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Onthology 
As existing vocabulary is wide and sometimes lack of standardization it has been found 
necessary to establish and homogenize the nomenclature for sake of clarity and 
accuracy. 

 

Task/subtask: tasks have a specific objective and is defined by its inputs and resulted 
outputs. Required functionalities are described by tasks. Any task could be decomposed 
in several subtasks. 

Method: a method specifies how to perform a specific task. Applied method will set 
required format of inputs and a data flow. Methods also impose which subtasks have to 
be considered to perform the intended task. 

Inference: It defines a reasoning step related to certain desired objectives and also 
constitutes the final goal for which a task is built. 

Technique: It is any mechanism devoted to the implementation of an inference (e.g. 
artificial neural networks, expert systems, Markov models, etc.) 

Indicator: Every input transformation is considered an indicator. Indicators are meant 
to enhance input signals providing enough expressiveness to make an inference. 

Health indicator: It is an indicator that fulfils a particular condition. This is, its 
evolution over time have to be a non decreasing functions as a certain failure mode 
develops. For those failure modes that do not exhibit degradation this indicators have 
stepped profiles. Health indicators enable prognosis inferences. 

False alarm rate: False alarms from the condition monitoring system. When system 
state is classified as unhealthy while it is healthy instead. It is defined as the ratio 
between the number of incorrectly classified samples as unhealthy states over the total 
number of healthy instances. 

Missing alarm rate: (or false negative) It occurs when system state is classified as 
healthy while it is unhealthy instead. Defined as the ratio between the number of 
incorrectly classified samples as healthy states over the total number of failures. 

Fault Diagnosis: Detecting, isolating and identifying an impending or incipient failure 
condition-the affected component is still working but in a degrade mode. 

Failure Diagnosis: Detecting, isolating and identifying a component that has ceased to 
operate. 

Prognostic: It is the ability to predict accurately and precisely the remaining time to 
failure of a failing component or subsystem. 

 

All contents in this work that will be developed from now on will be referred to this 
terminology: Hence, author recommend to keep them at hand to avoid 
misunderstandings trough the exposition. 
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Chapter 1 
Background, Motivation and Objectives 

 
1. Wind energy technology overview 

Of all renewable energy technologies, wind power currently has the strongest market 
penetration due to its competitiveness to conventional power generation. There are 
now commercial wind power installations in more than 90 countries with total 
installed capacity of 318 GW at the end of 2013, providing about 3% of global electricity 
supply(Global Wind Energy Council 2014). Starting from markets such Denmark and 
Germany, there has been a change in the world market in recent years with strongest 
growth in China (25% in 2013), India and USA. Besides, attention have to be paid to new 
emergent regions of growth such as Brazil, Mexico and South Africa. 

With respect to Spain, according to 2014 annual report elaborated by the national grid 
operator (Red Eléctrica de España, REE), installed capacity of wind power covers 22,3% 
of the global sources of energy technologies, 47,4 % if only renewable sources are taken 
into account. In 2014, from a total electric energy demand of 243.530 GWh, up to 20,3% 
came from wind energy conversion, with a peak value of 34,5% registered for an energy 
demand of 38.666 MWh. 

Wind energy development and deployment will keep its pace in future years to meet 
objectives concerning climate change, greenhouse gas emission reduction and 
requirements of energy independence mostly demanded by regions without fossil or 
nuclear reservoirs. In this sense, Global Wind Energy Council (GWEC) provides three 
possible development scenarios (Figure 1) regarding different management policies 
about previous objectives. Thus, the most conservative scenario is based on current 
adopted commitments by governments in such fora as G-8/G-20 but still not enacted 
into laws. Second proposed scenario assumes that current intentions on wind energy 
development and carbon dioxide emissions are legislated although in the modest side. 
Finally, third scenario is the most ambitious and is formulated in relation to the fact 
that effective and forceful laws are adopted. 

Wind energy generation is gradually moving from onshore locations to offshore chiefly 
because two reasons: quality of resource is better in the sea due to higher and more 
constant wind velocities, which positively impact both amount of energy that a certain 
wind turbine is able to produce and production management, since sea winds are more 
predictable. The second motive accounts for onshore lack of space for constructing 
large wind farms, especially in small regions such as islands. This panorama has 
auspiced the development of new designs capable of adapting to these new operational 
conditions. Thus, leading offshore context to inexorable reliability issues caused by 
immature technology and lack of experience. 
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Levelized Cost of Energy (LCOE) is a measure which attempts to compare different 
technologies of electricity generation in a comparable basis. It is defined as the net 
present value of the unit-cost of electricity over the lifetime of a generating asset. 
Under this frame one may realize that offshore wind energy generation it is still very 
far from some conventional or even other renewable alternatives (Kost et al. 2013). 
LCOE is significantly affected by maintenance actions, rated by some authors (Godwin 
and Matthews 2013) as 20-25% of total asset cost, of which, up to 75% is due to 
unscheduled maintenance. This discourage future investment, reducing long term 
economic viability of wind energy. Thus, failure management is capital in order to 
make offshore generation competitive, which is not a trivial task. Some reliability 
studies have shown that operational unavailability of wind turbines reaches 3% of its 
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Figure 1: Wind energy forecast based on GWEO report 
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lifetime. Blades, control system and electrical system have been identified as the 
components with highest failure rates, causing several short downtimes per year. By its 
part, gearbox, generator, drive train and also blades have the highest downtimes per 
failure. This is also a problem because, besides replacements and maintenance 
infrastructure costs, loss of production costs are rather severe related LCOE of wind 
turbines. 

 
Figure 2: Failure rate and downtime periods for main wind turbine assemblies - Used with permision of (Crabtree et al. 2014) 

Addressing maintenance management of such critical components still remain a 
challenging task and a matter of active research, moreover for offshore facilities. 
Maintenance carried over offshore wind turbines often involve much infrastructure 
which also have higher unit cost. As an example, is not unusual to have a fleet of 
specialized ships to perform different tasks (personal transportation, material 
transportation, etc.) or even a floating base for operators, since wind farms usually are 
miles away from the coast. 

Given all elements intervening in maintenance, turning to proactive more efficient 
management policies has become almost mandatory so as to ensure the viability of 
offshore technology and increment its penetration within the market. 

2. Motivation 

Condition monitoring for wind farms maintenance management has gained great 
attention in the last years because its impact in cost of energy and dependability in 
their operation. Several companies are devoting large efforts investing both monetary 
and human resources to adapt their maintenance policies to a much more proactive 
ones. They have realized that new placements of wind farms, which also include 
offshore locations, will require renewed strategies to maintain efficiency standards in 
the exploitation of this kind of facilities and keep them profitable. 

Moreover, given the consciousness existing around these topics, within the sector 
several opportunities are being created to obtain financing from both public and 
private organisms. This framework stimulate companies to be involved in big projects 
that provide them the opportunity to enhance productivity and setup new operation 
protocols. Also, this situation encourages research institutions to work into these lines 
promoting cooperation between industry and research groups, which is highly 
desirable when it comes to engineering development. 
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As a proof of previous statement, CEANI R&D group (Computación Evolutiva y 
Aplicaciones Numéricas en Ingeniería) has been involved within the last six years as 
part of three consortiums regarding the development of conditioning monitoring 
systems applied to wind turbines in order to improve the logistic of maintenance of 
such systems, viz: Ocean Lider (founded by Centro para el Desarrollo Tecnológico e 
Industrial (CDTI) and Ministerio de Economía y Competitividad (MINECO) from Spanish 
government), LeanWind (founded by European Commission under the 7th Framework 
Programme for Research) and a cooperation agreement with a national power 
company. 

The approach presented in this work is the result of the conclusions achieved when 
working in Ocean Lider project, willing to apply new developments to the latter two 
projects, which are currently in progress. Two items of improvement were identified 
back then: on the one hand, the need to establish a systematic procedure in order to 
extract expressive features for the failure detection task. And, on the other hand, to 
define a rigorous procedure to obtain a diagnostic about the health of the machine 
from the symptoms previously isolated. Hence, the main research line in which the 
group has been interested the last two years has been the obtainment of expressive 
indicators for specific failure mode characterisation. This work address this line trying 
to meet some particular goals, described in the following section. 

3. Specific objectives 

The objectives of this project can be grouped into two different classes: by one side 
there are those related to academia and, in the other side, those which concerns about 
the results expected of the proposed methodology. From the point of view of academia 
three objectives are identifiable: 

 To finish and, consequently, to obtain the Master degree on Sistemas 
Inteligentes y Aplicaciones Numéricas en Ingeniería, and proceed with Phd 
studies. 

 To get deeper knowledge in the field of industrial reliability, particularly that 
related to early detection of failures in wind turbines subassemblies. 
Furthermore, to take further knowledge about data-driven machine learning. 

 Reinforce and acquire new skills in research context. 

Regarding the expected contributions, the main objectives are the following: 

 To develop a methodology for automatic learning of expressive indicators for 
early failure detection so as to deal with learning tasks in commonly situations 
encountered when working with industrial datasets. 

 Present a vision of condition monitoring technology applied to the field of wind 
energy. Specially a comprehensive state-of-art on available techniques for 
failure detection, diagnosis and prognosis will be developed in order to place 
presented methodology in its context. 

 Build up transparent (i.e. interpretable) models to serve as indicators for failure 
detection. 

 Usually, the obtainment of indicators from raw data involves the use of expert 
knowledge to decide how to transform such space in order to get expressive 
measures. In this sense, one of the proposed objectives is to change the 
qualitative role of expert knowledge in the process of identifying potential 
indicators by limiting its influence to the configuration of the search space of 
transformations instead of selecting which to deploy. 

 Manage databases coming from industry and perform data pretreatment in 
order to be used for condition monitoring. 
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3.1. Structure of the document 

 Maintenance Paradigms for Wind Turbines: State-of-Art (Chapter 2) 

Stages of condition monitoring, different approaches and methods and available 
techniques involving recent published works are covered. The study is centred in 
research made in wind turbine technology. Furthermore, current improvable topics and 
possible contribution opportunities are outlined. 

 Proposed Methodology Description (Chapter 3) 

In this section we introduce the facts that motivate the work and its expected 
contributions within the current state of the art. Theoretical notes on the search 
approach are detailed and also the essentials of used techniques. We devote a 
subsection to perform some preliminary experiments to test the effect of different 
parameters on the search process. Besides, some different problems are addressed to 
test the capabilities of the presented approach. 

 Test case: Application on bearing dataset (Chapter 4) 

We move from synthetic experiments to deal with real data coming from Run-
To-Failure experiments carried over a set of bearings. In this chapter we try to extract 
some conclusions about technique performance on real data, but obtained under 
controlled operational conditions. 

 Conclusions (Chapter 5) 

We review accomplished milestones and propose future research directions to 
further develop current proposal and apply it to more exigent data. 

 References 

Consulted sources to develop this work are detailed in this section 

 Appendix 

Additional plots which complement those already exposed in each chapter are 
grouped in this section. 
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Chapter 2 
Maintenance Paradigms for Wind Turbines: 

State-of-Art 
1. Maintenance management: generalities 

Setting maintenance strategies is not an easy task, it involves numerous variables that 
have to be considered in order to schedule required actions. Furthermore, each of 
available approaches needs their own sources of information. In general, maintenance 
approaches are divided in two big categories: corrective maintenance and preventive 
maintenance. 

Corrective maintenance is performed after a failure has occurred. There are two types: 
urgent corrective maintenance and programmed corrective maintenance. In the first 
one, the system remains unavailable in a faulty state, but in the second one, the system 
is still operating but it cannot be used under its optimal conditions (i.e. performability 
is downgraded). 

By its part, preventive maintenance is intended to prevent the system of undergoing a 
failure. Employed criteria (trigger events) to anticipate failures actually define the 
maintenance strategy. Maintenance may be planned using statistical descriptors such 
as RAMS (Reliability, Availability, Maintainability and Safety) related measures to fix 
constant intervals at which the system will be maintained. This strategy is called 
periodic preventive maintenance. Other approach consist of monitoring system 
condition to schedule maintenance activities only when the system is found to be 
operating degraded. Condition monitoring (CM) could be continuous or discrete 
depending on whether the monitoring task is done online or on demand. When doing it 
continuously a remote acquisition system is required to gather data. By contrast, if CM 
is performed offline then surveillance intervals are planned in order to access the data. 
These intervals are configured in a similar fashion than periodic preventive 
maintenance. However, repairs or replacements are only undertaken if detected 
condition is bad or it will be bad in the near future. 

Either be preventive or corrective maintenance, there are three possible actions. First 
one involves the upgrade of the system in order to fix the failures or detected 
malfunctions. This activities will restore system performance to Good-As-New (GAN), 
Bad-As-Old (BAO) or Better than Old but Worse than New (BOWN). BAO reparation is 
usually known as palliative maintenance in which some minor reparations are 
performed just to keep system available. The second kind of maintenance actions is the 
replacement. This also comprises some minor reparations which involves the 
substitution of degraded components. Finally, after some periods it becomes useful (if it 
is cost effective) to subject the system (a multicomponent system) to a major 
maintenance action in order to improve significantly its reliability. This is call 
overhauling actions or simply overhaul. 
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Figure 3: Maintenance strategies and actions 

1.1. Integration notes: unifying criteria for different approaches 

The maintenance programming looks for the optimal possible maintenance strategy, 
always trying to improve some criteria involving cost and/or risks. It is not in the scope 
of this work to go deep into this topic but providing some useful notes for condition 
monitoring strategy integration within the whole maintenance planning. 

The planning task gets harder when all the maintenance possibilities are considered. It 
have to be noticed that periodic maintenance is a long/medium term strategy, 
corrective maintenance is reactive and condition based is a short term proactive 
strategy. This introduces difficulties when trying to set the whole maintenance 
scheduling. Usually intervals for preventive maintenances are derived at the beginning 
of the operation and whenever the exploitation goals (availability, risks, costs, etc.) are 
not fulfilled. However condition monitoring cannot be addressed in the same procedure 
as it depends in the instantaneous operation of the wind turbine (WT). The way in 
which both maintenance approaches could be combined is not a trivial matter. 

One possible way to overcome this problem is to introduce some indicator variables, 
whose allowed values are zero (not selected) and 1 (selected), as decision variables in 
the maintenance optimization task. These variables indicate if a certain component will 
be managed under the condition monitoring approach or not. It has to be noticed that 
not every component can be included in the CMS as this means that a high inversion 
on sensor infrastructure will be required. Furthermore, since sensors are as prone to 
fail as WT subassemblies, this leads to an ineffective strategy. Accordingly to 
aforementioned issues it would be beneficial to derive a cost model describing 
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implications of involving a certain wind turbine subassembly or component into the 
condition monitoring system. Some related facts coming from CEANI R&D previous 
experience in various projects are detailed below. 

 Normally based in midday journeys per maintenance ship. Between 6-7 hours 
really working on wind turbines. 

 With good weather  a ship serve up to 20 wind turbines in one journey 
 No maintenance activities are carried out during the night, so everybody must 

be off the wind farm at the end of the day 
 Preventive Maintenance only performed between April and September. 
 Ships cost is not relevant compared with the cost of wind turbine downtimes. 

All described facts but one are referred to the detection horizon, that is the time at 
which the failure is evidenced. The estimation of remaining time to failure, based on 
the current condition, has different levels of accuracy and certainty depending on the 
length of the time interval until failure. The accuracy of the prediction becomes higher 
when the failure is near to happen and vice versa. 

In terms of maintenance planning, useful information that could be provided from 
condition monitoring analysis is: 

Probabilistic detection horizons: this is a curve specifying the probability of early 
detecting a specific failure mode some certain time in advance. 

Rate of false alarms: this account for the proportion of times that an specific failure 
mode has been incorrectly identified. If this measure is high, then maintenance will be 
overscheduled and costs will increase dramatically. 

Rate of missing alarms: this measure concerns on how many times over the total a 
specific failure mode is not detected. If this rate remains high it is advisable not to 
include the component in the condition monitoring system as downtime costs will be 
also high. 

Building a cost measure upon aforementioned metrics would help to fusion both, long 
term and short term approaches. 

2. Maintainable items 

The final goal of present chapter is to describe the condition monitoring paradigm for 
maintenance management in industrial facilities and resume the latest contributions in 
the field regarding wind farms manangement. For setting up the condition monitoring 
system, i.e., decide which components will be monitored and which models will be 
deployed, two sources of information are needed: 

 Which are the most critical maintainable items located in the wind turbine and 
which are their failure modes. 

