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ABSTRACT
Climate change poses one of the greatest threats to marine ecosystems worldwide, altering physical, chemical, and biological pro-
cesses at unprecedented rates. Severe impacts on marine species and habitats have been extensively documented, with shifts in 
phenology, spatial distribution, and migratory behaviour increasingly pervasive. However, there is a lack of species- specific data 
examining responses and adaptation to rapid warming and environmental extremes, especially for marine ectotherms. In this study, 
we investigate the broad- scale environmental drivers of distribution in a Critically Endangered ectothermic marine predator, the 
angelshark Squatina squatina, and report on a behavioural anomaly observed in 2022. Between 2018 and 2023, 112 adult S. squatina 
were tracked using acoustic telemetry in La Graciosa Marine Reserve in the Canary Islands. Relationships between seasonal pres-
ence of S. squatina and remotely sensed environmental parameters were examined with Boosted Regression Tree and Generalised 
Additive Modelling. Major sex differences were found, with female sharks strongly influenced by environmental conditions and 
particularly sensitive to temperature, with a possible upper thermal threshold close to 22.5°C. Peak sea surface temperature in the 
study area increased from 22.99°C to 23.81°C, and the number of days above 22.5°C nearly tripled. Absence of females during the 
2022 breeding season coincided with widespread thermal anomalies across the Northeast Atlantic Ocean, with unusually high tem-
peratures persisting later into the year. We conclude that this potentially disrupted seasonal thermal cues for S. squatina movement, 
leading to sexually divergent habitat use. Given the warming projected for this region, thermal thresholds may increasingly be ex-
ceeded, and key areas may become inhospitable for female S. squatina, which is of huge concern for this already highly threatened 
species. These findings highlight the urgency of identifying species- specific environmental tolerances and incorporating these into 
conservation so that management remains ecologically relevant in a rapidly warming ocean.
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1   |   Introduction

Understanding and projecting the impacts of anthropogenic cli-
mate change on the world's oceans is one of the most urgent and 
critical challenges of our time. Global mean sea surface tempera-
tures (SSTs) have risen by 0.88°C since the beginning of the 20th 
century, and periods of anomalously high sea temperatures—or 
marine heatwaves (MHWs)—are increasing in frequency, se-
verity, and duration (Hobday et al. 2016; Frölicher et al. 2018; 
IPCC  2022). In all oceans, these temperature increases are 
coupled with a plethora of complex oceanographic changes, in-
cluding reduced marine oxygen availability, expansion of oxy-
gen minimum zones (OMZs), increased salinity, altered wind 
stress patterns, and increased stratification of the upper ocean 
(Deutsch et al. 2015; Bindoff et al. 2019; IPCC 2022). The im-
pacts of such changes on biological and ecological systems are 
complex and variable, especially in regions of particular ocean-
ographic complexity.

The Northeast Atlantic Ocean is undergoing rapid warming, 
characterized by exceptionally high temperatures and record- 
breaking MHWs; in June 2023, monthly SST anomalies up to 
1.5°C warmer than average were recorded around the UK and 
Ireland, Iberian Peninsula, the Canary Islands, and northwest 
coast of Africa (https:// clima te. coper nicus. eu/ , https:// www. 
merca tor-  ocean. eu/ ). Wider oceanographic changes associated 
with warming in this region are influenced by features such 
as the Northeast Atlantic Eastern Boundary Upwelling System 
(EBUS) and associated Canary Current (Benazzouz et al. 2015; 
IPCC  2022), as well as the Atlantic Meridional Overturning 
Circulation (AMOC) current system, which contributes to 
climatology on a global scale (Olson et  al.  2018; Mishonov 
et  al.  2024). Driven by the Azores High pressure system and 
trade winds, seasonal upwelling and ocean stratification lead 
to high productivity and nutrient richness, characteristic of all 
EBUS zones (Pardo et al. 2011; Hernández- Guerra et al. 2017; 
Bindoff et al. 2019; IPCC 2021). The Canary Current, a wind- 
driven surface current flowing north to south between the 
Iberian Peninsula and Guinea- Bissau coastline, is disrupted 
by the abrupt topography of the Canary Islands archipelago, 
causing turbulence and eddy formation downstream and inter-
acting with upwelling (Barton et  al.  2004; Hernández- Guerra 
et al. 2017; Edo et al. 2019). While temperatures in other EBUS 
zones are generally predicted to cool, climate projections for the 
North Atlantic EBUS are highly uncertain (Pardo et  al.  2011; 
Benazzouz et al. 2015; IPCC 2021). The region is also uniquely 
influenced by the Calima phenomenon, where Saharan desert 
dust is transported westwards across the North Atlantic and 
deposited in the ocean in huge volumes, enhancing productiv-
ity in the upwelling zone (Gallisai et  al.  2014; Yu et  al.  2019; 
van der Does et al. 2021; Rodríguez et al. 2023). While the fre-
quency and intensity of Calima events is increasing with climate 
change due to aridity and desertification, the projected impact 
on SST is highly uncertain and spatially variable (Goudie and 
Middleton 2001; Foltz and McPhaden 2008; Gallisai et al. 2014; 
Francis et al. 2022). Collectively, the climatic characteristics of 
the Northeast Atlantic make it particularly challenging to un-
derstand and predict ecosystem responses to environmental 
change in this region, although significant impacts on fishes 
are documented in many studies (e.g., Perry et al. 2005; Vedor 

et al. 2021; Dahms and Killen 2023; Da Costa et al. 2024; Coulon 
et al. 2024).

Range shift is perhaps the most pervasive ecological impact, 
whereby organisms move to remain within optimal environ-
mental conditions and/or to avoid suboptimal conditions, driven 
by direct physiological preferences and tolerances (Sunday 
et al. 2012; Hastings et al. 2020) or to track changes in prey dis-
tribution (Berg et  al.  2010; Pinsky et  al.  2020). Shifts usually 
occur latitudinally, with colonization and expansion at the lead-
ing (or poleward) range edge and extirpation and contraction at 
the trailing (or equatorward) range edge (Parmesan and Yohe 
2003; Bates et al. 2014; Lenoir et al. 2020; Hastings et al. 2020; 
Pinsky et al. 2020). In marine environments, range can also shift 
by depth because deeper cooler waters provide thermal refugia, 
enabling behavioral thermoregulation through horizontal and 
vertical movement (Perry et al. 2005; Dahms and Killen 2023). 
However, the effectiveness of such species adaptation can vary 
greatly. For example, low species mobility and dispersal capacity 
limit potential for movement to escape adverse conditions or ac-
cess refugia (Perry et al. 2005; Berg et al. 2010; Jones et al. 2013; 
Bates et al. 2014; Pinsky et al. 2020), and the occurrence of habitat 
stressors such as pollution and overfishing may limit the avail-
ability of suitable habitat to move into (Hare et al. 2016; Pinsky 
et al. 2020; Womersley et al. 2024). Phenological shifts are also 
expected, with disruption to the timing of key biological events 
such as breeding, spawning, and migration, which normally 
occur within a specific and narrow timeframe (Mills et al. 2013; 
McNamara et  al.  2011; IPCC  2022). In many species, seasonal 
migration and space use are inherently linked to variability in 
environmental conditions and are usually cued or triggered by a 
change in the local environment (Brodersen et al. 2012; Schlaff 
et al. 2014; Winkler et al. 2014). As climate change impacts accel-
erate and intensify, formerly reliable and regular environmental 
cues may be disrupted, leading to mistiming of migration and 
mismatch between migratory behavior and habitat suitability 
(McNamara et al. 2011; Winkler et al. 2014).

