, permitiendo así una

gestión más organizada y eficiente de la clase a pesar de la limitación en la interacción

colectiva entre los alumnos.

- 40 -

Figura 13. Caso de uso 2.

 Caso de uso 3:

La configuración del sistema es:

o Profesor: Emisor con un dispositivo móvil y Administrador desde un PC,
o Alumnos: Visualizadores de la emisión y usuarios de la pizarra virtual.

El tercer caso de uso es el que ofrece mayor nivel de interacción y visibilidad para todos

los participantes. Aquí, el profesor utiliza un dispositivo móvil para emitir la señal de video,

mientras que la administración de la sesión se realiza desde un ordenador personal

conectado a una pantalla grande, como puede ser un proyector o monitor en el laboratorio.

De este modo, el administrador (que puede ser el propio profesor o un asistente) tiene un

control más amplio sobre la sesión, pudiendo gestionar usuarios, moderar la interacción y

visualizar en tiempo real todos los dibujos y anotaciones que realizan los estudiantes en la

pizarra colaborativa. Los viewers, además de seguir la transmisión desde sus dispositivos

personales, pueden ver reflejadas en la pantalla común tanto sus propias aportaciones

como las de sus compañeros, lo que fomenta la participación colectiva y el aprendizaje

colaborativo. Esta modalidad es ideal para sesiones prácticas con grupos numerosos, ya

que maximiza la visibilidad, la interacción y el aprovechamiento de los recursos

tecnológicos disponibles en el aula.

- 41 -

Figura 14. Caso de uso 3

3. Arquitectura del Sistema

Después de hacer varias pruebas con diferentes arquitecturas, P2P, SFU e incluso con

Multicast, la opción elegida una arquitectura hibrida con SFU, buscando garantizar una

transmisión interactiva y fluida, integrando varios componentes que se comunican de

manera eficiente. Node-RED coordina y administra todos los flujos dentro del sistema,

mientras que WebRTC se encarga del intercambio de video y audio en tiempo real, y

Socket.IO facilita la interacción y sincronización entre dispositivos de usuarios, sean

emisores, espectadores o administradores.

3.1. Backend: Node-RED

El servidor backend emplea principalmente Node-RED, Node.js, Socket.IO y la librería wrtc

para WebRTC. El motor de flujos de Node-RED gestiona los procesos y comunicaciones,

dividiendo las funcionalidades en módulos independientes (como la difusión WebRTC o la

gestión de usuarios). Cada usuario conectado, stream activo o configuración queda

almacenado en el contexto de Node-RED, facilitando el seguimiento y modificación en

tiempo real.

Un punto clave es la introducción de la Unidad de Reenvío Selectivo (SFU). Aquí, el punto

de emisión (broadcaster) envía su señal al servidor que, a través de la SFU, la distribuye

eficientemente a todos los consumidores o visualizadores, permitiendo la escala a múltiples

usuarios conectados simultáneamente.

- 42 -

3.2. Flujo de Broadcast (Emisor)

El flujo de broadcast es el encargado de recibir y procesar el stream enviado por el emisor,

permitiendo que la señal de video llegue correctamente al sistema para su posterior

distribución a los visualizadores. Este proceso se inicia cuando el emisor realiza una

petición HTTP POST al endpoint específico /broadcast, enviando junto con la solicitud una

oferta SDP y la identificación de su sesión. El mensaje o Payload esperado contiene la

información necesaria para negociar la conexión WebRTC.

De manera complementaria, existe una ruta de limpieza llamada /cleanup-broadcast,

también accesible vía POST, cuya función es liberar todos los recursos asociados a la

sesión WebRTC cuando el emisor se desconecta. Esto permite asegurar que no queden

conexiones abiertas innecesariamente y el sistema mantenga un uso eficiente de los

recursos disponibles.

Figura 15. Diagrama de flujo de Broadcast (Emisor)

En el núcleo de este flujo se encuentra la lógica de broadcast, que se encarga de crear una

instancia de RTCPeerConnection para el emisor. Tras recibir y procesar la oferta SDP,

genera una respuesta SDP que se devuelve al emisor para completar el proceso de

negociación y establecer la conexión WebRTC. El stream resultante se almacena en el

contexto global del sistema, permitiendo que esté disponible para su consumo por parte de

otros usuarios. Además, se implementa un temporizador automático de 30 minutos para

gestionar la limpieza y se monitorizan los estados de conexión ICE para garantizar la

estabilidad de la transmisión. Finalmente, la respuesta al emisor contiene la SDP necesaria

para cerrar el ciclo de establecimiento de la sesión WebRTC y poner el stream en línea.

3.3. Flujo de Consumer (Visualizadores)

El flujo de consumer está orientado a distribuir el stream que ya ha sido recibido y

almacenado. Su objetivo principal es gestionar las solicitudes de los visualizadores,

permitiendo que cada uno reciba la señal de video de manera gestionada y eficiente.

- 43 -

Cuando un visualizador desea acceder al stream, realiza una petición HTTP POST al

endpoint /consumer, enviando una oferta SDP generada desde su propio dispositivo. El

sistema, al recibir esta solicitud, ejecuta la lógica de consumer que primero accede al

stream almacenado globalmente y luego crea una nueva instancia de RTCPeerConnection

para el visualizador. Cada conexión añade las pistas del emisor al peer correspondiente

mediante pc.addTrack(track, senderStream) y, tras procesar la oferta SDP recibida, genera

una respuesta SDP personalizada para ese visualizador.

Figura 16. Flujo de Consumer (Visualizadores).

Este proceso implementa el patrón SFU (Selective Forwarding Unit), permitiendo que el

sistema distribuya el mismo stream a múltiples consumidores de manera eficiente, sin tener

que reenviar múltiples veces desde el origen. Por último, la respuesta al receptor se

encarga de enviar la SDP resultante para que la conexión WebRTC quede establecida y el

usuario pueda visualizar el stream en tiempo real.

3.4. Flujo de Gestión de Eventos Socket.IO

El flujo de gestión de eventos mediante Socket.IO es esencial para el funcionamiento en

tiempo real del sistema WiWiCast, ya que permite la comunicación instantánea entre todos

los participantes y la sincronización de sus acciones. Cuando un usuario se conecta al

sistema, ya sea como espectador, administrador o emisor, se genera un evento específico

que es capturado por el servidor. Por ejemplo, el evento viewer-join indica la llegada de un

nuevo espectador, mientras que admin-join y emisor-join señalan la conexión del

administrador y del emisor, respectivamente. Además, eventos como viewer-started y

emisor-started confirman el inicio de la visualización o transmisión, y eventos como draw-

data transmiten los trazos realizados en la pizarra colaborativa. También existen comandos

como admin-clear-canvas y viewer-clear-canvas para gestionar la limpieza del canvas, ya

sea por parte del administrador o a solicitud de un espectador.