 What is the acquisition system and strategy that will be deployed. 

Based on available literature, it is possible to make a first approach to wind turbine 
critical subassemblies and related failure modes. In a real context, the feedback from 
industry is crucial to set the requirements of the system depending on client needs. 

In the last 20 years, some research groups have been performing qualitative analysis 
on the wind turbine failures to optimize system performability. Most authors have used 
FMECA (Failure Modes, Effects and Critically Analysis) technique to address these topics. 
First of all, decomposition of the entire wind turbine in sublevels is developed. 

(Arabian-Hoseynabadi, Oraee, and Tavner 2010) defined 4 levels hierarchy: 

 Level 1 for the entire Wind Turbine 
 Level 2 for the assemblies (like the generator system). 
 Level 3 for the sub-assemblies (like the stator in the generator). 
 Level 4 for the parts (like stator coils). 
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Figure 4: Offshore wind farm (Oostende-Belgium) 

 
Figure 5: Wind Turbine main assemblies 

The next step is the definition of failure modes in all those parts. It’s important to 
associate failure modes to components, but there is important the analysis of causes-
consequences. A first cause can be a failure in a part, but this failure could be the 
cause of a failure in other part. For example, a failure in the pitch control can impact 
rotor, generator, gearbox, structure, etc. This phenomenon is called chained failure. For 
this reason, it is importantk that all failure modes are well associated to the real 
components affected.  

The expert criterion over the FMECA is very important: the experience and knowledge 
of the system is vital for good FMECA analysis. Some of the parameters on the FMECA 
can be obtained with objective criteria, but majority of the FMECA in bibliography use 
expert criteria to obtain the most critical assemblies. 

Using this methodology, (Arabian-Hoseynabadi et al. 2010) obtained that the most 
critical assemblies are rotor and blades assembly, generator, electrical controls, 
hydraulics and gearbox. The top root causes were, by occurrence number, corrosion, 
mechanical overload, vibration fatigue, presence of debris and overheating. The top 
failure modes were material failure, fracture, rupture, electrical failure and blockage. 

(Das et al. 2011) defined a limit of wind turbine system components to be redesigned on 
2MW variable speed wind turbines with doubly fed induction generator configuration 
and with active pitch control. The conclusion was that crowbar protection and gearbox 
must be redesigned to those wind turbines. Other critical system components were low 
speed shaft, pitch controller and current controller. 

(Dinmohammadi and Shafiee 2013) applied Fuzzy FMECA to 5 MW Wind Turbine of 
REpower, model MM92. Using some configurations of Risk Priority Number calculus on 
the FMECA, the conclusions are that the most critical assembly is the Tower. The 
following most critical assemblies are rotor blades, gearbox, power converter, 
transformer and generator. 

The most common variation over this procedure is the objective criterion of decision: 
changing the risk to the cost, the most important assemblies change. 

For (Kahrobaee and Asgarpoor 2011), the most critical assemblies using cost criteria are 
generator, electrical system, blades, converter and hydraulic system. This confronts 
their risk priority analysis, in which the most critical assemblies are generator, control 
system, mechanical brake, electrical system and converter. 

(Shafiee and Dinmohammadi 2014) used cost priority analysis versus risk priority 
analysis, and onshore versus offshore. The results of the highest ranks on all the 
configurations are summarized in Table 1. 
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Table 1: Shafiee and Dinmohammadi Failure ranking 

Subassembly Onshore 
RPN Rank 

Offshore 
RPN Rank 

Onshore 
CPN Rank 

Offshore 
CPN Rank 

Tower 1 1 1 1 

Gearbox 2 2 2 3 

Rotor blades 3 2 3 2 

Generator 4 5 6 6 

Power converter 5 4 11 4 

Transformer 6 6 4 5 

Main frame 10 10 5 7 

 

Attending at these main assemblies, in the literature are covered the most relevant 
failure modes, which are resumed below: 

 Tower 
 Crack 
 Deformation 

 Gearbox 
 Gear tooth crack 
 Lubrication oil loss 
 Lubrication oil degradation 
 Gearbox bearing failure 

 Inner race defects 
 Outer race defects 
 Cage defects 
 Roller element defects 

 Blades 
 Skin-skin delamination (within the plies of the laminate) 
 Skin-core delamination (between the fibre glass skin and the core) 
 Crack 
 Fatigue 
 Pitch angle implausibility 
 Pitch angle assymetry 
 Rotor overspeed 

 Generator 
 Rotor coil shorting 
 Stator coil shorting 
 Brushes wear 
 Generator speed discrepancy 
 Drive and non-drive end bearings 

 Power Converter 
 Frequency implausibility 
 Crowbar dysfunction 

 Transformer 
 Output voltage implausibility 

 Main frame 

 

 

 

 



Maintenance Paradigms for Wind Turbines: 
State-of-Art 

Condition monitoring 

 

17 

3. Condition monitoring 

3.1. Introduction 

Condition monitoring (CM) has four main tasks comprising pretreatment, feature 
extraction, detection and hypothesis discrimination. The common workflow of a 
condition monitoring system (CMS) is to first start with some initial observations 
captured from the technical system (wind turbines) that are fed and processed by the 
CMS until a final diagnosis (current health state) or prognosis (future health state) are 
obtained, as shown in Figure 6. Initial observations have different nature ranging from 
numerical data (i.e. measurement of vibrations, temperature, torques, etc.) to nominal 
data which usually involves status-of-machine data (working, ready, stopped, paused, 
etc.), triggered alarms or even operational data describing maintenance actions and 
replacements carried over the system. Last observations are related to supervisory and 
control systems such as SCADA. As a general rule, numerical data is provided as time 
series, however its use may not always be linked to time series analysis or prediction, 
depending on the selected approach for data processing. Initial observation gathering 
requires acquisition systems, and its selection is not trivial as long as it will condition 
subassemblies failure modes that can be addressed by the CMS. Different alternatives of 
acquisition mechanisms will be dealt in subsequent sections. 

Feature ExtractionPretreatment FINITIAL 
ACQUISITION

DIAGNOSIS
PROGNOSISHypothesis Discrimination

ADDITIONAL 
OBSERVATIONS

Normal Behaviour 
Detection

State-based Detection

Indicator-Based 
Detection

 

Figure 6: Main stages of CMS 

Collected data is subjected to pretreatment in order to validate and adequate 
information for subsequent tasks. Data pretreatment have different goals with 
dependency on if CMS configuration (training) is being performed or if by contrast, 
trained CMS is actually running. After this stage, procedures for data transformation 
are performed. Feature extraction aims to enhance input observations so as to 
facilitate and improve posterior steps in CM through the synthesis of indicators. Once 
data has been appropriately treated, detection task provides hypotheses about possible 
malfunctions taking place within the machine which may result in a future component 
failure. Put another way, detection gives unconfirmed inferences about system 
dysfunctions. Detection task may be addressed using several methods and/or 
techniques simultaneously that will result in multiple inferences about one specific 
potential failure. Consequently a fusion task can be added to the basic four stage CMS 
in order to reduce the hypotheses space before further processing. As hypotheses made 
in detection task could have attached a confidence measure, fusion task also 
contributes to modify the confidence on each of them. Finally, previous generated 
inferences are corroborated or disposed in a procedure including reasoning. This is 
the so called hypothesis discrimination task. Additional observations may be requested 
in this phase specially if higher certainty is needed to validate a specific declared state. 
Each confirmed state of the machine is considered a diagnostic. By its part, prognosis is 
made over a health indicator to predict the future state of the asset under study. A 
common parameter linked to prognosis is the remaining useful life (RUL) which is 
actually referred to the assessment of the next time to failure (TTF). Because a failure 
does not actually mean the end of useful life for an asset if it is repairable, in this text 
the latter term is adopted from now on. Existing techniques for TTF calculation often 
relies on diagnostics to properly modify predictions of the health of assets. 
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Although previous characteristics of CMS are common regardless the system being 
considered, there are some particular issues that have to be taken into account when 
dealing with wind turbines. They are addressed in the following sections. 

3.2. Data acquisition 

As it has been mentioned above, wind farms are usually located in difficult access 
areas. Particularly in the framework of Leanwind, in which offshore wind farms are on 
the focus, there are special difficulties that have to be overcome by deployed 
acquisition systems. In general, as reflected in the literature, there are two main 
systems: the here called standalone systems and Supervision Control and Data 
Acquisition (SCADA) systems. 

The standalone approach involves the use of ad-hoc systems for sensing expressive 
variables related to faults. Traditionally, standalone solutions for wind turbine 
condition monitoring (WTCM) have focused in drive train problems through vibration 
monitoring at the most extent. However, because of their conception they are not 
restricted to this particular monitoring technique neither to the drive train 
subassembly. Deployment of standalone technology has been previously based on 
mobile devices carried to a desired site to take measurements and make analysis. Given 
the particularized conditions in wind technology, this configuration is far from being 
optimal because the so commented access difficulties and also because that will limit 
the benefits of using condition monitoring technology in the maintenance strategy. For 
offshore wind turbines there are significant additional costs for vessels and crew, the 
transportation will take longer and access can be impossible in harsh weather 
conditions. Access from a boat to the turbine is also potentially dangerous. Then, in the 
context of WTCM the need of remote sensing equipment is particularly demanding. 

Standalone technology is constantly evolving accordingly to the development of new 
and better sensors, permitting to extend the number of subassemblies embraceable. At 
present, support exists for blades, main bearing, gearbox internals, generator bearings 
(Drive end and Non-Drive end) and generator internals. An exhaustive revision on 
standalone systems for WTCM is developed in (Crabtree et al. 2014). 

Within the context of wind turbine condition monitoring special attention have been 
devoted to SCADA systems. They offer a valuable opportunity to save costs of inversion 
in additional sensors to monitor wind turbine health. Parameters recorded by the 
SCADA system are broadly categorized (Kusiak and Verma 2010) as controllable 
parameters, environment parameters, performance parameters and status parameters. 
Controllable parameters are those that can be tuned to adjust instantaneous operation 
of wind turbine (e.g. pitch angle, yaw angle, generator torque). Environment 
parameters comprise all those variables that are uncontrollable such as wind velocity, 
external temperature or air density, among others. Performance parameters comprise 
active/reactive power production, generator speed or voltage phase. In global, usually 
more than fifty parameters are recorded by SCADA systems. Data coming from these 
systems are generally low frequency data provided every ten minutes. Each datum is in 
fact an average of every sample at the working sampling rate. 

By analyzing each gathered signal it is possible to indentify relations between them 
and discover failure patterns. Because of the nature of this kind of data there are some 
drawbacks and advantages on its use. On the one hand it is clear that some failure 
modes, that are commonly detected using techniques that rely in high frequency data, 
cannot be addressed with the data provided by these systems. This is mainly because of 
the working characteristics of SCADA and also because they have not installed such 
specific sensors within their structure. In the pros side, SCADA systems are able to deal 
with some failure modes that cannot be addressed by conventional standalone systems 
(Yang et al. 2013), even when latter systems are highly customable, and they do that in 
a more economical way. However, given the properties of SCADA data, which will be 
treated in following sections, advanced processing techniques have to be implemented 
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in order to extract expressive information about faults. A survey on currently available 
commercial tools for SCADA data handling is covered in (Chen et al. 2014). 

A lot of work have been made in the field of SCADA data processing as will be detailed 
in posterior sections, but there are still challenges to be faced as outlined in (Tchakoua 
et al. 2014). These are: 

 Determine the most cost-effective measurement or monitoring strategy. 
 Improve the use of SCADA system data to provide a more reliable, flexible, and 

efficient tool for automatic WT monitoring and control. 
 Requirements for remote and e-monitoring. 
 Protocols for integration of several data sources 

3.3. Pretreatment 

In present section we are interested in the analysis and description of data preparation 
methodologies retrieved from SCADA systems. However, some of the problems suffered 
by these data are also shared with data coming from other acquisition systems as they 
are caused by communication failures or also by the sensors themselves. 

Data preparation procedures vary depending on whether CMS is being trained or if it 
has been already deployed. Two additional subtasks need to be considered when 
dealing with the first case, consisting in a process of understanding the data and 
properly select it for models training. This phase is not trivial because SCADA 
recordings are affected by the operational condition of the wind turbines. For example, 
when a data driven model is trained for describing the power curve, one could observe 
that power reading is 0 MW while the wind speed is 15 m/s and hastily conclude that a 
fault is taking place, when actually the cause was that the wind turbine was stopped 
due to demand management. Different data sources recorded by SCADA systems have 
to be crossed in order to obtain deeper knowledge about their meaning to afterwards 
obtain accurate models. Frequently, failure events are not explicitly identified within 
recorded data and efforts should be devoted to extract information about each sample 
of the dataset. A referent work about this topic was conducted by (Kusiak and Verma 
2010) using pattern machine learning. How data is selected for CMS training is also 
important as it will condition how the trained models will perform once implemented. 
Class unbalance is a common problem that must be tackled when setting the CMS. 
Known effects of this issue are that models are biased to accurate characterise 
properties largely present in the dataset in detriment of the rest. Some solutions to 
overcome these problems are to oversample the properties less present in the dataset, 
use some kind of cost-sensitive training method or appropriately select some key 
properties that represent the whole set discarding other samples that could be seen as 
redundant. (Kusiak and Verma 2010) proposed Tomek links to implement the latest 
approach. SCADA data also reflect problems due to communication interruption and 
perturbations in form of missing and implausible (e.g. nacelle temperature readings 
showing 500 ºC) values, respectively. 

This is especially critical when data need to be considered as a time series, because 
some previous entries must be available to make inferences at current time or in the 
future. Some methods addressing these issues are described below: 

 Method of discarding: this approach takes out of the data set each missing or 
implausible value. It clearly limits the later use of time series analysis as 
temporal discontinuities are incorporated. 

 Method of labelling: wrong data found is labelled as incorrect and kept until 
handled in posterior stages. As previous method, when labelling time series 
analysis is not allowed either, but there is not loss of information. 

 Method of averaging: every wrong value in the data set is substituted by the 
mean of the data set. In a non stationary data series a moving average could 
be a better estimator. Major inconvenient with this method is that if there is a 
large lack of data within a period, tendency of the true data series will be lost 
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 Method of interpolation: this could be seen as a refinement of the averaging 
method where each wrong value modified by an interpolation technique. 
Interpolation is only suited for CMS training as future data is not available at 
the time. 

 Method of extrapolation: each unseen datum is obtained with a model which 
represents the historic extrapolating its results. Extrapolation is suitable for 
CMS when it is deployed. 

Figure 7 reflects the nature of typical real world SCADA dataset in which CEANI R&D 
group have had experienced. Missing values coming from the acquisition system are 
usually identified by "NaN" (Not a Number). Potentially implausible values are found by 
the statistical Box and Whiskers technique and labelled as outliers. Each datum that is 
nor missing neither outlier has been considered "Normal" (i.e. plausible). A pie chart is 
used to show the segregation of each data type. Around 24% is missing data, whereas 
only 3% are potential outliers. Bars chart offers an insight of the missing values giving 
how many times certain number of variables are simultaneously not available. The 
most repeated situation is having 34 out of 37 recorded variables simultaneously 
unavailable. For further details a histogram was constructed in order to show duration 
distribution of missing value periods. What is evidenced in the graphic is that periods 
are biased to short values, meaning that in the vast majority of cases, filling methods 
can be applied without introducing high levels of uncertainty. 

 
Figure 7: Raw SCADA data quality properties 

Other problem concerning inputs is data consistency, which is not always as evident as 
having a completely out of domain value. Some techniques to face this issue have been 
extensively treated in (Piero Baraldi et al. 2010; P Baraldi et al. 2010; P Baraldi et al. 2011) 
using ensemble methods. Preventing faulty sensor data to enter in the detection 
module it is of crucial importance to reduce false alarms rate and false negative rate. 

Every time a value is replaced by any of the methods described above uncertainty is 
added. This uncertainty has to be appropriately propagated to subsequent stages and 
taken into account when submitting a final diagnostic through confidence measures. 
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3.4. Feature extraction 

When detection algorithms are applied, if inputs are in a favourable shape the process 
becomes easier and the performance is substantially improved. Task of adapting data 
for further processing is called feature extraction. Then, the main objective lays in the 
generation of expressive indicators for failure detection. The methods for feature 
extraction vary widely with regard to the particular method used for failure detection 
and also depending on the data type under consideration (low/high frequency data, …). 
Now there are exposed some methods and techniques largely applied for wind turbines 
in the literature. 