At the individual level, an organism can tolerate some change in 
its immediate environment through behavioral plasticity, such 
as thermoregulation and short- term avoidance of physiologi-
cally stressful conditions (Chin et al. 2010; Pinsky et al. 2020). 
This mechanism is especially critical for ectothermic spe-
cies, for which thermal and chemical changes have a direct 
impact on physiology and behavior (Berg et  al.  2010; Pinsky 
et al. 2020; Osgood et al. 2021; Godefroid et al. 2023). However, 
this response becomes inadequate if exceeded by the pace 
and magnitude of environmental change, as can be the case 
in extreme climatic events such as MHWs (Bates et  al.  2014; 
Godefroid et al. 2023). In turn, short- term extremes exacerbate 
the impact of decadal- scale changes (Hobday et al. 2016; Oliver 
et al. 2018; Cheung and Frölicher 2020), especially in marine 
ecosystems where the geographic ranges of ectotherms tend to 
closely match limits of thermal tolerance, leading to lower ther-
mal safety margins and higher thermal sensitivity than in ter-
restrial ectotherms (Berg et al. 2010; Sunday et al. 2012; Pinsky 
et  al.  2019; Dahms and Killen  2023). At all scales, responses 
and vulnerability to climate change are therefore ultimately 
dependent on species- specific environmental constraints and 
tolerances (Pinsky et al. 2020). However, such species- specific 
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information is often lacking for marine ectotherms, includ-
ing many of the chondrichthyan fishes (sharks, skates, rays 
and chimaera) (Chin et  al.  2010; Jones et  al.  2013; Osgood 
et  al.  2021), which themselves play important roles in ma-
rine ecosystem structure and function as top- order predators 
(Baum and Worm 2009; Ferretti et al. 2010; Roff et al. 2016). 
Many chondrichthyans are severely threatened by overfish-
ing and habitat loss, and climate change is expected to exac-
erbate existing threats, as has already been observed in some 
species (Dulvy et al. 2021; Williamson et al. 2024; Womersley 
et al. 2024). For example, warming- driven shifts in the distri-
bution and migration phenology of tiger sharks, Galeocerdo 
cuvier, in the Northwest Atlantic were shown to reduce over-
lap with spatial protections and increase exposure to fisheries 
(Hammerschlag et al. 2022). Given that more than a third of 
chondrichthyans are already threatened with extinction, ad-
dressing environmental data gaps for this group is a global ma-
rine conservation priority (Dulvy et al. 2021).

The angelshark, Squatina squatina, is a benthic, dorsoventrally 
flattened, large predatory elasmobranch (Meyers et  al.  2017; 
Noviello et al. 2021). As an ambush predator, S. squatina spends 
a large proportion of its life buried in the sediment to rest and 
hunt. It is of significant conservation concern, being listed as 
Critically Endangered on the IUCN Red List of Threatened 
Species, due to drastic range decline driven by overfishing and 
coastal habitat degradation (Morey et al. 2019). Formerly wide-
spread throughout shelf waters of the Northeast Atlantic and 
Mediterranean Sea, S. squatina is now thought to have isolated 
and fragmented populations in the Mediterranean, North Sea, 
and around the Canary Islands (Gordon et  al.  2017; Lawson 
et al. 2020; Meyers et al. 2017). The Canary Islands are an es-
pecially important region for this species; both juveniles and 
adults are regularly sighted and recorded across the archipel-
ago, such that S. squatina has become a flagship species in the 
local dive industry (Modino 2011; Meyers et al. 2017; Jiménez- 
Alvarado et al. 2020). Research has recently shown that strong 
genetic differentiation occurs across the archipelago, with sev-
eral distinct and geographically isolated S. squatina popula-
tions, potentially increasing vulnerability to local and regional 
extirpation (Meyers et al. 2024). Crucially, these Canary Island 
populations are at the southernmost extent—or trailing range 
edge—of S. squatina distribution, and therefore close to their 
upper thermal limit, with possibly lower tolerance for environ-
mental change and greater potential for extirpation (Deutsch 
et al. 2015; Pinsky et al. 2019).

Studies have linked S. squatina presence to temperature- related 
variables and productivity (Jones et al. 2013; Meyers et al. 2017; 
Noviello et  al.  2021; Barker et  al.  2022; Giovos et  al.  2022), 
and in other angel shark species, associations with tempera-
ture, productivity, and salinity have been identified (Colonello 
et al. 2007; Vögler et al. 2008; Bunholi et al. 2022). Strong sea-
sonality in S. squatina movement, distribution, and habitat use 
has been observed and generally linked to the breeding cycle, 
and in some cases, to environmental factors (Bom et al. 2020; 
Ellis et al. 2021; Barker et al. 2022). For example, it is hypoth-
esized that the Canary Islands populations undertake seasonal 
inshore- offshore migration, with breeding occurring in near-
shore coastal waters in late autumn to early winter, and warmer 
months spent in cooler offshore waters (Meyers et al. 2017; Tuya 

et al. 2020; Noviello et al. 2021). Seasonal and spatial sexual seg-
regation and sex- specific habitat use have also been observed, 
with males more likely to utilize deeper offshore habitat and 
females occupying shallower nearshore habitat for a greater 
proportion of the year (Mead et al. 2023). The extent to which 
environmental conditions drive the seasonal distribution, 
breeding behavior, and inshore- offshore movement observed in 
S. squatina, as well as how males and females might respond 
differently to these selective pressures, is unclear.