El sistema mantiene actualizado en todo momento un registro de los usuarios conectados

y de aquellos que están visualizando activamente el contenido. Cada usuario recibe un

- 44 -

identificador único, un color y un patrón de visualización, lo que facilita la distinción visual

de las aportaciones individuales en la pizarra colaborativa y garantiza la accesibilidad para

usuarios con daltonismo. Además, el sistema procesa y distribuye los eventos de dibujo,

asegurando que todos los participantes relevantes reciban las actualizaciones en tiempo

real. Cuando un usuario se desconecta, el sistema realiza automáticamente la limpieza de

su estado, liberando recursos y manteniendo la coherencia de los listados. Por otro lado,

se actualizan estadísticas de uso y conexión en tiempo real, proporcionando información

para la administración y el seguimiento del sistema.

El flujo de eventos también se encarga de enviar notificaciones específicas a los diferentes

roles. Al administrador se le informa de cambios en la lista de espectadores, de nuevos

eventos de dibujo en la pizarra, de estadísticas del sistema y de alteraciones en el estado

de las conexiones. Estas notificaciones permiten al administrador tener un control completo

y en tiempo real sobre la sesión. Por su parte, los espectadores reciben mensajes

personalizados, confirmaciones de que sus acciones han sido procesadas correctamente

y comandos para realizar determinadas acciones, como la limpieza de su canvas.

Para garantizar la estabilidad y facilitar el mantenimiento del sistema, se han incorporado

nodos de depuración (debug) que monitorean el flujo de eventos, verifican el correcto

procesamiento de los datos, detectan errores y analizan el contenido de los mensajes

intercambiados. Estos nodos son fundamentales para identificar y resolver incidencias de

manera ágil, asegurando que la plataforma funcione de forma óptima en todo momento.

Figura 17. Flujo de Gestión de Eventos Socket.IO

- 45 -

3.5. Flujo de Archivos Estáticos

El flujo de archivos estáticos se encarga de servir las aplicaciones web necesarias para

que los usuarios puedan acceder a la plataforma desde sus dispositivos. Este flujo captura

todas las solicitudes HTTP GET dirigidas a recursos estáticos, como HTML, CSS y

JavaScript, a través de una ruta genérica (por ejemplo, /:path). De este modo, cuando un

usuario accede a una URL como /viewer, /admin o simplemente /index.html, la aplicación

identifica la ruta solicitada y la mapea al archivo correspondiente en el sistema de archivos

del servidor.

Una vez identificada la ruta, el sistema realiza una transformación sencilla para convertir

las rutas amigables en nombres de archivo reales. Por ejemplo, la ruta /viewer se traduce

a viewer.html, /admin a admin.html, y si no se especifica una ruta concreta, se sirve por

defecto el archivo index.html. Esta lógica permite una navegación intuitiva y una gestión

flexible de las diferentes interfaces de usuario según el rol del participante (emisor,

administrador o espectador).

Tras determinar el archivo a servir, el sistema procede a leer su contenido desde el sistema

de archivos, utilizando la información proporcionada en el mensaje de flujo (por ejemplo,

msg.filename). Finalmente, el contenido del archivo se envía al cliente que realizó la

solicitud, acompañado de los headers HTTP apropiados para garantizar una correcta

interpretación por parte del navegador. Este proceso asegura que los usuarios reciban las

interfaces web necesarias para interactuar con el sistema, independientemente de su

dispositivo o sistema operativo.

Figura 18. Flujo de Archivos Estáticos

4. Frontend. Navegador web

La integración del frontend con el backend en WiWiewCast se realiza principalmente a

través de dos canales: la comunicación WebRTC para la transmisión de video en tiempo

real y la gestión de eventos mediante Socket.IO para la interacción y sincronización entre

los participantes. Dentro de esta arquitectura, el sistema de dibujo interactivo constituye

una capa adicional fundamental que permite a los visualizadores interactuar directamente

- 46 -

sobre el contenido de video transmitido, creando una experiencia colaborativa e inmersiva

que va más allá de la simple visualización pasiva.

En el lado del cliente, el archivo JavaScript principal (index.js) implementa la lógica

necesaria para que el usuario pueda seleccionar la cámara deseada, iniciar la transmisión

y gestionar la conexión con el servidor. Paralelamente, en la aplicación del visualizador

(viewer.html), se implementa un canvas HTML5 superpuesto al elemento de video que

captura los eventos táctiles y de mouse del usuario. Cuando el usuario selecciona una

cámara en la aplicación emisor, el sistema actualiza el selector correspondiente y, al hacer

clic en "Iniciar", se solicita el acceso al dispositivo mediante la API getUserMedia. Del

mismo modo, cuando un visualizador toca o hace clic sobre el video, el canvas detecta las

coordenadas del evento, las normaliza proporcionalmente al tamaño del canvas y genera

un payload que incluye la posición (x, y), el color y patrón asignados únicamente a ese

usuario, y otros metadatos como el tamaño del trazo.

Una vez obtenido el flujo de medios (MediaStream), se muestra una vista previa en el

elemento de video de la interfaz. A continuación, se crea una instancia de

RTCPeerConnection y se inicia la negociación SDP con el endpoint /broadcast del servidor.

Simultáneamente, el sistema de dibujo envía los datos de interacción a través de Socket.IO

usando el evento draw-data, que contiene toda la información necesaria para recrear el

trazo en otros clientes. El backend de Node-RED procesa estos eventos en el nodo

"Gestión de espectadores", donde se enriquece la información del dibujo con datos del

usuario (nombre, rol, color asignado) almacenados en el contexto de flujo, y posteriormente

retransmite estos datos al administrador para su visualización en tiempo real. En el panel

de administración (admin.html), el sistema implementa un mecanismo de capas de dibujo

donde cada visualizador tiene su propia capa virtual gestionada mediante un canvas

HTML5 superpuesto al video. Cuando el administrador recibe un evento draw-data, el

sistema identifica al usuario emisor por su socket ID y renderiza el trazo en el canvas

usando el color y patrón específicos asignados a ese visualizador, manteniendo así una

representación visual clara de quién está dibujando qué en cada momento. Cuando la

conexión WebRTC se establece correctamente, el indicador de estado cambia a "Online",

confirmando que la transmisión está activa y lista para ser recibida por los visualizadores,

quienes ahora pueden no solo ver el contenido sino también interactuar dibujando sobre

él, mientras que el administrador obtiene una vista completa de todas las interacciones

superpuestas.