Input signals can be used as they come and optionally (sometimes highly 
recommendable) performing some filtering to diminish random noise attached to it. 
This is the so called identity and filtering method. Identity is referred to the fact that 
the signal space is not transformed. These methods are used principally when dealing 
with high frequency data as vibration and acoustic signals which usually suffer of low 
signal-to-noise ratio (SNR). Some techniques used in the literature are Kalman filters 
when the linear and white gaussian noise hypothesis applies; wavelet based filtering is 
used in (Yang et al. 2008) for denoising and smoothing vibration signals for gearbox 
condition monitoring. The same model is applied in (Qiu et al. 2006) for bearing failure 
detection. Other extended technique for signal denoising is the time synchronous 
averaging (TSA). It removes noises that are not synchronous with the rotating 
frequency of a specific component, allowing to isolate its own excitations while 
diminishing other components contributions. This approach is covered in (Zhu et al. 
2014) for gearboxes and applied in (Bechhoefer et al. 2013) for stationarity preservation 
through signal resampling. Isolating signals comming from desired component is 
important because other component exitations always act as random noise which 
masks important features for diagnostics. An alternative to TSA is proposed in (Wang et 
al. 2014) using independent component analysis (ICA). For moderated frequency data, 
like when performing temperature analysis, a more rough but still effective mean 
filtering can be used to smooth raw signals. These are commonly implemented through 
moving averages. 

The vast extent of monitored variables with SCADA systems usually causes the known 
dimensionality course, which negatively affects performance of detection techniques. 
Hence, dimensionality reduction methods are an option to select most relevant inputs 
expressive of a specific failure mode. Principal component analysis (PCA) is a popular 
technique to suppress redundant variables because of their correlation. Data is reduced 
by finding principal directions axis and transforming input data into the PCA space and 
selecting as many variables as needed to cover a target extent of data variance. This 
approach has been used in (Godwin and Matthews 2013) when studying blade pitch 
faults. Another alternative is to use the information gain criterion to rank inputs 
according their statistical dependence with the target variable. Works conducted by 
professor Kusiak in the field of wind turbine condition monitoring cover several 
alternative techniques belonging to the data mining discipline. Among his contributions 
Kusiak applies some not deterministic search algorithms, as genetic search (GS) to 
explore variable set space, but also uses some embedded algorithms such as decision 
trees, instance training based methods such as RELIEF and many other techniques. 
Other possibilities rely on wrapper methods which during selection consider the 
ulterior applied technique for fault detection. A way to accomplish this is to perform a 
sensitivity analysis of input variables on output variables. To get a deeper insight of 
these techniques it is recommended to explore (Kusiak and Verma 2010; Kusiak and 
Verma 2012; Verma and Kusiak 2012; Yan et al. 2014) references. 

High frequency data point values are meaningless by themselves for diagnosis and 
prognosis purposes. They only represent an instantaneous oscillation state. Usually, 
instances recorded in vibration analysis are in the form of one-second samples (at 
very high sampling rate) taken in ten minutes intervals. Each sample contains 
information about health status of the component being monitored. Statistical moments 
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are common extracted features from these data for compression and description 
purposes. Kurtosis and skewness are two popular metrics to condense information 
contained in oscillating data. The first measures how peaked or flat a distribution, 
indicating errors when vibration levels increase due to failures. The second one 
measures the symmetry of a probability density function of a time series. Kurtosis is 
sometimes obtained in the frequency domain and then is called spectral kurtosis. A 
survey on available descriptors for vibration analysis is presented in (Zhu et al. 2014). 

Spectral analysis methods are widely extended for condition monitoring as they can 
also deal with either high and low frequency data. The most representative techniques 
within this group of methods are Fourier and Wavelet transforms. Usually they work as 
data preparation techniques to afterwards apply other methods. In (Zhu et al. 2014) 
there are some descriptors obtained once data is transformed in the frequency domain. 
By its part, in (Manohar and Lanza di Scalea 2013) Fourier transformed data is used to 
reconstruct thermographic images based on phase information. 

Tendencies methods provide information about the rate of change of a certain measure 
which may be expressive of incipient faults within technical systems. Delta methods are 
employed to generate indicators that reflect intrinsic or extrinsic relationships in 
analyzed signals. Some examples of intrinsic relationships are peak-to-peak measure, 
root mean square, delta root mean square or crest factor. To account for extrinsic 
relationships, discrepancy between two temperatures is a possibility. This approach 
was found useful when applied on NDE and DE generator bearings to detect faults in 
the generator. 

As a matter of fact, every exposed method for indicator generation can be used solely 
or combined. Last approach is called composite methods and is often put in practice 
regarding the requirements of each particular application. For example, statistical 
moments methods are in general applied after filtering methods. 

3.5. Evaluation: diagnosis and prognosis 

3.5.1. Detection task and techniques 

Detection techniques rely on monitoring of interest variables or signals related to wind 
turbine performance. As experience is gained in the operation of wind farms more 
failure modes are discovered and become a matter of concern to maintenance 
managers. Consequently new challenges arise when trying to detect some kind of 
faults. With the development of sensor technology more specialized monitoring 
techniques have emerged to support diagnosis and prognosis. Regarding those related 
to wind turbine technology literature, the most popular approaches for monitoring are: 

 Vibration analysis (VA). 
 Oil analysis (OA). 
 Acoustic analysis (AA). 
 Thermographic analysis (TGA). 
 Structural analysis (SA). 
 Parameter performance analysis (PPA). 

According to hierarchy proposed by (Tchakoua et al. 2014) all techniques but the latest, 
belong to intrusive approach, being the last one classified as non-intrusive. The 
intrusive/non-intrusive nomenclature lies in whether additional sensor infrastructure 
has to be added to the wind turbine. In other words, parameter performance analysis is 
linked to SCADA monitored variables while, in general, remaining approaches are 
related to standalone systems. Table 2 contains techniques covered in the current 
literature and its applications. 
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Table 2: Monitoring techniques for fault detection 

Technique Variables 
monitored 

Subassembly Failure modes 

Vibration Analysis Acceleration Main bearing 

Gearbox bearings 

DE bearing 

NDE bearing 

Gearbox internals 

Inner race defect 

Outer race defect 

Cage defect 

Roller elements 
defect 

Tooth crack 

Oil Analysis Particles (Fe, Pb,…) 

Viscosity 

Dielectric constant 

Lubricantion systems Oil degradation 

Gearbox gears wear 

Acoustic Analysis Acoustic signals Blades 

Gearbox internals 

Generator 

Refrigeration system 

Lubrication system 

Parts wear 

Leakage 

Structural analysis Strain 

Stiffness 

High resolution 
images 

 

Tower 

Blades 

Main Frame 

Cracks 

Incipient deformation 

Creep defects 

Termographic 
Analysis 

Thermal images Blades 

Generator 

Gearbox 

Blade delamination 

Coils wear 

Loss of lube 

Parameter 
performance analysis 

SCADA performance 
parameters 

(Temperature, 
torque, rotational 
speeds, voltage, 

power,…) 

All wind turbine main 
assemblies (blades, 

main bearing, 
gearbox, generator, 
power converter,…) 

Bearing defects, 

Oil degradation, 

Generator coil 
defects 

Blade pitch defects 

Gearbox defects due 
to overheating 

 

The main objective of detection task is to generate a set of fault hypothesis that will be 
validated or discarded afterwards. This particular task has received great attention by 
many researchers in the literature. In fact, even when speaking of diagnostic many 
papers actually perform detection. In this document three methods have been identified 
that enable detection task, these are: normal behaviour modelling methods, indicator-
based methods and state classification methods. Differences among them are clear from 
the preparation techniques point of view and also due to the information that is 
possible to extract. 
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Normal behaviour modelling (NBM) have large acceptation within condition monitoring 
practitioners community mainly because its closeness to human perception of 
anomalies. Broadly speaking this approach is founded in the idea that anything 
differing from what is expected is an anomaly. Therefore, outlier analysis techniques 
are suitable to generate fault hypothesis. Some precautions have to be considered 
when using this approach, for example definition of normal models requires locating 
failure free and stable regions within training dataset. This is not an easy task because 
wind turbines operates in a large extent in transitory state due to changing 
environmental conditions electric power demand. This means that just selecting a 
certain interval for normal model construction is not enough, even when it is failure 
free. As have been said normality means that no failure is taking place but does not 
implies that normality is a homogeneous class or set. A typical problem present when 
working with normal approach is that if normal class domain is not enough covered by 
selected instances to train the models, then false alarms will become an issue when the 
detections system is deployed. Hence, it is recommendable to use segregation 
techniques prior training normal models. Afterwards, one can construct several models 
specialized in one or few similar working conditions or sampling each isolated region 
and create a single general model. Clustering techniques are suited to achieve data 
segmentation. Among them, K-means heuristic is one of the most simple and popular 
algorithms. Self organizing maps (SOM) have been applied in some works as in (Garcia 
et al. 2006). Particularly last one have demonstrated its ability to handle highly non 
linear boundary surfaces nor circular class shape neither convex. There are many 
alternatives for clustering techniques in the literature whose revision is out of scope of 
this document. 

Another issue has to be accounted for normal behaviour modelling such as 
subassemblies failure dependencies. Large residuals from normal models often means 
that might be an abnormality, but this is not certainly true. For example, if only one 
model has been constructed to monitor performance of generator DE bearing, when a 
significant residual arises then there will be three possible interpretations: the problem 
is related to one of the input variables, the problem resides in some output variable, or 
relation between input and output variables that are not consistent. Under this 
framework, additional models will be needed to certificate that the large residual is 
caused by the presence of some kind of defect in the bearing and not because a failure 
occurred in other part of the wind turbine and it has been propagated until the 
bearing. 

Many authors have addressed normal behaviour modelling, and techniques proposed 
vary considerably depending on each particular application. In (Yang et al. 2013) normal 
behaviour is represented by means of a least square procedure to fit a quartic 
polynomial function in single input-single output (SISO) relation. As data coming from 
SCADA is noisy, a statistical smoothing procedure is used to enhance the relation of 
modelled variables. The technique is run in a batch fashion, so every time a certain 
amount of data is received a polynomial fit is made. A failure criterion is set 
representing the mean absolute error between predictions made by normal model and 
those made by the latter. The magnitude of the criterion is related to the development 
of the failure (i.e. incipient, degraded or critical). This procedure is applied to a 
generator bearing and pitch blade. Power curve analysis is a subset of performance 
parameter monitoring techniques in which fault hypotheses are made when 
discrepancies between predicted and actual power appears at a given wind velocity 
value. Power curve is modelled using a probability model based on copulas in (Gill et al. 
2012). Power and wind speed are transformed into the copula space {[0 1]x[0 1]} and 
compared with the reference line 𝑢 = 𝑣, where 𝑢 and 𝑣 are the power and wind speed 
in the copula space. Some distance metrics are presented for fault hypothesis 
submission regarding blade (pitch angle) and orientation system (yaw angle). Other 
technique for power curve analysis was proposed by (Osadciw et al. 2010) constructing 
a model based on gaussian distribution functions (single or mixture models). First, 
wind speed and output power are normalized in the range 0-1 and then gaussian 
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parameters are optimized through particle swarm optimization (PSO). The linearized 
version of predicted power and wind speed are used to get insights about wind turbine 
performance. 

Another subset of PPA is the temperature analysis. When faults are evident through 
temperature analysis, degradation often is in a advanced state. Nevertheless, many 
times, prediction horizon is enough to schedule a maintenance task. As there are 
several temperature signals measured by the SCADA system, this approach has gained 
some popularity. Furthermore, temperature trends are linked to a wide variety of 
failure events such as loss of coolant, lubricant degradation, bearings wear or 
generator coils deterioration, among others. In (Yan et al. 2014) normal behaviour 
bearing temperature model is constructed in through artificial neural networks (ANN). 
Analysis of residuals is done to generate hypothesis of failure in the bearing using root 
mean square error metric (RMSE). When this error exceeds a preset threshold a 
warning of failure is triggered. In (Kusiak and Verma 2012) a similar procedure is put 
in practice, with the major difference that model inputs are systematically selected 
using three data mining algorithms comprising a wrapper method based on genetic 
search, best first search algorithm and boosting trees. One drawback of this study is 
that detection horizons are considerably short (less than an hour) giving a poor 
margin to carry a maintenance before the failure occurs. Having this narrow operation 
windows, chances for an effective actuation requires, for example, to embed the CMS 
within the control system as proposed in (Frost et al. 2013) in other context. One 
interesting approach was proposed by (Guo et al. 2012) using nonlinear state estimate 
technique (NSET), which actually is a similarity approach where normality is 
characterized by historical observation matrix. Each new observation is estimated 
regarding its closeness to normal prototypes by a weighted sum of every historical 
instance. Then, residual analysis is made for failure detection. What is really attractive 
from this technique is that online training implementation is quite simple. Once 
performance of the technique (false alarm rate, false negative rate, etc.) decreases one 
can update historical observation matrix adding new instances describing normal 
behaviour, letting the method be scalable. 

A pioneering work in the field of normal behaviour modelling was proposed by (Garcia 
et al. 2006). They created an integrated framework (SIMAP) for diagnosis and predictive 
maintenance scheduling through SCADA data analysis. The proposal may be enclosed in 
the PPA approach which was accomplished by using neural networks as detection 
technique and treating residuals to infer faults. Later in the process, a fuzzy expert 
system deals with generated hypothesis to submit a diagnostic. Once a diagnostic has 
been confirmed SIMAP enables the estimation of remaining time to failure with a 
similarity comparison between current residual evolution with historical evolution of 
residuals for a given failure mode. 

A more recent work conducted by (Schlechtingen et al. 2013) keeps the same philosophy 
of SIMAP. The main novelty within their work is the use of artificial neural fuzzy 
inference system (ANFIS) to construct normal behaviour models, and the use of a 
systematic variable selection procedure through a combination of expert knowledge 
and genetic search. Any diagnostic system is a decision support tool for maintenance 
operators and is beneficial to be transparent (i.e. interpretable) for humans. ANFIS is an 
approach that, as authors defend, allows backtracking of their inferences procedures 
suited for human understanding. Beyond the use of either ANFIS or ANN, what it is 
really interesting of both, García et al. and Schechtingen et al. proposals is that they 
have created a holistic framework in which any kind of model, either normal behaviour 
ones or the later covered in this section may be combined altogether. 

Instead of trying to model normal behaviour and analyze predictions deviations, an 
alternative would be to represent a specific failure mode evolution. This is the 
indicator approach method for failure detection. Actually, health indicators are the 
matter of interest within this approach. These indicators must characterize 
accumulated damage and then purely grow until the system failure or until the system 
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undergoes an eventual repair action. In some cases, since there are some failure 
modes that occur abruptly without exhibiting any degradation, health indicators show a 
stepped profile. In general, although they can be used solely starting from processed 
initial observations, it is also possible to combine this method with normal behaviour 
modelling. Since residuals obtained when performing NBM are noisy, some techniques 
such as moving window averaging are used to smooth and reveal failure mode 
increasing tendency over time, becoming a health indicator. In Figure 8: Case uses of 
health indicator approach are schematized the two ways of implementing indicator 
method. Additionally, it has to be noticed that when using health indicators it is 
desirable that constructed metric shows specificity towards as few failure modes as 
possible. This means that its response should be as insensitive as it can be when any 
other failure mode occurs within the system. 