In this study, acoustic telemetry and satellite remotely sensed 
environmental data were used to investigate the role of environ-
mental conditions on seasonal presence and movement of adult S. 
squatina in La Graciosa Marine Reserve (LGMR) in the Canary 
Islands. Using this model species occupying an equatorward 
range edge and in a region experiencing acute climatic changes, 
we explore and discuss marine ectotherm responses to rapid en-
vironmental change and the impact on sexually divergent repro-
ductive strategies. The primary research objectives were:

 i. To determine the relative influence of different environ-
mental parameters on the seasonal presence of S. squatina;

 ii. To identify sex differences in environmental–behavioural 
coupling;

 iii. To determine temperature cues associated with seasonal 
movement and shifts in the distribution of S. squatina;

 iv. To explore interannual patterns of S. squatina presence and 
whether this relates to environmental trends, specifically in 
relation to widespread temperature anomalies in 2022.

2   |   Materials and Methods

2.1   |   Study Site

The Canary Islands are a Spanish archipelago in the Northeast 
Atlantic, consisting of eight main islands and five islets, distrib-
uted over a distance of almost 500 km from east to west (Figure 1). 
La Graciosa Marine Reserve (LGMR) encompasses one island and 
a series of islets situated to the furthest northeast of the Canary 
Islands and has an oceanic desert climate, characterized by low 
rainfall and northerly prevailing winds (Cordero et  al.  2016). 
Covering an area of 70,764 ha, LGMR is Spain's largest marine 
reserve, and recreational and professional activities (e.g., fish-
ing and SCUBA diving) are strictly controlled and regulated by 
the Spanish Government and Canary Islands Government (see 
Mead et al. 2023). Squatina squatina is not specifically included 
within a marine reserve management plan, although the species 
is protected throughout the Canary Islands under the Spanish 
Catalogue of Threatened Species (https:// www. boe. es/ eli/ es/o/ 
2019/ 04/ 08/ tec596). The area is considered a hotspot for adult 
S. squatina, especially during the mating season (November to 
January) (Meyers et al. 2017; Mead et al. 2023).

2.2   |   Acoustic Telemetry

Continuous quantitative data on adult S. squatina presence 
in the study area were collected using an array of 14 acoustic 
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receivers (Innovasea models VR2W, VR2Tx, and VR2AR). 
Receivers were deployed across the site between July 2018 and 
April 2023, in waters ranging from 10 to 130 m depth. Receiver 
range testing was carried out at each receiver using a hydro-
phone, test tag, or sentinel tags to determine the approximate 
distance at which acoustic transmissions were still detected. 
Acoustic tagging of S. squatina was carried out in November 
of each year from 2018 to 2022, and in July 2018 at the outset 
of the study. A bespoke tag applicator and novel underwater 
animal capture methodology allowed sharks to be tagged ex-
ternally and in situ using SCUBA equipment, reducing stress 
and disturbance to the animal associated with capture and 
transfer to the surface. Individuals were opportunistically 
selected for tagging, and sex was determined through visual 
inspection of clasper presence or absence. Between 2019 and 
2021, sharks were tagged with coded Innovasea V9 acoustic 
transmitters (n = 84), and from 2021 onwards with Innovasea 
V13 acoustic transmitters (n = 28). Both tag types were set to 
high power output and a 90–150 s delay. Based on manufac-
turer estimated battery life, V9 tags transmit for 346 days and 
V13 tags for 522 days. A total of 112 adult S. squatina (38 males 
and 74 females) were tagged during six tagging campaigns be-
tween July 2018 and November 2022 (Table 1). Further details 
on the tagging procedure and acoustic array design are avail-
able in Mead et al. (2023).

2.3   |   Environmental Data

For environmental modeling, a range of remotely sensed and 
modeled variables were selected for investigation based on (i) 
known environmental associations in Squatiniformes and other 
elasmobranchs, (ii) specific local physical characteristics, and 
(iii) regional factors of interest in relation to climate change. 
Selected variables included sea surface temperature (SST), SST 
anomaly (SSTA), chlorophyll- a concentration (as a proxy for 
productivity), salinity, dissolved oxygen (DO) concentration, sea 
surface wind speed, atmospheric dust aerosol, and atmospheric 
particulate matter (PM10); the latter two variables are proxies 
for desert dust and are used to forecast Calima events in the 
Copernicus Atmosphere Monitoring Service (CAMS) Aerosol 
Alert service (https:// aeros ol-  alerts. atmos phere. coper nicus. eu/ ) 
(Foltz and McPhaden 2008; Querol et al. 2008).

All selected data had daily temporal resolution and Level 4 
processing or equivalent (i.e., gap free, science quality). SST 
and SSTA data were sourced from NASA JPL's “GHRSST 
(Group for High Resolution Sea Surface Temperature) MUR 
Global Foundation Sea Surface Temperature Analysis” product 
(https:// podaac. jpl. nasa. gov/ datas et/ hMUR-  JPL-  L4-  GLOB-  v4. 
1), and downloaded and extracted using R packages “rerddap” 
and “rerddapXtracto” (JPL MUR MEaSUREs Project  2015; 

FIGURE 1    |    The Canary Islands and surrounding Northeast Atlantic region, indicating key geophysical and oceanographic features which in-
fluence climate and marine ecosystems, and the acoustic telemetry array and La Graciosa Marine Reserve, with black points indicating receiver lo-
cations and the green box indicting the marine reserve area (insert). Map lines delineate study areas and do not necessarily depict accepted national 
boundaries.
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Chin et al. 2010). Chlorophyll- a concentration and wind speed 
data were sourced from the NOAA CoastWatch “VIIRS Ocean 
Color chlorophyll DINEOF gap- filled analysis” (https:// coast 
watch. noaa. gov/ cwn/ produ cts/ noaa-  msl12 -  multi -  senso r-  dineo 
f-  globa l-  9km-  gap-  fille d-  produ cts-  chlor ophyl l-  diffu se. html) and 
“NOAA NCEI Blended Seawinds” (https:// coast watch. noaa. 
gov/ cwn/ produ cts/ noaa-  ncei-  blend ed-  seawi nds-  nbs-  v2. html) 
products, respectively, and downloaded using ERDDAP Griddap 
Data Access Forms (Saha and Zhang 2022; Liu and Wang 2023). 
Salinity and dissolved oxygen concentration data were sourced 
from the Copernicus Marine Service (CMS) “Atlantic- Iberian 
Biscay Irish Ocean Physics Analysis and Forecast” (https:// data. 
marine. coper nicus. eu/ produ ct/ IBI_ ANALY SISFO RECAST_ 
PHY_ 005_ 001/ descr iption) and “Atlantic- Iberian Biscay Irish-  
Ocean Biogeochemical Analysis and Forecast” (https:// data. 
marine. coper nicus. eu/ produ ct/ IBI_ ANALY SISFO RECAST_ 
BGC_ 005_ 004/ descr iption) products, respectively (Sotillo 
et al. 2015; Gutknecht et al. 2019). Data for Calima dust—partic-
ulate matter d < 10 μm (PM10) and dust Aerosol Optical Depth 
at 550 nm—were sourced and downloaded from the CAMS 
global atmospheric composition forecast products (https:// 
ads. atmos phere. coper nicus. eu/ cdsapp# !/ datas et/ cams-  globa l-  
atmos pheri c-  compo sitio n-  forec asts? tab= overview) (Copernicus 
Atmosphere Monitoring Service 2021). Salinity, dissolved oxy-
gen and Calima datasets were downloaded in raster format and 
the required data were extracted for the study site using the 
“Extract Raster Values” tool in QGIS S1.