- 47 -

Además de la transmisión de video, la aplicación utiliza Socket.IO para gestionar eventos

en tiempo real que permiten una experiencia interactiva y colaborativa. Por ejemplo,

cuando el emisor se conecta, se envía el evento emisor-join con información sobre el

usuario y su rol. Al iniciar la transmisión, se emite emisor-started para notificar al servidor

y a los demás participantes. En el contexto del sistema de dibujo por capas, cuando un

visualizador se conecta, el servidor le asigna automáticamente un color y patrón únicos de

una paleta predefinida, enviando esta información a través del evento style-assigned para

que el cliente configure su indicador visual y use estos valores en sus trazos. En el panel

de administración, esta información se almacena en una estructura de datos que asocia

cada socket ID con sus propiedades visuales, permitiendo que el canvas del admin

renderice correctamente cada trazo con la identidad visual correspondiente. El frontend

también escucha eventos como viewer-count-update, que actualiza en tiempo real el

contador de espectadores conectados, así como eventos específicos del canvas como

draw-data (para mostrar dibujos de otros usuarios distribuidos por capas virtuales) y admin-

clear-canvas (que permite al administrador seleccionar específicamente qué capa de

usuario limpiar, enviando un comando dirigido solo a ese visualizador particular.

El flujo de usuario típico en la aplicación de emisión comienza con la carga de la página,

durante la cual se detectan las cámaras disponibles y se rellena el selector correspondiente

para que el usuario elija el dispositivo deseado. En la aplicación del visualizador, este flujo

incluye además la inicialización del canvas interactivo, la configuración de los event

listeners para eventos táctiles y de mouse, y la preparación del contexto de dibujo 2D. En

el panel de administración, se inicializa un sistema más complejo que prepara el canvas

principal y crea una estructura de datos para gestionar las capas virtuales de cada usuario,

incluyendo un mapa de identificadores de socket con sus respectivos colores, patrones y

estados de actividad. Una vez seleccionada la cámara, al hacer clic en "Iniciar" se solicitan

los permisos necesarios, se muestra la vista previa del video y se establece la conexión

WebRTC con el servidor, cambiando el estado a "Online" cuando la transmisión está ready.

Para los visualizadores, una vez establecida la conexión, pueden comenzar

inmediatamente a interactuar tocando o haciendo clic sobre el video, generando trazos que

se muestran instantáneamente en su pantalla (actualización optimista) y se envían al

servidor para sincronización con otros participantes. El administrador, por su parte, ve estos

trazos aparecer en tiempo real en su canvas, cada uno renderizado con el color y patrón

distintivo del usuario correspondiente, y puede gestionar individualmente cada capa

mediante controles específicos que aparecen en la lista de espectadores activos,

incluyendo botones para limpiar la capa de un usuario específico o destacar temporalmente

- 48 -

sus interacciones. Durante la emisión, el usuario puede consultar en tiempo real el número

de espectadores conectados a través de un contador actualizado automáticamente. Los

visualizadores, por su parte, pueden limpiar sus propios dibujos mediante el botón

correspondiente, lo que envía una solicitud viewer-clear-canvas al administrador quien

decide si aprobar la limpieza mediante el evento admin-clear-canvas dirigido

específicamente a la capa de ese usuario, manteniendo así un control centralizado sobre

el contenido visual de cada participante. Finalmente, al hacer clic en "Detener", se cierran

todas las conexiones, se liberan los recursos y la aplicación vuelve al estado inicial, lista

para una nueva sesión.

Esta integración entre frontend y backend, combinando WebRTC para la transmisión de

medios y Socket.IO para la gestión de eventos, permite ofrecer una experiencia de emisión

intuitiva y adaptada a las necesidades de los usuarios, incluso desde dispositivos móviles,

garantizando interactividad, bajo retardo y una gestión eficiente de los recursos. El sistema

de dibujo por capas aporta una dimensión colaborativa donde cada participante mantiene

su identidad visual y el administrador puede supervisar, gestionar y moderar las

contribuciones individuales, transformando la experiencia de visualización pasiva en una

herramienta de anotación y participación activa controlada y organizada, especialmente

valiosa en contextos educativos donde los estudiantes pueden señalar, marcar o comentar

visualmente sobre el contenido presentado por el instructor en tiempo real, mientras que el

docente mantiene control total sobre la moderación de estas interacciones.

5. Ciclo básico de funcionamiento

El emisor envía su stream de video a través de una petición HTTP al endpoint/broadcast,

donde el servidor lo almacena en el contexto global para su posterior distribución. Los

visualizadores solicitan el stream mediante el endpoint/consumer, recibiendo así la

transmisión de manera eficiente. Mientras tanto, los eventos gestionados por Socket.IO

actualizan el estado del sistema y notifican a administradores y espectadores según

corresponda. El servidor también se encarga de servir las aplicaciones web necesarias

para que cada cliente pueda cargar la interfaz adecuada a su rol.

La gestión del estado compartido se realiza a través de dos contextos principales: el

contexto global, que incluye recursos críticos como el stream del emisor y la instancia de

la librería WebRTC, y el contexto de flujo, donde se almacena información dinámica como

las listas de usuarios conectados y activos, la identificación del administrador y los colores

y patrones asignados a cada usuario. La sincronización entre estos contextos se mantiene

- 49 -

gracias a los eventos de Socket.IO, que aseguran la coherencia y consistencia en todo el

sistema.

En cuanto a los patrones de comunicación, el sistema utiliza HTTP para la negociación

síncrona de las conexiones WebRTC, Socket.IO para la comunicación asíncrona y en

tiempo real entre todos los participantes, y WebRTC para la transmisión de medios de baja

latencia y alta calidad, apoyándose en una arquitectura P2P centralizada a través de una

SFU. Esta combinación de tecnologías y flujos permite una experiencia colaborativa, fluida,

adaptada a las necesidades de entornos educativos y de presentación, donde la interacción

en tiempo real y la gestión eficiente de recursos son fundamentales.

- 50 -

 Capítulo 5. Evaluación y Conclusiones

1. Ejecución y Evaluación del sistema.

La ejecución y evaluación del sistema WiWiewCast se llevó a cabo en un entorno real,

concretamente en un aula de laboratorio de Transmisión por Línea del Departamento de

Ingeniería Telemática, donde se recrearon las condiciones típicas de un escenario

educativo con recursos tecnológicos limitados. Para iniciar el proceso, se conectó la

Raspberry Pi al router mediante cable Ethernet, asegurando así una conexión estable y de

bajo retardo, y se procedió al encendido de ambos dispositivos.

Caso de uso 1

En el primer caso de uso, se conectaron todos los dispositivos móviles a la red Wi-Fi

WiWicast. En esta configuración, un único dispositivo móvil asumió simultáneamente el rol

de emisor y administrador. Esto significa que desde este dispositivo se capturó y transmitió

el video, al tiempo que se gestionó la sesión, supervisando la lista de espectadores y

moderando la interacción. El resto de los dispositivos se conectaron como viewers,

permitiendo a los estudiantes visualizar la transmisión y participar en la pizarra

colaborativa. Esta modalidad, aunque sencilla de implementar, mostró algunas limitaciones

en la interacción entre los viewers, ya que cada uno solo podía ver su propio dibujo y no el

de sus compañeros, concentrando la supervisión y el control en el docente. Por otro lado,

para el docente, gestionar tanto la emisión de video como el panel de administración desde

un único dispositivo móvil puede resultar complicado en la práctica. La pantalla reducida

de un teléfono o tablet dificulta la visualización simultánea de la transmisión, la lista de

participantes y el contenido de la pizarra colaborativa, lo que puede afectar la eficacia en

la moderación y el seguimiento de la sesión.