Health indicators have found applications for bearing failures particularly when using 
vibration analysis techniques. As has been commented previously in the document, 
bearings suffer four main kind of failures: inner race, outer race, roller elements and 
cage faults. Four indicators, one for each failure mode, has been proposed in (Zhu et al. 
2014) which account for inner race, outer race, ball and cage energy. These indicators 
represent the energy of the bearing vibration signal around each subcomponent 
characteristic failure frequency. As failure mode develops indicators start to rise until 
failure finally occurs. Another application of indicator based detection was used when 
analyzing coil shorting and unbalanced rotor failure modes (Yang et al. 2008). 
Indicator was delta type and was obtained as the ratio of torque and angular speed of 
the generator. 
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Figure 8: Case uses of health indicator approach 

The third approach for failure detection is the state-based method. This approach 
differs from the others in the fact that detection task is based on the functioning state 
of the system. Some groups or classes are previously isolated, which represent the 
health of the system ranging from normal to total malfunction. The information 
contained in monitored signals is somehow abstracted and converted into a discrete 
state space. Two subtasks can be identified in the state-based methods: the first one is 
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the membership qualification subtask which faces the problem of assigning each entry 
(record) to an specific class or state. The second subtask performs selection on the 
actual class or state of each new entry, then submitting a fault hypothesis. First subtask 
may be accomplished using model-based classification method, in which neural 
networks, symbolic regression, decision trees or similarity-based modelling are some of 
the available techniques. Additionally, clustering methods are also suitable where k-
means, Gustaffson-Kessel algorithm or self organizing maps are some representative 
techniques. Several of the proposed techniques for the first subtask have not crisp 
outputs, which justifies the second subtask. For final selection of current actual state, 
historical patterns (i.e. state sequences) can be used by means of Markov chains or 
more general bayesian networks. Nevertheless, there are other more simple criteria 
such as the selection of the best candidate for hypothesis making. Best candidate will 
be the state with the highest membership score among all possible classes. Failures in 
both blades and generator brushes were treated in (Kusiak and Verma 2010; Verma and 
Kusiak 2012) respectively, under the state-based detection perspective. The proposed 
procedure in the two works makes use of supervised learning once data is 
appropriately labelled as faulty or healthy. Data is identified as faulty accordingly a 
criteria founded in the use of a preset sized moving window. If a faulty status is found 
within the window all data is labelled as fault, otherwise is labelled as healthy. For the 
blade case study, they analyzed pitch angle implausibility and pitch angle asymmetry 
failure modes using genetic programming to construct a decision tree. The "one-class" 
classification approach is used in the analysis. Each constructed model is only capable 
to distinguish one failure mode at a time. This procedure is prone to suffer specificity 
issues as one particular entry could be recognized by both models as a faulty state. 
Disambiguation has to be made in following steps. By its part, generator brushes are 
subject to continuous friction, eventually exhibiting wear failure modes. To detect wear 
problems in brushes, (Verma and Kusiak 2012) make a comparative study on different 
classification techniques such as k-nearest neighbours (K-NN), ANN, support vector 
machines (SVM) and boosting trees. 

As it has been mentioned in the text, human-intended interpretability of inference 
steps is a matter of great concern for maintenance operators. In this sense, (Godwin 
and Matthews 2013) proposed decision trees to detect blades failure modes addressed 
by Kusiak, arguing that generated rules have improved interpretability when compared 
with other classification techniques. In this work, three states are taken into account 
instead the two identified in (Kusiak and Verma 2010), incorporating intermediate 
degree of damage. Finally an expert system is considered so as to submit the detected 
state to an operator, which may be replaced by an automatic hypothesis discrimination 
module in other situations. 

In (Manohar and Lanza di Scalea 2013) Lock-In thermography exploration of wind 
turbine blades was performed to detect skin-skin and skin-core delamination failure 
modes. A periodic (pure frequency) thermal wave is applied into the surface and when 
the heat wave encounters a defect, part of it returns reflected with a phase shift 
respect to the input wave. Reflected image is processed by Fourier transform to create 
a "phase" image. To avoid the effect of blind frequencies, all those tested were 
aggregated to construct a descriptor. Mahalanobis distance is used to reconstruct input 
images based on the distance of the current descriptor to the mean value of the 
descriptor when the blade is healthy. Finally, the resulting image contrast is enhanced 
using a threshold method which is set using receiver operating characteristic (ROC) 
curves. 

In ¡Error! No se encuentra el origen de la referencia. it is contemplated the fusion 
phase coming after the detection task. As has been described previously, all available 
methods for detection may be used simultaneously, but also even when using a single 
approach several techniques could be deployed, then having multiple contributions for 
one single studied characteristic. Maybe, several models for power curve modelling 
have been deployed, so there are chances of having different conclusions from them. 
Their conclusions may be sent to hypothesis discrimination task separately or they may 
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be combined in order to obtain one single conclusion. There are studies supporting the 
theory that it is better to have many weak models finally aggregating their responses 
than having only one strong learner: this is the ensemble theory. As it has been 
mentioned, various models can be created, each of them specialized in bounded regions 
of the whole domain. Then, when a new data coming from the acquisition system 
undergoes detection task multiple hypothesis will be made about detection. This 
paradigm is particularly beneficial when modelling highly nonlinear systems. 
Nonlinearities are difficult to track by humans and too complex models would lack of 
interpretability. Instead of using one holistic model, partitioning the problem into 
several easier ones will provide more clear outputs jointly potentially more accurate 
outcomes. 

Data & Information

Model 1 Model 2 Model N

Outcome 1 Outcome 2 Outcome N

Combination

Aggregated outcome

...

...

 
Figure 9: Ensemble approach 

 

Moreover, ensemble methods offer a valuable opportunity to update models when 
operational conditions change and false alarm or missing alarm rates start to increase. 
Under the ensemble method approach, instead of retrain an existing model using 
current and past data to amend its performance, new data could be used to create 
another model while preserving the previous one. Notice that the latest impose much 
less data storing requirements and also speed up model updating process. 

3.5.2. Hypothesis making and discrimination 

This task is intended to evaluate current state of the wind turbine (or any specific 
system) making use of the symptomatic and/or state information identified in the 
previous task. This first conclusion is called a diagnostic, which is one of the outputs of 
the condition monitoring system. Once a diagnostic has been proposed, we can project 
into the future health status of the machine to obtain information about the remaining 
time to failure in order to schedule maintenance actions. Then, we speak of prognosis 
which stands for the second output of a CMS. Both diagnosis and prognosis should 
provide an uncertainty measure of their inferences in order to qualify them. 
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Figure 10: Ensemble incremental learning 

There exist different techniques to submit a diagnostic, several of them already 
exposed in this text. Expert Systems (also known as knowledge systems (KS)) are an 
option whose attraction lies in its closeness of human thinking. In fact, its structure is 
a direct translation of experts reasoning procedures. Expert systems exhibit the 
property of being scalable when more experience is acquired of wind turbines failure 
modes. One example of KS operation is exposed below. 
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SYMPTOM
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Bearings ?Comp

Wear
Default  

Figure 11: Example of fuzzy rule for failure diagnostic extracted from a set of rules 

Fuzzy versions of KS have gained acceptation from diagnosis practitioners as (Garcia 
et al. 2006; Schlechtingen et al. 2013). On the one hand, the fuzzy engine allows to 
abstract information from detection task in a reduced and more understandable 
manner. On the other hand, it permits the handling of uncertainties in a natural way. 
Probabilistic reasoning is also suitable to handle uncertainties and bayesian networks 
have been proved to be an effective technique for hypothesis qualification (Plumley et 
al. 2012). In bayesian networks, prior knowledge (i.e. hypothesis of that a specific 
symptom actually means a malfunction) is corrected by the likelihood of the symptom 
(i.e. probability of observing the symptom given the diagnostic), to obtain the posterior 
probability of a diagnostic.  

Decision trees are also an appropriate tool for diagnosis, whose main advantage is that 
its results are somehow expressed as understandable rules. 

It is possible that identified diagnosis do not match certainty standards and further 
validation information is needed. Also if there are several diagnostics that are equally 
evidenced it is necessary to make discrimination between them. For diagnostic 
discrimination, firstly a hypothesis should be selected. There are two general options to 
select a diagnostic for further evaluation: a diagnostic could be chosen randomly, 
disregarding the cost of hypothesis evaluation and the criticality of each failure mode. 
It is strongly discouraged to employ this approach unless cost and criticality of each 
hypothesis is similar. The other way of selection is to base the choice in a preference 
metric which considers the cost of evaluation, the critically and the certainty degree 
associated to each hypothesis. 

Once a potential diagnostic has been chosen, additional data will be required to accept 
or discard the hypothesis. Some methods for new data gathering are described below: 
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 Replacement method: we replace the component associated to selected 
diagnostic to check if they are the actual source of the problem. This procedure 
has to be deployed carefully because it may involve high validation costs. 

 Additional indicator method: new observations are requested through 
inspection (in site or remotely) or more metrics are computed to ratify current 
diagnostic. It is possible that some indicators are executed on demand because 
their computational costs or costs derived from acquiring required data to be 
performed. 

 Tuning method: There are circumstances in which some operational 
parameters of the wind turbine could be tuned so as to observe if the response 
of the system match the expected behaviour under the failure hypothesis made. 
If this is the case, then hypothesis is confirmed; otherwise it is abandoned. 

3.5.3. Prognosis 

Subsequent steps, once any diagnostic is confirmed, are intended to address the 
prediction of the evolution of system health. This has been a matter of great concern 
for practitioners because this stage is the real responsible of providing proactive 
nature to maintenance. Without this information it is not possible to adjust the 
scheduling regarding system health. 

There are several algorithms suitable to obtain TTF estimations, from the pure 
statistical based ones (weibull analysis), to those based on models. Data-driven 
approaches have also had a relevant role for the prediction task, learning system 
dynamics from raw data. Temporal series forecasting algorithms are an option when 
estimating TTF. Autorregresive (AR) models or more general Autorregressive Moving 
Average (ARMA) models work reasonably fine when dealing with statistically stationary 
and linear systems. Latest constrain may be removed using Autorregresive Integral 
Moving Averages (ARIMA), which under some special conditions may become a random 
walk. A stochastic process somehow related to random walks is the Wiener Process, 
which was proposed by (Valis et al. 2014) as mean to obtain TTF distribution of lube, i.e. 
time when the lube losses its properties. Parameters for the Wiener process were 
estimated through linear regression of iron (Fe) and lead (Pb) particles concentration 
varying with time. Linear assumptions are too tight for several dynamical processes 
and estimations based on them are poor. Dynamic neural network NARX (nonlinear 
autorregressive model with exogenous inputs) and ANFIS are used to account for 
nonlinear systems in (Hussain and Gabbar 2013) for gearbox TTF calculation based on 
vibration data.  

Sometimes there are some variables which are taken as health indices, such as crack 
length for blades or gearbox gears, or contamination for lubrication system. However 
they are not directly measurable and need to be modelled in terms of other 
observations. In (Zhu et al. 2013) the lube degradation is addressed considering the 
water contamination of lube as the health index. Water contamination is measured 
indirectly through dielectric constant and kinematic viscosity monitoring. Then the 
particle filter algorithm is used to predict remaining time to failure. 

Aforementioned water contamination level is considered as a continuous state-space 
model. There are other approaches that consider discrete state-space characteristic of 
the degradation paths. Markov models, particularly its hidden versions, have gained 
much attention to deal with these situations. Markov models restrictions are 
convenient for many situations and are also simpler from the mathematical/numerical 
point of view. Within hidden approaches the semi-markov one is focusing several of 
the recent work, since the exponential constraint (representative of Homogeneous 
Poisson Processes) is eliminated in the aftermath of a more general formulation. 
Hidden Semi-markov models may operate under any arbitrary transition probabilities. 
In (Su and Shen 2013) Multi-Hidden Semi-Markov Model are used to predict TTF of a 
vehicle engine due to cylinder wear. In this work Weibull distribution is selected as 
both emission and transition probabilities. 
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Chapter 3 
Proposed Methodology Description 

1. Overview 

Generally, data coming from industry does not include an identifier informing about if 
a certain sample corresponds to a fault or a normal operation regime. In its place, what 
it is often available is a set containing monitored operation variables and, on the other 
hand, the set of registered alarms and work orders related to the monitored system. 

For this reason, normal behaviour modelling has gained great popularity and it has 
become the main approach in the vast majority of the works gathered in the review 
performed in the previous section. Under this approach is reasonable and quite 
intuitive that, among the whole set of samples, the ones that are used to create the 
model are those which are located in a free of alarm region or in periods where any 
maintenance or replacement activity has been performed. Samples which satisfies 
previous conditions are said to be representative of the normal behaviour of analysed 
system. Besides, one of the major advantages of normality approach over failure 
centred approach is the number of samples often available to create the models. Is 
expected that the machine typically works in normal condition so dataset size of 
normal samples is potentially bigger than those related to a specific failure. However, 
within normality set may be several substates. Also the machine may be functioning 
normally at different operations regimes. If all these particular cases are not 
considered when the model is created it would potentially lead to wrongly identify a 
normal sample as symptomatic. 

Moreover, failure detection is not the final goal of the condition monitoring task, and 
encountered symptoms will need to be assigned to a particular failure mode. Under the 
normality modelling approach it is mandatory to cross validate the generated symptoms 
in order to conclude to reason of the detection.  

In this work the purpose lies in finding models expressive of some certain failure 
mode. Consequently, any time that a significative response of the model arises will 
mean that a potential anomaly is being detected. Besides since the model is obtained 
regarding a specific failure mode related to a certain component, indicator response 
will inform about a plausible root cause of the anomaly. Regarding the nomenclature 
presented in the Ontology section of this work, any model which satisfies 
aforementioned property is denominated indicator. 

The training sets for indicator learning are linked to the time instant in which a 
certain failure mode is evidenced. This instant serves as starting point to set an 
interval in which is probable that the failure is being revealed in the monitored signals, 
i.e the degradation period. During this interval it is expected that the indicator 
response begin to be enough significant. 

An indicator, as intended in this particular work, may be understood as a 
transformation of a n-variable space to one dimensional space, whose response 
verifies that previous a specified time remains null or at least as low as possible. After 
that time its response should be considerably higher. 
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Figure 12: Main components of proposed approach - Grey bars are failure events; Red curve: Test or guide function; Blue curve: 
Obtained indicator 

Concerning the temporal evolution of the transform, two classes of indicators are 
distinguished: 

 First generation indicator (1st-gen): This class of indicators verify sensitivity to 
the studied failure mode, although its evolution is not constrained to any 
particular profile. 

 Second order indicator (2nd-gen): Second generation indicators are alike health 
indicators. Their evolution is not decreasing in time and in the case that the 
analyzed failure mode does not exhibit degradation patterns they present a 
stepped profile. 

In accordance to the described classes, proposed methodology do not ensure the 
obtainment of second generation indicators. This may occur only if the search space 
contains the appropriate functions that yield this kind of evolution. 

In this work we use genetic programming as a tool for indicator synthesis. Each 
individual managed by the genetic algorithm is an indicator proposal for the addressed 
problem. Using genetic programming as a search tool accounts for three main criteria: 

 Given the inherent characteristics of the evolutionary search process, relevant 
variables are automatically selected for being part of the model, while the rest 
are discarded. Nevertheless, in practice one should be careful because evolved 
expressions tend to bloat as evolution progress. 

 Appropriate transformation of variable space are automatically obtained in 
virtue of some defined quality metric. Then expert knowledge is not considered 
when deciding how to transform input space but contributing to set the 
functional search space for the genetic programming algorithm. 

 Resulting models are interpretable using semantic analysis of achieved 
expressions, or even carrying some sensitive analysis. This fact is highly 
desirable in terms of acceptance by the maintenance crew of the provided tool. 
They could trace which elements has been involved in a certain response of 
the indicator which allows them to have a deepest insight in what is occurring. 

Even though the failure detection  approach through indicators is no exclusive of this 
work, as it has been previously pointed out, presented proposal actually present some 
novel aspects. Among reviewed literature, this work share some common topics with an 
already research performed by (Kusiak and Verma 2010). In their work the authors 
propose the use of genetic programming to set one-class classifier for wind turbine 
pitch failures. They start establishing faulty condition by analyzing the status data of 
the machine. Once these are identified, different prediction horizons are explored 
using a time window in which all samples are labelled as normal if the instant of the 
failure is not within it, or faulty otherwise. 

Main differences with Kusiak approach lies in the way in which search process is 
driven. In kusiak's approach there is not consideration about the growing pattern of 
the failure. When the prediction window is set, all samples within it are considered the 
same (i.e. they share class). In practice the line between normal samples and failure 
ones is too blurred. In fact, the machine often experiments different degradation stages 
before the faulty state is reached. If all samples after some particular instant (especially 
if the failure is desired to be foreseen with enough margin) the labelling process for 
further classification will assign the same label to dissimilar samples, and what it is 
more problematic, it will assign failure labels to samples that are more close to healthy 

τ=τ(t,φ)
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ones. On the contrary, the proposed methodology searches for models that change their 
behaviour after some defined time stamp. Usually one knows or at least expect that a 
certain failure could be early identified before it causes more severe consequences. In 
the presented approach a function is employed to guide search of indicator models 
which satisfies imposed requirements for the failure detection task. However, the way 
in which the indicator grows is not preconditioned. 