2.4   |   Data Analysis

2.4.1   |   Acoustic Detection Data

All data processing and analysis were carried out in R Studio 
(Version 4.4.1) and QGIS (Version 3.16.1). Acoustic data were fil-
tered to remove erroneous detections and those associated with 
unrecognized tags, VR2Tx, or VR2AR internal transmitters, 
and range test tags (Mead et al. 2023). Detections within 48 h of 
tagging were removed to ensure that any unusual post- tagging 
behavior did not influence the results. To explore the influence 
of wider Northeast Atlantic Ocean processes on S. squatina 
presence in the area as a whole, detection data were aggregated 
across all receiver locations. Total detection count data was re-
duced to “days detected” values for each individual, reflecting 

the number of days each shark was present in the study area (as 
per Mead et  al.  2023). To investigate both seasonal and inter-
annual variability in S. squatina presence, temporal patterns of 
acoustic data—as detection frequency or days detected—were 
plotted as a continuous time series for each individual and ag-
gregated by month of the year. For environmental modeling and 
temperature cue analysis, detections were summarized as either 
binary presence/absence per day or number of individuals pres-
ent per day.

2.4.2   |   Environmental Modelling: BRTs and GAMs

To address study aims (i) and (ii), associations between S. squa-
tina presence/absence in the study site and environmental 
drivers were investigated using Boosted Regression Tree (BRT) 
modelling. This technique allows for non- normally distributed 
data and multiple complex interactions between variables. Due 
to the availability of environmental data, models were carried 
out for the period from April 2021 to April 2023, and as such 
only a subset of the acoustic detection dataset was included in 
this part of the analysis. Male and female presence was mod-
elled separately in order to capture possible sex differences in 
environmental preference and association. The response vari-
able in each model was daily binary presence/absence of males 
or females in the whole study site (where 1 indicates detection of 
one or more tagged sharks on any receiver on each day and 0 in-
dicates no detected sharks). The explanatory variables included 
in the initial models were daily averages of SST, SSTA, chloro-
phyll- a concentration, salinity, dissolved oxygen concentration, 
and sea surface wind speed, as well as day of year (doy) to ac-
count for seasonal variation. All models were fitted using the 
gbm.auto package (Dedman et al. 2017) in R, which automated 
the BRT process and generated marginal effects plots for each 
variable, as well as the relative influence of each variable on S. 
squatina presence/absence.

Optimal model parameters were found by testing different 
combinations of tree complexity (tc), learning rate (lr) and 
bagging fraction (bf) values for each sex. We tested tree com-
plexity values of 2, 5, and 8 (to allow for binary interaction 
as a minimum and interactions between all eight variables 
as a maximum), various learning rate values between 0.0005 
and 0.1 (0.0005, 0.001, 0.005, 0.01, 0.05, and 0.1), and bagging 
fraction values of 0.5, 0.6, and 0.7. The performance of models 
with 1000 trees or more was then evaluated based on mean 
deviance, relative deviance explained, and Area Under Curve 
(AUC) scores, and the potential for overfitting was assessed 
based on the difference between training and cross- validation 
(CV) AUC scores (as per Dedman et  al.  2017; Bangley 
et  al.  2020, 2022). Based on the relatively low deviance ex-
plained values of this first round of models, we decided to in-
vestigate the possible influence of Calima by running a subset 
of BRT models with atmospheric dust aerosol concentration 
and PM10 as additional explanatory variables. For Calima 
models, parameter combinations were tested for learning rate 
values of 0.01, 0.005, and 0.001, and bagging fraction values of 
0.5, 0.6, and 0.7. Models were assessed again to see if adding 
Calima variables improved performance. To control for poten-
tial collinearity between environmental variables, pairwise 
Pearson's correlation tests were carried out for all variable 

TABLE 1    |    Summary of acoustic tag deployment on male and female 
Squatina squatina over six tagging campaigns between July 2018 and 
November 2022.

Tagging 
campaign

Transmitter 
type

Total 
tags

Males 
tagged

Females 
tagged

Jul- 18 V9 9 2 7

Nov- 18 V9 13 5 8

Nov- 19 V9 32 10 22

Nov- 20 V9 30 6 24

Nov- 21 V13 20 9 11

Nov- 22 V13 8 6 2
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pairs S2. Where correlation was both significant (p < 0.05) 
and strong (r > 0.7), one correlated variable was dropped. If 
this did not improve model performance, all variables were 
retained in the final model selection.

Post hoc Generalised Additive Models (GAMs) were used to deter-
mine concordance with the BRT approach. Selection of the explan-
atory variables to include in GAMs was based on BRT results; only 
day of year and SST were investigated, both as smoothed continu-
ous variables. As with BRTs, separate GAMs were carried out for 
each sex, with either binary daily female presence/absence or male 
presence/absence as the response variable. GAMs were built with 
a binomial error structure with log link function and maximum 
likelihood estimation, using the R mgvc package (Wood 2011).

2.4.3   |   Interannual Temperature Trends 
and Temperature- Linked Arrival Cues

The role of temperature in driving S. squatina presence in the 
study area—or more specifically in cueing movement into the 
area (study aim (iii))–was investigated based on the results from 
BRT and GAM models and on the interannual variability in fe-
male presence. SST was plotted alongside daily presence over 
four full years (2019–2023) to examine longer term climatic 
trends. Based on the observed interannual patterns of S. squatina 
presence, we examined and compared a “regular” breeding sea-
son (2021) (e.g., arrival of both sexes in mid- to- late autumn) and 
the “anomalous” breeding season (2022) (e.g., arrival of males 
but not females) in more detail, by plotting SST (and key SST 
values identified in environmental models) and SSTA against fe-
male presence for these periods (study aim (iv)).