Caso de uso 2

El segundo caso de uso introdujo una separación de roles entre el emisor y el

administrador. En este escenario, un dispositivo móvil se utilizó exclusivamente para emitir

el video, mientras que otro dispositivo móvil distinto asumió las funciones de

administración. El resto de los dispositivos continuaron conectados como viewers. Esta

- 51 -

configuración permitió al docente tener un mayor control sobre la sesión, pudiendo

gestionar la interacción, monitorizar el estado de la transmisión y acceder a estadísticas en

tiempo real desde el dispositivo administrador, sin interferir en la emisión principal. A pesar

de esta mejora en la gestión, la limitación en la visualización de los dibujos entre viewers

persistió, aunque la experiencia para el administrador fue más completa y flexible.

Caso de uso 3

En el tercer caso de uso, se combinó el uso de dispositivos móviles y un ordenador de aula

conectado a un proyector. El emisor siguió siendo un dispositivo móvil, pero el rol de

administrador lo asumió el ordenador, que proyectaba la interfaz de administración en una

pantalla grande visible para todos los asistentes. Los espectadores se conectaron desde

sus dispositivos móviles como viewers. Esta configuración maximizó la visibilidad y la

interacción grupal, ya que tanto el video como las anotaciones colaborativas podían verse

en la pantalla común, fomentando la participación activa y la discusión en el aula. Además,

el administrador podía gestionar la sesión de manera centralizada, moderando la

participación y resolviendo dudas en tiempo real. Esta modalidad demostró ser la más

adecuada para sesiones prácticas con grupos numerosos, ya que aprovecha al máximo

los recursos disponibles y facilita la colaboración entre todos los participantes.

En resumen, la ejecución del sistema en estos tres casos de uso permitió evaluar su

funcionamiento en diferentes escenarios educativos, identificando tanto las ventajas como

las limitaciones de cada configuración. La experiencia práctica confirmó que WiWiewCast

es una solución flexible, adaptable y eficiente para la transmisión interactiva de video en

entornos con recursos limitados, facilitando la colaboración y mejorando la experiencia

educativa tanto para docentes como para estudiantes.

2. Conclusiones

WiWiewCast ha demostrado que es posible crear sistemas de transmisión de video

interactivos usando tecnologías web modernas como WebRTC, Node-RED y Socket.IO, y

que estos pueden funcionar bien incluso en equipos de bajo coste. Esto es importante

porque permite que centros educativos, pequeñas empresas o asociaciones con pocos

recursos puedan acceder a herramientas avanzadas de comunicación visual sin tener que

invertir mucho dinero en equipos caros. El sistema funciona de manera eficiente en

dispositivos sencillos, lo que elimina una barrera económica que antes limitaba el acceso

a este tipo de soluciones.

- 52 -

Para que el sistema funcione bien incluso en equipos sencillos, se han tomado decisiones

prácticas en el diseño. Por ejemplo, se eligió Node-RED como núcleo porque es ligero y

puede manejar varias conexiones a la vez sin que el equipo se ralentice. Además, se usa

el patrón SFU (Selective Forwarding Unit) para enviar el video a todos los usuarios, lo que

ayuda a ahorrar ancho de banda y evita que el sistema se sature, algo común en otras

formas de transmitir video.

El sistema integra varias funciones en una sola plataforma: transmite video en tiempo real,

permite que los usuarios dibujen y anoten sobre la imagen que ven, y gestiona quién puede

entrar y qué puede hacer cada uno. Todo esto funciona bien incluso en equipos

económicos, lo que demuestra que no hace falta gastar mucho en tecnología para tener

herramientas modernas de comunicación.

La forma de gestionar quién entra y qué puede hacer cada usuario es sencilla pero efectiva.

En vez de usar sistemas de autenticación complejos que requieren servidores potentes,

WiWiewCast usa una solución ligera basada en sessionStorage, que funciona bien en

equipos con pocos recursos. Esto permite controlar el acceso sin complicar el sistema ni

hacerlo más lento.

Una de las características más valoradas es la pizarra colaborativa. Los usuarios pueden

dibujar, señalar y escribir sobre lo que ven en la pantalla, y cada uno tiene su propio color

y patrón para que se distinga quién hace cada anotación. Esto hace que la experiencia sea

más participativa y útil, especialmente en clases donde los estudiantes pueden interactuar

directamente con el contenido. Además, todo esto se hace con tecnologías web estándar,

sin necesidad de instalar programas extra ni usar equipos especiales.

La estructura del sistema está pensada para que cada parte (transmisión de video, gestión

de usuarios, interacción en tiempo real, etc.) funcione de manera independiente pero

conectada. Esto facilita el desarrollo, la corrección de errores y la posibilidad de añadir

nuevas funciones en el futuro sin tener que cambiar todo el sistema ni comprar equipos

nuevos. Además, el sistema incluye mecanismos para limpiar recursos automáticamente y

desconectar usuarios inactivos, lo que ayuda a mantener la estabilidad y el buen

funcionamiento incluso en equipos con pocos recursos.

Por todo lo anterior queda patente que se han alcanzado, de manera satisfactoria, todos

los objetivos planteados al comienzo del desarrollo de este TFG.

- 53 -

3. Trabajo futuro

En un trabajo futuro, sería interesante mejorar el sistema de autenticación para que sea

más seguro y flexible, permitiendo, por ejemplo, que un mismo usuario pueda conectarse

desde varios dispositivos a la vez o que haya diferentes niveles de permisos (administrador,

moderador, profesor, estudiante, etc.). También se podría añadir soporte para que varios

dispositivos transmitan video al mismo tiempo, lo que sería útil cuando se necesiten varios

ángulos de visión. Para esto, habría que desarrollar formas de mostrar varios videos a la

vez (por ejemplo, en pantalla dividida o con una ventana pequeña sobre la principal).

Las herramientas de dibujo y anotación también se podrían ampliar, añadiendo más tipos

de pinceles, formas geométricas, texto con formato y la posibilidad de trabajar en capas

(por ejemplo, una capa para los profesores y otra para los estudiantes). Incluso se podría

reconocer automáticamente lo que se dibuja y convertirlo en formas perfectas o en texto

editable.

Otra mejora sería permitir que el administrador decida si los dibujos de los estudiantes son

visibles para todos los participantes, no solo para el propio estudiante. Esto podría activarse

selectivamente según las necesidades de la sesión y sería especialmente útil en los casos

de uso uno y dos, donde actualmente los estudiantes solo ven sus propias anotaciones.

En resumen, WiWiewCast es una plataforma sólida, sencilla y accesible que ya permite

hacer cosas avanzadas con pocos recursos. Las mejoras que se plantean para el futuro

buscan hacerla aún más potente, flexible y fácil de integrar en distintos entornos, siempre

manteniendo la simplicidad y la eficiencia que la hacen especial.