2. Theoretical notes on the methodology elements 

2.1. Genetic programming (GP) 

Evolutionary algorithms (AE) belong to the set of global optimisation methods called 
metaheuristics1

Albeit iterative methods are not a property exclusively linked to evolutionary 
algorithms, they are applied in a substantially different context. Whereas classic 
optimisation techniques implement iterative processes in order to take advantage from 
some mathematical property related to the objective function, evolutionary approach 
combine potential optimal solutions to a given problem using some defined rules so as 
to guarantee an overall improvement of all candidates through successive iterations. 
This property is usually known as implicit parallelism. 

. Specifically they are part of a class of stochastic learning procedures 
that evolve towards an improved knowledge state regarding to some criterion of 
interest through the iterative application of learning rules (heuristics) inspired in some 
natural mechanism, especially those based on the dynamics of living beings. 
Consequently, this learning ability may be exploited for sake of solving optimization or 
search problems. 

Evolutionary algorithms emulate natural evolution processes in which individuals from 
a population pursue them fitness to the environment (adaptation) to ensure their 
survival. The better the fitness, the higher is the probability of that individual 
characteristics transcend into future generations (natural selection) via genetic 
recombination mechanisms (reproduction). Table 3 resumes analogies between natural 
and artificial evolution processes. 

Table 3: Analogies between natural evolution and Evolutionary Algorithms 

 Nature Evolutionary Algorithms 
Natural Selection Survival Find optimal solution 

Individual Living being Decision variables vector 
Code DNA Variable coding (binary, 

Gray, real, tree,...) 
Recombination Crossover, mutation and 

reproduction 
Simulated crossover, 

mutation and reproduction 
Generation Life cycle Iteration 

 

Some of the most common methauristics inspired in Darwinian evolution theory are 
Genetic algorithms, Evolutionary Strategies, Differential Evolution and, that one which 
is now centring the focus, Genetic Programming. All these techniques share a common 
scheme which is reflected in Table 4. 

Genetic programming, proposed firstly by Koza (Koza 1992), defines a metaheuristic in 
which a set of programs are evolved through different generations in order to perform 
a specific task. Basically the process works like any other evolutionary algorithm but 
with one major distinction: genetic programming aims to seek a solution that is capable 
of solving a specific user-defined task, hence instead of having a search space 
comprised by all feasible values for a set of variables, it works with computer programs 
or algorithms. The way of coding each potential solution or individual is usually done 
by using tree structure which define the syntax of the program. Other, less common, 
alternative representation involves the linear genetic representation (LGP) in where 

                                              
1 Methaheuristics define a specific way in which a heuristic must be implemented. 
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the program is defined as a set of sequential instructions. The use of one or other 
codification depends upon the specific application or task being addressed. However, in 
most of the engineering problems in which GP has been used, the codification was 
tree-based. 

Table 4: Evolutionary algorithm general scheme 

Start 
t 0  

Random initialisation of population tP  

Evaluation of tP  
  while(stop condition not satisfied) do 

  Recombination of tP  to yield offspring tC  

  Evaluation of tC  

  Individual selection between tP  and tC  to yield tP 1  
  t t 1   
   end 
end 

 

Genetic programming, proposed firstly by Koza (Koza 1992), defines a metaheuristic in 
which a set of programs are evolved through different generations in order to perform 
a specific task. Basically the process works like any other evolutionary algorithm but 
with one major distinction: genetic programming aims to seek a solution that is capable 
of solving a specific user-defined task, hence instead of having a search space 
comprised by all feasible values for a set of variables, it works with computer programs 
or algorithms. The way of coding each potential solution or individual is usually done 
by using tree structure which define the syntax of the program. Other, less common, 
alternative representation involves the linear genetic representation (LGP) in where 
the program is defined as a set of sequential instructions. The use of one or other 
codification depends upon the specific application or task being addressed. However, in 
most of the engineering problems in which GP has been used, the codification was 
tree-based. 

 
Figure 13: Tree codification of symbolic expressions 

In the tree representation there are three basic constructive elements, viz: leaves, 
internal nodes and root (Poli et al. 2008). Leaves, also referred as terminal nodes, are 
the deepest nodes in the tree which stand for program variables and constants. 
Internal nodes always include deeper nodes which act like inputs to it. These nodes are 
called functional nodes. Finally, the root is the shallowest node within the tree 
structure and is the final output from the program. Actually it is a functional node but 
receives a special denomination because its importance within the program. 

Program is used as a general term which could represent either a mathematical 
expression describing a physical process or any arbitrary complex algorithm capable of 
solving a particular task. Here, we are more interested in the use of genetic 
programming to build an empirical mathematical model of data acquired from the 
process or system. This procedure is usually known as symbolic data mining (SDM). 
SMD is an umbrella term embracing a variety of related tasks including generating 
symbolic equations predicting a continuous valued response variable using 
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input/predictor variables (symbolic regression); predicting the discrete category of a 
response variable using input variables (symbolic classification) and generating 
equations that optimise some other criterion (symbolic optimisation). The latter is the 
case of current work. 

Symbolic optimisation via genetic programming features that have provided attraction 
to researchers are, among others, the possibility to examine the evolved expressions 
which can often lead to human insight of the underlying dynamics; the ability to 
produce compact models (parsimony principle), which is sign of generality and 
robustness; the limited number of a priori assumptions, since the model is not preset or 
the natural way in which relevant variables are selected to be part of the model. As 
counterpart, symbolic optimisation take relatively long time to discover acceptable 
models when comparing it with other nonlinear modelling techniques. Furthermore is 
difficult to set criteria in deciding if a solution is good in terms of the trade-off 
between model performance and complexity. 

2.1.1.  Main elements of genetic programming 

Useful terms 

 Tree size: Number of nodes that compose a tree 
 Node depth: Is the number of edges that have to be travelled from the top node 

to reach a certain node. 
 Tree depth: Is the depth of its deepest node 
 Functional node arity: It is the number of inputs used by the function 

implemented in a node. 
 Tree complexity: There is not an unique definition for this term, but in general 

is related to the number of nodes, tree depth and nonlinearity of the functional 
nodes of the tree. 

Search space 

For genetic programming algorithms be able to evolve structures, two main search 
spaces need to be specified. On the one hand, it is required to setup the function space, 
indicating the functions that the algorithm will use as building blocks for the structure. 
The second space may be partitioned into two additional subspaces, one for input 
variables and other for ephemeral constants. Whenever the algorithm performs an 
operation over the population it will try any of the selectable specified functions, 
variables or constants. 

Two general properties need two be fulfilled by the functional space in order to GP 
work effectively, these are closure and sufficiency. Closure property comprises the 
type consistency, i.e. all functions in the search space accept as inputs the output of 
any other function in the search space; and evaluation safety, which prevent the 
evolved expressions to lead to singularities or indeterminations, such as dividing by 0. 

Closure conditions may be mathematically expressed in the following way: 

𝑓:𝔇 → 𝔇     ∀𝑓 ∈ Ω    (𝑡𝑦𝑝𝑒 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦) 

∃ 𝑓(𝑥)    ∀𝑓 ∈ Ω ∧ 𝑥 ∈ 𝔇    (𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑓𝑒𝑡𝑦) 

, where Ω is the functional search space and 𝔇 is the input space. 

By its part, sufficiency condition alludes to the fact that functional space contain 
necessary and sufficient functions in order to build the desired program or solution. In 
other words, it means that with available functions it is possible to exactly reproduce 
the underlying process governing the problem. As an example, if the underlying model 
of observed data from a specific process is polynomial, then functional space must at 
least contain the set of operator: {+,−,×}. Unfortunately, sufficiency can be guaranteed 
only for those problems where theory, or experience with other methods, tells us that a 
solution can be obtained by combining the elements of the primitive set 
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Initialization 

Initial population, as in remaining evolutionary algorithms, is almost always randomly 
generated. However, instead of generate a random number within a feasible interval, 
in this case random structures have to be created. Among the several proposed 
methods to undertake tree generation task, the three more basic and more widely 
extended procedures are the following: 

 Full method 
 Grow method 
 Ramped half-and-half 

Full and grow methods are controlled by the selected tree depth as stop criterion. The 
first one yields trees in which all terminal nodes have the same depth. Trees are 
sequentially developed until all terminals have the same length. Grow methods, on the 
contrary, allows for the creation of trees of more varied sizes and shapes. Nodes are 
selected from the whole search space (terminal and functional sets) until depth limit is 
reached. Once depth limit is attained only terminals may be chosen. 

Because neither the grow or full method provide a very wide array of sizes and shapes 
on their own, Koza proposed ramped half-and-half method, which is in fact one of the 
most popular initialisation method. In his approach initial population is set up by using 
full and grow method for both halves, respectively. This is done using a range of depth 
limits (hence the term “ramped”) to help ensure that we generate trees having a 
variety of sizes and shapes. 

Selection 

During generations best fitted individuals have better chances to share its genotypic 
material to rise subsequent populations. Preserving worthier features along the search 
is what allows the process to converge to optimal solutions. Although there are several 
methods to perform selection, the most extended one is the tournament selection. 

In tournament selection, two or more individuals randomly picked from the population 
compete among them so as to be part of breeding process. The individual with highest 
fitness is chosen to be a parent. It is clear that deciding how fitted is a particular 
individual requires a measure of goodness (i.e. fitness function). 

Fitness function is fully problem dependant and specifies the degree of fulfilment of a 
desired objective. Fitness function may be also devoted to handle exceptions occurred 
when evaluating each individual such as non-desired infinite values and 
indeterminations. 

Usually selection is solely based upon greedy approaches which take only into account 
the fitness values of the individuals. This might lead to complex final solutions which 
are capturing noise from the process instead of remain general, this is called model 
bloat. Several authors also consider model complexity so as to drive the selection 
process and avoid bloating. The way of introducing complexity has been diverse, 
ranging from a modified version of fitness function to account for complexity through 
a weighted combination of both fitness and complexity, to the employment of model 
complexity to solve the tie whenever several competing solutions performs equal. Last 
method was proposed in (Luke and Panait 2002) and is called lexicographic parsimony 
pressure.  

Assigning complexity is not a trivial task as depending on the used metric the heuristic 
will provide different preference values to each solution. Among existing alternatives 
(Smits and Kotanchek 2004) summarize the following (applied to symbolic optimisation): 

 Tree depth 
 Tree nodes 
 Component function nonlinearity (e.g. "+" is less non linear than exponentiation 

or sine functions) 
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 Number of variables: either total number of variables in the model or unique 
variables. 

 Expressional complexity: is based on the recursive aggregation of all nodes tree 
depths. This sort of metric has the advantage of favouring flatter structures. 

Genetic operators 

These operators are in charge of establishing the way in which evolution is carried 
out. In fact they are the actual cause of overall population improvement, allowing the 
exploration of the whole search space. Genetic operators are intended to keep a trade-
off between speed of convergence and diversity through generations so as to avoid 
local optima stagnation. Classic genetic operators comprise reproduction (a.k.a 
replication), crossover and mutation. 

Reproduction is an asexual method where a randomly selected individual copies itself 
into the new population without suffering any kind of modification (Walker 2001). This 
is a way to allocate some anchors in the search space that in some cases act 
preserving good current solutions but in other cases keeping bad individuals which 
helps to maintain diversity when population evolves towards local optima. When the 
evaluation of fitness function is deterministic, reproduction has been found to speed up 
search since a fraction of the population has not need to be revaluated. 

Crossover requires two parents which yields two offspring in the new population. 
Traditional crossover operator select to random nodes in both parent trees and 
pending subtrees are exchanged between them to create two new individuals, 
standard crossover. This is shown in Figure 14. 

 
Figure 14: Standard crossover 

Crossover have a prominent influence in evolution performance, so it is desirable to 
know what to expect in average when two parents are combined. Sometimes, crossover 
yields offspring that barely seems progenitors which would make evolution to pass 
slowly due to lack of direction in the search. Otherwise, if parents dont share 
sufficiently different genetic material evolution will suffer of premature convergence. A 
work that shed light around this topic is (Poli and Langdon 1995) where standard 
crossover is compared with both, one-point and uniform crossover operators in terms 
of them searching properties. Other authors has addressed this question proposing 
what they denominate semantic similarity crossover (Uy et al. 2010). In their approach, 
only when subtrees selected for swapping between parents are semantically similar the 
crossover is performed. This similarity is defined in terms of an arbitrary metric of 
distance of parents outputs. 
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Finally, the most commonly used form of mutation in GP (which is usually called 
subtree mutation) randomly selects a mutation point in a tree and substitutes the 
subtree rooted there with a randomly generated subtree. Subtree mutation is 
sometimes implemented as crossover between a program and a newly generated 
random program; this operation is also known as “headless chicken” crossover (Poli et 
al. 2008). 

Unlike classic genetic algorithms, in GP exist a vast number of mutation operators that 
may be applied, which often are used simultaneously providing some benefits. Among 
them, besides subtree mutation, there are: 

 Terminal Mutation: Switch an input terminal to another randomly selected 
input terminal. 

 Random constant mutation 
• Perturbation: mutated constants by adding random noise from a 

Gaussian distribution. Each change to a constant was considered a 
separate mutation. 

• Zero mutation: Set a randomly selected constant to zero. 
• Substitution: Substitute a randomly selected constant with a randomly 

generated constant. 
• One mutation: Set a randomly selected constant to 1. 

All described mutation operators are included in the genetic programming 
implementation tool used in this work. 

 
Figure 15: Subtree mutation 

2.2. Sampling procedures 

This section is devoted to give some brief notes on sampling procedures based on 
Monte Carlo approaches, as a worthy alternative to take into account when evaluating 
fitness function under the presented proposal. One of the major drawbacks of 
evolutionary algorithms, and so it's the case of genetic programming, is that they keep 
a large number of potential solutions through a usually high number of iterations 
(generations). Whereas tournament selection and genetic operators does not involve 
too much computational cost, this is not the case when it comes to the fitness function. 
Assigning fitness is, in most of the cases, the critical step when optimising by means of 
evolutionary methods as they usually involves much more evaluation of the targeted 
objective. Thus, depending on the difficulty of fitness evaluation the process could 
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become prohibitively long. Hence, it shall be necessary to use some efficient methods 
such as surrogate methods or another more suitable ones. 

In this work, as it will be presented in section 3.1, fitness function is a score function (𝜍) 
expressed as the summation of pointwise obtained partial scores (𝜍𝑛). Even when, the 
evaluation does not include difficult operations to compute, the addressed problem 
suffers from huge amount of data issues, which means that a large number of simple 
operations have to be performed. However, given the formulation of faced problem, 
many of these evaluations may be trivial regarding to the actual value of the score of 
each potential solution, but still they are going to take not negligible computing time. 

One way to overcome these limitations is to use an approach based on theory of 
Bootstrap filters (BF) (Doucet et al. 2001). Bootstrap filter is based on the concept of 
particle filters in which particles are created sequentially over the sampling process. A 
particle is defined as a pair consisting of the value of the sample and a importance 
measure, {𝒙(𝑖),𝑤(𝑖)}. The key idea is to gradually eliminate particles having low 
importance weights while multiplying particles which have high importance weights. 
Particle weights are based on the partial contribution of a sample to the global score. 

3. Describing learning approach 

This methodology for automatic learning of failure indicators emerge from the actual 
form of available data coming from industry to generate detection models. As outlined 
previously in this chapter, the only identified event contained in stored information of 
systems operation is the time at which the failure arises. In general there is not any 
information about failure mode evolution until the component or system fails. 
Therefore learning process have to be carried out in a semisupervised way. Going 
backwards from the time to failure, a region in which the failure could be expected to 
appear in monitored signals is a priori established. Then the algorithm must yield an 
expressive and robust model characteristic of the underlying failure mode.  

To train an indicator on a certain failure mode, a set comprising one or (preferably) 
more historical monitored signals of the operation of the system until the failure event 
is provided. Each of these subsets will be referred as Run-To-Failure case (RTF). 

In subsequent sections are described the functions which drives the search process to 
obtain failure indicators. Afterwards a test bed is presented to test the learning 
methodology proposed in this work. 