3   |   Results

3.1   |   Acoustic Detection Summary

A total of 158,397 acoustic detections were recorded between 
27- July 2018 and 14- April 2023. Of the 112 tagged individuals, 
90.2% (n = 101) were detected at least once. This included 92.1% 
of tagged males (n = 35) and 89.2% of tagged females (n = 66). 
The total number of days detected per individual varied from 1 
to 77 in males and from 1 to 145 in females. As expected, there 
was strong seasonal variability in Squatina squatina presence for 
both sexes (Figure 2). Across the study period, on average, both 
male and female presence peaked in November and December, 
but females had a secondary peak in June and remained more 
consistently present throughout the rest of the year than males. 
This pattern of peaking presence was generally consistent across 
all study years, with the exception of 2022; in this year, the occur-
rence of female S. squatina was low throughout the year and did 
not peak. This was also reflected in the November 2022 tagging 
campaign, which showed an abnormal sex ratio with eight males 
and two females tagged (see Table 1).

3.2   |   Environmental Model Results

Optimal BRT model parameters for male and female S. squatina 
are included in Table  2. In both models, the full set of original 

explanatory variables was retained (SST, SSTA, chlorophyll- a, dis-
solved oxygen, salinity, wind speed and day of year). The addition 
of Calima variables improved model performance for females, 
but not for males; specifically, the addition of Calima variables in 
female models increased explained deviance by 1.7% when com-
pared to the best performing non- Calima model. The final male 
model explained 31.2% of deviance and the final female model 
39.5% of deviance. Training and CV AUC values indicated strong 
performance for both the male model (Training AUC = 0.983, 
CV AUC = 0.852) and female model (Training AUC = 0.999, CV 
AUC = 0.889) (Lane et al. 2009) (Table 2, Table S3).

The relative influence of predictors varied greatly between sexes. 
For male S. squatina, day of year (doy) had by far the largest in-
fluence, contributing 43.9% (Figure  3a). Specifically, the prob-
ability of male occurrence rapidly increased at around doy 300 
(late October), peaked at doy 331–335 (end of November) and 
remained high until around doy 10 (early January). With the ex-
ception of a small peak in predicted presence for just a few days 
in early June, the probability of male presence remained below 
0 for the rest of the year. All other predictors had a relative in-
fluence of < 15%; salinity was the most influential environmen-
tal predictor (14.4%), followed by chlorophyll- a concentration 
(11.2%), SSTA (10.1%), dissolved oxygen concentration (7.0%), 
wind speed (6.9%) and SST (6.6% each) (Figure 3a). For female 
S. squatina, SST and SSTA were the most influential predictors, 
contributing 20.6% and 16.5%, respectively (Figure  3b). Female 
occurrence peaked between approximately 19.1°C and 20.7°C 
(maximum = 19.6°C); above this temperature, occurrence rapidly 
decreased as SST increased. Above approximately 22.5°C, the 
probability of female presence remained below 0 (i.e., the model 
predicts female absence above this temperature). Overall, female 
presence decreased as SSTA increased, and the probability of 
presence dropped below 0 when the SSTA became positive. All 
other predictors had a relative influence of < 15%, with doy (13%) 
followed by salinity (10.3%), dissolved oxygen concentration 
(10.3%), chlorophyll- a concentration (8.2%), PM10 (7.8%), wind 
speed (7.5%), and dust aerosol (5.8%) (Figure 3b).

Based on BRT model results, day of year and SST were identified 
as variables of interest to be included in GAMs. The BRT results 
for SST were well corroborated by GAMs (Figure 4). SST was a 
weakly significant predictor of male presence (p = 0.01), which 
generally increased as SST increased above 20°C, and peaked at 
~22.8°C. For females, SST was a strongly significant predictor 
of presence (p < 0.001), peaking at ~19.6°C and then decreasing 
as SST increased. Male and female GAMs explained 24.4% and 
26.6% of deviance, respectively.

3.3   |   Temperature Trends and Cues

Over the duration of the study, a general upward trend in peak 
SST and duration of high temperatures was observed (see S4 
for full environmental time series). The timing of peak SST re-
mained the same each year (mid- September) but increased from 
22.99°C in 2019 to 23.81°C in 2022. The total number of days 
with SST above 22.5°C increased from 30 days in 2019 to 85 days 
in 2022. In most years, both male and female S. squatina pres-
ence peaked in mid- to- late November, coinciding with the sea-
sonal fall in SST (Figure 5b,c).
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In 2022, male presence peaked as usual, but female numbers 
remained low year- round and did not markedly increase in 
autumn as in other years. Figure 6 compares SST and SSTA 
over the autumn- winter breeding season in a “regular” year of 

S. squatina presence (2021) and the “anomalous” year (2022) 
where presence was unexpectedly low. Whereas in 2021, SST 
fluctuated between negative and positive anomalies, in 2022 
a positive SSTA of up to ~1.8°C was present for the entirety 
of November and December, and January 2023 (Figure  6). 
Furthermore, while the annual peak SST value did not dif-
fer greatly between these years (23.80°C in 2021 and 23.81°C 
in 2022), the duration of high temperatures was extended in 
2022, with SSTs above 22.5°C persisting into late November 
and falling approximately a month later than in the previ-
ous year.

4   |   Discussion

The present study utilized acoustic telemetry, satellite remote 
sensing, and environmental modelling to investigate environ-
mental associations and drivers of seasonal presence in adult 
angelsharks, Squatina squatina, in La Graciosa Marine Reserve, 
Canary Islands. We found that females were more influenced 
by environmental parameters and had more distinctive climate- 
driven cues in their behaviour than males. Temperature (SST 
and SSTA) had a particularly strong influence on females, with 
presence decreasing with increased SST and with increasingly 
positive SSTA. Throughout the study, an overall warming trend 

FIGURE 2    |    Time series plots of male and female Squatina squatina presence throughout the study period (July 2018–April 2023), shown as (a) 
detections over time for each individual (top) and (b) daily presence/absence (where orange or blue vertical lines indicate presence), and (c) detection 
days per months of the year.

TABLE 2    |    Summary of optimal parameters and evaluation metrics 
in the best performing male and female Boosted Regression Tree 
models.

Male Female

Input 
parameters

Number of trees 2300 2400

Bagging fraction 0.7 0.6

Tree complexity 5 8

Learning rate 0.005 0.005

Evaluation 
metrics

Mean deviance 0.909 0.817

Deviance explained (%) 31.2 39.5

Training AUC 0.983 0.999

Cross- validation 
(CV) AUC

0.852 0.889

Training AUC–CV AUC 0.131 0.110
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was recorded, with annual increases in maximum SST, duration 
of high SSTs, and occurrence of positive SST anomalies. We ob-
served an anomaly in S. squatina presence in 2022, with marked 
absence of females throughout the year and particularly during 
the usual mating period. This coincided with unusual tempera-
ture patterns both locally and across the Northeast Atlantic re-
gion, with high SSTs persisting well into the breeding season 
and a strong positive SSTA remaining throughout the winter of 
2022–2023.