- 54 -

 Bibliografía

[1] «WebRTC 1.0: Real-time Communication Between Browsers,» W3C, 2021. [En línea].

Available: https://www.w3.org/TR/webrtc/. [Último acceso: 15 de julio 2025]

[2] «Node-RED Documentation,» Foundation, Node-RED, 2024. [En línea]. Available:

https://nodered.org/docs/. [Último acceso: 15 de julio 2025]

[3] «WebRTC Best Practices: Understanding STUN, TURN and ICE Servers,»

Technologies, EcosMob, Medium, 2023. [En línea]. Available:

https://medium.com/@ecosmobtechnologies/webrtc-best-practices-understanding-

stun-turn-and-ice-servers-4836109904ec. [Último acceso: 15 de julio 2025]

[4] A. García Hernández, «Desarrollo de una aplicación web de videoconferencias

basada en WebRTC,» Trabajo de Fin de Grado, Dep. Ingeniería Telemática,

Universidad Carlos III de Madrid, Madrid, España, 2020. [En línea]. Available:

https://e-archivo.uc3m.es/rest/api/core/bitstreams/5fc95880-9f07-41ff-a01c-

b0c5783cd336/content. [Último acceso: 15 de julio 2025]

[5] «P2P, SFU and MCU WebRTC Architectures Explained,» DigitalSamba Blog, 2023.

[En línea]. Available: https://www.digitalsamba.com/blog/p2p-sfu-and-mcu-webrtc-

architectures-explained. [Último acceso: 15 de julio 2025]

[6] «Node.js Documentation,» Foundation, Node.js, 2024. [En línea]. Available:

https://nodejs.org/en/docs/. [Último acceso: 15 de julio 2025]

[7] «Socket.IO Documentation,» Socket.IO, [En línea]. Available: https://socket.io/docs/.

[8] «Promise based HTTP client for the browser and node.js,» Axios, 2024. [En línea].

Available: https://axios-http.com/ [Último acceso: 15 de julio 2025].

[9] «Raspberry Pi 5,» Foundation, Raspberry Pi, 2023. [En línea]. Available:

https://www.raspberrypi.org/products/raspberry-pi-5/. [Último acceso: 15 de julio

2025]

- 55 -

[10] M. A. Zabalza, Competencias docentes del profesorado universitario para el siglo XXI,

Madrid: Narcea, 2003.

[11] Agencia Nacional de Evaluación de la Calidad y la Acreditación, «ANECA,» mayo

2022. [En línea]. Available:

https://www.aneca.es/documents/20123/81865/220106_Informe_RA-

V3.pdf/f5988756-632f-db29-c27c-e7b14ad83a8e?t=1656326305105. [Último acceso:

15 Abril 2023]. [Último acceso: 15 de julio 2025]

[12] F. Trujillo Saez, Propuesta para una escuela en el siglo XXI, La Catarata, 2012.

[13] ANECA, 2013. [En línea]. Available:

https://www.aneca.es/documents/20123/63546/learningoutcomes_v02.pdf/cc42ff7d-

b416-5c32-860e-b3d0a5398f49?t=1654597704825. [Último acceso: 15 de julio 2025].

[14] L. M. S. Srinivas, «Harnessing Media Streams in WebRTC: Capturing and Managing

Audio and Video,,» Medium, 2023. [En línea]. Available:

https://medium.com/@lmssrinivas/harnessing-media-streams-in-webrtc-capturing-

and-managing-audio-and-video-7d69ae43d4f5. [Último acceso: 15 de julio 2025]

[15] J. U. Núñez, «Desarrollo de una aplicación de videoconferencia usando WebRTC,»

Proyecto Fin de Carrera, E.T.S. de Ingenieros de Telecomunicación, Universidad

Politécnica de Madrid, Madrid, España, , 2015. [En línea]. Available:

https://oa.upm.es/37778/1/PFC_JORGE_ULLOA_NU%C3%91EZ_2015.pdf. [Último

acceso: 15 de julio 2025]

- 56 -

 Pliego de condiciones
El presente pliego de condiciones se estructura en dos apartados claramente

diferenciados; las especificaciones técnicas del hardware y los requisitos técnicos del

software, ambos necesarios para garantizar el correcto funcionamiento del sistema.

1. Especificaciones de hardware

A continuación, se detalla los componentes físicos necesarios para implementar el sistema

WiWiewCast, incluyendo el servidor Raspberry Pi y el equipamiento de red. Las

especificaciones garantizan el rendimiento óptimo para transmisiones de video en tiempo

real con múltiples usuarios

 Raspberry Pi

Componente Especificación recomendada

Modelo Raspberry Pi 5

RAM 8GB RAM

Almacenamiento SSD NVMe 256GB con placa de adaptación (HAT)

Sistema operativo Raspberry Pi OS 64-bit

Conectividad Ethernet

Disipación Ventilador Activo y disipador

 Router para red local

Característica Especificación recomendada

Estándar WiFi 802.11ac

Velocidad 1200 Mbs

Dispositivos Soporte de al menos de 20 conexiones simultáneas

- 57 -

2. Requisitos de software

Este apartado define el entorno de software base necesario para ejecutar el sistema

WiWiewCast. Incluye, por el lado del servidor, el sistema operativo, el runtime de Node.js,

librerías específicas y Node-RED, y, por el lado de los clientes el software necesario para

los dispositivos móviles.

 Sistema operativo base

 Raspberry Pi OS , basado en Debian 11 Bullseye y Arquitectura ARM64

 Kernel Linux 5.10+

Runtime, dependencias y gestores de dependencias

Componente Versión Recomendada

Node.js 18.x LTS

npm 9.x o superior

Node-RED 3.0.2 o superior

Socket.IO 4.7.0 o superior

Axios 1.4.0 o superior

Nodos Node-RED requeridos

 node-red-contrib-socketio: "^1.1.0",

 node-red-contrib-axios: "^1.3.0",

Dispositivos clientes

Tipo Especificaciones

Móviles Android 7+ o iOS 12+, cámara 1080p, RAM 3gb+,

navegador actualizado

- 58 -

Tablets Android 8+ o iPadOS 13+, cámara 1080p, RAM 3gb+,

navegador actualizado

PC’s Windows 10/MacOS 10.14/Linux Ubuntu18+, Chrome

90+

2.1. Configuración de red local

La correcta configuración de los parámetros de la red local es importante y a la vez

necesario para garantizar las conexiones estables entre los dispositivos. A continuación,

se detalla un ejemplo:

 Rango IP: 192.168.1.0/24 (configurable)

 Gateway: 192.168.1.1 (router)

 DHCP: 192.168.1.100 - 192.168.1.200

 IP Raspberry Pi: 192.168.1.88 (estática reservada)

- 59 -

 Presupuesto

En este apartado se exponen los costes correspondientes a la elaboración del proyecto.