3.1. The objective function 

To drive the searching process, an objective function is developed, that lead a set of 
solutions that verify the properties previously defined. Accordingly to proposed 
approach, a score function is used, whose value is maximized during the searching 
process. In this work, the score of a potential function is solved using a test function or 
guide function. This function delimits the time regions where the indicator must modify 
its response and start to indicate the failure event. The shape of the score function is 
expressed in the Equation (1) 

 𝜍 = ��𝐼(𝑿𝑖𝑗 , 𝑡𝑗) ⊗ 𝜏(𝜽, 𝑡𝑗)
𝑁

𝑗=1

𝑀

𝑖=1

 (1)  

, where 𝐼(𝑿𝑖𝑗 , 𝑡𝑗) is the indicator value for every n-tuple input data (𝑿) in the j-th 
instant of time (𝑡𝑗) located in the i-th of the RTF that conform the training set. 𝜏(𝜽, 𝑡𝑗) 
is the value of the test function evaluated in the j-th instant of time. The partial score 
assignation of the evaluation of each n-tuple is defined using the operator ⊗, in this 
work defined as: 

 ⊗ (𝑎, 𝑏) ≝
|𝑎|

𝑃𝛼(𝑨)
· 𝑏 ;       𝑎 ∈ 𝑨 (2)  
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In this case, Pα(·) indicates the alpha percentile of the set of values that adopts the 
indicator when it is evaluated in every instant of time over the RTF set (Xi). In this 
work, a value of de α equal to 100% is used, i.e. the maximum value. 

Expressing the operator using the indicator, the result is:  

𝐼�𝑿𝑖𝑗 , 𝑡𝑗� ⊗ 𝜏�𝜽, 𝑡𝑗� =
|𝐼�𝑿𝑖𝑗 , 𝑡𝑗�|
𝑃𝛼(𝐼(𝑿𝑖))

· 𝜏(𝜽, 𝑡𝑗) 

In general, the result of the expression found by the algorithm is not constrained to 
positive values, and its value will depend of the transformation found. However, the 
test function has an image contained in the interval (−𝜈, 1), as it is detailed in section 
0. Attending to this, if the response obtained by the indicator were negative in the 
degradation area, the score metric will be penalized incorrectly. To avoid this issue, the 
indicator is evaluated in absolute value. 

Table 5: Objective function implementation 

Start 
t 0  
Parse expression to function 
For i=1 until number of Run-To-Failure cases 
   for j=1 until size of dataset 
      𝑰(𝒊, 𝒋) ←  Evaluate indicator on j-th sample of i-th case 
      Take absolute value over obtained output 
   end 
end 
 
Obtain minimum value from indicator outputs 
𝑰 ←    Substract minimum value to each indicator output 
𝑷𝒂 ←   Get selected quantile to scale indicator outputs values 
 
𝑰 ←   Divide each output by calculated quantile 
 
for i=1 until number of Run-To-Failure cases 
   for j=1 until size of dataset 
      If 𝑰 ≥ 𝟏 then 
         𝑰 ←  1 
      end 
      𝝇 ←   𝑰(𝒊, 𝒋) · 𝝉(𝜽, 𝒕)  
   end 
end 
return(𝝇) 
end 

 

In addition, concerning the score function implementation, each individual value is 
imposed an upper bound, using the following criterion: 

In addition, related to the score function implementation, the individual value is limited 
in the upper part, using the following criterion: 

 

 
𝐼�𝑿𝑖𝑗 , 𝑡𝑗� =

⎩
⎪
⎨

⎪
⎧ 1

|𝐼�𝑿𝑖𝑗 , 𝑡𝑗�|
𝑃𝛼(𝐼(𝑿𝑖))

> 1

|𝐼�𝑿𝑖𝑗 , 𝑡𝑗�|
𝑃𝛼(𝐼(𝑿𝑖))

otherwise

� 

 

(3)  
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Attending to this, Equation (1) can be expressed in the following way: 

 𝜍 = ��𝐼�𝑿𝑖𝑗 , 𝑡𝑗� · 𝜏(𝜽, 𝑡𝑗)
𝑁

𝑗=1

𝑀

𝑖=1

 (4)  

This modification is proposed after the result analysis obtained in one of the 
preliminary test cases described in section 4.1 of this chapter. 

In the Table 5 the algorithm that implements the objective function is exposed. 

3.2. The test function 

Partial score of each indicator is governed by the test function. This function delimits 
two different regions in each Run-To-Failure experiment. On the left of the cutting 
point of abscissas axis (temporal axis) the system us considered to be normally 
operating, hence the function penalizes every not null response yielded by the 
indicator. On the right of aforementioned cutting point, test function rewards any 
response experienced by the indicator. 

As it has been mentioned, the only certain available information concerning the 
component failure is the time in which the component is declared to be operating 
under its intended performance. Test function is configured using that event as 
reference through a set of parameters (θ) defining its shape. These parameters should 
be determined through trial-and-error approach or by means of a optimisation 
procedure in the context of wrapper methods. 

In this work function with three adjustable parameters and another deterministic one 
is selected for sake of generality and flexibility. This are described below: 

𝜽 = {𝛿,𝜑(𝑝, 𝛿), 𝜈,𝑇𝑓} 

 𝛿 - defines the interval, starting from time to failure instant, in which any 
response experienced by the indicator will be positively scored. It ideally 
represents the period of time in which the degradation of analyzed component 
should begin to be noticeable. Thus, 𝜏�𝜽,𝑇𝑓 − 𝛿� = 0. 

 𝑝 - fraction of δ parameter establishing the instant posterior to, Tf − δ, in which 
test function value should be equal to b. At first glance, we could have shaped 
the test function as a step function rising at δ. However, typically the transition 
periods between normal and faulty states are fuzzy. We then relax the growth 
of test function a parameter that is governed by p. In the test function it is 
included in the following described manner: 

𝜑(𝑝, 𝛿) =
1

2(1 + 𝑝)𝛿
· 𝑙𝑛 �

1 + 𝑏
1 − 𝑏

� 

, where b is set to 0.999 in this work. It has actually an arbitrary value but its 
use it is justified since the limit of test function when b → 1 is infinite. 

 𝜈 - This parameter modules penalization degree of each indicator output 
having non null value previous to the instant Tf − δ. The value of ν is 
theoretically contained within the interval [0, +∞). However its actual value is 
problem dependent. Some criteria to set its value relies in the number of 
samples in both normal and degradation regions, or in terms of cost based 
learning, depending on the preferences concerning false alarms versus missing 
alarms ratio. 

 𝑇𝑓 - is the instant in which the failure takes place. It acts as a reference point 
aiding to adjust the rest of tuneable parameters of the test function. 

Test function is defined as a piecewise function based conveniently in the hyperbolic 
tangent function. Through an appropriate change of variable from t to t′, test function 
has the following form. 

𝑡′ = 𝑡 + 𝛿 − 𝑇𝑓 
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 𝜏(𝜽, 𝑡′) ≝

⎩
⎪
⎨

⎪
⎧𝜈

1 − 𝑒−2𝜑𝑡′

1 + 𝑒−2𝜑𝑡′
sii   𝑡′ ≤ 0

1 − 𝑒−2𝜑𝑡′

1 + 𝑒−2𝜑𝑡′
sii  𝑡′ > 0

� (5)  

 
Figure 16: Effect of parameters of the test function on its shape 

 

4. Verification cases 

In this section some demonstration cases are presented in order to validate the 
proposed methodology. Main goals of proposed cases are the study of the effect of test 
function parameters on indicator synthesis and to explore methodology capabilities in 
different contexts that might be found actually in machine failure detection tasks. 

Test cases will consist of five variables at most, representing monitored signals coming 
from machines. Hidden between them will be a degradation pattern, expressed as 
𝜔(𝑡) = 1 − e−(0.0064𝑡+4500), related to one variable or a combination of them. Remaining 
variables may be either random noise or may have an expressive evolution through 
time but uncorrelated to the wanted failure mode. Each dataset emulates a Run-To-
Failure experiment whose configuration its described in Table 6. 

Table 6: Variables considered in the experiments - First row: IC-001; Second row: IC-002; 
Third row: IC-003; Fourth row: IC-004; Fifth row: IC-005 

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝜀 
𝒰(0,1) 𝒰(0,1) 𝒰(0,1) 𝜔(𝑡) - - 
𝒰(0,1) 𝒰(0,1) 

0.6e−�
𝑡−1200
105 �

2

+ 0.85e−�
𝑡−4500
105 �

2

 
𝜔(𝑡) - - 

𝒰(0,1) 𝒰(0,1) 
0.6e−�

𝑡−1200
105 �

2

+ 0.85e−�
𝑡−4500
105 �

2

 
𝜔(𝑡) -  

𝒰(0,1) 𝒰(0,1) 𝒰(0,1) 𝒰(0,1) 𝜔(𝑡) + 𝑥4 - 
𝒰(0,1) 𝒰(0,1) 

0.6e−�
𝑡−1200
105 �

2

+ 0.85e−�
𝑡−4500
105 �

2

 
ω(t) +  𝜀 - 𝒩(0,0.15) 

 

To perform indicator search a free, open source library coded in MATLAB®2

                                              
2 MATLAB is a trademark of The Mathworks Inc. 

 named 
GPTIPS was used (Searson 2015). GPTIPS is a symbolic data mining highly customizable 
tool that allows the user to implement its own problem definitions as also to include 
new built-in functions to be part of the search space. It also provides functionalities on 
model simplification and post run population examination in order to evaluate 
evolution run. 
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Is not in the scope of present work to make performance comparisons between multiple 
algorithm configurations, therefore default evolution parameters with some 
modifications are proposed for test cases. Selected parameters a summarized in Table 7 

 

Table 7: Configuration parameters of genetic programming algorithm 

Parameter  
Type of search Maximisation 
Generations 1000 
Population size 100 
Initialisation Ramped half-and-half 
Maximum tree depth 8 
Selection Lexicographic Tournament 
Crossover operator Standard Crossover 
Mutation Operator Terminal mutation/Perturbation/Zero mutation 
Crossover probability 0.8 
Mutation probability 0.1 
Mutation operator probability 0.9/0.05/0.05 
Maximum depth of mutated 
subtree 

4 

Tournament size 2 
Constant generation range [-10 10] 
Constant generation 
probability 

0.2 

Search space 
×,−, +,�(·)

3

𝑖=1

,�(·)
3

𝑖=1

, exp (·) 

  
Stopping criterium Number of generations 

 

In this section several configurations of the test function are used to evaluate its 
impact in the search process. As exposed in section 0 test function conditions the 
shape of potential indicators depending on the parameters selected. For verification 
cases, this parameters are found in Table 8. 

Table 8: Test function parameters for each experiment 

Experiment 𝛿 𝑝 𝜑 𝜈 
IC-001 1900 0.1 0.020001059 1.87 
IC-002 1000 0.1 0.038002012 1.87 
IC-003 1000 0.1 0.038002012 3.74 

IC-004 1000 0.1 0.038002012 3.74 

IC-005 1000 0.1 0.038002012 3.74 

 

4.1. Effect of 𝛿 parameter (IC-001) 

When setting the test function we may serve from expert knowledge to specify the time 
instant when the failure will become apparent in the monitored signals. Its important 
to keep in mind that usually the only known fact is the time of failure. Starting from 
that point, the objective is to be able to forecast that moment with enough anticipation. 
This is considered with the 𝛿 parameter which controls the raising instant of the test 
function. Ideally 𝛿 is tunned to stay as far as possible from the Time-To-Failure (TTF), 
which means that the failure will be evidenced in an early stage permitting to perform 
preventive activities over the asset. However, setting this parameter too far from the 
TTF will lead to the appearance of false positives incurring in inefficiencies in the asset 
management and the producing losses due to extra maintenance or surveillance. If 
viewed under the scope of supervised learning, this corresponds to label incorrectly the 
samples. 
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In Figure 17 are represented different runs for the case IC-001 where there is only one 
expressive variable related to the desired failure mode. If test function raises once the 
degradation have already started we observe that the search process provides a 
solution that tries to fit the indicator as much as possible to the test function, delaying 
the detection of the anomaly (Figure 17(a)). Solutions which actually start to rise at the 
time of the degradation will be downrated by the test function as they fall outside of 
the positive region. On the contrary, if the test functions raises, with a reasonably 
margin, before the degradation process, then the indicator will rise when degradation 
becomes apparent. As observed in Figure 17(b-c) there are several feasible paths for the 
indicator to evolve. The last figure contains the results of a run in which is shown that 
a solution (i.e. an indicator) that better fits the test function is preferred instead other 
possible indicators. In fact, just selecting an indicator based on 𝑥4 will be enogh to 
track the degradation process (Figure 17(b)), but there are other solutions that satisfies 
more search specifications. 

  

 
Figure 17: Effect of δ parameter in search process 

Beyond the ability to discriminate trivial variables and detect expressive patterns, this 
experiment has yielded another important conclusion. Proposed methodology allows the 
option of interactively tune test function parameters based on achieved results. Hence, 
if indicator raises before the test function one may think that has been conservative 
for failure anticipation and then shift back in time 𝛿 parameter. On the other hand, if 
indicator raises after test function, it is possible to conclude that first hypothesis on 
failure detectability has been too optimistic. 

Another conclusion extracted from this case was the need of imposing an upper bound 
to the output of the evolved expression obtained by the genetic algorithm, then yielding 
expression (3). When the evolved expression was scaled with a percentile of the output 
instead of the maximum value, the inherent properties of the search process favoured 
solutions of the form presented in Figure 18. Because the nature of the primitive score 
function in equation (1), indicators which present very high values in the positive 
region delimitated by the test function had enormous scores. Therefore, the 
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methodology was rewarding solutions presenting singularities in the region at the right 
of the test function, even when they were inexpressive of any failure pattern. 
Bounding the scaled indicator has been proved to be effective to avoid such solutions 
and guarantee good performance. 

 
Figure 18: Effect of unbounded indicator 

4.2. Testing effect of competing failure modes (IC-002 & IC-003) 

In this experiment we are interested in proving whether the methodology works 
properly when there are more than one expressive variable but only one is related to 
the desired failure mode. Experiments IC-002 and IC-003 where used to address this 
question. 

 

Table 9: Summary of genetic programming algorithm runs for IC-002 

 Fitness Complexity Best Model Included Vars. 
1st Run 150 73 x4 x5 
2nd Run 150 35 x4 x5 
3rd Run 147.65 365 x4 x5 
4th Run 124.93 5 x4 x5 
5th Run 147.41 417 x4 x5 
6th Run 144.95 318 x4 x5 
7th Run 136.28 367 x4 x5 
8th Run 124.93 107 x4 x5 
9th Run 147.53 212 x4 x5 
10th Run 150.08 431 x1 x2 x3 x4 x5 
11th Run 141.03 354 x4 x5 
12th Run 125.36 623 x1 x2 x3 x4 x5 
13th Run 146.68 259 x4 x5 
14th Run 141.12 539 x4 x5 
15th Run 145.97 943 x4 x5 

Resume (𝜇/𝜎) 
Fitness 141.59 / 9.35 
Complexity 336.53 / 246.86 
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Figure 19: Resuls from expreriment IC-002 results: Top plot - Best achieved indicator (Run3) in red and the interval of the range of 

instant values of the indicator through different runs. Midle row - Best fitness achieved in each run and the complexity of best 
fitness solution in each run. Bottom row - Evolution of fitness (left) and complexity (right) over all generations of the best run. 

Each experiment was run fifteen times in order to avoid random effects due to the 
nature of genetic algorithm. In each experiment the test function parameter 𝜈 was set 
to 1.87 and 3.74. The intention was to strongly penalize potential solutions that were 
sensible to 𝑥3, which is related to a second failure mode that is not under study. 

Conducted experiments were not conclusive about this fact. The experiment was 
arranged for secondary failure mode (𝑥3) to be partially overlapped with primary 
failure mode (𝑥4). But, secondary failure mode also exists in the negative region of the 
test function. The initial hypothesis was that, if 𝑥3 were included in the indicator model 
it will yield poor performance in the region before the primary failure mode 
occurrence. Nonetheless, as almost all constructed expressions are strongly based on 𝑥4 
and since this variable remains null in all negative regions, the effect of including 𝑥3 in 
the model only can improve solutions arbitrarily being combined with the actually 
expressive variable. 

From Figure 19 it is observed that as process progresses complexity becomes 
dramatically higher while barely improving fitness. This phenomenon occurs in almost 
all cases, so it is possible to conclude that the genetic algorithm find early well fitted 
solutions and gradually increase indicator complexity by adding terms unrelated to the 
failure but eventually having good behaviour within the interest region of the test 
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function. This is called overfitting. In section 4.4 we try to overcome this issues using 
two training sets. 

4.3. Detecting expressiveness resulting from a combination of two variables 
(IC-004) 

Escalating in complexity, this experiment hides the expressiveness of the desired 
failure mode as the difference between two of the monitored variables (experiment IC-
004). As can be properly seen in Appendix I, Figure 28, variable 𝑥5 is expressive by 
itself, however it contains noise with the same order of magnitude than its range of 
variation. In combination with 𝑥4 random noise vanishes and a clear growing failure 
pattern appears. 