4.1   |   Environmental Drivers: Sex Differences 
and Seasonal Cues

Modelling adult S. squatina presence in relation to a selection 
of environmental parameters showed that females were more 
strongly influenced by environmental conditions than males. 
Females were particularly influenced by temperature variables, 
with a general pattern of decreasing presence with increasing 
SST and SSTA. Models identified three key temperature values in 

FIGURE 3    |    Boosted Regression Tree (BRT) model results for (a) males and (b) females, showing the relative influence of model predictor vari-
ables on presence, and partial effects plots of the relationships between predictor variables and Squatina squatina presence.
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relation to female presence; ~19.6°C at which presence peaked, 
~20.7°C above which presence rapidly decreased, and ~22.5°C 
above which females were predicted to be absent. Although ther-
mal thresholds have not been defined for this species, previous 
studies report similar relationships between temperature and 
S. squatina presence. Noviello et al. (2021) found that SST had 
greater influence on females than males, and Mead et al. (2023) 

found sex- based habitat preference, with males more likely to 
utilize deeper offshore areas and females preferring shallow shel-
tered areas, possibly related to female use of warmer water for 
certain physiological processes (e.g., during parturition). Meyers 
et al. (2017) recorded presence of S. squatina in temperatures be-
tween 18°C and 22°C, roughly aligning with the values reported 
in this study.

FIGURE 3    |     (Continued)
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In ectothermic elasmobranchs, sex- based differences in environ-
mental association can broadly be explained in terms of physiol-
ogy, reproduction, and social behavioral dynamics (Wearmouth 
and Sims 2008). Physiologically, the sexes have different require-
ments, with females generally having more energetically demand-
ing lifestyles in relation to reproductive processes such as gestation 
and live birth (Sims 2003). As such, females tend to have stronger 
thermal preferences (e.g., Wallman and Bennett  2006) in order 
to regulate metabolic processes and energy expenditure. For ex-
ample, the use of warmer waters by mature females is commonly 
observed in elasmobranchs as a means of increasing body tempera-
ture and, in turn, increasing the rate of functions such as digestion, 
growth, and embryo development (Hight and Lowe 2007; Speed 
et al. 2012; Schlaff et al. 2014). Females may also use cooler water 
when energy needs to be conserved, such as during migration (e.g., 
McMillan et al. 2019). According to sexual conflict theory, males 
and females also have divergent reproductive strategies, which are 
reflected in behavior and habitat selection; crucially, traits and ad-
aptations that increase fitness in one sex may be costly for the other 
sex (Chapman et al. 2003; Hosken and Stockley 2005). In response 
to the differing reproductive investment associated with anisog-
amy, males generally increase reproductive success by mating fre-
quently, whereas females prioritize physical fitness for gestation 
and offspring survival; in turn, female fitness can be directly com-
promised by aggressive, energetically demanding male mating be-
havior (Sims et al. 2001; Wearmouth et al. 2012). As such, habitat 
selection in males is driven by maximizing female encounters and 
mating opportunities, and in females by avoidance of males and 

seeking environmental conditions optimal for reproductive phys-
iology, as described above (Sims  2003; Darden and Croft  2008; 
Kimber et al. 2009). The finding that female S. squatina behavior 
is more affected by their environment than males may therefore 
be partly explained by divergent reproductive motivations, with 
females selecting habitat with preferred environmental conditions 
and males tracking expected seasonal female presence regardless 
of thermal and environmental changes.

Interestingly, Calima variables also had an influence—albeit 
small—on female presence. Although the geography of Calima 
and its impact on human health and infrastructure has been well 
reported (e.g., Ginnadaki et al. 2014; Al- Hemoud et al. 2017), as 
has its impact on ocean biochemistry and geochemistry (e.g., 
Gallisai et al. 2014; Francis et al. 2022), very little information 
is available on its indirect effects on marine animals. Desert 
dust carries nutrients such as phosphorus, calcium, and iron, 
which often stimulate enhanced primary productivity when de-
posited in the ocean (Goudie and Middleton  2001). Rodríguez 
et  al.  (2023) showed that skipjack tuna, Katsuwonus pelamis, 
distribution correlates with that of Saharan dust plumes in the 
Northeast Atlantic, likely tracking the associated nutrients. 
Given the strong relationship between Calima and factors that 
are important for marine taxa including chondrichthyans—
namely temperature and productivity—future research focused 
on Sahara dust and species distribution would be beneficial, 
especially as dust events are expected to intensify (Goudie and 
Middleton 2001).

FIGURE 4    |    Generalised Additive Model (GAM) partial effects plots of the relationships between predictors day of year (doy) and sea surface tem-
perature (SST), and presence of male Squatina squatina (top) and female S. squatina (bottom).
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The findings of this study support the hypothesis that adult 
S. squatina distribution and habitat use around the Canary 
Islands is seasonal (Meyers et al. 2017; Mead et al. 2023), and 
suggest that movement and redistribution of S. squatina is 
caused by seasonal environmental changes. Environmentally 
cued movement in chondrichthyans has been linked to wind 
speed and barometric pressure (e.g., Udyawer et al. 2013), up-
welling events (e.g., Spurgeon et al. 2022), salinity (e.g., Morgan 
et  al.  2017), and most commonly to temperature, often in the 
form of specific thermal thresholds or “switch- points.” For ex-
ample, Dudgeon et al.  (2013) recorded seasonally cued arrival 
of zebra sharks, Stegostoma tigrinum, when water temperature 
increased to 22°C, and Reyier et al.  (2014) observed rapid lat-
itudinal movement in lemon sharks, Negaprion brevirostris, 
when temperature dropped below 15°C. Seasonal arrival of S. 
squatina in coastal waters in October and November coincides 
with dropping water temperatures. We suggest that a seasonal 
thermal cue exists in this system, and that it disproportionately 
influences female sharks in La Graciosa Marine Reserve. That 
is, females choose not to move into the study area to mate until 
temperatures drop, specifically below 22.5°C. Evidence for this 
theory, as well as the theory of sexually divergent reproductive 
strategy and habitat selection, was reinforced by the abnormal 
absence of females recorded in 2022.

4.2   |   Disrupted Thermal Cues in 2022: A Window 
Into Future Climate Change Impacts?