Teniendo en cuenta el contexto académico de este Trabajo Fin de Grado, se ha tomado

como guía las directrices del Colegio Oficial de Graduados e Ingenieros Técnicos de

Telecomunicación (COITT). Sin embargo, a la hora de la valoración de proyectos en el

ejercicio libre de la profesión debe tenerse en cuenta “El Ministerio de Economía y

Hacienda remitió a todos los colegios profesionales una nota en la que se nos recordaba

que, siguiendo directivas europeas, se debían eliminar los baremos orientativos de

honorarios que tradicionalmente veníamos publicando.”

Los costes se han dividido en las siguientes secciones:

 Materiales usados

 Trabajo tarifado por tiempo empleado

 Costes asociados a la redacción del Trabajo Fin de Grado

 Gastos derivados de los impuestos

1. Materiales usados

En este apartado, se examina la utilización de los elementos físicos y lógicos que sustentan

el desarrollo del proyecto. Para calcular su coste, se ha empleado un método de

depreciación lineal, el cual distribuye equitativamente la pérdida de valor de estos

elementos a lo largo de su vida útil estimada. Si bien la vida útil estándar considerada es

de 4 años, la duración real de este Trabajo de Fin de Grado ha sido de cuatro meses, lo

que ha requerido un ajuste proporcional en los cálculos para reflejar este periodo

específico.

Equipos

- 60 -

El Trabajo de Fin de Grado se completó en un periodo de cinco meses, un intervalo

temporal significativamente menor en comparación con el periodo de varios años que

comúnmente se utiliza como base para calcular la depreciación del equipamiento físico. En

consecuencia, los gastos de amortización presentados corresponden exclusivamente al

valor de uso durante estos cinco meses específicos.

Debido a la diferencia temporal del periodo de elaboración del TFG y el de vida útil del

material usado, se ha tomado la relación entre los dos periodos para el cálculo de la

amortización:

Vida útil (meses) = 4 años * 12 meses/1 año = 48 meses

Valor amortizado = 5 meses/48 meses * Valor de adquisición

La Tabla 1 detalla los elementos de hardware fundamentales utilizados en el proyecto,

indicando tanto su precio de compra original como la porción de su valor que se ha

depreciado durante el periodo de desarrollo.

Tabla 1 Tabla de amortización de recursos de hardware

Elemento Valor de adquisición Amortización

Portátil 2323,43 € 241,63 €

Raspberry Pi 5 118,99 € 12,37 €

SSD NVMe M2 256GB 39 € 4,056 €

Router Asus RT-AC86U 103,54 € 10,7 €

Raspberry Pi 5 HAT - SSD NVMe 256GB 47,90 € 4,89 €

El coste total de amortización de los materiales físicos es doscientos setenta y tres con

sesenta y cuatro céntimos (273,64€).

Software

Para el software implementado en este Trabajo de Fin de Grado, la amortización se calcula

considerando una utilización de 5 meses dentro de un ciclo de vida útil de 4 años.

- 61 -

Sin embargo, las herramientas de software seleccionadas han sido principalmente de

naturaleza gratuita y open source, salvo Claude que tiene un coste mensual:

 IDE VS Code: Al ser usado su versión sin suscripción y no requerir pago de licencia

todos los costes de amortización serán nulo.

 Windows 11: Al venir ya instalado en el portátil no requiere el pago de licencias por

lo que todos los costes de amortización serán nulos.

 Claude.a (Plan Pro)i: Versión de pago para búsquedas profundas y propuestas de

código con un coste (18€/mes * 5 meses) total de noventa euros (90€)

 Node-RED: Al ser Software Libre no requiere el pago de licencias por lo que todos

los costes de amortización serán nulos.

En consecuencia, el coste total derivado del software utilizado es de noventa euros (90€).

2. Trabajo por tiempo empleado

En la ejecución de este proyecto se han dedicado aproximadamente 375 horas distribuidas

entre las fases de diseño, desarrollo y creación de la documentación. De acuerdo con las

directrices del COITT, la valoración económica del trabajo realizado puede determinarse

mediante la siguiente fórmula:

H =𝐶𝑡∗74.88∗𝐻𝑛 +𝐶𝑡 ∗96.72∗𝐻e

 𝐻: Importe total de honorarios correspondientes al proyecto

 𝐶𝑡: Coeficiente de ajuste en función de las horas empleadas

 𝐻𝑛: Horas desarrolladas durante jornada laboral ordinaria

 𝐻𝑒: Horas desarrolladas en horario extraordinario (para este proyecto su valor es

0al no haberse registrado)

Considerando los baremos establecidos por el COITT, el coeficiente de ajuste

correspondiente a las horas empleadas, según se especifica en la, equivale a 0,60.

Tabla 2. Valores del factor de corrección en función a las horas trabajadas

Horas empleadas Factor de corrección 𝐶𝑡

X < 36 1

36 < X < 72 0,90

- 62 -

72 < X < 108 0,80

108 < X < 144 0,70

144 < X < 180 0,65

180 < X < 360 0,60

360 < X < 540 0,55

Conforme a dicha tabla, al completarse este proyecto en 375 horas, corresponde aplicar el

coeficiente de ajuste con valor de 0.60. En base a esto, la expresión matemática anterior

se establece de la siguiente forma:

H =0.6∗74.88∗375+0.6∗96.72∗0 = 16.848 €

Los honorarios resultantes del tiempo invertido en el proyecto, sin incluir impuestos,

alcanzan un total de dieciséis mil ochocientos cuarenta y ocho euros (16.848 €)

Redacción de documentación

Con respecto al coste de la redacción del documento se utiliza la ecuación:

H =0.07∗𝑃∗ 𝐶n

 𝑅: Honorarios correspondientes a la elaboración del documento.

 𝑃: presupuesto total del trabajo.

 𝐶𝑛: coeficiente de ponderación determinado según el presupuesto.

El importe final resulta de la adición de los costes laborales facturados por tiempo invertido,

previamente calculados, y la depreciación de recursos materiales cuyo total se detalla en

la Tabla 3.

Tabla 3. Presupuesto del trabajo tarifado y amortización de los recursos materiales

Descripción Costes

Amortización de recursos materiales 273,64 €

Trabajo tarifado por tiempo empleado 16.848 €

- 63 -

Total 17.121,64 €

Dado que el coeficiente de ponderación para presupuestos inferiores a 30.050,00€ se

establece por el COITT en 1.00, el coste de elaboración documental del TFG resulta:

H =0,07* 17.121,64 * 1= 1.198,51 €

En definitiva, el coste de redacción del proyecto alcanza un importe de mil ciento noventa

y ocho euros con cincuenta y un céntimos (1.198,51 €)

3. Aplicación de impuestos y coste total

A este Trabajo de Fin de Grado se le aplica el Impuesto General Indirecto Canario (IGIC),

equivalente al 7% del importe presupuestario. El presupuesto global del proyecto se detalla

en la Tabla 4.