Best solutions achieved among different runs have a high average fitness and in 
almost all runs the variables contained in the best achieved model are only the non 
trivial ones. Besides, various executions ended with a best model constituted by the 
exact relation of both variables (i.e. 𝑥4 − 𝑥5). Nevertheless, a non negligible amount of 
runs obtained expressions with stepped growing profiles. 

 
Figure 20: Results from experiment IC-004: Top plot - Best achieved indicator (Run10) in red and the interval of the range of instant 

values of the indicator through different runs. Midle row - Best fitness achieved in each run and the complexity of best fitness 
solution in each run. Bottom row - Evolution of fitness (left) and complexity (right) over all generations of the best run. 
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As it has been commented in previous section, we cannot ensure that this fact takes 
place because it is actually a better indicator for that kind of degradation mechanism 
or because overfitting problems. The most obvious example of overfitting is presented 
in Figure 20 where the achieved indicator exhibits a peak just before starting to 
growth. This occurs in a similar way than in IC-003, where relevant variables controls 
indicator evolution and, at some point, noise inputs offer to the process the chance to 
obtain higher score. Overfitting will cause that obtained models are not general and 
then will produce many false alarms or missing alarms. 

Table 10: Summary of genetic programming algorithm runs for IC-004 

 Fitness Complexity Best Model Included Vars. 
1st Run 144.92 267 x3 x4  
2nd Run 147.62 552 x3 x4  
3rd Run 148.85 210 x3 x4  
4th Run 148.8 577 x1 x2 x3 x4  
5th Run 146.64 457 x3 x4  
6th Run 145.67 461 x3 x4  
7th Run 147.65 251 x3 x4  
8th Run 146.79 694 x1 x2 x3 x4  
9th Run 145.39 317 x3 x4  
10th Run 146.5 781 x3 x4  
11th Run 145.63 259 x3 x4  
12th Run 148.11 385 x4  
13th Run 147.78 460 x3 x4  
14th Run 146.01 356 x3 x4  
15th Run 144.71 282 x2 x3 x4  

Resume (𝜇/𝜎) 
Fitness 146.74 / 1.35 
Complexity 420.60 / 170.94 

 

4.4. Testing effect of training with several datasets (IC-005) 

There are many approaches in the existing literature to deal with the problem of 
overfitting. In search problems using genetic programming, overfitting is closely related 
to expression complexity (bloating problems). 

Table 11: Summary of genetic programming algorithm runs for IC-005 

 Fitness Complexity Best Model Included Vars. 
1st Run 112.97 1070 x1 x3 x4  
2nd Run 105.11 1373 x2 x3 x4  
3rd Run 122.72 1423 x3 x4  
4th Run 113.53 812 x3 x4  
5th Run 111.28 1155 x1 x3 x4  
6th Run 113.21 653 x3 x4  
7th Run 103.84 1217 x2 x3 x4  
8th Run 108.54 565 x4  
9th Run 127.93 844 x4  
10th Run 111.65 1238 x3 x4  
11th Run 110.66 626 x4  
12th Run 114.07 1299 x1 x2 x3 x4  
13th Run 113.13 792 x3 x4  
14th Run 112.73 823 x2 x3 x4  
15th Run 111.28 454 x3 x4  

Resume (𝜇/𝜎) 
Fitness 112.84 / 5.96 
Complexity 956.27 / 315.47 
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In this experiment (IC-005) we try to tackle overfitting by providing a training set 
comprised by two RTF cases. One of them has again 𝑥4 as the expressive variable 
which coexists with the variable 𝑥3 being representative of a competing failure mode 
that is out of scope of the analysis. Remaining variables are kept as uniform random 
variables. The second case for model training does not contain the searched failure 
mode but only the undesired one. Additionally, expressive variable has been perturbed 
by adding gaussian noise as, in real cases, variables are always subject to some level of 
disturbance. 

Unlike in IC-002/3 cases, synthesized indicator models are based, in their vast majority, 
in the expressive variable 𝑥4, eventually containing 𝑥3 input and in some remote cases 
the model also includes noise variables. As it can be seen in Figure 21 average 
complexity of current experiment models is higher than previous ones. This make 
sense since to ensure high scores, smoothing operations over the variable of interest 
have to be applied, which usually involves the use of several function compositions. 

 
Figure 21: Results from experiment IC-005: Top plot - Best achieved indicator (Run 9) in red and the interval of the range of instant 

values of the indicator through different runs. Midle row - Best fitness achieved in each run and the complexity of best fitness 
solution in each run. Bottom row - Evolution of fitness (left) and complexity (right) over all generations of the best run. 
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As shown in Figure 21, best achieved model in current experiment is able to decrease 
the noise inherent to 𝑥4 in left region of the test function. In fact, it employs great 
efforts in doing so, since every non null value is strongly penalized by the test 
function. However, this yields a very spiky growing of the indicator in the interest 
region which prevents its potential use as prognosis indicator. 
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Chapter 4 
Test case: Application on bearing dataset 

Bearings are mechanical components belonging to wind turbines as members of the 
drivetrain, amid other subassemblies such as pitch or yaw actioner systems. Drivetrain 
bearings are specially critical in relation to wind turbine functioning since they are 
subject to big loads and harsh operational conditions. Furthermore, if a failure arise 
during their operation, other much more critical subsystems might be affected causing 
huge losses due to long periods of inactivity and major repair costs. Drivetrain includes 
main bearing, gearbox bearing, drive-end generator bearing and non drive-end 
generator bearing. Among them, the last two bearings have the highest working 
exigencies since they are placed on the high speed shaft (usually rotating at 1800 rpm) 
which is coupled to the end of gearbox. 

Consequently, wind turbine operators are very interested in being able to detect and 
diagnose generator bearing failures in order to plan with enough margin of time 
maintenance activities, which presumably will save high life cycle costs of the asset in 
comparison with corrective actions. 

Bearing diagnostic has been traditionally addressed through vibration analysis, yet, in 
practice, monitoring of wind turbines performance parameters is carried out by means 
of a Supervisory Control and Data Acquisition (SCADA) system, which often do not 
comprise required sensors for that kind of analysis. Data coming from SCADA system 
suffers from dirtiness (outliers, inconsistent data, dataseries lack of completeness, etc.) 
and often mask uncontrolled events (which many times are not well documented), such 
as design revisions or modifications or even maintenance actions barely justified. This 
context prevent us to use this source of data in order to test and validate the proposed 
methodology for indicator synthesis. 

As vibration analysis has been widely used for rotating machinery diagnosis and there 
is a lot of accumulated knowledge around its application over bearings, it seems fairly 
suitable to use these datasets to test proposed methodology and compare achieved 
results with those already existing in the literature. 

1. Dataset description 

Used dataset (Lee et al. 2007) has been contributed by Center for Intelligent 
Maintenance System, University of Cincinnati, Cincinnati, OH. Data consist of Run-To-
Failure experiments taken over Rexnord ZA-2115 double row bearings. These were 
installed on a shaft as shown in Figure 22. The rotation speed was kept constant at 
2000 RPM by an AC motor coupled to the shaft via rub belts. A radial load of 6000 lbs 
is applied onto the shaft and bearing by a spring mechanism. All bearings are force 
lubricated. 

PCB 353B33 High Sensitivity Quartz ICP accelerometers were installed on the bearing 
housing (two accelerometers for each bearing [x- and y-axes] for data set 1, one 
accelerometer for each bearing for data sets 2 and 3). Sensor placement is also shown 
in Figure 22. All failures occurred after exceeding designed life time of the bearing 
which is more than 100 million revolutions. 
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Figure 22: Bearing test rig and sensor placement illustration (Lee et al. 2007) 

At the end of the Run-To-Failure experiment the following evidences were found: 

 Test 1 (October 22, 2003 12:06:24 to November 25, 2003 23:39:56): Inner race 
defect occurred in bearing 3 and roller element defect in bearing 4 

 Test 2 (February 12, 2004 10:32:39 to February 19, 2004 06:22:39): Outer race 
failure occurred in bearing 1. 

 Test 3 (March 4 2004 09:27:46 to April 4, 2004 19:01:57): outer race failure 
occurred in bearing 3. 

2. Data pretreatment 

Vibrations are the result of dynamical response of materials due to external forces. 
They are measured with vibration sensors located on the monitored component. 
Depending on the phenomenon causing the vibration response, the measured property 
of vibration is selected. Thus, for low frequency processes (≤ 10 𝐻𝑧) displacements are 
preferred, while for moderate frequencies (≤ 1000 𝐻𝑧) and high frequencies, velocities 
and accelerations are the more used magnitudes. 

For rotating machinery and particularly for bearing vibration analysis, accelerometers 
and tachometers (usually optical encoders) are installed on the bearing housing and in 
the shaft, respectively. Accelerations are commonly expressed as dimensionless 
quantity given as the fraction of earth gravitational field, commonly denoted by letter 
𝐺. By its part, rotational speed is expressed in revolutions per minute (RPM). 

In order to ensure good signal resolution and avoid aliasing problems, very high 
sampling rate is normally considered. If component were constantly monitored, this 
would lead to unmanageable amount of data. Consequently, vibrations are monitored 
taking signal aliquots of few seconds at specified time intervals, which often range 
from one second to ten minutes. 

Even when having a well defined signal, vibration sensors are subject to collection of 
several sources of noise such as those induced by adjacent components, among others. 
This leads to the problem known as low signal-To-noise ratio, which means that 
responses related to desired component are masked or even distorted, difficulting early 
detection of component defects. Therefore, a signal enhancing method is needed to 
provide more evident information for incipient failure detection of rolling element 
bearings. Within existing literature several methods for signal denoising have been 
proposed, including Kalman filters, which are useful when the gaussian noise 
hypothesis applies (Khanam et al. 2014); wavelet filters, suitable for cases where the 



Test case: Application on bearing dataset Data pretreatment 
 

53 

underlying process is pulsed (Qiu et al. 2006), which is the case for bearings or gear 
faults or synchronous averaging techniques (Mcfadden and Toozhy 2000; Bechhoefer et 
al. 2013; Zhu et al. 2014) which relies in the fact that the underlying process is periodic 
and stationary, and all non-synchronous signal components can be averaged out. 
Independent Component Analysis (ICA) has been used alternatively in order to isolate 
vibration signal contributions due to some specific source while discarding the rest 
(Wang et al. 2014). 

2.1. Time Synchronous Averaging (TSA) 

Time Synchronous Averaging works under the assumption that analyzed process is 
periodic and all those non-synchronous signal components behave as random noise. 
Data values sampled from signal separated by the exact period are then averaged 
(Braun 2011). Any periodic component, synchronous with this period, is thus unchanged, 
any other will be attenuated and converge asymptotically towards zero. Formal 
expression synchronous average is exposed in Equation (6). 

 𝑦(𝑛 · Δ𝑡) =
1
𝑁
�𝑥(𝑛Δ𝑡 − 𝑟𝑀Δ𝑡)
𝑁−1

𝑟=0

 (6)  

, where 𝑥 is the input signal; 𝑦 is the averaged signal; 𝑁 is the number of averages; 𝑀 
is the number of data points inside each period of the whole signal and Δ𝑡 is the 
inverse of sampling frequency of the signal. 

 
Figure 23: TSA example case over signal   𝒔 = ∑ 𝑨𝒊 𝐬𝐢𝐧(𝝎𝒊𝒕+ 𝝋)𝟑

𝒊=𝟏  
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Adopted method for computing TSA is based on (Mcfadden and Toozhy 2000) work. The 
computation of the synchronous average 𝑦(𝑡) of a time signal x(t) using a trigger 
signal having a frequency 𝑓𝑠 is equivalent to the convolution 

 𝑦(𝑡) = 𝑐(𝑡) ∗ 𝑥(𝑡) (7)  

, where 𝑐(𝑡) is a train of N impulses of amplitude 1/𝑁 (i.e. averaged by 𝑁), spaced at 
intervals 𝑇𝑠 = 1/𝑓𝑠 , having the following expresion: 

 𝑐(𝑡) =
1
𝑁
� 𝛿(𝑡 + 𝑛𝑇𝑠)
𝑁−1

𝑛=0

 (8)  

In the frequency domain, this is equivalent to the Fourier transform 𝑋(𝑓) on the signal 
times the Fourier transform of train of impulses 𝐶(𝑓), i.e. 

 𝑌(𝑡) = 𝐶(𝑓) · 𝑋(𝑓) (9)  

, with 𝐶(𝑓) defined as 

 𝐶(𝑓) =
1
𝑁

sin(𝜋𝑁𝑇𝑠𝑓)
sin(𝜋𝑇𝑠𝑓)    (10)  

which is a comb filter. Unlike in Mcfadden's paper, in which theoretical frequencies for 
inner race defect are exposed, in this work characteristic defect frequencies are 
obtained from bearing manufacturer's catalogue. 

It is worthy to mention some drawbacks on the use of TSA for the bearing case that 
have been pointed out in (Bechhoefer et al. 2013). For synchronous averaging to 
succeed, signal have to be stationary. However, bearings are quasi-stationary, i.e. there 
is always some slippage respect to shaft rotation, thus causing that points selected for 
averaging are not separated by the same period, then reducing dramatically method 
effectiveness. Another con is the fact that bearings have four different characteristic 
frequencies: cage, ball, inner and outer race. This would require the TSA to be run four 
different times for each bearing which may be a limitation concerning online 
applications. 

Nevertheless, bearings might be considered as stationary if glide over shaft remains 
small (which is often the case). Besides, computational cost derived from number of 
TSA executions is not a problem for this test case, and then TSA can be used without 
risk. 

To show the effect of TSA algorithm an example using a synthetic signal is presented in 
the following figure: Original signal is created as the composition of multiple sinusoidal 
functions with different frequencies and amplitudes. Two of the aggregated sine 
functions are harmonics so, when looking for that frequency, both components are 
preserved while the third one is averaged out. 

2.2. Vibration signature metrics 

Once vibration signal has been denoised, for failure detection purposes, the 
information contained is compressed in a set of metrics. Pointwise analysis of vibration 
data is worthless since it does not provide any type of information. Each aliquot is then 
processed in order to extract features that will be tracked so as to infer failure 
patterns from them. 

In this work, used metrics for vibration signal description are based on those 
summarized in (Zhu et al. 2014). 

Root Mean Square (RMS) 

RMS describes the energy content of the signal. It is not very sensitive to incipient fault 
but used to track general fault progression. 
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 𝑠𝑅𝑀𝑆 = �
1
𝑁
�(𝑠𝑖)2
𝑁

𝑖=1

 (11)  

Delta RMS 

Delta RMS is the difference between two consequent RMS values. 

 Δ𝑠𝑅𝑀𝑆(𝑡) = 𝑠𝑅𝑀𝑆(𝑡) − 𝑠𝑅𝑀𝑆(𝑡 − 1) (12)  

If the gear damage occurs, the vibration level will be increased more rapidly than in a 
normal case without gear damage (Zhu et al. 2014) 

Peak value 

Peak value is the maximum amplitude of the signals within a certain time interval. 

 𝑠𝑝𝑒𝑎𝑘 = max 𝑠 (13)  

Peak-To-Peak value 

Peak to peak value is the distance between the maximum amplitude and the minimum 
amplitude of the signal. Peak to peak is a measurement of spread in the signal. 

 𝑠𝑃2𝑃 = 𝑠𝑝𝑒𝑎𝑘 − min 𝑠 (14)  

Signal Kurtosis 

Kurtosis indicates how flat or peaked a certain distribution of values is. High kurtosis 
means that most values are concentrated together while low kurtosis describes a 
distribution with high dispersed values. 

 𝑠𝑘 =
𝑁 · ∑ (𝑠𝑖 − �̅�)4𝑁

𝑖=1

(∑ (𝑠𝑖 − �̅�)2𝑁
𝑖=1 )2  (15)  

Signal Skewness 

Skewness is a measure of symmetry of a distribution of values. 

 𝑠𝑠𝑘𝑒𝑤 =
√𝑁 · ∑ (𝑠𝑖 − �̅�)3𝑁

𝑖=1

��∑ (𝑠𝑖 − �̅�)2𝑁
𝑖=1 �

3 (16)  

Crest Factor 

Crest factor is the ratio of the single side peak value of the input signal to the RMS 
level. 