Model results and examination of SST and SSTA between years 
strongly indicate that the recorded S. squatina behavioural 
anomaly in 2022 was related to temperature; or specifically, 
duration of high temperature and persistence of high SST and 
positive SSTA later in the year. For example, in 2019, 2020, and 
2021, SSTs fluctuated close to or exceeded 22.5°C for approxi-
mately 2 months each year, and consistently dropped back below 
this value in October. In 2022, however, SST exceeded 22.5°C 
for nearly 4 months, and did not drop until late November. This 
coincided with a strong positive SSTA, which persisted from 
late October 2022 until nearly February 2023. These extremes 
were part of a wider regional pattern of thermal anomalies and 
MHWs occurring across the North Atlantic throughout much of 
2022 and into 2023 (Figure 6c).

We suggest two interlinking temperature- related hypotheses 
for these observations. First, if coastal temperatures within the 
study area were above a thermal threshold, females may have 
been forced to select alternative habitat, prioritizing optimal 
physiology over encountering males. In turn, given that males 
were shown to be less influenced by environmental conditions, 

FIGURE 5    |    Time series of (a) daily average sea surface temperature (SST) and daily counts of (b) female and (c) male Squatina squatina in the 
study are between April 2019 and April 2023. Horizontal lines indicating key values identified in female environmental models; 19.6°C as peak pres-
ence, 20.7°C above which presence rapidly dropped, and 22.5°C above which the probability of presence remained below 0. In turn, orange shading 
indicates SST ranges between 20.7°C and 22.5°C, and red shading SSTs above 22.5°C.
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12 of 19 Global Change Biology, 2025

FIGURE 6    |    Daily mean sea surface temperature (SST) and SST anomaly (SSTA) over the (a) 2021 and (b) 2022 Squatina squatina breeding season 
with key SST and SST ranges labelled as in Figure 5, and (c) Maps showing the development of SSTA from September 2022 to February 2023, across 
the Northeast Atlantic region (larger maps) and northeast Canary Islands (inserts). Imagery for (c) is from the NASA Worldview application, acces-
sible at https:// world view. earth data. nasa. gov
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male S. squatina may have been more tolerant of abnormally 
high temperatures, or more willing to endure temperatures 
outside of their preferred thermal range in order to search for 
mates, potentially prioritizing mating over thermal optima 
(Spurgeon et  al.  2022). Further, greater general mobility and 
activity levels in males (Mead et al. 2023) might facilitate regu-
lar movement into deeper waters for thermal refuge with min-
imal increase to usual energy expenditure. Second, it could be 
that temperatures did not drop sufficiently or at the expected 
time to cue female S. squatina movement, disrupting seasonal 
redistribution. However, an inherent limitation of acoustic te-
lemetry is that tagged animals are only monitored in specific 
locations, with no information on presence or behavior outside 
of the detection range of each receiver. As such, there must be 
caution in interpreting the absence of female S. squatina in our 
detection data as absence from the entire area.

4.3   |   Predicting Future Impacts of Climate Change 
on S. squatina

Globally, continued increase in sea surface temperatures 
throughout the 21st century is projected with virtual certainty, 
with possible increases of two to four times current tempera-
tures under the lowest emission scenario (RCP2.6) and five 
to seven times under the highest emission scenario (RCP8.5) 
(Bindoff et  al.  2019; IPCC  2021). In turn, the frequency, du-
ration, intensity, and spatial extent of MHWs are predicted 
to increase in all regions (Frölicher et  al.  2018; IPCC  2022). 
In the Northeast Atlantic, significant slowing of the Atlantic 
Meridional Overturning Circulation (AMOC), ocean acidifica-
tion, reduction in surface oxygen concentration, and reduced 
intensity of coastal upwelling are predicted (Olson et al. 2018; 
Kjesbu et al. 2022; Mishonov et al. 2024); the latter may result 
in enhanced warming and a globally significant loss of pri-
mary productivity in the Canary Current and upwelling sys-
tem, as the transport of cold, nutrient- rich waters to the surface 
is reduced (Pardo et al. 2011; Siemer et al. 2021). Ecosystem im-
pacts are expected to be amplified for small islands and coastal 
zones, where sea level rise, storm surges, and extreme rainfall 
events will combine with local human disturbance, driving 
coral bleaching, loss of seagrass, mangrove die- off, and beach 
erosion (Bindoff et  al.  2019; IPCC  2022; Marrero- Betancort 
et al. 2022).

From our findings, there are two key implications to consider 
around S. squatina response and adaptation to climate change. 
First, the differential risk and adaptation potential between 
sexes. Although there is relatively little research into sex differ-
ences in shorter- term behavioral response and adaptation to en-
vironmental change (Brand et al. 2023; Gissi et al. 2023), studies 
have already identified divergent impacts on males and females 
in marine predators (e.g., Barbraud and Weimerskirch  2001; 
Ouled- Cheikh et al. 2024). Sex differences in thermal tolerance 
and thermal safety margins are often explained by physiological 
requirements. For example, Missionário et  al.  (2022) hypoth-
esized that lower thermal tolerance in female ditch shrimps, 
Palaemon varians, was due to greater energy expenditure in fe-
males relating to reproductive investment and larger body size. 
In the present study, we showed that female S. squatina were 
more strongly associated with temperature generally, and more 

responsive to thermal extremes in 2022. The greater site fidelity 
and lower activity levels in female S. squatina (Mead et al. 2023) 
may mean that movement to seek out preferred thermal envi-
ronments is more energetically and ecologically costly for fe-
males than for males, but that thermal extremes may force this 
behavior in females. If the net result is divergent habitat use, re-
productive mismatch, and increased sexual segregation during 
environmental extremes, this could be detrimental to breeding 
success. The most extreme possibility is that certain areas—in-
cluding some areas within LGMR—become inhospitable to fe-
male S. squatina if temperature anomalies persist. Ultimately, 
failing to account for sex differences in response to environmen-
tal change can lead to reduced success of conservation efforts 
(Ellis et al. 2017; Gianuca et al. 2019; Gissi et al. 2023).