Tabla 4.Tabla 24 Aplicación de impuestos a los costes

Concepto Costes

Amortización de recursos materiales 273,64 €

Trabajo tarifado por tiempo empleado 16.848 €

Redacción de documentación 1.198,51 €

Subtotal (Sin IGIC) 18.320,15 €

IGIC (7%) 1.282,41 €

Total 19.602,56 €

- 64 -

El Trabajo de Fin de Grado denominado " WiWiewCast. Sistema de streaming interactivo

multiusuario con WebRTC utilizando Raspberry Pi ", desarrollado en la Escuela de

Ingeniería de Telecomunicaciones y Electrónica de la Universidad de las Palmas de Gran

Canaria, presenta un coste total de desarrollo de diecinueve mil seiscientos dos euros

con 56 céntimos (19.602,56 €), que corresponde a la suma de los importes asignados a

los conceptos anteriormente especificados.

Firmado: Benito Santana Díaz Fecha:18/07/2025

- 65 -

 Objetivos de Desarrollo Sostenible

Grado de relación del TFG con los objetivos de desarrollo sostenible

Tabla 5. Objetivos de desarrollo sostenible

 Justificación del alineamiento del TFT con los ODS con los que se ha indicado que tiene

un mayor grado de relación:

ODS04: Educación de Calidad

Mejora la calidad de la enseñanza mediante la transmisión de video en tiempo real con

anotaciones interactivas, facilitando el acceso a contenidos educativos digitales.

ODS09: Industria, Innovación y Crecimiento Económico

Al emplear tecnologías como WebRTC y Node-RED, el proyecto fomenta el desarrollo de

plataformas de comunicación en tiempo real eficientes, escalables y accesibles.

- 66 -

 Anexo 1. Manuales

Este anexo tiene como objetivo establecer las condiciones técnicas, funcionales y de

calidad para la ejecución del sistema de transmisión interactiva multiusuario denominado

WiWiewCast, conforme a las especificaciones definidas en el pliego de condiciones, así

como proporcionar un manual de usuario para su correcta operación.

1. Manual de instalación

La siguiente sección proporciona una guía para instalar el sistema desde cero. Incluye la

preparación del Raspberry Pi, instalación de Node.js y Node-RED, configuración de

certificados de seguridad, y establecimiento del sistema como servicio automatizado. El

proceso culmina con la importación de archivos del sistema y las URLs de acceso para los

diferentes roles de usuario.

El primer paso es descargar y ejecutar Raspberry Pi Imager: https://rpi.org/imager desde

cualquier equipo. Este programa nos ayudará a instalar el sistema operativo de la

Raspberry PI dentro de una microSD.

Durante el proceso de ejecución de Imager:

 Descargar Raspberry Pi OS (64-bit recomendado).

 Habilitar SSH.

 Habilitar usuario y contraseña (ejemplo “usuario: pi, contraseña: pi”)

 Escribir imagen en microSD

1.1. Primera configuración

A continuación se detallan las acciones a ejecutar para la configuración inicial:

 Insertar la tarjeta microSD y arrancar Raspberry Pi

 Conectar Raspberry Pi a la red local del router WiFi mediante cable Ethernet.

Utilizar otro dispositivo conectado a la misma red para saber la IP asignada a la

Raspberry a través del comando:

$> ping raspberrypi.local

 Utilizar la IP para conectarse a través de SSH.

$> ssh pi@192.168.1.XX

- 67 -

 Actualizar sistema

pi@raspberrypi:~$> sudo apt update && sudo apt upgrade -y

 Configurar la IP estática

$> sudo nmtui

1.2. Instalar Node.js y Node-RED

Una vez completadas las acciones anteriores, procedemos a instalar Node.js y el entorno

gráfico Node-RED.

 Instalar Node.js (versión 18 LTS)

$> curl -fsSL https://deb.nodesource.com/setup_18.x
$> sudo apt-get install -y nodejs

 Instalar Node-RED globalmente

$> sudo npm install -g --unsafe-perm node-red

 Instalar dependencias WebRTC

$> sudo npm install -g node-red-contrib-socketio sudo npm install
-g wrtc

1.3. Crear certificados autofirmados

Para que los navegadores modernos permitan el uso de dispositivos multimedia como la

cámara o el micrófono, es necesario que la conexión esté protegida mediante SSL

(HTTPS). A continuación, se detallan los pasos para instalar certificados autofirmados.

 Crear directorio para certificados

$> sudo mkdir -p /home/pi/ssl/
$> cd /home/pi/ssl/

 Generar clave privada

$> sudo openssl genrsa -out server.key 2048

 Generar certificado autofirmado (válido por 365 días)

$> sudo openssl req -new -x509 -key server.key -out server.crt
-days 365

 Configurar Permisos

$> sudo chown root:ssl-cert /home/pi/ssl/server.key
$> sudo chown root:ssl-cert /home/pi/ssl/server.crt
$> sudo chmod 640 /home/pi/ssl/server.key
$> sudo chmod 644 /home/pi/ssl/server.crt

 Añadir usuario pi al grupo ssl-cert

$> sudo usermod -a -G ssl-cert pi

- 68 -

1.4. Configurar Node-RED

El paso siguiente será configurar el entorno de trabajo Node-RED para adaptarlo a la

conexión protegida (SSL/HTTPS).

 Crear directorio de trabajo

$> mkdir ~/.node-red | cd ~/.node-red

 Configurar settings.js

$> nano settings.js

javascriptvar fs = require("fs");
module.exports = {
 // Configuración HTTPS
 https: {
 key: fs.readFileSync('/etc/ssl/wiwicast/server.key'),
 cert: fs.readFileSync('/etc/ssl/wiwicast/server.crt')
 },
 // Directorio para archivos estáticos
 httpStatic: ‘/home/pi/nodered/public’,
 // Puerto para HTTPS
 uiPort: process.env.PORT || 1880,
 // Resto de configuración existente...
 functionGlobalContext: {
 wrtc: require('wrtc'),
 os: require(‘os’),
 },
 // Confiiguración de seguridad
 requireHttps: true
}

1.5. Configurar Node-RED como servicio

Una vez modificado el archivo settings.js, procederemos a configurar Node-RED como un

servicio del sistema, de modo que se inicie automáticamente cada vez que arranque el

sistema operativo.

 Crear servicio

$> sudo nano /lib/systemd/system/nodered.service;

[Unit]
 Description=Node-RED
 After=syslog.target network.target

[Service]
 ExecStart=/usr/bin/env node-red-pi --max-old-space-size=256
 Restart=on-failure
 KillSignal=SIGINT
 SyslogIdentifier=node-red
 User=pipi

[Install]
 WantedBy=multi-user.target

- 69 -

 Habilitar Node-RED como servicio

$> sudo systemctl enable nodered.service
$> sudo systemctl start nodered.service
$> sudo systemctl status nodered.service

1.6. Importar Configuración

Una vez instalado todo el ecosistema, solo queda descargar los archivos de la aplicación

y alojarlos en el entorno correspondiente.