 𝑠𝐶𝐹 =
𝑠𝑝𝑒𝑎𝑘
𝑠𝑅𝑀𝑆

 (17)  

Crest factor can be used to indicate faults in an early stage. This feature is used to 
detect changes in the signal pattern due to impulsive vibration sources such as tooth 
breakage on a gear 

3. Problem configuration 

The second and third tests contained in the dataset are used to proof the methodology, 
so, in this section, we are looking for bearings outer race defects. The first bearing 
from the second test (Bearing 1) and the third one from the third test (Bearing 3) 
present this anomaly at the end of each Run-To-Failure experiment. Additionally, 
another bearing is considered to evaluate trained indicator on it in order to analyze its 
generality. We use second bearing from test 3 (Bearing 2) for this purpose as, after all 
runs, any fault was detected on it. 

This is, in fact, a short set of cases to validate the model, then we propose two 
arrangements of the bearing data to evaluate the performance: 
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 Configuration 1: Bearing 1 and Bearing 3 are used to train the model as bad 
cases and bearing 2 is left to carry out the evaluation. 

 Configuration 2: Bearing 3 and Bearing 2 are used to train the model as bad 
and good cases while bearing 1 is employed to perform the evaluation. 

For second configuration it has to be noticed that test function for Bearing 2 has been 
set as a constant value equal to the penalization parameter (𝜈) since this bearing 
remains healthy along all the time interval. Configuration for the test function is 
summarized in Table 12. 

Table 12: Test function parameters configuration for bearing test cases 

Experiment 𝛿 𝑝 𝜑 𝜈 
Configuration 1 60 0.1 0.020001059 1.87 
Configuration 2 60 0.1 0.038002012 1.87 

 

In order to test how robust behave the proposed methodology in the presence of noise 
contained in the variables, features described in section 2.2 in current chapter are 
evaluated, both applying TSA and without the filtering technique. Then they are passed 
as training variables to the genetic algorithm to search suited indicators. 

To perform TSA over vibration signals of selected bearings, we use as a filtering 
frequency (or reference frequency) the Outer Pass Defect Frequency (RPFO). This has 
been extracted from Rexnord manufacturer' catalogue, whose value is 236.4 Hz. 

In order to evolve indicator expressions the genetic algorithm was set as described in 
Table 7. 

4. Results and discussion 

4.1. Raw vibrations 

Results from the execution of the indicator search process over the first configured 
case are shown in Figure 24. It summarizes, in the first row, the time evolution of the 
best achieved model for bearing 3, bearing 1 and bearing 2, respectively. Below, the 
evolution of considered variables to create the model, i.e. delta root mean square and 
peak-to-peak, by the genetic algorithm are exposed. 

At first glance, achieved results are quite far from what it was expected, given the 
description of the employed dataset. For Bearing 1, indicator exhibit a behaviour which 
is in accordance with initial hypothesis. It starts with low responses, and two days 
before the test was stopped and the failure isolated, it begun to raise, although 
somehow erratically. As it has been mentioned before, this is caused because there are 
not filtering functions within provided search space to the genetic programming 
algorithm. Hence, these prevent the algorithm from finding smoother expressions 
which may cancel or at least diminish noise in a natural way. In fact, as it happened 
with verification cases, search process involve great efforts in making indicator's 
output as low as possible in the region on the left of the test function, which at last 
causes that non zero outputs from the model be volatile. 

On the contrary, behaviour of indicator when dealing with bearing 3 monitored 
variables is far from being understandable. Its evolution over time does not show any 
noticeable trend even though this bearing has been found to be in faulty state when 
the experiment ended. After this evidence, taken variables by the indicator model have 
been plotted versus operational time. Their trends where compared with each other to 
seek similarities between them. We found that model variables were more similar for 
bearings 1 and 2 rather than for bearings 1 and 3, as it was awaited. 
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Figure 24: Indicators response and model variables evolution 

It can be seen in Figure 24, that bearing 2, which was supposed to be healthy, when its 
evaluated , the indicator trend seems to that encountered for bearing 3. Indicator 
evolution for bearing 2 shows a more spiky form than bearing 3. This occurs since 
bearing 2 was included in the training cases. Thus, algorithm has devoted efforts in 
keep low its response regarding imposed penalisation conditions, leading to overfitting. 
As it is represented in Figure 24, indicator response experiment a decreasing trend in 
its value at the beginning of the monitoring period, corresponding to a similar 
evolution of model selected variables. After that period of time, evolution of both 
indicator and variables are flat until the end of the operational time. 

Used database was checked in order to discard mislabelling issues when it was created. 
We did not find any other bearing exhibiting the same variable patterns, so we are 
prone to think that bearing 3 has been incorrectly considered as failed. 
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Chapter 5 
Conclusions and future work 

 

In this work we have proposed a methodology for automatic learning of indicators for 
failure detection. Key goals of developed technique address automatic data selection in 
order to create failure detection models, deploy human interpretable models to favour 
interaction with their outputs, and allow learning in contexts having partial 
information of studied event. 

The methodology is aimed to summarize health information of a certain component 
based on monitored signals to allow decision making in relation to maintenance tasks. 
To accomplish this objective we do not perform any a priori labelling of operational 
data. Instead we define a reasonable interval, starting backwards from the studied 
undesired event, in which we expect that degradation process has already began to be 
noticeable in monitored signals. However, we do not strongly constrain the evolution of 
the indicator expression to have a specific shape, although those indicators exhibiting 
saturation trends are rewarded. Under this proposition we are also interested in 
discriminate other failure modes different to the one being under the scope (i.e. 
specificity). A comprehensive review on the state of the art has been developed in 
order to look for different approaches to failure detection task. Among all consulted 
references, we have not encountered yet a work presenting a method matching the 
central idea described in this proposal. Hence, we think that this offers an opportunity 
to address in a different way the failure detection task. 

Indicators search is performed by means of genetic programming. Although there are 
many alternatives to find appropriate measures for degradation quantification, the 
herein proposed offers the possibility to further process the achieved model since it is 
actually an manageable expression. Hence, model may be explored by syntactic and/or 
sensitivity analysis to acquire information of relevant variables and to gain further 
insights about failure mechanisms. The genetic algorithm is driven through generations 
by an objective function which actually constitutes the kernel of presented 
methodology. 

Each expression generated by the genetic algorithm is scored regarding its ability to 
respond against the desired failure mode. The rest of the time, indicator response 
should be null or remain as low as possible (see Figure 12). The, so called, test function 
is introduced to drive the search process in order find indicators which meet desired 
behaviour. In test function, information of different kind is accounted. On the one hand 
it allows to summarize expert knowledge or desired detection horizon (time of early 
detection of an emerging failure before it becomes a fault) through 𝛿 parameter. After 
this time, every non null response of the indicator will be rewarded in accordance to 
its magnitude. Besides, through 𝜈 parameter we can control the penalisation over 
solutions that only partially fulfils imposed requirements. We found that its value 
should be linked to the relation of number of samples lying in the detection region (i.e. 
times higher than 𝛿) and the normality region. But also it can be set under the 
approach of cost-based learning, depending on the relative importance of false 
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positives (also called false alarms) and false negatives (or missing alarms). The third 
tuning parameter, 𝜑(𝑝), relax the interface between normality operation and detection 
region. Then, all time samples lying around 𝛿 are not completely penalized but neither 
totally rewarded. 

Some test cases have been run to test the proposed methodology. At first we use a 
synthetic database in which degradation pattern is modelled as the complementary of a 
negative exponential function. This pattern is sometimes hidden in one specific 
variable or in a combination of them. These cases were built to learn how test function 
parameters influence the search process and how methodology copes with problems of 
different nature. Besides, we tried to approach a real application studying common 
failure mode suffered by bearings. 

Regarding performed experiments we extract the following conclusions: 

 Proposed technique is able to learn expressive indicators from data having 
the form of those encountered in real world applications. It serves from few 
known facts (e.g. the instant of failure or the substitution of a certain 
component) to set a guide function which just stipulate how to reward or 
penalize a potential solution. 

 Using genetic programming to evolve analytic expressions to model asset 
degradation yields human interpretable models. This allows the posterior 
simplification of obtained expressions and get information of relevant 
signals informing about malfunctioning. 

 Given obtained results presented in Figure 17 or even in Figure 24, it is 
shown that the search process might be successively improved by iteratively 
refining test function parameters based on outputs given by obtained 
indicator. 

 As it has been observed when working with bearing dataset, as far as it has 
been tested, the methodology shows robustness when in the training set is 
included unreliable information. 

 Although its averaged computational cost is higher compared with other 
learning techniques such as Artificial Neural Networks (which are widely 
extended in the existing literature to obtain detection models), genetic 
programming has not exhibited prohibitively training times. It is also fair to 
mention that training sets were not too big. 

Although some interesting and encouraging results has been achieved in performed 
case studies, the amount of experimentation is still insufficient to guarantee its fine 
behaviour when dealing with other cases. In fact, we have not been able to submit 
thoroughly conclusions about method performance on bearing dataset due to issues 
which emerged when the test was run. Therefore, we now describe some identified 
future research directions to further develop the presented proposal. 

 A factorial experiment for test function parameters has to be planned in 
order to gain further insights on search properties of this method. Specially 
for 𝜈 parameter, whose specification is critical since if too low values are 
used it won't be able to isolate wanted failure mode or indicator evolution 
will be too noisy. On the contrary, if too high values are considered, the 
obtained indicators will focus in cancelling every evidence of noise in the 
normal region while making the indicator to rise erratically in the detection 
region. 

 We have not been able to prevent overfitting issues when training the 
model. Until more failure cases are included within the training dataset we 
won't be able to conclude if the proposed method is inherently prone to 
overfitting or, conversely, if it is only a matter of lack of data. 

 Regarding the genetic programming algorithm, it is worthy to devote some 
time to study and implement techniques for bloating control. It has been 
seen when working with verification cases, as the searching process evolves 
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there is a marginal improvement on solution fitness whilst complexity keeps 
growing. 

 To avoid erratically behaviour which appeared in the most complex cases, it 
would be worthy to emphasize in the configuration of the search space of 
the genetic algorithm. A few alternatives that might be considered are to add 
mathematical filters to smooth the evolution of the indicator; treat input 
variables before they are included in the dataset used by the genetic 
algorithm (this is the approach that was chosen in this work, but obtained 
results on the provided dataset discouraged new experiments) or add to 
existing dataset, variables from time 𝑡 − 1, 𝑡 − 2, … , 𝑡 − 𝑇 in order to allow 
tendency or frequency operations. Notice that in this work just a basic set of 
functions has been used because the current implementation of the genetic 
programming algorithm requires closure constrains to be satisfied (see 
section 2.1.1, from Chapter 3). 
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Appendix I 
 

This appendix aims to complete section 4 of chapter 3 by presenting additional 
information of the results obtained for experiments IC-002, IC-004 and IC-005. For each 
experiment, the evolution with time of the variables is depicted. Then, the population 
obtained in the last generation and the frequency of appearance of the variables of its 
5% best individuals are presented for all of the 15 runs.  

Regarding Pareto Fronts exposed in Figure 26, Figure 29 and Figure 32, It can be seen 
that, generally, increasing complexity of model marginally improves the fitness value. 
On the other hand, the histograms presented in Figure 27, Figure 30 and Figure 33 
reveal the ability of the proposed methodology to identify the significant variables (x4 
or x4 and x5) as they are the most frequent variables in the final expressions. 
Additionally, the reduction in the use of noise terms and non primary failure variables 
(x3) when several dataset are used for training is manifested comparing the 
histograms corresponding to IC-002 and IC-005. 

 

 
Figure 25: Time evolution of the variables involved in experiment IC-002. 
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Figure 26: Population of the last generation for each run of experiment IC-002. Red dot: best individual. Green dots: Pareto Front. 
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Figure 27: Variable appareance in the 5% best individuals of the last generations for each run of experiment IC-002. 
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Figure 28: Time evolution of the variables involved in experiment IC-004. 
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Figure 29: Population of the last generation for each run of experiment IC-004. Red dot: best individual. Green dots: Pareto Front. 
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Figure 30: Variable appareance in the 5% best individuals of the last generations for each run of experiment IC-004. 

 

 

0

20

40

60

80

100

120

F
re

qu
en

cy

0

20

40

60

80

100

120

F
re

qu
en

cy

0

20

40

60

80

100

120

F
re

qu
en

cy

0

20

40

60

80

100

120

F
re

qu
en

cy

1 2 3 4 5
0

20

40

60

80

100

120

Input

F
re

qu
en

cy

1 2 3 4 5
Input

1 2 3 4 5
Input



 

70 

 
Figure 31: Time evolution of the variables involved in experiment IC-005. 
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Figure 32: Population of the last generation for each run of experiment IC-005. Red dot: best individual. Green dots: Pareto Front. 
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Figure 33: Variable appareance in the 5% best individuals of the last generations for each run of experiment IC-005. 
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Appendix II 
 

In order to illustrate the results of the proposed methodology, this appendix presents 
the expressions obtained for two out of the 15 runs for experiments IC-002, IC-004 and 
IC-005. Both the models which give the highest fitness and the smallest complexity are 
selected from the best individuals of each final population.  

IC-002: Higher fitness expression (fitness=148.85, complexity=210) 

𝐼(𝒙, 𝑡) = 𝑥4 ∙ 𝑒(2∙𝑒𝑥3−𝑥4−2∙𝑥3) ∙ (𝑥4 + 𝑒𝑒𝑒
(𝑥3−2∙𝑥4)

+ 𝑥3 ∙ 𝑒(𝑥4+4∙𝑥3
2)) 

IC-002: Smallest complexity expression (fitness=148.85, complexity=210) 

𝐼(𝒙, 𝑡) = 𝑥4 ∙ 𝑒(2∙𝑒𝑥3−𝑥4−2∙𝑥3) ∙ (𝑥4 + 𝑒𝑒𝑒
(𝑥3−2∙𝑥4)

+ 𝑥3 ∙ 𝑒(𝑥4+4∙𝑥3
2)) 

 

IC-004: Higher fitness expression (fitness=150.08 ,complexity=431) 

𝐼(𝒙, 𝑡)

= 𝑒𝑒
(𝑒�3.9596∙102∙𝑒𝑥2∙(𝑥4−𝑥5)�∙�2.5875∙𝑥2+𝑒𝑥2−7.9452�∙(𝑥1−3.5875∙𝑥2+98.293∙𝑥4+7.8347)∙�𝑥1−𝑥3−2∙𝑥4+𝑥5+𝑒−𝑥1+9.7451∙102∙𝑥5

2�)
 

IC-004:Smallest complexity expression (fitness= 124.93 , complexity=5) 

𝐼(𝒙, 𝑡) = 𝑥4 − 𝑥5 

 

IC-005: Higher fitness expression (fitness=127.23, complexity=844) 

𝐼(𝒙, 𝑡) = 2.8086 ∙ 10−14 ∙ 𝑥45 ∙ 𝑒(−6.3893∙𝑥4
2) ∙ 𝑒(−6.3454∙𝑥4

2) ∙ 𝑒(2∙𝑥4) ∙ 𝑒(4∙𝑥4) ∙ 𝑒𝑒(4∙𝑥4−6.3454∙𝑥4
2) ∙ 𝑒(4∙𝑥4

3)

∙ 𝑒(27∙𝑥4
3∙𝑒(−6.3454∙𝑥4

2)∙𝑒(−6.1709∙𝑥4
2)∙𝑒(4∙𝑥4)) ∙ �2 ∙ 𝑥4 + 𝑥42 ∙ (2 ∙ 𝑥4 − 6.3893)�

∙ �𝑥4 + 3.6664 ∙ 10−6 ∙ 𝑒𝑥4 + 4.3654 ∙ 10−6 ∙ 𝑒(3∙𝑥4) ∙ 𝑒(3∙𝑥4
3)� ∙ (4 ∙ 𝑥4 + 2 ∙ 𝑒𝑥4

− 6.1709 ∙ 𝑥42 − 12.342) 

IC-005: Smallest complexity expression (fitness=111.28, complexity=454) 

𝐼(𝒙, 𝑡) = 𝑥43 ∙ 𝑒(𝑥4
2∙(𝑒𝑥4−𝑥4∙(𝑥3−𝑥4)2)∙(3∙𝑥4−2∙𝑥4

2)∙(𝑥3−𝑥4)) ∙ (2 ∙ 𝑥4 + 0.2961)
∙ (2 ∙ 𝑥4 − 𝑥3 + 𝑥42 ∙ (2 ∗ 𝑥3 − 𝑥4)) ∙ �2 ∙ 𝑥4 + 𝑒(𝑥4−𝑥3) − 𝑥42 − 𝑥43� 
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