Second, environmental cues are expected to be increasingly dis-
rupted under climate change (McNamara et al. 2011; Winkler 
et al. 2014). Under ‘normal’ conditions, cues are time- sensitive 
and coincide with the optimal timing for particular life history 
activities, such as migration or breeding. If a shift in the nature or 
timing of formerly reliable cues—such as a seasonal drop in tem-
perature—is sufficient to disrupt the relationship with optimal 
timing for activities such as mating, the cue essentially becomes 
outdated (McNamara et al. 2011; Anderson et al. 2013; Winkler 
et al. 2014). This can lead to mistiming of activities and impact 
breeding success and survival (McNamara et al. 2011). This has 
been observed across a range of taxa, including terrestrial herbi-
vores (e.g., Post and Forchhammer 2008) and birds (e.g., Mayor 
et al. 2017), marine predators (e.g., Cherry et al. 2013) and fish 
(e.g., Dufour et  al.  2010). If a seasonal temperature reduction 
provides a cue for inshore movement and coastal redistribution 
in S. squatina, it follows that this cue may be increasingly dis-
rupted with projected environmental changes. As such, the ob-
servations of 2022–2023 may offer a window into future impacts 
of climate change on S. squatina in the northeast of the Canary 
Islands, and possibly further afield.

4.4   |   Implications for Conservation and Future 
Research

Within the last century, severe population decline and range 
contraction in S. squatina has primarily been driven by over-
exploitation, habitat degradation, and other anthropogenic 
impacts (Barker et  al.  2022; Miller  2016; Gordon et  al.  2017; 
Lawson et  al.  2020). In the Canary Islands, many of these 
threats are ongoing, and conservation approaches to date have 
focused on addressing these concerns. The impacts and risks as-
sociated with climate change are still emerging but are likely to 
exacerbate and interact with existing stressors (Hare et al. 2016; 
IPCC 2022). For example, in a population known to sexually seg-
regate (Mead et al. 2023), temperature- driven shifts in space- use 
may increase the possibility of differential exposure to fishing 
pressure between sexes. In turn, species vulnerability to climate 
change is increased by the presence of other stressors, especially 
at equatorward range boundaries where continued overfish-
ing is hypothesised to speed up displacement (Chin et al. 2010; 
Lenoir et al. 2020). In future S. squatina conservation measures, 
especially for the Canary Islands populations at the upper ther-
mal limit, it is critical that climate change adaptation is consid-
ered and actively incorporated.
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Future approaches will need to consider adaptive manage-
ment, whereby conservation measures account for environ-
mental change and dynamic species responses (Hobday  2011; 
Braun et al. 2023). An approach for S. squatina could be static 
environment- centered conservation, which can include tradi-
tional spatially fixed protected areas, but designed based on im-
portant physical or environmental features, rather than being 
species- focused (Hobday 2011; Groves et al. 2012). In this case, 
priority should be given to identifying environments and fea-
tures which might be robust to climate change, and/or which 
are already recognized as thermal refugia (Keppel et al. 2012; 
Groves et  al.  2012). Given the growing body of evidence sug-
gesting that adult S. squatina utilize deeper offshore waters 
than previously thought (e.g., Mead et al. 2023), as well as the 
general climate- driven vertical habitat shift observed in other 
elasmobranchs (e.g., Coulon et  al.  2024), it may be important 
to consider protection of cool deep habitat around the Canary 
Islands. A second approach is dynamic management and tem-
porary measures, which are only activated during short- term 
extremes such as MHWs (Cheung and Frölicher 2020), aimed at 
alleviating other pressures (e.g., fishing, recreational water- use) 
during—or in the months following—periods of elevated ther-
mal stress. This could operate in conjunction with—or be an 
extension of—temporal conservation measures such as restric-
tion of certain fisheries during a defined period in a critical area. 
However, dynamic management requires continuous, long- term 
planning and monitoring, as well as substantial collaborative ef-
fort between multiple actors (e.g., scientists, fishers, government 
bodies) which is logistically challenging (Hobday 2011; Reside 
et al. 2018).

Crucially, these conservation approaches require further data. 
In this study, we explored the direct influence of environmen-
tal conditions on ectotherm physiology and behaviour. Indirect 
biological factors such as prey availability and distribution 
are also inherently linked to habitat selection and distribu-
tion in marine predators (Sims et al. 2006; Florko et al. 2023). 
Indeed, we suggest that the absence of prey- related variables 
may account for some of the missing predictive power in our 
models of S. squatina presence. Given that prey species dis-
tribution shifts, decoupling of predator–prey phenology and 
trophic reorganisation are understood to be key impacts of 
oceanographic change (Burthe et al. 2012; Durant et al. 2019; 
Gallagher et al. 2022), it will be important to investigate how 
diet and foraging ecology interact with environmental cues in 
higher trophic level species such as S. squatina. Further, a par-
ticularly key knowledge gap remains in our understanding of 
seasonal adult S. squatina habitat use and movement: that is, 
where exactly do S. squatina go outside of the coastal breed-
ing season? There is a strong evidence- based hypothesis that 
most S. squatina utilise coastal habitat for mating, parturition, 
and pupping, and redistribute offshore outside of this period. 
However, in this study—as in all studies—direct observations 
were made only of the coastal, inshore portion of the species' 
life history. In the context of understanding environmental 
cues and thermal refugia, this leaves a significant data gap. 
Seasonally cued migration—as is hypothesised for S. squa-
tina—relies not only on coupling between cue and activity but 
also between different locations along a migratory pathway; 
that is, coupling between the cue that initiates migration in 

the start- location and the habitat conditions at the destination 
(Anderson et al. 2013; Winkler et al. 2014; Chmura et al. 2019). 
Due to spatiotemporal variation in environmental change, it 
is possible for conditions at different parts of an organism's 
distribution or migratory pathway to become uncoupled; for 
example, if temperature increases more rapidly in one location 
than in the other (Anderson et al. 2013; Winkler et al. 2014). 
We therefore suggest that an urgent research priority is 
broader- scale monitoring of S. squatina, with the aim of ob-
taining year- round, spatially complete data on habitat use and 
environmental tolerance. Only then can the full extent of cli-
mate change impacts on this Critically Endangered species be 
understood, monitored, and adapted to.

5   |   Conclusion

With unprecedented warming and oceanographic change con-
tinuing across the Northeast Atlantic Ocean, understanding 
and predicting marine species and ecosystem response to cli-
mate change in this region—and indeed globally—are urgent 
priorities. This study demonstrates how environmental change 
and thermal extremes have already altered the behavior and 
distribution of an ectothermic marine predator, the angelshark, 
Squatina squatina, with greater environmental and thermal 
sensitivity in females leading to sexually divergent habitat use 
and impacting breeding behavior. Our findings show that this 
Critically Endangered species of global conservation interest 
is more acutely vulnerable to climate change than previously 
thought, starkly highlighting the importance of species- specific, 
real- time environmental and behavioral data. These findings 
also highlight the need to prioritize and incorporate such data 
into new and existing conservation measures, so that efforts to 
protect threatened marine ectotherms remain ecologically rele-
vant in a rapidly warming ocean.
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