 Descargar archivos del repositorio GitHub: https://github.com/benitosd/tfg.git

$> cd ~/.node-red (Copiar flows.json a la Raspberry Pi)
$> cd ~/nodered/public

 Copiar archivos HTML (index.html, viewer.html, admin.html, login.html)

 Copiar Carpetas JS, CSS y todo su contenido

1.7. URLs de Acceso

Una vez el sistema configurado y reiniciado se puede acceder a los diferentes perfiles a

partir de las URLS indicadas a continuación:

 Login: https://192.168.1.88/login.html

 Emisor: https://192.168.1.88/index.html

 Viewer: https://192.168.1.88/viewer.html

 Admin: https://192.168.1.88/admin.html

 Node-RED: https://192.168.1.88:1880

2. Manual del Usuario

El sistema se organiza en tres roles principales que trabajan en conjunto para crear una

experiencia de transmisión dinámica, como los siguientes:

 El Emisor se encarga de transmitir video en vivo desde su dispositivo, controlando

la cámara y la transmisión.

- 70 -

 Los Viewers (o espectadores) pueden acceder a la transmisión en tiempo real y

participar activamente dibujando sobre el video con colores y patrones únicos que

se les asignan automáticamente, creando una capa de interacción colaborativa.

 El Administrador supervisa todo el sistema: gestiona a los usuarios conectados,

modera el contenido, controla las capas de dibujo y monitorea el rendimiento

general. A continuación, se detallan los manuales específicos para cada rol.

Figura 19. Página de autenticación

La elección de este rol se realiza al autenticarse en la aplicación. El proceso incluye los

siguientes pasos:

o Conectar el dispositivo al WiFi de WiWiewCast

o Abrir navegador y escribir la siguiente url: https://192.168.1.88/login.html

o Iniciar sesión eligiendo el rol correspondiente en el desplegable y añadir un

nombre para identificación.

2.1. Manual del Emisor

Cuando el interlocutor actúa como emisor transmite video en vivo desde cualquier cámara

de su dispositivo. Puede cambiar entre cámaras (frontal o trasera en el caso de un

dispositivo móvil) y elegir la orientación horizontal o vertical de la transmisión. Solo se

necesita que el dispositivo, con cámara y navegador web, esté conectado al WiFi de

WiWiewCast y tener los permisos de cámara habilitados en el navegador.

Las acciones posibles con este perfil son:

- 71 -

 Configuración de la cámara

o Desplegable "Seleccionar cámara" - lista todas las cámaras disponibles

o Cambio de cámara: Solo posible cuando NO se está transmitiendo

o Orientación de Vídeo.

 Para iniciar la transmisión, los pasos a seguir son:

o Verificar preview - debe verse el video de la cámara

o Clic en "Iniciar Stream", después de esto el botón cambia a "Detener

Stream" y la etiqueta muestra un indicador con el texto "En vivo".

Figura 20. Modo Emisor antes de empezar a transmitir

 Para finalizar la transmisión debemos:

o Clic en "Detener Stream"

o Confirmación automática - se liberan recursos

o Vuelta al estado inicial botón cambia a "Iniciar Stream"

- 72 -

Figura 21. Modo Emisor en estado emitiendo

2.2. Manual del Viewer (Espectador)

Cuando nos logueamos como Viewer o espectador, el usuario puede ver el video en tiempo

real y participar activamente en la experiencia colaborativa mediante el sistema de dibujo

interactivo. Cada espectador recibe automáticamente un color y patrón único que permite

identificar sus contribuciones en la transmisión.

Con este perfil, las acciones posibles incluyen la visualización de video, donde puedes

hacer clic en “Ver Stream” y disfrutar de una calidad adaptativa que se ajusta

automáticamente según tu conexión.

En cuanto al sistema de dibujo colaborativo, al conectarte recibes automáticamente los

elementos que identifican al usuario, incluyendo un color único y un patrón distintivo en la

forma del píxel.

- 73 -

Figura 22. Modo Viewer recibiendo video

Para dibujar, simplemente toca o haz clic sobre el video, y arrastra para crear líneas y

formas; todos los usuarios verán tus dibujos en tiempo real, incluidos los administradores

desde su panel.

En cuanto a la gestión de dibujos, dispones de un botón para “Borrar mi dibujo”, que elimina

únicamente tus trazos. Este cambio es inmediato y notifica al administrador quién ha

realizado la acción. No puedes borrar los dibujos de otros, pero puedes eliminar y redibujar

los tuyos tantas veces se desee.

- 74 -

Figura 23. Modo Viewer dibujando

Los controles en los dispositivos táctiles permiten dibujar con un dedo sin interferencia de

gestos como el zoom o el pinzado, ya que toda la superficie del video está habilitada como

área de dibujo. En ordenadores, los controles con ratón permiten dibujar con el clic

izquierdo, mantener presionado para trazos continuos, y mover el puntero sin hacer clic no

genera dibujo.

2.3. Manual del Administrador

Como Administrador en WiWiCast, tienes control total sobre el sistema de transmisión

colaborativa, supervisando todos los usuarios conectados, gestionando las capas de dibujo

interactivo, moderando contenido en tiempo real y monitoreando el rendimiento general del

sistema. Además, puedes alternar entre diferentes modos de uso para adaptarte a las

necesidades de la sesión.

En el panel de control, dispones de acceso a estadísticas generales, como el número total

de espectadores conectados (Viewers Conectados), los que están visualizando

activamente la transmisión (Viewers Activos) y las métricas de red, que te muestran el

uso de ancho de banda en tiempo real.

- 75 -

Figura 24. Modo Admin recibiendo emision

La gestión de viewers te permite identificar a cada usuario mediante su nombre o, así como

ver el color y patrón asignados automáticamente por el sistema.

En cuanto a la visualización de capas, cada usuario tiene su propia capa de dibujo, la

cual puedes mostrar u ocultar de forma independiente. Esta visibilidad individual no afecta

a la integridad de los dibujos: al ocultar y volver a mostrar una capa, los trazos permanecen

intactos. Además, puedes borrar únicamente los dibujos de un usuario concreto con el

botón correspondiente, o usar la función "Resaltar" para mostrar solo sus trazos durante

2 segundos, facilitando la moderación o el análisis visual.

Figura 25. Modo admin recibiendo video y dibujos

- 76 -

Finalmente, el sistema incluye un Modo Dual (Administrador + Emisor) que permite al

administrador convertirse también en emisor de contenido. Al pulsar el botón "Cambiar a

Modo Emisor", se activan los controles de transmisión, como el manejo de la cámara y el

inicio del streaming, sin perder las funciones de administración. Puedes volver al modo

exclusivamente administrativo, deteniendo la transmisión en cualquier momento y

utilizando el botón "Cambiar a Modo Admin".

Figura 26. Modo Admin emitiendo video

